f-stack/freebsd/netinet/tcp_stacks/rack_bbr_common.c

941 lines
26 KiB
C

/*-
* Copyright (c) 2016-2020 Netflix, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Author: Randall Stewart <rrs@netflix.com>
* This work is based on the ACM Queue paper
* BBR - Congestion Based Congestion Control
* and also numerous discussions with Neal, Yuchung and Van.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_tcpdebug.h"
#include "opt_ratelimit.h"
#include "opt_kern_tls.h"
#include <sys/param.h>
#include <sys/arb.h>
#include <sys/module.h>
#include <sys/kernel.h>
#ifdef TCP_HHOOK
#include <sys/hhook.h>
#endif
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/qmath.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#ifdef KERN_TLS
#include <sys/ktls.h>
#endif
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/tree.h>
#ifdef NETFLIX_STATS
#include <sys/stats.h> /* Must come after qmath.h and tree.h */
#endif
#include <sys/refcount.h>
#include <sys/queue.h>
#include <sys/smp.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/tim_filter.h>
#include <sys/time.h>
#include <vm/uma.h>
#include <sys/kern_prefetch.h>
#include <net/route.h>
#include <net/vnet.h>
#include <net/ethernet.h>
#include <net/bpf.h>
#define TCPSTATES /* for logging */
#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_pcb.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> /* required for icmp_var.h */
#include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
#include <netinet/ip_var.h>
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#include <netinet/tcp_hpts.h>
#include <netinet/cc/cc.h>
#include <netinet/tcp_log_buf.h>
#ifdef TCPDEBUG
#include <netinet/tcp_debug.h>
#endif /* TCPDEBUG */
#ifdef TCP_OFFLOAD
#include <netinet/tcp_offload.h>
#endif
#ifdef INET6
#include <netinet6/tcp6_var.h>
#endif
#include <netinet/tcp_fastopen.h>
#include <netipsec/ipsec_support.h>
#include <net/if.h>
#include <net/if_var.h>
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
#include <netipsec/ipsec.h>
#include <netipsec/ipsec6.h>
#endif /* IPSEC */
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <machine/in_cksum.h>
#ifdef MAC
#include <security/mac/mac_framework.h>
#endif
#include "rack_bbr_common.h"
/*
* Common TCP Functions - These are shared by borth
* rack and BBR.
*/
#ifdef KERN_TLS
uint32_t
ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
{
struct ktls_session *tls;
uint32_t len;
again:
tls = so->so_snd.sb_tls_info;
len = tls->params.max_frame_len; /* max tls payload */
len += tls->params.tls_hlen; /* tls header len */
len += tls->params.tls_tlen; /* tls trailer len */
if ((len * 4) > rwnd) {
/*
* Stroke this will suck counter and what
* else should we do Drew? From the
* TCP perspective I am not sure
* what should be done...
*/
if (tls->params.max_frame_len > 4096) {
tls->params.max_frame_len -= 4096;
if (tls->params.max_frame_len < 4096)
tls->params.max_frame_len = 4096;
goto again;
}
}
return (len);
}
#endif
/*
* The function ctf_process_inbound_raw() is used by
* transport developers to do the steps needed to
* support MBUF Queuing i.e. the flags in
* inp->inp_flags2:
*
* - INP_SUPPORTS_MBUFQ
* - INP_MBUF_QUEUE_READY
* - INP_DONT_SACK_QUEUE
*
* These flags help control how LRO will deliver
* packets to the transport. You first set in inp_flags2
* the INP_SUPPORTS_MBUFQ to tell the LRO code that you
* will gladly take a queue of packets instead of a compressed
* single packet. You also set in your t_fb pointer the
* tfb_do_queued_segments to point to ctf_process_inbound_raw.
*
* This then gets you lists of inbound ACK's/Data instead
* of a condensed compressed ACK/DATA packet. Why would you
* want that? This will get you access to all the arrival
* times of at least LRO and possibly at the Hardware (if
* the interface card supports that) of the actual ACK/DATA.
* In some transport designs this is important since knowing
* the actual time we got the packet is useful information.
*
* Now there are some interesting Caveats that the transport
* designer needs to take into account when using this feature.
*
* 1) It is used with HPTS and pacing, when the pacing timer
* for output calls it will first call the input.
* 2) When you set INP_MBUF_QUEUE_READY this tells LRO
* queue normal packets, I am busy pacing out data and
* will process the queued packets before my tfb_tcp_output
* call from pacing. If a non-normal packet arrives, (e.g. sack)
* you will be awoken immediately.
* 3) Finally you can add the INP_DONT_SACK_QUEUE to not even
* be awoken if a SACK has arrived. You would do this when
* you were not only running a pacing for output timer
* but a Rack timer as well i.e. you know you are in recovery
* and are in the process (via the timers) of dealing with
* the loss.
*
* Now a critical thing you must be aware of here is that the
* use of the flags has a far greater scope then just your
* typical LRO. Why? Well thats because in the normal compressed
* LRO case at the end of a driver interupt all packets are going
* to get presented to the transport no matter if there is one
* or 100. With the MBUF_QUEUE model, this is not true. You will
* only be awoken to process the queue of packets when:
* a) The flags discussed above allow it.
* <or>
* b) You exceed a ack or data limit (by default the
* ack limit is infinity (64k acks) and the data
* limit is 64k of new TCP data)
* <or>
* c) The push bit has been set by the peer
*/
int
ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
{
/*
* We are passed a raw change of mbuf packets
* that arrived in LRO. They are linked via
* the m_nextpkt link in the pkt-headers.
*
* We process each one by:
* a) saving off the next
* b) stripping off the ether-header
* c) formulating the arguments for
* the tfb_tcp_hpts_do_segment
* d) calling each mbuf to tfb_tcp_hpts_do_segment
* after adjusting the time to match the arrival time.
* Note that the LRO code assures no IP options are present.
*
* The symantics for calling tfb_tcp_hpts_do_segment are the
* following:
* 1) It returns 0 if all went well and you (the caller) need
* to release the lock.
* 2) If nxt_pkt is set, then the function will surpress calls
* to tfb_tcp_output() since you are promising to call again
* with another packet.
* 3) If it returns 1, then you must free all the packets being
* shipped in, the tcb has been destroyed (or about to be destroyed).
*/
struct mbuf *m_save;
struct ether_header *eh;
struct tcphdr *th;
#ifdef INET6
struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
#endif
#ifdef INET
struct ip *ip = NULL; /* Keep compiler happy. */
#endif
struct ifnet *ifp;
struct timeval tv;
int32_t retval, nxt_pkt, tlen, off;
uint16_t etype;
uint16_t drop_hdrlen;
uint8_t iptos, no_vn=0, bpf_req=0;
NET_EPOCH_ASSERT();
if (m && m->m_pkthdr.rcvif)
ifp = m->m_pkthdr.rcvif;
else
ifp = NULL;
if (ifp) {
bpf_req = bpf_peers_present(ifp->if_bpf);
} else {
/*
* We probably should not work around
* but kassert, since lro alwasy sets rcvif.
*/
no_vn = 1;
goto skip_vnet;
}
CURVNET_SET(ifp->if_vnet);
skip_vnet:
while (m) {
m_save = m->m_nextpkt;
m->m_nextpkt = NULL;
/* Now lets get the ether header */
eh = mtod(m, struct ether_header *);
etype = ntohs(eh->ether_type);
/* Let the BPF see the packet */
if (bpf_req && ifp)
ETHER_BPF_MTAP(ifp, m);
m_adj(m, sizeof(*eh));
/* Trim off the ethernet header */
switch (etype) {
#ifdef INET6
case ETHERTYPE_IPV6:
{
if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
if (m == NULL) {
KMOD_TCPSTAT_INC(tcps_rcvshort);
m_freem(m);
goto skipped_pkt;
}
}
ip6 = (struct ip6_hdr *)(eh + 1);
th = (struct tcphdr *)(ip6 + 1);
tlen = ntohs(ip6->ip6_plen);
drop_hdrlen = sizeof(*ip6);
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
th->th_sum = m->m_pkthdr.csum_data;
else
th->th_sum = in6_cksum_pseudo(ip6, tlen,
IPPROTO_TCP, m->m_pkthdr.csum_data);
th->th_sum ^= 0xffff;
} else
th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
if (th->th_sum) {
KMOD_TCPSTAT_INC(tcps_rcvbadsum);
m_freem(m);
goto skipped_pkt;
}
/*
* Be proactive about unspecified IPv6 address in source.
* As we use all-zero to indicate unbounded/unconnected pcb,
* unspecified IPv6 address can be used to confuse us.
*
* Note that packets with unspecified IPv6 destination is
* already dropped in ip6_input.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
/* XXX stat */
m_freem(m);
goto skipped_pkt;
}
iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
break;
}
#endif
#ifdef INET
case ETHERTYPE_IP:
{
if (m->m_len < sizeof (struct tcpiphdr)) {
if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
== NULL) {
KMOD_TCPSTAT_INC(tcps_rcvshort);
m_freem(m);
goto skipped_pkt;
}
}
ip = (struct ip *)(eh + 1);
th = (struct tcphdr *)(ip + 1);
drop_hdrlen = sizeof(*ip);
iptos = ip->ip_tos;
tlen = ntohs(ip->ip_len) - sizeof(struct ip);
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
th->th_sum = m->m_pkthdr.csum_data;
else
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htonl(m->m_pkthdr.csum_data + tlen +
IPPROTO_TCP));
th->th_sum ^= 0xffff;
} else {
int len;
struct ipovly *ipov = (struct ipovly *)ip;
/*
* Checksum extended TCP header and data.
*/
len = drop_hdrlen + tlen;
bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
ipov->ih_len = htons(tlen);
th->th_sum = in_cksum(m, len);
/* Reset length for SDT probes. */
ip->ip_len = htons(len);
/* Reset TOS bits */
ip->ip_tos = iptos;
/* Re-initialization for later version check */
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(*ip) >> 2;
}
if (th->th_sum) {
KMOD_TCPSTAT_INC(tcps_rcvbadsum);
m_freem(m);
goto skipped_pkt;
}
break;
}
#endif
}
/*
* Convert TCP protocol specific fields to host format.
*/
tcp_fields_to_host(th);
off = th->th_off << 2;
if (off < sizeof (struct tcphdr) || off > tlen) {
KMOD_TCPSTAT_INC(tcps_rcvbadoff);
m_freem(m);
goto skipped_pkt;
}
tlen -= off;
drop_hdrlen += off;
/*
* Now lets setup the timeval to be when we should
* have been called (if we can).
*/
m->m_pkthdr.lro_nsegs = 1;
if (m->m_flags & M_TSTMP_LRO) {
tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
} else {
/* Should not be should we kassert instead? */
tcp_get_usecs(&tv);
}
/* Now what about next packet? */
if (m_save || has_pkt)
nxt_pkt = 1;
else
nxt_pkt = 0;
KMOD_TCPSTAT_INC(tcps_rcvtotal);
retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
iptos, nxt_pkt, &tv);
if (retval) {
/* We lost the lock and tcb probably */
m = m_save;
while(m) {
m_save = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
m = m_save;
}
if (no_vn == 0)
CURVNET_RESTORE();
return(retval);
}
skipped_pkt:
m = m_save;
}
if (no_vn == 0)
CURVNET_RESTORE();
return(retval);
}
int
ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
{
struct mbuf *m;
/* First lets see if we have old packets */
if (tp->t_in_pkt) {
m = tp->t_in_pkt;
tp->t_in_pkt = NULL;
tp->t_tail_pkt = NULL;
if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
/* We lost the tcpcb (maybe a RST came in)? */
return(1);
}
tcp_handle_wakeup(tp, so);
}
return (0);
}
uint32_t
ctf_outstanding(struct tcpcb *tp)
{
uint32_t bytes_out;
bytes_out = tp->snd_max - tp->snd_una;
if (tp->t_state < TCPS_ESTABLISHED)
bytes_out++;
if (tp->t_flags & TF_SENTFIN)
bytes_out++;
return (bytes_out);
}
uint32_t
ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
{
if (rc_sacked <= ctf_outstanding(tp))
return(ctf_outstanding(tp) - rc_sacked);
else {
/* TSNH */
#ifdef INVARIANTS
panic("tp:%p rc_sacked:%d > out:%d",
tp, rc_sacked, ctf_outstanding(tp));
#endif
return (0);
}
}
void
ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
int32_t rstreason, int32_t tlen)
{
if (tp != NULL) {
tcp_dropwithreset(m, th, tp, tlen, rstreason);
INP_WUNLOCK(tp->t_inpcb);
} else
tcp_dropwithreset(m, th, NULL, tlen, rstreason);
}
/*
* ctf_drop_checks returns 1 for you should not proceed. It places
* in ret_val what should be returned 1/0 by the caller. The 1 indicates
* that the TCB is unlocked and probably dropped. The 0 indicates the
* TCB is still valid and locked.
*/
int
ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp, int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
{
int32_t todrop;
int32_t thflags;
int32_t tlen;
thflags = *thf;
tlen = *tlenp;
todrop = tp->rcv_nxt - th->th_seq;
if (todrop > 0) {
if (thflags & TH_SYN) {
thflags &= ~TH_SYN;
th->th_seq++;
if (th->th_urp > 1)
th->th_urp--;
else
thflags &= ~TH_URG;
todrop--;
}
/*
* Following if statement from Stevens, vol. 2, p. 960.
*/
if (todrop > tlen
|| (todrop == tlen && (thflags & TH_FIN) == 0)) {
/*
* Any valid FIN must be to the left of the window.
* At this point the FIN must be a duplicate or out
* of sequence; drop it.
*/
thflags &= ~TH_FIN;
/*
* Send an ACK to resynchronize and drop any data.
* But keep on processing for RST or ACK.
*/
tp->t_flags |= TF_ACKNOW;
todrop = tlen;
KMOD_TCPSTAT_INC(tcps_rcvduppack);
KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
} else {
KMOD_TCPSTAT_INC(tcps_rcvpartduppack);
KMOD_TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
}
/*
* DSACK - add SACK block for dropped range
*/
if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
tcp_update_sack_list(tp, th->th_seq,
th->th_seq + todrop);
/*
* ACK now, as the next in-sequence segment
* will clear the DSACK block again
*/
tp->t_flags |= TF_ACKNOW;
}
*drop_hdrlen += todrop; /* drop from the top afterwards */
th->th_seq += todrop;
tlen -= todrop;
if (th->th_urp > todrop)
th->th_urp -= todrop;
else {
thflags &= ~TH_URG;
th->th_urp = 0;
}
}
/*
* If segment ends after window, drop trailing data (and PUSH and
* FIN); if nothing left, just ACK.
*/
todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
if (todrop > 0) {
KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
if (todrop >= tlen) {
KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
/*
* If window is closed can only take segments at
* window edge, and have to drop data and PUSH from
* incoming segments. Continue processing, but
* remember to ack. Otherwise, drop segment and
* ack.
*/
if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
tp->t_flags |= TF_ACKNOW;
KMOD_TCPSTAT_INC(tcps_rcvwinprobe);
} else {
ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
return (1);
}
} else
KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
m_adj(m, -todrop);
tlen -= todrop;
thflags &= ~(TH_PUSH | TH_FIN);
}
*thf = thflags;
*tlenp = tlen;
return (0);
}
/*
* The value in ret_val informs the caller
* if we dropped the tcb (and lock) or not.
* 1 = we dropped it, 0 = the TCB is still locked
* and valid.
*/
void
ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
{
/*
* Generate an ACK dropping incoming segment if it occupies sequence
* space, where the ACK reflects our state.
*
* We can now skip the test for the RST flag since all paths to this
* code happen after packets containing RST have been dropped.
*
* In the SYN-RECEIVED state, don't send an ACK unless the segment
* we received passes the SYN-RECEIVED ACK test. If it fails send a
* RST. This breaks the loop in the "LAND" DoS attack, and also
* prevents an ACK storm between two listening ports that have been
* sent forged SYN segments, each with the source address of the
* other.
*/
if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
(SEQ_GT(tp->snd_una, th->th_ack) ||
SEQ_GT(th->th_ack, tp->snd_max))) {
*ret_val = 1;
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
return;
} else
*ret_val = 0;
tp->t_flags |= TF_ACKNOW;
if (m)
m_freem(m);
}
void
ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
{
/*
* Drop space held by incoming segment and return.
*/
if (tp != NULL)
INP_WUNLOCK(tp->t_inpcb);
if (m)
m_freem(m);
}
int
ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
{
/*
* RFC5961 Section 3.2
*
* - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
* window, we send challenge ACK.
*
* Note: to take into account delayed ACKs, we should test against
* last_ack_sent instead of rcv_nxt. Note 2: we handle special case
* of closed window, not covered by the RFC.
*/
int dropped = 0;
if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
(tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
KASSERT(tp->t_state != TCPS_SYN_SENT,
("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
__func__, th, tp));
if (V_tcp_insecure_rst ||
(tp->last_ack_sent == th->th_seq) ||
(tp->rcv_nxt == th->th_seq) ||
((tp->last_ack_sent - 1) == th->th_seq)) {
KMOD_TCPSTAT_INC(tcps_drops);
/* Drop the connection. */
switch (tp->t_state) {
case TCPS_SYN_RECEIVED:
so->so_error = ECONNREFUSED;
goto close;
case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_1:
case TCPS_FIN_WAIT_2:
case TCPS_CLOSE_WAIT:
case TCPS_CLOSING:
case TCPS_LAST_ACK:
so->so_error = ECONNRESET;
close:
tcp_state_change(tp, TCPS_CLOSED);
/* FALLTHROUGH */
default:
tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST);
tp = tcp_close(tp);
}
dropped = 1;
ctf_do_drop(m, tp);
} else {
KMOD_TCPSTAT_INC(tcps_badrst);
/* Send challenge ACK. */
tcp_respond(tp, mtod(m, void *), th, m,
tp->rcv_nxt, tp->snd_nxt, TH_ACK);
tp->last_ack_sent = tp->rcv_nxt;
}
} else {
m_freem(m);
}
return (dropped);
}
/*
* The value in ret_val informs the caller
* if we dropped the tcb (and lock) or not.
* 1 = we dropped it, 0 = the TCB is still locked
* and valid.
*/
void
ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
{
NET_EPOCH_ASSERT();
KMOD_TCPSTAT_INC(tcps_badsyn);
if (V_tcp_insecure_syn &&
SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
tp = tcp_drop(tp, ECONNRESET);
*ret_val = 1;
ctf_do_drop(m, tp);
} else {
/* Send challenge ACK. */
tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
tp->snd_nxt, TH_ACK);
tp->last_ack_sent = tp->rcv_nxt;
m = NULL;
*ret_val = 0;
ctf_do_drop(m, NULL);
}
}
/*
* bbr_ts_check returns 1 for you should not proceed, the state
* machine should return. It places in ret_val what should
* be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
* that the TCB is unlocked and probably dropped. The 0 indicates the
* TCB is still valid and locked.
*/
int
ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
int32_t tlen, int32_t thflags, int32_t * ret_val)
{
if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
/*
* Invalidate ts_recent. If this segment updates ts_recent,
* the age will be reset later and ts_recent will get a
* valid value. If it does not, setting ts_recent to zero
* will at least satisfy the requirement that zero be placed
* in the timestamp echo reply when ts_recent isn't valid.
* The age isn't reset until we get a valid ts_recent
* because we don't want out-of-order segments to be dropped
* when ts_recent is old.
*/
tp->ts_recent = 0;
} else {
KMOD_TCPSTAT_INC(tcps_rcvduppack);
KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
KMOD_TCPSTAT_INC(tcps_pawsdrop);
*ret_val = 0;
if (tlen) {
ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
} else {
ctf_do_drop(m, NULL);
}
return (1);
}
return (0);
}
void
ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
{
int32_t win;
/*
* Calculate amount of space in receive window, and then do TCP
* input processing. Receive window is amount of space in rcv queue,
* but not less than advertised window.
*/
win = sbspace(&so->so_rcv);
if (win < 0)
win = 0;
tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
}
void
ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
int32_t rstreason, int32_t tlen)
{
if (tp->t_inpcb) {
tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
}
tcp_dropwithreset(m, th, tp, tlen, rstreason);
INP_WUNLOCK(tp->t_inpcb);
}
uint32_t
ctf_fixed_maxseg(struct tcpcb *tp)
{
int optlen;
if (tp->t_flags & TF_NOOPT)
return (tp->t_maxseg);
/*
* Here we have a simplified code from tcp_addoptions(),
* without a proper loop, and having most of paddings hardcoded.
* We only consider fixed options that we would send every
* time I.e. SACK is not considered.
*
*/
#define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4)
if (TCPS_HAVEESTABLISHED(tp->t_state)) {
if (tp->t_flags & TF_RCVD_TSTMP)
optlen = TCPOLEN_TSTAMP_APPA;
else
optlen = 0;
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
if (tp->t_flags & TF_SIGNATURE)
optlen += PAD(TCPOLEN_SIGNATURE);
#endif
} else {
if (tp->t_flags & TF_REQ_TSTMP)
optlen = TCPOLEN_TSTAMP_APPA;
else
optlen = PAD(TCPOLEN_MAXSEG);
if (tp->t_flags & TF_REQ_SCALE)
optlen += PAD(TCPOLEN_WINDOW);
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
if (tp->t_flags & TF_SIGNATURE)
optlen += PAD(TCPOLEN_SIGNATURE);
#endif
if (tp->t_flags & TF_SACK_PERMIT)
optlen += PAD(TCPOLEN_SACK_PERMITTED);
}
#undef PAD
optlen = min(optlen, TCP_MAXOLEN);
return (tp->t_maxseg - optlen);
}
void
ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
{
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
union tcp_log_stackspecific log;
struct timeval tv;
memset(&log, 0, sizeof(log));
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
log.u_bbr.flex8 = num_sack_blks;
if (num_sack_blks > 0) {
log.u_bbr.flex1 = sack_blocks[0].start;
log.u_bbr.flex2 = sack_blocks[0].end;
}
if (num_sack_blks > 1) {
log.u_bbr.flex3 = sack_blocks[1].start;
log.u_bbr.flex4 = sack_blocks[1].end;
}
if (num_sack_blks > 2) {
log.u_bbr.flex5 = sack_blocks[2].start;
log.u_bbr.flex6 = sack_blocks[2].end;
}
if (num_sack_blks > 3) {
log.u_bbr.applimited = sack_blocks[3].start;
log.u_bbr.pkts_out = sack_blocks[3].end;
}
TCP_LOG_EVENTP(tp, NULL,
&tp->t_inpcb->inp_socket->so_rcv,
&tp->t_inpcb->inp_socket->so_snd,
TCP_SACK_FILTER_RES, 0,
0, &log, false, &tv);
}
}
uint32_t
ctf_decay_count(uint32_t count, uint32_t decay)
{
/*
* Given a count, decay it by a set percentage. The
* percentage is in thousands i.e. 100% = 1000,
* 19.3% = 193.
*/
uint64_t perc_count, decay_per;
uint32_t decayed_count;
if (decay > 1000) {
/* We don't raise it */
return (count);
}
perc_count = count;
decay_per = decay;
perc_count *= decay_per;
perc_count /= 1000;
/*
* So now perc_count holds the
* count decay value.
*/
decayed_count = count - (uint32_t)perc_count;
return(decayed_count);
}
int32_t
ctf_progress_timeout_check(struct tcpcb *tp, bool log)
{
if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
/*
* There is an assumption that the caller
* will drop the connection so we will
* increment the counters here.
*/
if (log)
tcp_log_end_status(tp, TCP_EI_STATUS_PROGRESS);
#ifdef NETFLIX_STATS
KMOD_TCPSTAT_INC(tcps_progdrops);
#endif
return (1);
}
}
return (0);
}