f-stack/dpdk/app/test-pmd/txonly.c

521 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdarg.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#include <rte_flow.h>
#include "testpmd.h"
struct tx_timestamp {
rte_be32_t signature;
rte_be16_t pkt_idx;
rte_be16_t queue_idx;
rte_be64_t ts;
};
/* use RFC863 Discard Protocol */
uint16_t tx_udp_src_port = 9;
uint16_t tx_udp_dst_port = 9;
/* use RFC5735 / RFC2544 reserved network test addresses */
uint32_t tx_ip_src_addr = (198U << 24) | (18 << 16) | (0 << 8) | 1;
uint32_t tx_ip_dst_addr = (198U << 24) | (18 << 16) | (0 << 8) | 2;
#define IP_DEFTTL 64 /* from RFC 1340. */
static struct rte_ipv4_hdr pkt_ip_hdr; /**< IP header of transmitted packets. */
RTE_DEFINE_PER_LCORE(uint8_t, _ip_var); /**< IP address variation */
static struct rte_udp_hdr pkt_udp_hdr; /**< UDP header of tx packets. */
static uint64_t timestamp_mask; /**< Timestamp dynamic flag mask */
static int32_t timestamp_off; /**< Timestamp dynamic field offset */
static bool timestamp_enable; /**< Timestamp enable */
static uint64_t timestamp_initial[RTE_MAX_ETHPORTS];
static void
copy_buf_to_pkt_segs(void* buf, unsigned len, struct rte_mbuf *pkt,
unsigned offset)
{
struct rte_mbuf *seg;
void *seg_buf;
unsigned copy_len;
seg = pkt;
while (offset >= seg->data_len) {
offset -= seg->data_len;
seg = seg->next;
}
copy_len = seg->data_len - offset;
seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
while (len > copy_len) {
rte_memcpy(seg_buf, buf, (size_t) copy_len);
len -= copy_len;
buf = ((char*) buf + copy_len);
seg = seg->next;
seg_buf = rte_pktmbuf_mtod(seg, char *);
copy_len = seg->data_len;
}
rte_memcpy(seg_buf, buf, (size_t) len);
}
static inline void
copy_buf_to_pkt(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset)
{
if (offset + len <= pkt->data_len) {
rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset),
buf, (size_t) len);
return;
}
copy_buf_to_pkt_segs(buf, len, pkt, offset);
}
static void
setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
struct rte_udp_hdr *udp_hdr,
uint16_t pkt_data_len)
{
uint16_t *ptr16;
uint32_t ip_cksum;
uint16_t pkt_len;
/*
* Initialize UDP header.
*/
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
udp_hdr->src_port = rte_cpu_to_be_16(tx_udp_src_port);
udp_hdr->dst_port = rte_cpu_to_be_16(tx_udp_dst_port);
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
udp_hdr->dgram_cksum = 0; /* No UDP checksum. */
/*
* Initialize IP header.
*/
pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = IP_DEFTTL;
ip_hdr->next_proto_id = IPPROTO_UDP;
ip_hdr->packet_id = 0;
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
ip_hdr->src_addr = rte_cpu_to_be_32(tx_ip_src_addr);
ip_hdr->dst_addr = rte_cpu_to_be_32(tx_ip_dst_addr);
/*
* Compute IP header checksum.
*/
ptr16 = (unaligned_uint16_t*) ip_hdr;
ip_cksum = 0;
ip_cksum += ptr16[0]; ip_cksum += ptr16[1];
ip_cksum += ptr16[2]; ip_cksum += ptr16[3];
ip_cksum += ptr16[4];
ip_cksum += ptr16[6]; ip_cksum += ptr16[7];
ip_cksum += ptr16[8]; ip_cksum += ptr16[9];
/*
* Reduce 32 bit checksum to 16 bits and complement it.
*/
ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) +
(ip_cksum & 0x0000FFFF);
if (ip_cksum > 65535)
ip_cksum -= 65535;
ip_cksum = (~ip_cksum) & 0x0000FFFF;
if (ip_cksum == 0)
ip_cksum = 0xFFFF;
ip_hdr->hdr_checksum = (uint16_t) ip_cksum;
}
static inline void
update_pkt_header(struct rte_mbuf *pkt, uint32_t total_pkt_len)
{
struct rte_ipv4_hdr *ip_hdr;
struct rte_udp_hdr *udp_hdr;
uint16_t pkt_data_len;
uint16_t pkt_len;
pkt_data_len = (uint16_t) (total_pkt_len - (
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr)));
/* update UDP packet length */
udp_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *,
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr));
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
/* update IP packet length and checksum */
ip_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
ip_hdr->hdr_checksum = 0;
pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr);
}
static inline bool
pkt_burst_prepare(struct rte_mbuf *pkt, struct rte_mempool *mbp,
struct rte_ether_hdr *eth_hdr, const uint16_t vlan_tci,
const uint16_t vlan_tci_outer, const uint64_t ol_flags,
const uint16_t idx, struct fwd_stream *fs)
{
struct rte_mbuf *pkt_segs[RTE_MAX_SEGS_PER_PKT];
struct rte_mbuf *pkt_seg;
uint32_t nb_segs, pkt_len;
uint8_t i;
if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND))
nb_segs = rte_rand() % tx_pkt_nb_segs + 1;
else
nb_segs = tx_pkt_nb_segs;
if (nb_segs > 1) {
if (rte_mempool_get_bulk(mbp, (void **)pkt_segs, nb_segs - 1))
return false;
}
rte_pktmbuf_reset_headroom(pkt);
pkt->data_len = tx_pkt_seg_lengths[0];
pkt->ol_flags &= RTE_MBUF_F_EXTERNAL;
pkt->ol_flags |= ol_flags;
pkt->vlan_tci = vlan_tci;
pkt->vlan_tci_outer = vlan_tci_outer;
pkt->l2_len = sizeof(struct rte_ether_hdr);
pkt->l3_len = sizeof(struct rte_ipv4_hdr);
pkt_len = pkt->data_len;
pkt_seg = pkt;
for (i = 1; i < nb_segs; i++) {
pkt_seg->next = pkt_segs[i - 1];
pkt_seg = pkt_seg->next;
pkt_seg->data_len = tx_pkt_seg_lengths[i];
pkt_len += pkt_seg->data_len;
}
pkt_seg->next = NULL; /* Last segment of packet. */
/*
* Copy headers in first packet segment(s).
*/
copy_buf_to_pkt(eth_hdr, sizeof(*eth_hdr), pkt, 0);
copy_buf_to_pkt(&pkt_ip_hdr, sizeof(pkt_ip_hdr), pkt,
sizeof(struct rte_ether_hdr));
if (txonly_multi_flow) {
uint8_t ip_var = RTE_PER_LCORE(_ip_var);
struct rte_ipv4_hdr *ip_hdr;
uint32_t addr;
ip_hdr = rte_pktmbuf_mtod_offset(pkt,
struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
/*
* Generate multiple flows by varying IP src addr. This
* enables packets are well distributed by RSS in
* receiver side if any and txonly mode can be a decent
* packet generator for developer's quick performance
* regression test.
*/
addr = (tx_ip_dst_addr | (ip_var++ << 8)) + rte_lcore_id();
ip_hdr->src_addr = rte_cpu_to_be_32(addr);
RTE_PER_LCORE(_ip_var) = ip_var;
}
copy_buf_to_pkt(&pkt_udp_hdr, sizeof(pkt_udp_hdr), pkt,
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr));
if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND) || txonly_multi_flow)
update_pkt_header(pkt, pkt_len);
if (unlikely(timestamp_enable)) {
uint64_t skew = fs->ts_skew;
struct tx_timestamp timestamp_mark;
if (unlikely(!skew)) {
struct rte_eth_dev_info dev_info;
unsigned int txqs_n;
uint64_t phase;
int ret;
ret = eth_dev_info_get_print_err(fs->tx_port, &dev_info);
if (ret != 0) {
TESTPMD_LOG(ERR,
"Failed to get device info for port %d,"
"could not finish timestamp init",
fs->tx_port);
return false;
}
txqs_n = dev_info.nb_tx_queues;
phase = tx_pkt_times_inter * fs->tx_queue /
(txqs_n ? txqs_n : 1);
/*
* Initialize the scheduling time phase shift
* depending on queue index.
*/
skew = timestamp_initial[fs->tx_port] +
tx_pkt_times_inter + phase;
fs->ts_skew = skew;
}
timestamp_mark.pkt_idx = rte_cpu_to_be_16(idx);
timestamp_mark.queue_idx = rte_cpu_to_be_16(fs->tx_queue);
timestamp_mark.signature = rte_cpu_to_be_32(0xBEEFC0DE);
if (unlikely(!idx)) {
skew += tx_pkt_times_inter;
pkt->ol_flags |= timestamp_mask;
*RTE_MBUF_DYNFIELD
(pkt, timestamp_off, uint64_t *) = skew;
fs->ts_skew = skew;
timestamp_mark.ts = rte_cpu_to_be_64(skew);
} else if (tx_pkt_times_intra) {
skew += tx_pkt_times_intra;
pkt->ol_flags |= timestamp_mask;
*RTE_MBUF_DYNFIELD
(pkt, timestamp_off, uint64_t *) = skew;
fs->ts_skew = skew;
timestamp_mark.ts = rte_cpu_to_be_64(skew);
} else {
timestamp_mark.ts = RTE_BE64(0);
}
copy_buf_to_pkt(&timestamp_mark, sizeof(timestamp_mark), pkt,
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(pkt_udp_hdr));
}
/*
* Complete first mbuf of packet and append it to the
* burst of packets to be transmitted.
*/
pkt->nb_segs = nb_segs;
pkt->pkt_len = pkt_len;
return true;
}
/*
* Transmit a burst of multi-segments packets.
*/
static void
pkt_burst_transmit(struct fwd_stream *fs)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_port *txp;
struct rte_mbuf *pkt;
struct rte_mempool *mbp;
struct rte_ether_hdr eth_hdr;
uint16_t nb_tx;
uint16_t nb_pkt;
uint16_t vlan_tci, vlan_tci_outer;
uint32_t retry;
uint64_t ol_flags = 0;
uint64_t tx_offloads;
uint64_t start_tsc = 0;
get_start_cycles(&start_tsc);
mbp = current_fwd_lcore()->mbp;
txp = &ports[fs->tx_port];
tx_offloads = txp->dev_conf.txmode.offloads;
vlan_tci = txp->tx_vlan_id;
vlan_tci_outer = txp->tx_vlan_id_outer;
if (tx_offloads & RTE_ETH_TX_OFFLOAD_VLAN_INSERT)
ol_flags = RTE_MBUF_F_TX_VLAN;
if (tx_offloads & RTE_ETH_TX_OFFLOAD_QINQ_INSERT)
ol_flags |= RTE_MBUF_F_TX_QINQ;
if (tx_offloads & RTE_ETH_TX_OFFLOAD_MACSEC_INSERT)
ol_flags |= RTE_MBUF_F_TX_MACSEC;
/*
* Initialize Ethernet header.
*/
rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], &eth_hdr.dst_addr);
rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, &eth_hdr.src_addr);
eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
if (rte_mempool_get_bulk(mbp, (void **)pkts_burst,
nb_pkt_per_burst) == 0) {
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
if (unlikely(!pkt_burst_prepare(pkts_burst[nb_pkt], mbp,
&eth_hdr, vlan_tci,
vlan_tci_outer,
ol_flags,
nb_pkt, fs))) {
rte_mempool_put_bulk(mbp,
(void **)&pkts_burst[nb_pkt],
nb_pkt_per_burst - nb_pkt);
break;
}
}
} else {
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
pkt = rte_mbuf_raw_alloc(mbp);
if (pkt == NULL)
break;
if (unlikely(!pkt_burst_prepare(pkt, mbp, &eth_hdr,
vlan_tci,
vlan_tci_outer,
ol_flags,
nb_pkt, fs))) {
rte_pktmbuf_free(pkt);
break;
}
pkts_burst[nb_pkt] = pkt;
}
}
if (nb_pkt == 0)
return;
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt);
/*
* Retry if necessary
*/
if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) {
retry = 0;
while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
&pkts_burst[nb_tx], nb_pkt - nb_tx);
}
}
fs->tx_packets += nb_tx;
if (txonly_multi_flow)
RTE_PER_LCORE(_ip_var) -= nb_pkt - nb_tx;
inc_tx_burst_stats(fs, nb_tx);
if (unlikely(nb_tx < nb_pkt)) {
if (verbose_level > 0 && fs->fwd_dropped == 0)
printf("port %d tx_queue %d - drop "
"(nb_pkt:%u - nb_tx:%u)=%u packets\n",
fs->tx_port, fs->tx_queue,
(unsigned) nb_pkt, (unsigned) nb_tx,
(unsigned) (nb_pkt - nb_tx));
fs->fwd_dropped += (nb_pkt - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_pkt);
}
get_end_cycles(fs, start_tsc);
}
static int
tx_only_begin(portid_t pi)
{
uint16_t pkt_hdr_len, pkt_data_len;
int dynf;
pkt_hdr_len = (uint16_t)(sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr));
pkt_data_len = tx_pkt_length - pkt_hdr_len;
if ((tx_pkt_split == TX_PKT_SPLIT_RND || txonly_multi_flow) &&
tx_pkt_seg_lengths[0] < pkt_hdr_len) {
TESTPMD_LOG(ERR,
"Random segment number or multiple flow is enabled, "
"but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
tx_pkt_seg_lengths[0], pkt_hdr_len);
return -EINVAL;
}
setup_pkt_udp_ip_headers(&pkt_ip_hdr, &pkt_udp_hdr, pkt_data_len);
timestamp_enable = false;
timestamp_mask = 0;
timestamp_off = -1;
dynf = rte_mbuf_dynflag_lookup
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
if (dynf >= 0)
timestamp_mask = 1ULL << dynf;
dynf = rte_mbuf_dynfield_lookup
(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
if (dynf >= 0)
timestamp_off = dynf;
timestamp_enable = tx_pkt_times_inter &&
timestamp_mask &&
timestamp_off >= 0 &&
!rte_eth_read_clock(pi, &timestamp_initial[pi]);
if (timestamp_enable) {
pkt_hdr_len += sizeof(struct tx_timestamp);
if (tx_pkt_split == TX_PKT_SPLIT_RND) {
if (tx_pkt_seg_lengths[0] < pkt_hdr_len) {
TESTPMD_LOG(ERR,
"Time stamp and random segment number are enabled, "
"but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
tx_pkt_seg_lengths[0], pkt_hdr_len);
return -EINVAL;
}
} else {
uint16_t total = 0;
uint8_t i;
for (i = 0; i < tx_pkt_nb_segs; i++) {
total += tx_pkt_seg_lengths[i];
if (total >= pkt_hdr_len)
break;
}
if (total < pkt_hdr_len) {
TESTPMD_LOG(ERR,
"Not enough Tx segment space for time stamp info, "
"total %u < %u (needed)\n",
total, pkt_hdr_len);
return -EINVAL;
}
}
}
/* Make sure all settings are visible on forwarding cores.*/
rte_wmb();
return 0;
}
static void
tx_only_stream_init(struct fwd_stream *fs)
{
fs->disabled = ports[fs->tx_port].txq[fs->tx_queue].state ==
RTE_ETH_QUEUE_STATE_STOPPED;
}
struct fwd_engine tx_only_engine = {
.fwd_mode_name = "txonly",
.port_fwd_begin = tx_only_begin,
.port_fwd_end = NULL,
.stream_init = tx_only_stream_init,
.packet_fwd = pkt_burst_transmit,
};