f-stack/dpdk/examples/vm_power_manager/power_manager.c

257 lines
5.3 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <fcntl.h>
#include <unistd.h>
#include <dirent.h>
#include <errno.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <rte_log.h>
#include <rte_power.h>
#include <rte_spinlock.h>
#include "channel_manager.h"
#include "power_manager.h"
#include "oob_monitor.h"
#define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \
if (core_num >= ci.core_count) \
return -1; \
if (!(ci.cd[core_num].global_enabled_cpus)) \
return -1; \
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \
ret = rte_power_freq_##DIRECTION(core_num); \
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \
} while (0)
struct freq_info {
rte_spinlock_t power_sl;
uint32_t freqs[RTE_MAX_LCORE_FREQS];
unsigned num_freqs;
} __rte_cache_aligned;
static struct freq_info global_core_freq_info[RTE_MAX_LCORE];
struct core_info ci;
#define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id"
struct core_info *
get_core_info(void)
{
return &ci;
}
int
core_info_init(void)
{
struct core_info *ci;
int i;
ci = get_core_info();
ci->core_count = get_nprocs_conf();
ci->branch_ratio_threshold = BRANCH_RATIO_THRESHOLD;
ci->cd = malloc(ci->core_count * sizeof(struct core_details));
memset(ci->cd, 0, ci->core_count * sizeof(struct core_details));
if (!ci->cd) {
RTE_LOG(ERR, POWER_MANAGER, "Failed to allocate memory for core info.");
return -1;
}
for (i = 0; i < ci->core_count; i++) {
ci->cd[i].global_enabled_cpus = 1;
}
printf("%d cores in system\n", ci->core_count);
return 0;
}
int
power_manager_init(void)
{
unsigned int i, num_cpus = 0, num_freqs = 0;
int ret = 0;
struct core_info *ci;
unsigned int max_core_num;
rte_power_set_env(PM_ENV_NOT_SET);
ci = get_core_info();
if (!ci) {
RTE_LOG(ERR, POWER_MANAGER,
"Failed to get core info!\n");
return -1;
}
if (ci->core_count > RTE_MAX_LCORE)
max_core_num = RTE_MAX_LCORE;
else
max_core_num = ci->core_count;
for (i = 0; i < max_core_num; i++) {
if (ci->cd[i].global_enabled_cpus) {
if (rte_power_init(i) < 0)
RTE_LOG(ERR, POWER_MANAGER,
"Unable to initialize power manager "
"for core %u\n", i);
num_cpus++;
num_freqs = rte_power_freqs(i,
global_core_freq_info[i].freqs,
RTE_MAX_LCORE_FREQS);
if (num_freqs == 0) {
RTE_LOG(ERR, POWER_MANAGER,
"Unable to get frequency list for core %u\n",
i);
ci->cd[i].oob_enabled = 0;
ret = -1;
}
global_core_freq_info[i].num_freqs = num_freqs;
rte_spinlock_init(&global_core_freq_info[i].power_sl);
}
if (ci->cd[i].oob_enabled)
add_core_to_monitor(i);
}
RTE_LOG(INFO, POWER_MANAGER, "Managing %u cores out of %u available host cores\n",
num_cpus, ci->core_count);
return ret;
}
uint32_t
power_manager_get_current_frequency(unsigned core_num)
{
uint32_t freq, index;
if (core_num >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n",
core_num, RTE_MAX_LCORE-1);
return -1;
}
if (!(ci.cd[core_num].global_enabled_cpus))
return 0;
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
index = rte_power_get_freq(core_num);
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
if (index >= RTE_MAX_LCORE_FREQS)
freq = 0;
else
freq = global_core_freq_info[core_num].freqs[index];
return freq;
}
int
power_manager_exit(void)
{
unsigned int i;
int ret = 0;
struct core_info *ci;
unsigned int max_core_num;
ci = get_core_info();
if (!ci) {
RTE_LOG(ERR, POWER_MANAGER,
"Failed to get core info!\n");
return -1;
}
if (ci->core_count > RTE_MAX_LCORE)
max_core_num = RTE_MAX_LCORE;
else
max_core_num = ci->core_count;
for (i = 0; i < max_core_num; i++) {
if (ci->cd[i].global_enabled_cpus) {
if (rte_power_exit(i) < 0) {
RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager "
"for core %u\n", i);
ret = -1;
}
ci->cd[i].global_enabled_cpus = 0;
}
remove_core_from_monitor(i);
}
return ret;
}
int
power_manager_scale_core_up(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(up, core_num, ret);
return ret;
}
int
power_manager_scale_core_down(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(down, core_num, ret);
return ret;
}
int
power_manager_scale_core_min(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(min, core_num, ret);
return ret;
}
int
power_manager_scale_core_max(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(max, core_num, ret);
return ret;
}
int
power_manager_enable_turbo_core(unsigned int core_num)
{
int ret = 0;
POWER_SCALE_CORE(enable_turbo, core_num, ret);
return ret;
}
int
power_manager_disable_turbo_core(unsigned int core_num)
{
int ret = 0;
POWER_SCALE_CORE(disable_turbo, core_num, ret);
return ret;
}
int
power_manager_scale_core_med(unsigned int core_num)
{
int ret = 0;
struct core_info *ci;
ci = get_core_info();
if (core_num >= RTE_MAX_LCORE)
return -1;
if (!(ci->cd[core_num].global_enabled_cpus))
return -1;
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
ret = rte_power_set_freq(core_num,
global_core_freq_info[core_num].num_freqs / 2);
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
return ret;
}