f-stack/freebsd/arm/allwinner/a10_codec.c

1212 lines
30 KiB
C

/*-
* Copyright (c) 2014-2016 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Allwinner A10/A20 and H3 Audio Codec
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/condvar.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/gpio.h>
#include <machine/bus.h>
#include <dev/sound/pcm/sound.h>
#include <dev/sound/chip.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/gpio/gpiobusvar.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include "sunxi_dma_if.h"
#include "mixer_if.h"
struct a10codec_info;
struct a10codec_config {
/* mixer class */
struct kobj_class *mixer_class;
/* toggle DAC/ADC mute */
void (*mute)(struct a10codec_info *, int, int);
/* DRQ types */
u_int drqtype_codec;
u_int drqtype_sdram;
/* register map */
bus_size_t DPC,
DAC_FIFOC,
DAC_FIFOS,
DAC_TXDATA,
ADC_FIFOC,
ADC_FIFOS,
ADC_RXDATA,
DAC_CNT,
ADC_CNT;
};
#define TX_TRIG_LEVEL 0xf
#define RX_TRIG_LEVEL 0x7
#define DRQ_CLR_CNT 0x3
#define AC_DAC_DPC(_sc) ((_sc)->cfg->DPC)
#define DAC_DPC_EN_DA 0x80000000
#define AC_DAC_FIFOC(_sc) ((_sc)->cfg->DAC_FIFOC)
#define DAC_FIFOC_FS_SHIFT 29
#define DAC_FIFOC_FS_MASK (7U << DAC_FIFOC_FS_SHIFT)
#define DAC_FS_48KHZ 0
#define DAC_FS_32KHZ 1
#define DAC_FS_24KHZ 2
#define DAC_FS_16KHZ 3
#define DAC_FS_12KHZ 4
#define DAC_FS_8KHZ 5
#define DAC_FS_192KHZ 6
#define DAC_FS_96KHZ 7
#define DAC_FIFOC_FIFO_MODE_SHIFT 24
#define DAC_FIFOC_FIFO_MODE_MASK (3U << DAC_FIFOC_FIFO_MODE_SHIFT)
#define FIFO_MODE_24_31_8 0
#define FIFO_MODE_16_31_16 0
#define FIFO_MODE_16_15_0 1
#define DAC_FIFOC_DRQ_CLR_CNT_SHIFT 21
#define DAC_FIFOC_DRQ_CLR_CNT_MASK (3U << DAC_FIFOC_DRQ_CLR_CNT_SHIFT)
#define DAC_FIFOC_TX_TRIG_LEVEL_SHIFT 8
#define DAC_FIFOC_TX_TRIG_LEVEL_MASK (0x7f << DAC_FIFOC_TX_TRIG_LEVEL_SHIFT)
#define DAC_FIFOC_MONO_EN (1U << 6)
#define DAC_FIFOC_TX_BITS (1U << 5)
#define DAC_FIFOC_DRQ_EN (1U << 4)
#define DAC_FIFOC_FIFO_FLUSH (1U << 0)
#define AC_DAC_FIFOS(_sc) ((_sc)->cfg->DAC_FIFOS)
#define AC_DAC_TXDATA(_sc) ((_sc)->cfg->DAC_TXDATA)
#define AC_ADC_FIFOC(_sc) ((_sc)->cfg->ADC_FIFOC)
#define ADC_FIFOC_FS_SHIFT 29
#define ADC_FIFOC_FS_MASK (7U << ADC_FIFOC_FS_SHIFT)
#define ADC_FS_48KHZ 0
#define ADC_FIFOC_EN_AD (1U << 28)
#define ADC_FIFOC_RX_FIFO_MODE (1U << 24)
#define ADC_FIFOC_RX_TRIG_LEVEL_SHIFT 8
#define ADC_FIFOC_RX_TRIG_LEVEL_MASK (0x1f << ADC_FIFOC_RX_TRIG_LEVEL_SHIFT)
#define ADC_FIFOC_MONO_EN (1U << 7)
#define ADC_FIFOC_RX_BITS (1U << 6)
#define ADC_FIFOC_DRQ_EN (1U << 4)
#define ADC_FIFOC_FIFO_FLUSH (1U << 1)
#define AC_ADC_FIFOS(_sc) ((_sc)->cfg->ADC_FIFOS)
#define AC_ADC_RXDATA(_sc) ((_sc)->cfg->ADC_RXDATA)
#define AC_DAC_CNT(_sc) ((_sc)->cfg->DAC_CNT)
#define AC_ADC_CNT(_sc) ((_sc)->cfg->ADC_CNT)
static uint32_t a10codec_fmt[] = {
SND_FORMAT(AFMT_S16_LE, 1, 0),
SND_FORMAT(AFMT_S16_LE, 2, 0),
0
};
static struct pcmchan_caps a10codec_pcaps = { 8000, 192000, a10codec_fmt, 0 };
static struct pcmchan_caps a10codec_rcaps = { 8000, 48000, a10codec_fmt, 0 };
struct a10codec_info;
struct a10codec_chinfo {
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct a10codec_info *parent;
bus_dmamap_t dmamap;
void *dmaaddr;
bus_addr_t physaddr;
bus_size_t fifo;
device_t dmac;
void *dmachan;
int dir;
int run;
uint32_t pos;
uint32_t format;
uint32_t blocksize;
uint32_t speed;
};
struct a10codec_info {
device_t dev;
struct resource *res[2];
struct mtx *lock;
bus_dma_tag_t dmat;
unsigned dmasize;
void *ih;
struct a10codec_config *cfg;
struct a10codec_chinfo play;
struct a10codec_chinfo rec;
};
static struct resource_spec a10codec_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ -1, 0 }
};
#define CODEC_ANALOG_READ(sc, reg) bus_read_4((sc)->res[1], (reg))
#define CODEC_ANALOG_WRITE(sc, reg, val) bus_write_4((sc)->res[1], (reg), (val))
#define CODEC_READ(sc, reg) bus_read_4((sc)->res[0], (reg))
#define CODEC_WRITE(sc, reg, val) bus_write_4((sc)->res[0], (reg), (val))
/*
* A10/A20 mixer interface
*/
#define A10_DAC_ACTL 0x10
#define A10_DACAREN (1U << 31)
#define A10_DACALEN (1U << 30)
#define A10_MIXEN (1U << 29)
#define A10_DACPAS (1U << 8)
#define A10_PAMUTE (1U << 6)
#define A10_PAVOL_SHIFT 0
#define A10_PAVOL_MASK (0x3f << A10_PAVOL_SHIFT)
#define A10_ADC_ACTL 0x28
#define A10_ADCREN (1U << 31)
#define A10_ADCLEN (1U << 30)
#define A10_PREG1EN (1U << 29)
#define A10_PREG2EN (1U << 28)
#define A10_VMICEN (1U << 27)
#define A10_ADCG_SHIFT 20
#define A10_ADCG_MASK (7U << A10_ADCG_SHIFT)
#define A10_ADCIS_SHIFT 17
#define A10_ADCIS_MASK (7U << A10_ADCIS_SHIFT)
#define A10_ADC_IS_LINEIN 0
#define A10_ADC_IS_FMIN 1
#define A10_ADC_IS_MIC1 2
#define A10_ADC_IS_MIC2 3
#define A10_ADC_IS_MIC1_L_MIC2_R 4
#define A10_ADC_IS_MIC1_LR_MIC2_LR 5
#define A10_ADC_IS_OMIX 6
#define A10_ADC_IS_LINEIN_L_MIC1_R 7
#define A10_LNRDF (1U << 16)
#define A10_LNPREG_SHIFT 13
#define A10_LNPREG_MASK (7U << A10_LNPREG_SHIFT)
#define A10_PA_EN (1U << 4)
#define A10_DDE (1U << 3)
static int
a10_mixer_init(struct snd_mixer *m)
{
struct a10codec_info *sc = mix_getdevinfo(m);
uint32_t val;
mix_setdevs(m, SOUND_MASK_VOLUME | SOUND_MASK_LINE | SOUND_MASK_RECLEV);
mix_setrecdevs(m, SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC);
/* Unmute input source to PA */
val = CODEC_READ(sc, A10_DAC_ACTL);
val |= A10_PAMUTE;
CODEC_WRITE(sc, A10_DAC_ACTL, val);
/* Enable PA */
val = CODEC_READ(sc, A10_ADC_ACTL);
val |= A10_PA_EN;
CODEC_WRITE(sc, A10_ADC_ACTL, val);
return (0);
}
static const struct a10_mixer {
unsigned reg;
unsigned mask;
unsigned shift;
} a10_mixers[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_VOLUME] = { A10_DAC_ACTL, A10_PAVOL_MASK,
A10_PAVOL_SHIFT },
[SOUND_MIXER_LINE] = { A10_ADC_ACTL, A10_LNPREG_MASK,
A10_LNPREG_SHIFT },
[SOUND_MIXER_RECLEV] = { A10_ADC_ACTL, A10_ADCG_MASK,
A10_ADCG_SHIFT },
};
static int
a10_mixer_set(struct snd_mixer *m, unsigned dev, unsigned left,
unsigned right)
{
struct a10codec_info *sc = mix_getdevinfo(m);
uint32_t val;
unsigned nvol, max;
max = a10_mixers[dev].mask >> a10_mixers[dev].shift;
nvol = (left * max) / 100;
val = CODEC_READ(sc, a10_mixers[dev].reg);
val &= ~a10_mixers[dev].mask;
val |= (nvol << a10_mixers[dev].shift);
CODEC_WRITE(sc, a10_mixers[dev].reg, val);
left = right = (left * 100) / max;
return (left | (right << 8));
}
static uint32_t
a10_mixer_setrecsrc(struct snd_mixer *m, uint32_t src)
{
struct a10codec_info *sc = mix_getdevinfo(m);
uint32_t val;
val = CODEC_READ(sc, A10_ADC_ACTL);
switch (src) {
case SOUND_MASK_LINE: /* line-in */
val &= ~A10_ADCIS_MASK;
val |= (A10_ADC_IS_LINEIN << A10_ADCIS_SHIFT);
break;
case SOUND_MASK_MIC: /* MIC1 */
val &= ~A10_ADCIS_MASK;
val |= (A10_ADC_IS_MIC1 << A10_ADCIS_SHIFT);
break;
case SOUND_MASK_LINE1: /* MIC2 */
val &= ~A10_ADCIS_MASK;
val |= (A10_ADC_IS_MIC2 << A10_ADCIS_SHIFT);
break;
default:
break;
}
CODEC_WRITE(sc, A10_ADC_ACTL, val);
switch ((val & A10_ADCIS_MASK) >> A10_ADCIS_SHIFT) {
case A10_ADC_IS_LINEIN:
return (SOUND_MASK_LINE);
case A10_ADC_IS_MIC1:
return (SOUND_MASK_MIC);
case A10_ADC_IS_MIC2:
return (SOUND_MASK_LINE1);
default:
return (0);
}
}
static void
a10_mute(struct a10codec_info *sc, int mute, int dir)
{
uint32_t val;
if (dir == PCMDIR_PLAY) {
val = CODEC_READ(sc, A10_DAC_ACTL);
if (mute) {
/* Disable DAC analog l/r channels and output mixer */
val &= ~A10_DACAREN;
val &= ~A10_DACALEN;
val &= ~A10_DACPAS;
} else {
/* Enable DAC analog l/r channels and output mixer */
val |= A10_DACAREN;
val |= A10_DACALEN;
val |= A10_DACPAS;
}
CODEC_WRITE(sc, A10_DAC_ACTL, val);
} else {
val = CODEC_READ(sc, A10_ADC_ACTL);
if (mute) {
/* Disable ADC analog l/r channels, MIC1 preamp,
* and VMIC pin voltage
*/
val &= ~A10_ADCREN;
val &= ~A10_ADCLEN;
val &= ~A10_PREG1EN;
val &= ~A10_VMICEN;
} else {
/* Enable ADC analog l/r channels, MIC1 preamp,
* and VMIC pin voltage
*/
val |= A10_ADCREN;
val |= A10_ADCLEN;
val |= A10_PREG1EN;
val |= A10_VMICEN;
}
CODEC_WRITE(sc, A10_ADC_ACTL, val);
}
}
static kobj_method_t a10_mixer_methods[] = {
KOBJMETHOD(mixer_init, a10_mixer_init),
KOBJMETHOD(mixer_set, a10_mixer_set),
KOBJMETHOD(mixer_setrecsrc, a10_mixer_setrecsrc),
KOBJMETHOD_END
};
MIXER_DECLARE(a10_mixer);
/*
* H3 mixer interface
*/
#define H3_PR_CFG 0x00
#define H3_AC_PR_RST (1 << 28)
#define H3_AC_PR_RW (1 << 24)
#define H3_AC_PR_ADDR_SHIFT 16
#define H3_AC_PR_ADDR_MASK (0x1f << H3_AC_PR_ADDR_SHIFT)
#define H3_ACDA_PR_WDAT_SHIFT 8
#define H3_ACDA_PR_WDAT_MASK (0xff << H3_ACDA_PR_WDAT_SHIFT)
#define H3_ACDA_PR_RDAT_SHIFT 0
#define H3_ACDA_PR_RDAT_MASK (0xff << H3_ACDA_PR_RDAT_SHIFT)
#define H3_LOMIXSC 0x01
#define H3_LOMIXSC_LDAC (1 << 1)
#define H3_ROMIXSC 0x02
#define H3_ROMIXSC_RDAC (1 << 1)
#define H3_DAC_PA_SRC 0x03
#define H3_DACAREN (1 << 7)
#define H3_DACALEN (1 << 6)
#define H3_RMIXEN (1 << 5)
#define H3_LMIXEN (1 << 4)
#define H3_LINEIN_GCTR 0x05
#define H3_LINEING_SHIFT 4
#define H3_LINEING_MASK (0x7 << H3_LINEING_SHIFT)
#define H3_MIC_GCTR 0x06
#define H3_MIC1_GAIN_SHIFT 4
#define H3_MIC1_GAIN_MASK (0x7 << H3_MIC1_GAIN_SHIFT)
#define H3_MIC2_GAIN_SHIFT 0
#define H3_MIC2_GAIN_MASK (0x7 << H3_MIC2_GAIN_SHIFT)
#define H3_PAEN_CTR 0x07
#define H3_LINEOUTEN (1 << 7)
#define H3_LINEOUT_VOLC 0x09
#define H3_LINEOUTVOL_SHIFT 3
#define H3_LINEOUTVOL_MASK (0x1f << H3_LINEOUTVOL_SHIFT)
#define H3_MIC2G_LINEOUT_CTR 0x0a
#define H3_LINEOUT_LSEL (1 << 3)
#define H3_LINEOUT_RSEL (1 << 2)
#define H3_LADCMIXSC 0x0c
#define H3_RADCMIXSC 0x0d
#define H3_ADCMIXSC_MIC1 (1 << 6)
#define H3_ADCMIXSC_MIC2 (1 << 5)
#define H3_ADCMIXSC_LINEIN (1 << 2)
#define H3_ADCMIXSC_OMIXER (3 << 0)
#define H3_ADC_AP_EN 0x0f
#define H3_ADCREN (1 << 7)
#define H3_ADCLEN (1 << 6)
#define H3_ADCG_SHIFT 0
#define H3_ADCG_MASK (0x7 << H3_ADCG_SHIFT)
static u_int
h3_pr_read(struct a10codec_info *sc, u_int addr)
{
uint32_t val;
/* Read current value */
val = CODEC_ANALOG_READ(sc, H3_PR_CFG);
/* De-assert reset */
val |= H3_AC_PR_RST;
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Read mode */
val &= ~H3_AC_PR_RW;
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Set address */
val &= ~H3_AC_PR_ADDR_MASK;
val |= (addr << H3_AC_PR_ADDR_SHIFT);
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Read data */
return (CODEC_ANALOG_READ(sc , H3_PR_CFG) & H3_ACDA_PR_RDAT_MASK);
}
static void
h3_pr_write(struct a10codec_info *sc, u_int addr, u_int data)
{
uint32_t val;
/* Read current value */
val = CODEC_ANALOG_READ(sc, H3_PR_CFG);
/* De-assert reset */
val |= H3_AC_PR_RST;
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Set address */
val &= ~H3_AC_PR_ADDR_MASK;
val |= (addr << H3_AC_PR_ADDR_SHIFT);
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Write data */
val &= ~H3_ACDA_PR_WDAT_MASK;
val |= (data << H3_ACDA_PR_WDAT_SHIFT);
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
/* Write mode */
val |= H3_AC_PR_RW;
CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
}
static void
h3_pr_set_clear(struct a10codec_info *sc, u_int addr, u_int set, u_int clr)
{
u_int old, new;
old = h3_pr_read(sc, addr);
new = set | (old & ~clr);
h3_pr_write(sc, addr, new);
}
static int
h3_mixer_init(struct snd_mixer *m)
{
int rid=1;
pcell_t reg[2];
phandle_t analogref;
struct a10codec_info *sc = mix_getdevinfo(m);
if (OF_getencprop(ofw_bus_get_node(sc->dev), "allwinner,codec-analog-controls",
&analogref, sizeof(analogref)) <= 0) {
return (ENXIO);
}
if (OF_getencprop(OF_node_from_xref(analogref), "reg",
reg, sizeof(reg)) <= 0) {
return (ENXIO);
}
sc->res[1] = bus_alloc_resource(sc->dev, SYS_RES_MEMORY, &rid, reg[0],
reg[0]+reg[1], reg[1], RF_ACTIVE );
if (sc->res[1] == NULL) {
return (ENXIO);
}
mix_setdevs(m, SOUND_MASK_PCM | SOUND_MASK_VOLUME | SOUND_MASK_RECLEV |
SOUND_MASK_MIC | SOUND_MASK_LINE | SOUND_MASK_LINE1);
mix_setrecdevs(m, SOUND_MASK_MIC | SOUND_MASK_LINE | SOUND_MASK_LINE1 |
SOUND_MASK_IMIX);
pcm_setflags(sc->dev, pcm_getflags(sc->dev) | SD_F_SOFTPCMVOL);
/* Right & Left LINEOUT enable */
h3_pr_set_clear(sc, H3_PAEN_CTR, H3_LINEOUTEN, 0);
h3_pr_set_clear(sc, H3_MIC2G_LINEOUT_CTR,
H3_LINEOUT_LSEL | H3_LINEOUT_RSEL, 0);
return (0);
}
static const struct h3_mixer {
unsigned reg;
unsigned mask;
unsigned shift;
} h3_mixers[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_VOLUME] = { H3_LINEOUT_VOLC, H3_LINEOUTVOL_MASK,
H3_LINEOUTVOL_SHIFT },
[SOUND_MIXER_RECLEV] = { H3_ADC_AP_EN, H3_ADCG_MASK,
H3_ADCG_SHIFT },
[SOUND_MIXER_LINE] = { H3_LINEIN_GCTR, H3_LINEING_MASK,
H3_LINEING_SHIFT },
[SOUND_MIXER_MIC] = { H3_MIC_GCTR, H3_MIC1_GAIN_MASK,
H3_MIC1_GAIN_SHIFT },
[SOUND_MIXER_LINE1] = { H3_MIC_GCTR, H3_MIC2_GAIN_MASK,
H3_MIC2_GAIN_SHIFT },
};
static int
h3_mixer_set(struct snd_mixer *m, unsigned dev, unsigned left,
unsigned right)
{
struct a10codec_info *sc = mix_getdevinfo(m);
unsigned nvol, max;
max = h3_mixers[dev].mask >> h3_mixers[dev].shift;
nvol = (left * max) / 100;
h3_pr_set_clear(sc, h3_mixers[dev].reg,
nvol << h3_mixers[dev].shift, h3_mixers[dev].mask);
left = right = (left * 100) / max;
return (left | (right << 8));
}
static uint32_t
h3_mixer_setrecsrc(struct snd_mixer *m, uint32_t src)
{
struct a10codec_info *sc = mix_getdevinfo(m);
uint32_t val;
val = 0;
src &= (SOUND_MASK_LINE | SOUND_MASK_MIC |
SOUND_MASK_LINE1 | SOUND_MASK_IMIX);
if ((src & SOUND_MASK_LINE) != 0) /* line-in */
val |= H3_ADCMIXSC_LINEIN;
if ((src & SOUND_MASK_MIC) != 0) /* MIC1 */
val |= H3_ADCMIXSC_MIC1;
if ((src & SOUND_MASK_LINE1) != 0) /* MIC2 */
val |= H3_ADCMIXSC_MIC2;
if ((src & SOUND_MASK_IMIX) != 0) /* l/r output mixer */
val |= H3_ADCMIXSC_OMIXER;
h3_pr_write(sc, H3_LADCMIXSC, val);
h3_pr_write(sc, H3_RADCMIXSC, val);
return (src);
}
static void
h3_mute(struct a10codec_info *sc, int mute, int dir)
{
if (dir == PCMDIR_PLAY) {
if (mute) {
/* Mute DAC l/r channels to output mixer */
h3_pr_set_clear(sc, H3_LOMIXSC, 0, H3_LOMIXSC_LDAC);
h3_pr_set_clear(sc, H3_ROMIXSC, 0, H3_ROMIXSC_RDAC);
/* Disable DAC analog l/r channels and output mixer */
h3_pr_set_clear(sc, H3_DAC_PA_SRC,
0, H3_DACAREN | H3_DACALEN | H3_RMIXEN | H3_LMIXEN);
} else {
/* Enable DAC analog l/r channels and output mixer */
h3_pr_set_clear(sc, H3_DAC_PA_SRC,
H3_DACAREN | H3_DACALEN | H3_RMIXEN | H3_LMIXEN, 0);
/* Unmute DAC l/r channels to output mixer */
h3_pr_set_clear(sc, H3_LOMIXSC, H3_LOMIXSC_LDAC, 0);
h3_pr_set_clear(sc, H3_ROMIXSC, H3_ROMIXSC_RDAC, 0);
}
} else {
if (mute) {
/* Disable ADC analog l/r channels */
h3_pr_set_clear(sc, H3_ADC_AP_EN,
0, H3_ADCREN | H3_ADCLEN);
} else {
/* Enable ADC analog l/r channels */
h3_pr_set_clear(sc, H3_ADC_AP_EN,
H3_ADCREN | H3_ADCLEN, 0);
}
}
}
static kobj_method_t h3_mixer_methods[] = {
KOBJMETHOD(mixer_init, h3_mixer_init),
KOBJMETHOD(mixer_set, h3_mixer_set),
KOBJMETHOD(mixer_setrecsrc, h3_mixer_setrecsrc),
KOBJMETHOD_END
};
MIXER_DECLARE(h3_mixer);
/*
* Channel interface
*/
static void
a10codec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct a10codec_chinfo *ch = arg;
if (error != 0)
return;
ch->physaddr = segs[0].ds_addr;
}
static void
a10codec_transfer(struct a10codec_chinfo *ch)
{
bus_addr_t src, dst;
int error;
if (ch->dir == PCMDIR_PLAY) {
src = ch->physaddr + ch->pos;
dst = ch->fifo;
} else {
src = ch->fifo;
dst = ch->physaddr + ch->pos;
}
error = SUNXI_DMA_TRANSFER(ch->dmac, ch->dmachan, src, dst,
ch->blocksize);
if (error) {
ch->run = 0;
device_printf(ch->parent->dev, "DMA transfer failed: %d\n",
error);
}
}
static void
a10codec_dmaconfig(struct a10codec_chinfo *ch)
{
struct a10codec_info *sc = ch->parent;
struct sunxi_dma_config conf;
memset(&conf, 0, sizeof(conf));
conf.src_width = conf.dst_width = 16;
conf.src_burst_len = conf.dst_burst_len = 4;
if (ch->dir == PCMDIR_PLAY) {
conf.dst_noincr = true;
conf.src_drqtype = sc->cfg->drqtype_sdram;
conf.dst_drqtype = sc->cfg->drqtype_codec;
} else {
conf.src_noincr = true;
conf.src_drqtype = sc->cfg->drqtype_codec;
conf.dst_drqtype = sc->cfg->drqtype_sdram;
}
SUNXI_DMA_SET_CONFIG(ch->dmac, ch->dmachan, &conf);
}
static void
a10codec_dmaintr(void *priv)
{
struct a10codec_chinfo *ch = priv;
unsigned bufsize;
bufsize = sndbuf_getsize(ch->buffer);
ch->pos += ch->blocksize;
if (ch->pos >= bufsize)
ch->pos -= bufsize;
if (ch->run) {
chn_intr(ch->channel);
a10codec_transfer(ch);
}
}
static unsigned
a10codec_fs(struct a10codec_chinfo *ch)
{
switch (ch->speed) {
case 48000:
return (DAC_FS_48KHZ);
case 24000:
return (DAC_FS_24KHZ);
case 12000:
return (DAC_FS_12KHZ);
case 192000:
return (DAC_FS_192KHZ);
case 32000:
return (DAC_FS_32KHZ);
case 16000:
return (DAC_FS_16KHZ);
case 8000:
return (DAC_FS_8KHZ);
case 96000:
return (DAC_FS_96KHZ);
default:
return (DAC_FS_48KHZ);
}
}
static void
a10codec_start(struct a10codec_chinfo *ch)
{
struct a10codec_info *sc = ch->parent;
uint32_t val;
ch->pos = 0;
if (ch->dir == PCMDIR_PLAY) {
/* Flush DAC FIFO */
CODEC_WRITE(sc, AC_DAC_FIFOC(sc), DAC_FIFOC_FIFO_FLUSH);
/* Clear DAC FIFO status */
CODEC_WRITE(sc, AC_DAC_FIFOS(sc),
CODEC_READ(sc, AC_DAC_FIFOS(sc)));
/* Unmute output */
sc->cfg->mute(sc, 0, ch->dir);
/* Configure DAC DMA channel */
a10codec_dmaconfig(ch);
/* Configure DAC FIFO */
CODEC_WRITE(sc, AC_DAC_FIFOC(sc),
(AFMT_CHANNEL(ch->format) == 1 ? DAC_FIFOC_MONO_EN : 0) |
(a10codec_fs(ch) << DAC_FIFOC_FS_SHIFT) |
(FIFO_MODE_16_15_0 << DAC_FIFOC_FIFO_MODE_SHIFT) |
(DRQ_CLR_CNT << DAC_FIFOC_DRQ_CLR_CNT_SHIFT) |
(TX_TRIG_LEVEL << DAC_FIFOC_TX_TRIG_LEVEL_SHIFT));
/* Enable DAC DRQ */
val = CODEC_READ(sc, AC_DAC_FIFOC(sc));
val |= DAC_FIFOC_DRQ_EN;
CODEC_WRITE(sc, AC_DAC_FIFOC(sc), val);
} else {
/* Flush ADC FIFO */
CODEC_WRITE(sc, AC_ADC_FIFOC(sc), ADC_FIFOC_FIFO_FLUSH);
/* Clear ADC FIFO status */
CODEC_WRITE(sc, AC_ADC_FIFOS(sc),
CODEC_READ(sc, AC_ADC_FIFOS(sc)));
/* Unmute input */
sc->cfg->mute(sc, 0, ch->dir);
/* Configure ADC DMA channel */
a10codec_dmaconfig(ch);
/* Configure ADC FIFO */
CODEC_WRITE(sc, AC_ADC_FIFOC(sc),
ADC_FIFOC_EN_AD |
ADC_FIFOC_RX_FIFO_MODE |
(AFMT_CHANNEL(ch->format) == 1 ? ADC_FIFOC_MONO_EN : 0) |
(a10codec_fs(ch) << ADC_FIFOC_FS_SHIFT) |
(RX_TRIG_LEVEL << ADC_FIFOC_RX_TRIG_LEVEL_SHIFT));
/* Enable ADC DRQ */
val = CODEC_READ(sc, AC_ADC_FIFOC(sc));
val |= ADC_FIFOC_DRQ_EN;
CODEC_WRITE(sc, AC_ADC_FIFOC(sc), val);
}
/* Start DMA transfer */
a10codec_transfer(ch);
}
static void
a10codec_stop(struct a10codec_chinfo *ch)
{
struct a10codec_info *sc = ch->parent;
/* Disable DMA channel */
SUNXI_DMA_HALT(ch->dmac, ch->dmachan);
sc->cfg->mute(sc, 1, ch->dir);
if (ch->dir == PCMDIR_PLAY) {
/* Disable DAC DRQ */
CODEC_WRITE(sc, AC_DAC_FIFOC(sc), 0);
} else {
/* Disable ADC DRQ */
CODEC_WRITE(sc, AC_ADC_FIFOC(sc), 0);
}
}
static void *
a10codec_chan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct a10codec_info *sc = devinfo;
struct a10codec_chinfo *ch = dir == PCMDIR_PLAY ? &sc->play : &sc->rec;
phandle_t xref;
pcell_t *cells;
int ncells, error;
error = ofw_bus_parse_xref_list_alloc(ofw_bus_get_node(sc->dev),
"dmas", "#dma-cells", dir == PCMDIR_PLAY ? 1 : 0,
&xref, &ncells, &cells);
if (error != 0) {
device_printf(sc->dev, "cannot parse 'dmas' property\n");
return (NULL);
}
OF_prop_free(cells);
ch->parent = sc;
ch->channel = c;
ch->buffer = b;
ch->dir = dir;
ch->fifo = rman_get_start(sc->res[0]) +
(dir == PCMDIR_REC ? AC_ADC_RXDATA(sc) : AC_DAC_TXDATA(sc));
ch->dmac = OF_device_from_xref(xref);
if (ch->dmac == NULL) {
device_printf(sc->dev, "cannot find DMA controller\n");
device_printf(sc->dev, "xref = 0x%x\n", (u_int)xref);
return (NULL);
}
ch->dmachan = SUNXI_DMA_ALLOC(ch->dmac, false, a10codec_dmaintr, ch);
if (ch->dmachan == NULL) {
device_printf(sc->dev, "cannot allocate DMA channel\n");
return (NULL);
}
error = bus_dmamem_alloc(sc->dmat, &ch->dmaaddr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &ch->dmamap);
if (error != 0) {
device_printf(sc->dev, "cannot allocate channel buffer\n");
return (NULL);
}
error = bus_dmamap_load(sc->dmat, ch->dmamap, ch->dmaaddr,
sc->dmasize, a10codec_dmamap_cb, ch, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->dev, "cannot load DMA map\n");
return (NULL);
}
memset(ch->dmaaddr, 0, sc->dmasize);
if (sndbuf_setup(ch->buffer, ch->dmaaddr, sc->dmasize) != 0) {
device_printf(sc->dev, "cannot setup sndbuf\n");
return (NULL);
}
return (ch);
}
static int
a10codec_chan_free(kobj_t obj, void *data)
{
struct a10codec_chinfo *ch = data;
struct a10codec_info *sc = ch->parent;
SUNXI_DMA_FREE(ch->dmac, ch->dmachan);
bus_dmamap_unload(sc->dmat, ch->dmamap);
bus_dmamem_free(sc->dmat, ch->dmaaddr, ch->dmamap);
return (0);
}
static int
a10codec_chan_setformat(kobj_t obj, void *data, uint32_t format)
{
struct a10codec_chinfo *ch = data;
ch->format = format;
return (0);
}
static uint32_t
a10codec_chan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
struct a10codec_chinfo *ch = data;
/*
* The codec supports full duplex operation but both DAC and ADC
* use the same source clock (PLL2). Limit the available speeds to
* those supported by a 24576000 Hz input.
*/
switch (speed) {
case 8000:
case 12000:
case 16000:
case 24000:
case 32000:
case 48000:
ch->speed = speed;
break;
case 96000:
case 192000:
/* 96 KHz / 192 KHz mode only supported for playback */
if (ch->dir == PCMDIR_PLAY) {
ch->speed = speed;
} else {
ch->speed = 48000;
}
break;
case 44100:
ch->speed = 48000;
break;
case 22050:
ch->speed = 24000;
break;
case 11025:
ch->speed = 12000;
break;
default:
ch->speed = 48000;
break;
}
return (ch->speed);
}
static uint32_t
a10codec_chan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
struct a10codec_chinfo *ch = data;
ch->blocksize = blocksize & ~3;
return (ch->blocksize);
}
static int
a10codec_chan_trigger(kobj_t obj, void *data, int go)
{
struct a10codec_chinfo *ch = data;
struct a10codec_info *sc = ch->parent;
if (!PCMTRIG_COMMON(go))
return (0);
snd_mtxlock(sc->lock);
switch (go) {
case PCMTRIG_START:
ch->run = 1;
a10codec_stop(ch);
a10codec_start(ch);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
ch->run = 0;
a10codec_stop(ch);
break;
default:
break;
}
snd_mtxunlock(sc->lock);
return (0);
}
static uint32_t
a10codec_chan_getptr(kobj_t obj, void *data)
{
struct a10codec_chinfo *ch = data;
return (ch->pos);
}
static struct pcmchan_caps *
a10codec_chan_getcaps(kobj_t obj, void *data)
{
struct a10codec_chinfo *ch = data;
if (ch->dir == PCMDIR_PLAY) {
return (&a10codec_pcaps);
} else {
return (&a10codec_rcaps);
}
}
static kobj_method_t a10codec_chan_methods[] = {
KOBJMETHOD(channel_init, a10codec_chan_init),
KOBJMETHOD(channel_free, a10codec_chan_free),
KOBJMETHOD(channel_setformat, a10codec_chan_setformat),
KOBJMETHOD(channel_setspeed, a10codec_chan_setspeed),
KOBJMETHOD(channel_setblocksize, a10codec_chan_setblocksize),
KOBJMETHOD(channel_trigger, a10codec_chan_trigger),
KOBJMETHOD(channel_getptr, a10codec_chan_getptr),
KOBJMETHOD(channel_getcaps, a10codec_chan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(a10codec_chan);
/*
* Device interface
*/
static const struct a10codec_config a10_config = {
.mixer_class = &a10_mixer_class,
.mute = a10_mute,
.drqtype_codec = 19,
.drqtype_sdram = 22,
.DPC = 0x00,
.DAC_FIFOC = 0x04,
.DAC_FIFOS = 0x08,
.DAC_TXDATA = 0x0c,
.ADC_FIFOC = 0x1c,
.ADC_FIFOS = 0x20,
.ADC_RXDATA = 0x24,
.DAC_CNT = 0x30,
.ADC_CNT = 0x34,
};
static const struct a10codec_config h3_config = {
.mixer_class = &h3_mixer_class,
.mute = h3_mute,
.drqtype_codec = 15,
.drqtype_sdram = 1,
.DPC = 0x00,
.DAC_FIFOC = 0x04,
.DAC_FIFOS = 0x08,
.DAC_TXDATA = 0x20,
.ADC_FIFOC = 0x10,
.ADC_FIFOS = 0x14,
.ADC_RXDATA = 0x18,
.DAC_CNT = 0x40,
.ADC_CNT = 0x44,
};
static struct ofw_compat_data compat_data[] = {
{ "allwinner,sun4i-a10-codec", (uintptr_t)&a10_config },
{ "allwinner,sun7i-a20-codec", (uintptr_t)&a10_config },
{ "allwinner,sun8i-h3-codec", (uintptr_t)&h3_config },
{ NULL, 0 }
};
static int
a10codec_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
return (ENXIO);
device_set_desc(dev, "Allwinner Audio Codec");
return (BUS_PROBE_DEFAULT);
}
static int
a10codec_attach(device_t dev)
{
struct a10codec_info *sc;
char status[SND_STATUSLEN];
struct gpiobus_pin *pa_pin;
phandle_t node;
clk_t clk_bus, clk_codec;
hwreset_t rst;
uint32_t val;
int error;
node = ofw_bus_get_node(dev);
sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
sc->cfg = (void *)ofw_bus_search_compatible(dev, compat_data)->ocd_data;
sc->dev = dev;
sc->lock = snd_mtxcreate(device_get_nameunit(dev), "a10codec softc");
if (bus_alloc_resources(dev, a10codec_spec, sc->res)) {
device_printf(dev, "cannot allocate resources for device\n");
error = ENXIO;
goto fail;
}
sc->dmasize = 131072;
error = bus_dma_tag_create(
bus_get_dma_tag(dev),
4, sc->dmasize, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sc->dmasize, 1, /* maxsize, nsegs */
sc->dmasize, 0, /* maxsegsize, flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->dmat);
if (error != 0) {
device_printf(dev, "cannot create DMA tag\n");
goto fail;
}
/* Get clocks */
if (clk_get_by_ofw_name(dev, 0, "apb", &clk_bus) != 0 &&
clk_get_by_ofw_name(dev, 0, "ahb", &clk_bus) != 0) {
device_printf(dev, "cannot find bus clock\n");
goto fail;
}
if (clk_get_by_ofw_name(dev, 0, "codec", &clk_codec) != 0) {
device_printf(dev, "cannot find codec clock\n");
goto fail;
}
/* Gating bus clock for codec */
if (clk_enable(clk_bus) != 0) {
device_printf(dev, "cannot enable bus clock\n");
goto fail;
}
/* Activate audio codec clock. According to the A10 and A20 user
* manuals, Audio_pll can be either 24.576MHz or 22.5792MHz. Most
* audio sampling rates require an 24.576MHz input clock with the
* exception of 44.1kHz, 22.05kHz, and 11.025kHz. Unfortunately,
* both capture and playback use the same clock source so to
* safely support independent full duplex operation, we use a fixed
* 24.576MHz clock source and don't advertise native support for
* the three sampling rates that require a 22.5792MHz input.
*/
error = clk_set_freq(clk_codec, 24576000, CLK_SET_ROUND_DOWN);
if (error != 0) {
device_printf(dev, "cannot set codec clock frequency\n");
goto fail;
}
/* Enable audio codec clock */
error = clk_enable(clk_codec);
if (error != 0) {
device_printf(dev, "cannot enable codec clock\n");
goto fail;
}
/* De-assert hwreset */
if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) {
error = hwreset_deassert(rst);
if (error != 0) {
device_printf(dev, "cannot de-assert reset\n");
goto fail;
}
}
/* Enable DAC */
val = CODEC_READ(sc, AC_DAC_DPC(sc));
val |= DAC_DPC_EN_DA;
CODEC_WRITE(sc, AC_DAC_DPC(sc), val);
if (mixer_init(dev, sc->cfg->mixer_class, sc)) {
device_printf(dev, "mixer_init failed\n");
goto fail;
}
/* Unmute PA */
if (gpio_pin_get_by_ofw_property(dev, node, "allwinner,pa-gpios",
&pa_pin) == 0) {
error = gpio_pin_set_active(pa_pin, 1);
if (error != 0)
device_printf(dev, "failed to unmute PA\n");
}
pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);
if (pcm_register(dev, sc, 1, 1)) {
device_printf(dev, "pcm_register failed\n");
goto fail;
}
pcm_addchan(dev, PCMDIR_PLAY, &a10codec_chan_class, sc);
pcm_addchan(dev, PCMDIR_REC, &a10codec_chan_class, sc);
snprintf(status, SND_STATUSLEN, "at %s", ofw_bus_get_name(dev));
pcm_setstatus(dev, status);
return (0);
fail:
bus_release_resources(dev, a10codec_spec, sc->res);
snd_mtxfree(sc->lock);
free(sc, M_DEVBUF);
return (ENXIO);
}
static device_method_t a10codec_pcm_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, a10codec_probe),
DEVMETHOD(device_attach, a10codec_attach),
DEVMETHOD_END
};
static driver_t a10codec_pcm_driver = {
"pcm",
a10codec_pcm_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(a10codec, simplebus, a10codec_pcm_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(a10codec, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(a10codec, 1);