f-stack/dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c

1308 lines
36 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <string.h>
#include <rte_common.h>
#include <rte_bus_vdev.h>
#include <rte_malloc.h>
#include <rte_ring.h>
#include <rte_kvargs.h>
#include <rte_cycles.h>
#include <rte_bbdev.h>
#include <rte_bbdev_pmd.h>
#include <phy_turbo.h>
#include <phy_crc.h>
#include <phy_rate_match.h>
#include <divide.h>
#define DRIVER_NAME baseband_turbo_sw
/* Turbo SW PMD logging ID */
static int bbdev_turbo_sw_logtype;
/* Helper macro for logging */
#define rte_bbdev_log(level, fmt, ...) \
rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
##__VA_ARGS__)
#define rte_bbdev_log_debug(fmt, ...) \
rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
##__VA_ARGS__)
#define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
#define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
#define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
/* private data structure */
struct bbdev_private {
unsigned int max_nb_queues; /**< Max number of queues */
};
/* Initialisation params structure that can be used by Turbo SW driver */
struct turbo_sw_params {
int socket_id; /*< Turbo SW device socket */
uint16_t queues_num; /*< Turbo SW device queues number */
};
/* Accecptable params for Turbo SW devices */
#define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues"
#define TURBO_SW_SOCKET_ID_ARG "socket_id"
static const char * const turbo_sw_valid_params[] = {
TURBO_SW_MAX_NB_QUEUES_ARG,
TURBO_SW_SOCKET_ID_ARG
};
/* queue */
struct turbo_sw_queue {
/* Ring for processed (encoded/decoded) operations which are ready to
* be dequeued.
*/
struct rte_ring *processed_pkts;
/* Stores input for turbo encoder (used when CRC attachment is
* performed
*/
uint8_t *enc_in;
/* Stores output from turbo encoder */
uint8_t *enc_out;
/* Alpha gamma buf for bblib_turbo_decoder() function */
int8_t *ag;
/* Temp buf for bblib_turbo_decoder() function */
uint16_t *code_block;
/* Input buf for bblib_rate_dematching_lte() function */
uint8_t *deint_input;
/* Output buf for bblib_rate_dematching_lte() function */
uint8_t *deint_output;
/* Output buf for bblib_turbodec_adapter_lte() function */
uint8_t *adapter_output;
/* Operation type of this queue */
enum rte_bbdev_op_type type;
} __rte_cache_aligned;
/* Calculate index based on Table 5.1.3-3 from TS34.212 */
static inline int32_t
compute_idx(uint16_t k)
{
int32_t result = 0;
if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
return -1;
if (k > 2048) {
if ((k - 2048) % 64 != 0)
result = -1;
result = 124 + (k - 2048) / 64;
} else if (k <= 512) {
if ((k - 40) % 8 != 0)
result = -1;
result = (k - 40) / 8 + 1;
} else if (k <= 1024) {
if ((k - 512) % 16 != 0)
result = -1;
result = 60 + (k - 512) / 16;
} else { /* 1024 < k <= 2048 */
if ((k - 1024) % 32 != 0)
result = -1;
result = 92 + (k - 1024) / 32;
}
return result;
}
/* Read flag value 0/1 from bitmap */
static inline bool
check_bit(uint32_t bitmap, uint32_t bitmask)
{
return bitmap & bitmask;
}
/* Get device info */
static void
info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
{
struct bbdev_private *internals = dev->data->dev_private;
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
{
.type = RTE_BBDEV_OP_TURBO_DEC,
.cap.turbo_dec = {
.capability_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_CRC_TYPE_24B |
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
RTE_BBDEV_TURBO_EARLY_TERMINATION,
.max_llr_modulus = 16,
.num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
.num_buffers_hard_out =
RTE_BBDEV_MAX_CODE_BLOCKS,
.num_buffers_soft_out = 0,
}
},
{
.type = RTE_BBDEV_OP_TURBO_ENC,
.cap.turbo_enc = {
.capability_flags =
RTE_BBDEV_TURBO_CRC_24B_ATTACH |
RTE_BBDEV_TURBO_CRC_24A_ATTACH |
RTE_BBDEV_TURBO_RATE_MATCH |
RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
.num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
.num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
}
},
RTE_BBDEV_END_OF_CAPABILITIES_LIST()
};
static struct rte_bbdev_queue_conf default_queue_conf = {
.queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
};
static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
default_queue_conf.socket = dev->data->socket_id;
dev_info->driver_name = RTE_STR(DRIVER_NAME);
dev_info->max_num_queues = internals->max_nb_queues;
dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
dev_info->hardware_accelerated = false;
dev_info->max_dl_queue_priority = 0;
dev_info->max_ul_queue_priority = 0;
dev_info->default_queue_conf = default_queue_conf;
dev_info->capabilities = bbdev_capabilities;
dev_info->cpu_flag_reqs = &cpu_flag;
dev_info->min_alignment = 64;
rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
}
/* Release queue */
static int
q_release(struct rte_bbdev *dev, uint16_t q_id)
{
struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
if (q != NULL) {
rte_ring_free(q->processed_pkts);
rte_free(q->enc_out);
rte_free(q->enc_in);
rte_free(q->ag);
rte_free(q->code_block);
rte_free(q->deint_input);
rte_free(q->deint_output);
rte_free(q->adapter_output);
rte_free(q);
dev->data->queues[q_id].queue_private = NULL;
}
rte_bbdev_log_debug("released device queue %u:%u",
dev->data->dev_id, q_id);
return 0;
}
/* Setup a queue */
static int
q_setup(struct rte_bbdev *dev, uint16_t q_id,
const struct rte_bbdev_queue_conf *queue_conf)
{
int ret;
struct turbo_sw_queue *q;
char name[RTE_RING_NAMESIZE];
/* Allocate the queue data structure. */
q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
RTE_CACHE_LINE_SIZE, queue_conf->socket);
if (q == NULL) {
rte_bbdev_log(ERR, "Failed to allocate queue memory");
return -ENOMEM;
}
/* Allocate memory for encoder output. */
ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
dev->data->dev_id, q_id);
if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
rte_bbdev_log(ERR,
"Creating queue name for device %u queue %u failed",
dev->data->dev_id, q_id);
return -ENAMETOOLONG;
}
q->enc_out = rte_zmalloc_socket(name,
((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
sizeof(*q->enc_out) * 3,
RTE_CACHE_LINE_SIZE, queue_conf->socket);
if (q->enc_out == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate queue memory for %s", name);
goto free_q;
}
/* Allocate memory for rate matching output. */
ret = snprintf(name, RTE_RING_NAMESIZE,
RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
q_id);
if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
rte_bbdev_log(ERR,
"Creating queue name for device %u queue %u failed",
dev->data->dev_id, q_id);
return -ENAMETOOLONG;
}
q->enc_in = rte_zmalloc_socket(name,
(RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
RTE_CACHE_LINE_SIZE, queue_conf->socket);
if (q->enc_in == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate queue memory for %s", name);
goto free_q;
}
/* Allocate memory for Aplha Gamma temp buffer. */
ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
dev->data->dev_id, q_id);
if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
rte_bbdev_log(ERR,
"Creating queue name for device %u queue %u failed",
dev->data->dev_id, q_id);
return -ENAMETOOLONG;
}
q->ag = rte_zmalloc_socket(name,
RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
RTE_CACHE_LINE_SIZE, queue_conf->socket);
if (q->ag == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate queue memory for %s", name);
goto free_q;
}
/* Allocate memory for code block temp buffer. */
ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
dev->data->dev_id, q_id);
if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
rte_bbdev_log(ERR,
"Creating queue name for device %u queue %u failed",
dev->data->dev_id, q_id);
return -ENAMETOOLONG;
}
q->code_block = rte_zmalloc_socket(name,
RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
RTE_CACHE_LINE_SIZE, queue_conf->socket);
if (q->code_block == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate queue memory for %s", name);
goto free_q;
}
/* Allocate memory for Deinterleaver input. */
ret = snprintf(name, RTE_RING_NAMESIZE,
RTE_STR(DRIVER_NAME)"_de_i%u:%u",
dev->data->dev_id, q_id);
if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
rte_bbdev_log(ERR,
"Creating queue name for device %u queue %u failed",
dev->data->dev_id, q_id);
return -ENAMETOOLONG;
}
q->deint_input = rte_zmalloc_socket(name,
DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
RTE_CACHE_LINE_SIZE, queue_conf->socket);
if (q->deint_input == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate queue memory for %s", name);
goto free_q;
}
/* Allocate memory for Deinterleaver output. */
ret = snprintf(name, RTE_RING_NAMESIZE,
RTE_STR(DRIVER_NAME)"_de_o%u:%u",
dev->data->dev_id, q_id);
if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
rte_bbdev_log(ERR,
"Creating queue name for device %u queue %u failed",
dev->data->dev_id, q_id);
return -ENAMETOOLONG;
}
q->deint_output = rte_zmalloc_socket(NULL,
DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
RTE_CACHE_LINE_SIZE, queue_conf->socket);
if (q->deint_output == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate queue memory for %s", name);
goto free_q;
}
/* Allocate memory for Adapter output. */
ret = snprintf(name, RTE_RING_NAMESIZE,
RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
dev->data->dev_id, q_id);
if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
rte_bbdev_log(ERR,
"Creating queue name for device %u queue %u failed",
dev->data->dev_id, q_id);
return -ENAMETOOLONG;
}
q->adapter_output = rte_zmalloc_socket(NULL,
ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
RTE_CACHE_LINE_SIZE, queue_conf->socket);
if (q->adapter_output == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate queue memory for %s", name);
goto free_q;
}
/* Create ring for packets awaiting to be dequeued. */
ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
dev->data->dev_id, q_id);
if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
rte_bbdev_log(ERR,
"Creating queue name for device %u queue %u failed",
dev->data->dev_id, q_id);
return -ENAMETOOLONG;
}
q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
if (q->processed_pkts == NULL) {
rte_bbdev_log(ERR, "Failed to create ring for %s", name);
goto free_q;
}
q->type = queue_conf->op_type;
dev->data->queues[q_id].queue_private = q;
rte_bbdev_log_debug("setup device queue %s", name);
return 0;
free_q:
rte_ring_free(q->processed_pkts);
rte_free(q->enc_out);
rte_free(q->enc_in);
rte_free(q->ag);
rte_free(q->code_block);
rte_free(q->deint_input);
rte_free(q->deint_output);
rte_free(q->adapter_output);
rte_free(q);
return -EFAULT;
}
static const struct rte_bbdev_ops pmd_ops = {
.info_get = info_get,
.queue_setup = q_setup,
.queue_release = q_release
};
/* Checks if the encoder input buffer is correct.
* Returns 0 if it's valid, -1 otherwise.
*/
static inline int
is_enc_input_valid(const uint16_t k, const int32_t k_idx,
const uint16_t in_length)
{
if (k_idx < 0) {
rte_bbdev_log(ERR, "K Index is invalid");
return -1;
}
if (in_length - (k >> 3) < 0) {
rte_bbdev_log(ERR,
"Mismatch between input length (%u bytes) and K (%u bits)",
in_length, k);
return -1;
}
if (k > RTE_BBDEV_MAX_CB_SIZE) {
rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
k, RTE_BBDEV_MAX_CB_SIZE);
return -1;
}
return 0;
}
/* Checks if the decoder input buffer is correct.
* Returns 0 if it's valid, -1 otherwise.
*/
static inline int
is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
{
if (k_idx < 0) {
rte_bbdev_log(ERR, "K index is invalid");
return -1;
}
if (in_length - kw < 0) {
rte_bbdev_log(ERR,
"Mismatch between input length (%u) and kw (%u)",
in_length, kw);
return -1;
}
if (kw > RTE_BBDEV_MAX_KW) {
rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
kw, RTE_BBDEV_MAX_KW);
return -1;
}
return 0;
}
static inline void
process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
uint16_t in_offset, uint16_t out_offset, uint16_t total_left,
struct rte_bbdev_stats *q_stats)
{
int ret;
int16_t k_idx;
uint16_t m;
uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
uint64_t first_3_bytes = 0;
struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
struct bblib_crc_request crc_req;
struct bblib_crc_response crc_resp;
struct bblib_turbo_encoder_request turbo_req;
struct bblib_turbo_encoder_response turbo_resp;
struct bblib_rate_match_dl_request rm_req;
struct bblib_rate_match_dl_response rm_resp;
#ifdef RTE_BBDEV_OFFLOAD_COST
uint64_t start_time;
#else
RTE_SET_USED(q_stats);
#endif
k_idx = compute_idx(k);
in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
/* CRC24A (for TB) */
if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
(enc->code_block_mode == 1)) {
ret = is_enc_input_valid(k - 24, k_idx, total_left);
if (ret != 0) {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
return;
}
crc_req.data = in;
crc_req.len = k - 24;
/* Check if there is a room for CRC bits if not use
* the temporary buffer.
*/
if (rte_pktmbuf_append(m_in, 3) == NULL) {
rte_memcpy(q->enc_in, in, (k - 24) >> 3);
in = q->enc_in;
} else {
/* Store 3 first bytes of next CB as they will be
* overwritten by CRC bytes. If it is the last CB then
* there is no point to store 3 next bytes and this
* if..else branch will be omitted.
*/
first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
}
crc_resp.data = in;
#ifdef RTE_BBDEV_OFFLOAD_COST
start_time = rte_rdtsc_precise();
#endif
bblib_lte_crc24a_gen(&crc_req, &crc_resp);
#ifdef RTE_BBDEV_OFFLOAD_COST
q_stats->offload_time += rte_rdtsc_precise() - start_time;
#endif
} else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
/* CRC24B */
ret = is_enc_input_valid(k - 24, k_idx, total_left);
if (ret != 0) {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
return;
}
crc_req.data = in;
crc_req.len = k - 24;
/* Check if there is a room for CRC bits if this is the last
* CB in TB. If not use temporary buffer.
*/
if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
rte_memcpy(q->enc_in, in, (k - 24) >> 3);
in = q->enc_in;
} else if (c - r > 1) {
/* Store 3 first bytes of next CB as they will be
* overwritten by CRC bytes. If it is the last CB then
* there is no point to store 3 next bytes and this
* if..else branch will be omitted.
*/
first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
}
crc_resp.data = in;
#ifdef RTE_BBDEV_OFFLOAD_COST
start_time = rte_rdtsc_precise();
#endif
bblib_lte_crc24b_gen(&crc_req, &crc_resp);
#ifdef RTE_BBDEV_OFFLOAD_COST
q_stats->offload_time += rte_rdtsc_precise() - start_time;
#endif
} else {
ret = is_enc_input_valid(k, k_idx, total_left);
if (ret != 0) {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
return;
}
}
/* Turbo encoder */
/* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
* input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
* So dst_data's length should be 3*(k/8) + 3 bytes.
* In Rate-matching bypass case outputs pointers passed to encoder
* (out0, out1 and out2) can directly point to addresses of output from
* turbo_enc entity.
*/
if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
out0 = q->enc_out;
out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
} else {
out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
if (out0 == NULL) {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
rte_bbdev_log(ERR,
"Too little space in output mbuf");
return;
}
enc->output.length += (k >> 3) * 3 + 2;
/* rte_bbdev_op_data.offset can be different than the
* offset of the appended bytes
*/
out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
out_offset + (k >> 3) + 1);
out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
out_offset + 2 * ((k >> 3) + 1));
}
turbo_req.case_id = k_idx;
turbo_req.input_win = in;
turbo_req.length = k >> 3;
turbo_resp.output_win_0 = out0;
turbo_resp.output_win_1 = out1;
turbo_resp.output_win_2 = out2;
#ifdef RTE_BBDEV_OFFLOAD_COST
start_time = rte_rdtsc_precise();
#endif
if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
op->status |= 1 << RTE_BBDEV_DRV_ERROR;
rte_bbdev_log(ERR, "Turbo Encoder failed");
return;
}
#ifdef RTE_BBDEV_OFFLOAD_COST
q_stats->offload_time += rte_rdtsc_precise() - start_time;
#endif
/* Restore 3 first bytes of next CB if they were overwritten by CRC*/
if (first_3_bytes != 0)
*((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
/* Rate-matching */
if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
uint8_t mask_id;
/* Integer round up division by 8 */
uint16_t out_len = (e + 7) >> 3;
/* The mask array is indexed using E%8. E is an even number so
* there are only 4 possible values.
*/
const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
/* get output data starting address */
rm_out = (uint8_t *)rte_pktmbuf_append(m_out, out_len);
if (rm_out == NULL) {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
rte_bbdev_log(ERR,
"Too little space in output mbuf");
return;
}
/* rte_bbdev_op_data.offset can be different than the offset
* of the appended bytes
*/
rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
/* index of current code block */
rm_req.r = r;
/* total number of code block */
rm_req.C = c;
/* For DL - 1, UL - 0 */
rm_req.direction = 1;
/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
* and MDL_HARQ are used for Ncb calculation. As Ncb is already
* known we can adjust those parameters
*/
rm_req.Nsoft = ncb * rm_req.C;
rm_req.KMIMO = 1;
rm_req.MDL_HARQ = 1;
/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
* are used for E calculation. As E is already known we can
* adjust those parameters
*/
rm_req.NL = e;
rm_req.Qm = 1;
rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
rm_req.rvidx = enc->rv_index;
rm_req.Kidx = k_idx - 1;
rm_req.nLen = k + 4;
rm_req.tin0 = out0;
rm_req.tin1 = out1;
rm_req.tin2 = out2;
rm_resp.output = rm_out;
rm_resp.OutputLen = out_len;
if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
rm_req.bypass_rvidx = 1;
else
rm_req.bypass_rvidx = 0;
#ifdef RTE_BBDEV_OFFLOAD_COST
start_time = rte_rdtsc_precise();
#endif
if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
op->status |= 1 << RTE_BBDEV_DRV_ERROR;
rte_bbdev_log(ERR, "Rate matching failed");
return;
}
/* SW fills an entire last byte even if E%8 != 0. Clear the
* superfluous data bits for consistency with HW device.
*/
mask_id = (e & 7) >> 1;
rm_out[out_len - 1] &= mask_out[mask_id];
#ifdef RTE_BBDEV_OFFLOAD_COST
q_stats->offload_time += rte_rdtsc_precise() - start_time;
#endif
enc->output.length += rm_resp.OutputLen;
} else {
/* Rate matching is bypassed */
/* Completing last byte of out0 (where 4 tail bits are stored)
* by moving first 4 bits from out1
*/
tmp_out = (uint8_t *) --out1;
*tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
tmp_out++;
/* Shifting out1 data by 4 bits to the left */
for (m = 0; m < k >> 3; ++m) {
uint8_t *first = tmp_out;
uint8_t second = *(tmp_out + 1);
*first = (*first << 4) | ((second & 0xF0) >> 4);
tmp_out++;
}
/* Shifting out2 data by 8 bits to the left */
for (m = 0; m < (k >> 3) + 1; ++m) {
*tmp_out = *(tmp_out + 1);
tmp_out++;
}
*tmp_out = 0;
}
}
static inline void
enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
struct rte_bbdev_stats *queue_stats)
{
uint8_t c, r, crc24_bits = 0;
uint16_t k, ncb;
uint32_t e;
struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
uint16_t in_offset = enc->input.offset;
uint16_t out_offset = enc->output.offset;
struct rte_mbuf *m_in = enc->input.data;
struct rte_mbuf *m_out = enc->output.data;
uint16_t total_left = enc->input.length;
/* Clear op status */
op->status = 0;
if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
total_left, RTE_BBDEV_MAX_TB_SIZE);
op->status = 1 << RTE_BBDEV_DATA_ERROR;
return;
}
if (m_in == NULL || m_out == NULL) {
rte_bbdev_log(ERR, "Invalid mbuf pointer");
op->status = 1 << RTE_BBDEV_DATA_ERROR;
return;
}
if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
(enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
crc24_bits = 24;
if (enc->code_block_mode == 0) { /* For Transport Block mode */
c = enc->tb_params.c;
r = enc->tb_params.r;
} else {/* For Code Block mode */
c = 1;
r = 0;
}
while (total_left > 0 && r < c) {
if (enc->code_block_mode == 0) {
k = (r < enc->tb_params.c_neg) ?
enc->tb_params.k_neg : enc->tb_params.k_pos;
ncb = (r < enc->tb_params.c_neg) ?
enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
e = (r < enc->tb_params.cab) ?
enc->tb_params.ea : enc->tb_params.eb;
} else {
k = enc->cb_params.k;
ncb = enc->cb_params.ncb;
e = enc->cb_params.e;
}
process_enc_cb(q, op, r, c, k, ncb, e, m_in,
m_out, in_offset, out_offset, total_left,
queue_stats);
/* Update total_left */
total_left -= (k - crc24_bits) >> 3;
/* Update offsets for next CBs (if exist) */
in_offset += (k - crc24_bits) >> 3;
if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
out_offset += e >> 3;
else
out_offset += (k >> 3) * 3 + 2;
r++;
}
/* check if all input data was processed */
if (total_left != 0) {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CBs sizes");
}
}
static inline uint16_t
enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
{
uint16_t i;
#ifdef RTE_BBDEV_OFFLOAD_COST
queue_stats->offload_time = 0;
#endif
for (i = 0; i < nb_ops; ++i)
enqueue_enc_one_op(q, ops[i], queue_stats);
return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
NULL);
}
/* Remove the padding bytes from a cyclic buffer.
* The input buffer is a data stream wk as described in 3GPP TS 36.212 section
* 5.1.4.1.2 starting from w0 and with length Ncb bytes.
* The output buffer is a data stream wk with pruned padding bytes. It's length
* is 3*D bytes and the order of non-padding bytes is preserved.
*/
static inline void
remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
uint16_t ncb)
{
uint32_t in_idx, out_idx, c_idx;
const uint32_t d = k + 4;
const uint32_t kw = (ncb / 3);
const uint32_t nd = kw - d;
const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK;
/* Inter-column permutation pattern */
const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28,
2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13,
29, 3, 19, 11, 27, 7, 23, 15, 31};
in_idx = 0;
out_idx = 0;
/* The padding bytes are at the first Nd positions in the first row. */
for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
if (P[c_idx] < nd) {
rte_memcpy(&out[out_idx], &in[in_idx + 1],
r_subblock - 1);
out_idx += r_subblock - 1;
} else {
rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
out_idx += r_subblock;
}
}
/* First and second parity bits sub-blocks are interlaced. */
for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
in_idx += 2 * r_subblock, ++c_idx) {
uint32_t second_block_c_idx = P[c_idx];
uint32_t third_block_c_idx = P[c_idx] + 1;
if (second_block_c_idx < nd && third_block_c_idx < nd) {
rte_memcpy(&out[out_idx], &in[in_idx + 2],
2 * r_subblock - 2);
out_idx += 2 * r_subblock - 2;
} else if (second_block_c_idx >= nd &&
third_block_c_idx >= nd) {
rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
out_idx += 2 * r_subblock;
} else if (second_block_c_idx < nd) {
out[out_idx++] = in[in_idx];
rte_memcpy(&out[out_idx], &in[in_idx + 2],
2 * r_subblock - 2);
out_idx += 2 * r_subblock - 2;
} else {
rte_memcpy(&out[out_idx], &in[in_idx + 1],
2 * r_subblock - 1);
out_idx += 2 * r_subblock - 1;
}
}
/* Last interlaced row is different - its last byte is the only padding
* byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block.
* After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
* or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
* (moving to another column). 2nd parity sub-block uses the same
* inter-column permutation pattern as the systematic and 1st parity
* sub-blocks but it adds '1' to the resulting index and calculates the
* modulus of the result and Kw. Last column is mapped to itself (id 31)
* so the first byte taken from the 2nd parity sub-block will be the
* 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
* last byte will be the first byte from the sub-block:
* (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't be smaller
* than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the
* padding bytes. The bytes from the 1st parity sub-block are the bytes
* from the 31st column - Nd can't be greater than 28 so we are sure
* that there are no padding bytes in 31st column.
*/
rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
}
static inline void
move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
uint16_t ncb)
{
uint16_t d = k + 4;
uint16_t kpi = ncb / 3;
uint16_t nd = kpi - d;
rte_memcpy(&out[nd], in, d);
rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
}
static inline void
process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
bool check_crc_24b, uint16_t crc24_overlap, uint16_t total_left)
{
int ret;
int32_t k_idx;
int32_t iter_cnt;
uint8_t *in, *out, *adapter_input;
int32_t ncb, ncb_without_null;
struct bblib_turbo_adapter_ul_response adapter_resp;
struct bblib_turbo_adapter_ul_request adapter_req;
struct bblib_turbo_decoder_request turbo_req;
struct bblib_turbo_decoder_response turbo_resp;
struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
k_idx = compute_idx(k);
ret = is_dec_input_valid(k_idx, kw, total_left);
if (ret != 0) {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
return;
}
in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
ncb = kw;
ncb_without_null = (k + 4) * 3;
if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
struct bblib_deinterleave_ul_request deint_req;
struct bblib_deinterleave_ul_response deint_resp;
/* SW decoder accepts only a circular buffer without NULL bytes
* so the input needs to be converted.
*/
remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
deint_req.pharqbuffer = q->deint_input;
deint_req.ncb = ncb_without_null;
deint_resp.pinteleavebuffer = q->deint_output;
bblib_deinterleave_ul(&deint_req, &deint_resp);
} else
move_padding_bytes(in, q->deint_output, k, ncb);
adapter_input = q->deint_output;
if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
adapter_req.isinverted = 1;
else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
adapter_req.isinverted = 0;
else {
op->status |= 1 << RTE_BBDEV_DRV_ERROR;
rte_bbdev_log(ERR, "LLR format wasn't specified");
return;
}
adapter_req.ncb = ncb_without_null;
adapter_req.pinteleavebuffer = adapter_input;
adapter_resp.pharqout = q->adapter_output;
bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
out = (uint8_t *)rte_pktmbuf_append(m_out, ((k - crc24_overlap) >> 3));
if (out == NULL) {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
rte_bbdev_log(ERR, "Too little space in output mbuf");
return;
}
/* rte_bbdev_op_data.offset can be different than the offset of the
* appended bytes
*/
out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
if (check_crc_24b)
turbo_req.c = c + 1;
else
turbo_req.c = c;
turbo_req.input = (int8_t *)q->adapter_output;
turbo_req.k = k;
turbo_req.k_idx = k_idx;
turbo_req.max_iter_num = dec->iter_max;
turbo_req.early_term_disable = !check_bit(dec->op_flags,
RTE_BBDEV_TURBO_EARLY_TERMINATION);
turbo_resp.ag_buf = q->ag;
turbo_resp.cb_buf = q->code_block;
turbo_resp.output = out;
iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
dec->hard_output.length += (k >> 3);
if (iter_cnt > 0) {
/* Temporary solution for returned iter_count from SDK */
iter_cnt = (iter_cnt - 1) / 2;
dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
} else {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
rte_bbdev_log(ERR, "Turbo Decoder failed");
return;
}
}
static inline void
enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
{
uint8_t c, r = 0;
uint16_t kw, k = 0;
uint16_t crc24_overlap = 0;
struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
struct rte_mbuf *m_in = dec->input.data;
struct rte_mbuf *m_out = dec->hard_output.data;
uint16_t in_offset = dec->input.offset;
uint16_t total_left = dec->input.length;
uint16_t out_offset = dec->hard_output.offset;
/* Clear op status */
op->status = 0;
if (m_in == NULL || m_out == NULL) {
rte_bbdev_log(ERR, "Invalid mbuf pointer");
op->status = 1 << RTE_BBDEV_DATA_ERROR;
return;
}
if (dec->code_block_mode == 0) { /* For Transport Block mode */
c = dec->tb_params.c;
} else { /* For Code Block mode */
k = dec->cb_params.k;
c = 1;
}
if ((c > 1) && !check_bit(dec->op_flags,
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
crc24_overlap = 24;
while (total_left > 0) {
if (dec->code_block_mode == 0)
k = (r < dec->tb_params.c_neg) ?
dec->tb_params.k_neg : dec->tb_params.k_pos;
/* Calculates circular buffer size (Kw).
* According to 3gpp 36.212 section 5.1.4.2
* Kw = 3 * Kpi,
* where:
* Kpi = nCol * nRow
* where nCol is 32 and nRow can be calculated from:
* D =< nCol * nRow
* where D is the size of each output from turbo encoder block
* (k + 4).
*/
kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
out_offset, check_bit(dec->op_flags,
RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
total_left);
/* To keep CRC24 attached to end of Code block, use
* RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
* removed by default once verified.
*/
/* Update total_left */
total_left -= kw;
/* Update offsets for next CBs (if exist) */
in_offset += kw;
out_offset += ((k - crc24_overlap) >> 3);
r++;
}
if (total_left != 0) {
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included Circular buffer sizes");
}
}
static inline uint16_t
enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
uint16_t nb_ops)
{
uint16_t i;
for (i = 0; i < nb_ops; ++i)
enqueue_dec_one_op(q, ops[i]);
return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
NULL);
}
/* Enqueue burst */
static uint16_t
enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
{
void *queue = q_data->queue_private;
struct turbo_sw_queue *q = queue;
uint16_t nb_enqueued = 0;
nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
q_data->queue_stats.enqueued_count += nb_enqueued;
return nb_enqueued;
}
/* Enqueue burst */
static uint16_t
enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
{
void *queue = q_data->queue_private;
struct turbo_sw_queue *q = queue;
uint16_t nb_enqueued = 0;
nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
q_data->queue_stats.enqueued_count += nb_enqueued;
return nb_enqueued;
}
/* Dequeue decode burst */
static uint16_t
dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
{
struct turbo_sw_queue *q = q_data->queue_private;
uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
(void **)ops, nb_ops, NULL);
q_data->queue_stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
/* Dequeue encode burst */
static uint16_t
dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
{
struct turbo_sw_queue *q = q_data->queue_private;
uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
(void **)ops, nb_ops, NULL);
q_data->queue_stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
/* Parse 16bit integer from string argument */
static inline int
parse_u16_arg(const char *key, const char *value, void *extra_args)
{
uint16_t *u16 = extra_args;
unsigned int long result;
if ((value == NULL) || (extra_args == NULL))
return -EINVAL;
errno = 0;
result = strtoul(value, NULL, 0);
if ((result >= (1 << 16)) || (errno != 0)) {
rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
return -ERANGE;
}
*u16 = (uint16_t)result;
return 0;
}
/* Parse parameters used to create device */
static int
parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
{
struct rte_kvargs *kvlist = NULL;
int ret = 0;
if (params == NULL)
return -EINVAL;
if (input_args) {
kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
if (kvlist == NULL)
return -EFAULT;
ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
&parse_u16_arg, &params->queues_num);
if (ret < 0)
goto exit;
ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
&parse_u16_arg, &params->socket_id);
if (ret < 0)
goto exit;
if (params->socket_id >= RTE_MAX_NUMA_NODES) {
rte_bbdev_log(ERR, "Invalid socket, must be < %u",
RTE_MAX_NUMA_NODES);
goto exit;
}
}
exit:
if (kvlist)
rte_kvargs_free(kvlist);
return ret;
}
/* Create device */
static int
turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
struct turbo_sw_params *init_params)
{
struct rte_bbdev *bbdev;
const char *name = rte_vdev_device_name(vdev);
bbdev = rte_bbdev_allocate(name);
if (bbdev == NULL)
return -ENODEV;
bbdev->data->dev_private = rte_zmalloc_socket(name,
sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
init_params->socket_id);
if (bbdev->data->dev_private == NULL) {
rte_bbdev_release(bbdev);
return -ENOMEM;
}
bbdev->dev_ops = &pmd_ops;
bbdev->device = &vdev->device;
bbdev->data->socket_id = init_params->socket_id;
bbdev->intr_handle = NULL;
/* register rx/tx burst functions for data path */
bbdev->dequeue_enc_ops = dequeue_enc_ops;
bbdev->dequeue_dec_ops = dequeue_dec_ops;
bbdev->enqueue_enc_ops = enqueue_enc_ops;
bbdev->enqueue_dec_ops = enqueue_dec_ops;
((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
init_params->queues_num;
return 0;
}
/* Initialise device */
static int
turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
{
struct turbo_sw_params init_params = {
rte_socket_id(),
RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
};
const char *name;
const char *input_args;
if (vdev == NULL)
return -EINVAL;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
input_args = rte_vdev_device_args(vdev);
parse_turbo_sw_params(&init_params, input_args);
rte_bbdev_log_debug(
"Initialising %s on NUMA node %d with max queues: %d\n",
name, init_params.socket_id, init_params.queues_num);
return turbo_sw_bbdev_create(vdev, &init_params);
}
/* Uninitialise device */
static int
turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
{
struct rte_bbdev *bbdev;
const char *name;
if (vdev == NULL)
return -EINVAL;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
bbdev = rte_bbdev_get_named_dev(name);
if (bbdev == NULL)
return -EINVAL;
rte_free(bbdev->data->dev_private);
return rte_bbdev_release(bbdev);
}
static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
.probe = turbo_sw_bbdev_probe,
.remove = turbo_sw_bbdev_remove
};
RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
TURBO_SW_SOCKET_ID_ARG"=<int>");
RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
RTE_INIT(turbo_sw_bbdev_init_log)
{
bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
if (bbdev_turbo_sw_logtype >= 0)
rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
}