mirror of https://github.com/F-Stack/f-stack.git
664 lines
18 KiB
C
664 lines
18 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2016 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_config.h>
|
|
#include <rte_hexdump.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_cryptodev_pmd.h>
|
|
#include <rte_dev.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_cpuflags.h>
|
|
|
|
#include "rte_kasumi_pmd_private.h"
|
|
|
|
#define KASUMI_KEY_LENGTH 16
|
|
#define KASUMI_IV_LENGTH 8
|
|
#define KASUMI_DIGEST_LENGTH 4
|
|
#define KASUMI_MAX_BURST 4
|
|
#define BYTE_LEN 8
|
|
|
|
/**
|
|
* Global static parameter used to create a unique name for each KASUMI
|
|
* crypto device.
|
|
*/
|
|
static unsigned unique_name_id;
|
|
|
|
static inline int
|
|
create_unique_device_name(char *name, size_t size)
|
|
{
|
|
int ret;
|
|
|
|
if (name == NULL)
|
|
return -EINVAL;
|
|
|
|
ret = snprintf(name, size, "%s_%u", RTE_STR(CRYPTODEV_NAME_KASUMI_PMD),
|
|
unique_name_id++);
|
|
if (ret < 0)
|
|
return ret;
|
|
return 0;
|
|
}
|
|
|
|
/** Get xform chain order. */
|
|
static enum kasumi_operation
|
|
kasumi_get_mode(const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
if (xform == NULL)
|
|
return KASUMI_OP_NOT_SUPPORTED;
|
|
|
|
if (xform->next)
|
|
if (xform->next->next != NULL)
|
|
return KASUMI_OP_NOT_SUPPORTED;
|
|
|
|
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
|
|
if (xform->next == NULL)
|
|
return KASUMI_OP_ONLY_AUTH;
|
|
else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
|
|
return KASUMI_OP_AUTH_CIPHER;
|
|
else
|
|
return KASUMI_OP_NOT_SUPPORTED;
|
|
}
|
|
|
|
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
|
|
if (xform->next == NULL)
|
|
return KASUMI_OP_ONLY_CIPHER;
|
|
else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
|
|
return KASUMI_OP_CIPHER_AUTH;
|
|
else
|
|
return KASUMI_OP_NOT_SUPPORTED;
|
|
}
|
|
|
|
return KASUMI_OP_NOT_SUPPORTED;
|
|
}
|
|
|
|
|
|
/** Parse crypto xform chain and set private session parameters. */
|
|
int
|
|
kasumi_set_session_parameters(struct kasumi_session *sess,
|
|
const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
const struct rte_crypto_sym_xform *auth_xform = NULL;
|
|
const struct rte_crypto_sym_xform *cipher_xform = NULL;
|
|
enum kasumi_operation mode;
|
|
|
|
/* Select Crypto operation - hash then cipher / cipher then hash */
|
|
mode = kasumi_get_mode(xform);
|
|
|
|
switch (mode) {
|
|
case KASUMI_OP_CIPHER_AUTH:
|
|
auth_xform = xform->next;
|
|
/* Fall-through */
|
|
case KASUMI_OP_ONLY_CIPHER:
|
|
cipher_xform = xform;
|
|
break;
|
|
case KASUMI_OP_AUTH_CIPHER:
|
|
cipher_xform = xform->next;
|
|
/* Fall-through */
|
|
case KASUMI_OP_ONLY_AUTH:
|
|
auth_xform = xform;
|
|
break;
|
|
case KASUMI_OP_NOT_SUPPORTED:
|
|
default:
|
|
KASUMI_LOG_ERR("Unsupported operation chain order parameter");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cipher_xform) {
|
|
/* Only KASUMI F8 supported */
|
|
if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_KASUMI_F8)
|
|
return -EINVAL;
|
|
/* Initialize key */
|
|
sso_kasumi_init_f8_key_sched(xform->cipher.key.data,
|
|
&sess->pKeySched_cipher);
|
|
}
|
|
|
|
if (auth_xform) {
|
|
/* Only KASUMI F9 supported */
|
|
if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_KASUMI_F9)
|
|
return -EINVAL;
|
|
sess->auth_op = auth_xform->auth.op;
|
|
/* Initialize key */
|
|
sso_kasumi_init_f9_key_sched(xform->auth.key.data,
|
|
&sess->pKeySched_hash);
|
|
}
|
|
|
|
|
|
sess->op = mode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Get KASUMI session. */
|
|
static struct kasumi_session *
|
|
kasumi_get_session(struct kasumi_qp *qp, struct rte_crypto_op *op)
|
|
{
|
|
struct kasumi_session *sess;
|
|
|
|
if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_WITH_SESSION) {
|
|
if (unlikely(op->sym->session->dev_type !=
|
|
RTE_CRYPTODEV_KASUMI_PMD))
|
|
return NULL;
|
|
|
|
sess = (struct kasumi_session *)op->sym->session->_private;
|
|
} else {
|
|
struct rte_cryptodev_session *c_sess = NULL;
|
|
|
|
if (rte_mempool_get(qp->sess_mp, (void **)&c_sess))
|
|
return NULL;
|
|
|
|
sess = (struct kasumi_session *)c_sess->_private;
|
|
|
|
if (unlikely(kasumi_set_session_parameters(sess,
|
|
op->sym->xform) != 0))
|
|
return NULL;
|
|
}
|
|
|
|
return sess;
|
|
}
|
|
|
|
/** Encrypt/decrypt mbufs with same cipher key. */
|
|
static uint8_t
|
|
process_kasumi_cipher_op(struct rte_crypto_op **ops,
|
|
struct kasumi_session *session,
|
|
uint8_t num_ops)
|
|
{
|
|
unsigned i;
|
|
uint8_t processed_ops = 0;
|
|
uint8_t *src[num_ops], *dst[num_ops];
|
|
uint64_t IV[num_ops];
|
|
uint32_t num_bytes[num_ops];
|
|
|
|
for (i = 0; i < num_ops; i++) {
|
|
/* Sanity checks. */
|
|
if (ops[i]->sym->cipher.iv.length != KASUMI_IV_LENGTH) {
|
|
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
KASUMI_LOG_ERR("iv");
|
|
break;
|
|
}
|
|
|
|
src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
|
|
(ops[i]->sym->cipher.data.offset >> 3);
|
|
dst[i] = ops[i]->sym->m_dst ?
|
|
rte_pktmbuf_mtod(ops[i]->sym->m_dst, uint8_t *) +
|
|
(ops[i]->sym->cipher.data.offset >> 3) :
|
|
rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
|
|
(ops[i]->sym->cipher.data.offset >> 3);
|
|
IV[i] = *((uint64_t *)(ops[i]->sym->cipher.iv.data));
|
|
num_bytes[i] = ops[i]->sym->cipher.data.length >> 3;
|
|
|
|
processed_ops++;
|
|
}
|
|
|
|
if (processed_ops != 0)
|
|
sso_kasumi_f8_n_buffer(&session->pKeySched_cipher, IV,
|
|
src, dst, num_bytes, processed_ops);
|
|
|
|
return processed_ops;
|
|
}
|
|
|
|
/** Encrypt/decrypt mbuf (bit level function). */
|
|
static uint8_t
|
|
process_kasumi_cipher_op_bit(struct rte_crypto_op *op,
|
|
struct kasumi_session *session)
|
|
{
|
|
uint8_t *src, *dst;
|
|
uint64_t IV;
|
|
uint32_t length_in_bits, offset_in_bits;
|
|
|
|
/* Sanity checks. */
|
|
if (unlikely(op->sym->cipher.iv.length != KASUMI_IV_LENGTH)) {
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
KASUMI_LOG_ERR("iv");
|
|
return 0;
|
|
}
|
|
|
|
offset_in_bits = op->sym->cipher.data.offset;
|
|
src = rte_pktmbuf_mtod(op->sym->m_src, uint8_t *);
|
|
if (op->sym->m_dst == NULL) {
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
KASUMI_LOG_ERR("bit-level in-place not supported\n");
|
|
return 0;
|
|
}
|
|
dst = rte_pktmbuf_mtod(op->sym->m_dst, uint8_t *);
|
|
IV = *((uint64_t *)(op->sym->cipher.iv.data));
|
|
length_in_bits = op->sym->cipher.data.length;
|
|
|
|
sso_kasumi_f8_1_buffer_bit(&session->pKeySched_cipher, IV,
|
|
src, dst, length_in_bits, offset_in_bits);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/** Generate/verify hash from mbufs with same hash key. */
|
|
static int
|
|
process_kasumi_hash_op(struct rte_crypto_op **ops,
|
|
struct kasumi_session *session,
|
|
uint8_t num_ops)
|
|
{
|
|
unsigned i;
|
|
uint8_t processed_ops = 0;
|
|
uint8_t *src, *dst;
|
|
uint32_t length_in_bits;
|
|
uint32_t num_bytes;
|
|
uint32_t shift_bits;
|
|
uint64_t IV;
|
|
uint8_t direction;
|
|
|
|
for (i = 0; i < num_ops; i++) {
|
|
if (unlikely(ops[i]->sym->auth.aad.length != KASUMI_IV_LENGTH)) {
|
|
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
KASUMI_LOG_ERR("aad");
|
|
break;
|
|
}
|
|
|
|
if (unlikely(ops[i]->sym->auth.digest.length != KASUMI_DIGEST_LENGTH)) {
|
|
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
KASUMI_LOG_ERR("digest");
|
|
break;
|
|
}
|
|
|
|
/* Data must be byte aligned */
|
|
if ((ops[i]->sym->auth.data.offset % BYTE_LEN) != 0) {
|
|
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
KASUMI_LOG_ERR("offset");
|
|
break;
|
|
}
|
|
|
|
length_in_bits = ops[i]->sym->auth.data.length;
|
|
|
|
src = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
|
|
(ops[i]->sym->auth.data.offset >> 3);
|
|
/* IV from AAD */
|
|
IV = *((uint64_t *)(ops[i]->sym->auth.aad.data));
|
|
/* Direction from next bit after end of message */
|
|
num_bytes = (length_in_bits >> 3) + 1;
|
|
shift_bits = (BYTE_LEN - 1 - length_in_bits) % BYTE_LEN;
|
|
direction = (src[num_bytes - 1] >> shift_bits) & 0x01;
|
|
|
|
if (session->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) {
|
|
dst = (uint8_t *)rte_pktmbuf_append(ops[i]->sym->m_src,
|
|
ops[i]->sym->auth.digest.length);
|
|
|
|
sso_kasumi_f9_1_buffer_user(&session->pKeySched_hash,
|
|
IV, src,
|
|
length_in_bits, dst, direction);
|
|
/* Verify digest. */
|
|
if (memcmp(dst, ops[i]->sym->auth.digest.data,
|
|
ops[i]->sym->auth.digest.length) != 0)
|
|
ops[i]->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
|
|
|
|
/* Trim area used for digest from mbuf. */
|
|
rte_pktmbuf_trim(ops[i]->sym->m_src,
|
|
ops[i]->sym->auth.digest.length);
|
|
} else {
|
|
dst = ops[i]->sym->auth.digest.data;
|
|
|
|
sso_kasumi_f9_1_buffer_user(&session->pKeySched_hash,
|
|
IV, src,
|
|
length_in_bits, dst, direction);
|
|
}
|
|
processed_ops++;
|
|
}
|
|
|
|
return processed_ops;
|
|
}
|
|
|
|
/** Process a batch of crypto ops which shares the same session. */
|
|
static int
|
|
process_ops(struct rte_crypto_op **ops, struct kasumi_session *session,
|
|
struct kasumi_qp *qp, uint8_t num_ops,
|
|
uint16_t *accumulated_enqueued_ops)
|
|
{
|
|
unsigned i;
|
|
unsigned enqueued_ops, processed_ops;
|
|
|
|
switch (session->op) {
|
|
case KASUMI_OP_ONLY_CIPHER:
|
|
processed_ops = process_kasumi_cipher_op(ops,
|
|
session, num_ops);
|
|
break;
|
|
case KASUMI_OP_ONLY_AUTH:
|
|
processed_ops = process_kasumi_hash_op(ops, session,
|
|
num_ops);
|
|
break;
|
|
case KASUMI_OP_CIPHER_AUTH:
|
|
processed_ops = process_kasumi_cipher_op(ops, session,
|
|
num_ops);
|
|
process_kasumi_hash_op(ops, session, processed_ops);
|
|
break;
|
|
case KASUMI_OP_AUTH_CIPHER:
|
|
processed_ops = process_kasumi_hash_op(ops, session,
|
|
num_ops);
|
|
process_kasumi_cipher_op(ops, session, processed_ops);
|
|
break;
|
|
default:
|
|
/* Operation not supported. */
|
|
processed_ops = 0;
|
|
}
|
|
|
|
for (i = 0; i < num_ops; i++) {
|
|
/*
|
|
* If there was no error/authentication failure,
|
|
* change status to successful.
|
|
*/
|
|
if (ops[i]->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
|
|
ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
|
|
/* Free session if a session-less crypto op. */
|
|
if (ops[i]->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) {
|
|
rte_mempool_put(qp->sess_mp, ops[i]->sym->session);
|
|
ops[i]->sym->session = NULL;
|
|
}
|
|
}
|
|
|
|
enqueued_ops = rte_ring_enqueue_burst(qp->processed_ops,
|
|
(void **)ops, processed_ops);
|
|
qp->qp_stats.enqueued_count += enqueued_ops;
|
|
*accumulated_enqueued_ops += enqueued_ops;
|
|
|
|
return enqueued_ops;
|
|
}
|
|
|
|
/** Process a crypto op with length/offset in bits. */
|
|
static int
|
|
process_op_bit(struct rte_crypto_op *op, struct kasumi_session *session,
|
|
struct kasumi_qp *qp, uint16_t *accumulated_enqueued_ops)
|
|
{
|
|
unsigned enqueued_op, processed_op;
|
|
|
|
switch (session->op) {
|
|
case KASUMI_OP_ONLY_CIPHER:
|
|
processed_op = process_kasumi_cipher_op_bit(op,
|
|
session);
|
|
break;
|
|
case KASUMI_OP_ONLY_AUTH:
|
|
processed_op = process_kasumi_hash_op(&op, session, 1);
|
|
break;
|
|
case KASUMI_OP_CIPHER_AUTH:
|
|
processed_op = process_kasumi_cipher_op_bit(op, session);
|
|
if (processed_op == 1)
|
|
process_kasumi_hash_op(&op, session, 1);
|
|
break;
|
|
case KASUMI_OP_AUTH_CIPHER:
|
|
processed_op = process_kasumi_hash_op(&op, session, 1);
|
|
if (processed_op == 1)
|
|
process_kasumi_cipher_op_bit(op, session);
|
|
break;
|
|
default:
|
|
/* Operation not supported. */
|
|
processed_op = 0;
|
|
}
|
|
|
|
/*
|
|
* If there was no error/authentication failure,
|
|
* change status to successful.
|
|
*/
|
|
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
|
|
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
|
|
|
|
/* Free session if a session-less crypto op. */
|
|
if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) {
|
|
rte_mempool_put(qp->sess_mp, op->sym->session);
|
|
op->sym->session = NULL;
|
|
}
|
|
|
|
enqueued_op = rte_ring_enqueue_burst(qp->processed_ops, (void **)&op,
|
|
processed_op);
|
|
qp->qp_stats.enqueued_count += enqueued_op;
|
|
*accumulated_enqueued_ops += enqueued_op;
|
|
|
|
return enqueued_op;
|
|
}
|
|
|
|
static uint16_t
|
|
kasumi_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
|
|
uint16_t nb_ops)
|
|
{
|
|
struct rte_crypto_op *c_ops[nb_ops];
|
|
struct rte_crypto_op *curr_c_op;
|
|
|
|
struct kasumi_session *prev_sess = NULL, *curr_sess = NULL;
|
|
struct kasumi_qp *qp = queue_pair;
|
|
unsigned i;
|
|
uint8_t burst_size = 0;
|
|
uint16_t enqueued_ops = 0;
|
|
uint8_t processed_ops;
|
|
|
|
for (i = 0; i < nb_ops; i++) {
|
|
curr_c_op = ops[i];
|
|
|
|
/* Set status as enqueued (not processed yet) by default. */
|
|
curr_c_op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
|
|
|
|
curr_sess = kasumi_get_session(qp, curr_c_op);
|
|
if (unlikely(curr_sess == NULL ||
|
|
curr_sess->op == KASUMI_OP_NOT_SUPPORTED)) {
|
|
curr_c_op->status =
|
|
RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
|
|
break;
|
|
}
|
|
|
|
/* If length/offset is at bit-level, process this buffer alone. */
|
|
if (((curr_c_op->sym->cipher.data.length % BYTE_LEN) != 0)
|
|
|| ((ops[i]->sym->cipher.data.offset
|
|
% BYTE_LEN) != 0)) {
|
|
/* Process the ops of the previous session. */
|
|
if (prev_sess != NULL) {
|
|
processed_ops = process_ops(c_ops, prev_sess,
|
|
qp, burst_size, &enqueued_ops);
|
|
if (processed_ops < burst_size) {
|
|
burst_size = 0;
|
|
break;
|
|
}
|
|
|
|
burst_size = 0;
|
|
prev_sess = NULL;
|
|
}
|
|
|
|
processed_ops = process_op_bit(curr_c_op, curr_sess,
|
|
qp, &enqueued_ops);
|
|
if (processed_ops != 1)
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Batch ops that share the same session. */
|
|
if (prev_sess == NULL) {
|
|
prev_sess = curr_sess;
|
|
c_ops[burst_size++] = curr_c_op;
|
|
} else if (curr_sess == prev_sess) {
|
|
c_ops[burst_size++] = curr_c_op;
|
|
/*
|
|
* When there are enough ops to process in a batch,
|
|
* process them, and start a new batch.
|
|
*/
|
|
if (burst_size == KASUMI_MAX_BURST) {
|
|
processed_ops = process_ops(c_ops, prev_sess,
|
|
qp, burst_size, &enqueued_ops);
|
|
if (processed_ops < burst_size) {
|
|
burst_size = 0;
|
|
break;
|
|
}
|
|
|
|
burst_size = 0;
|
|
prev_sess = NULL;
|
|
}
|
|
} else {
|
|
/*
|
|
* Different session, process the ops
|
|
* of the previous session.
|
|
*/
|
|
processed_ops = process_ops(c_ops, prev_sess,
|
|
qp, burst_size, &enqueued_ops);
|
|
if (processed_ops < burst_size) {
|
|
burst_size = 0;
|
|
break;
|
|
}
|
|
|
|
burst_size = 0;
|
|
prev_sess = curr_sess;
|
|
|
|
c_ops[burst_size++] = curr_c_op;
|
|
}
|
|
}
|
|
|
|
if (burst_size != 0) {
|
|
/* Process the crypto ops of the last session. */
|
|
processed_ops = process_ops(c_ops, prev_sess,
|
|
qp, burst_size, &enqueued_ops);
|
|
}
|
|
|
|
qp->qp_stats.enqueue_err_count += nb_ops - enqueued_ops;
|
|
return enqueued_ops;
|
|
}
|
|
|
|
static uint16_t
|
|
kasumi_pmd_dequeue_burst(void *queue_pair,
|
|
struct rte_crypto_op **c_ops, uint16_t nb_ops)
|
|
{
|
|
struct kasumi_qp *qp = queue_pair;
|
|
|
|
unsigned nb_dequeued;
|
|
|
|
nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
|
|
(void **)c_ops, nb_ops);
|
|
qp->qp_stats.dequeued_count += nb_dequeued;
|
|
|
|
return nb_dequeued;
|
|
}
|
|
|
|
static int cryptodev_kasumi_uninit(const char *name);
|
|
|
|
static int
|
|
cryptodev_kasumi_create(const char *name,
|
|
struct rte_crypto_vdev_init_params *init_params)
|
|
{
|
|
struct rte_cryptodev *dev;
|
|
char crypto_dev_name[RTE_CRYPTODEV_NAME_MAX_LEN];
|
|
struct kasumi_private *internals;
|
|
uint64_t cpu_flags = 0;
|
|
|
|
/* Check CPU for supported vector instruction set */
|
|
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
|
|
cpu_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
|
|
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
|
|
cpu_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
|
|
else {
|
|
KASUMI_LOG_ERR("Vector instructions are not supported by CPU");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Create a unique device name. */
|
|
if (create_unique_device_name(crypto_dev_name,
|
|
RTE_CRYPTODEV_NAME_MAX_LEN) != 0) {
|
|
KASUMI_LOG_ERR("failed to create unique cryptodev name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev = rte_cryptodev_pmd_virtual_dev_init(crypto_dev_name,
|
|
sizeof(struct kasumi_private), init_params->socket_id);
|
|
if (dev == NULL) {
|
|
KASUMI_LOG_ERR("failed to create cryptodev vdev");
|
|
goto init_error;
|
|
}
|
|
|
|
dev->dev_type = RTE_CRYPTODEV_KASUMI_PMD;
|
|
dev->dev_ops = rte_kasumi_pmd_ops;
|
|
|
|
/* Register RX/TX burst functions for data path. */
|
|
dev->dequeue_burst = kasumi_pmd_dequeue_burst;
|
|
dev->enqueue_burst = kasumi_pmd_enqueue_burst;
|
|
|
|
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
|
|
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
|
|
cpu_flags;
|
|
|
|
internals = dev->data->dev_private;
|
|
|
|
internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
|
|
internals->max_nb_sessions = init_params->max_nb_sessions;
|
|
|
|
return 0;
|
|
init_error:
|
|
KASUMI_LOG_ERR("driver %s: cryptodev_kasumi_create failed", name);
|
|
|
|
cryptodev_kasumi_uninit(crypto_dev_name);
|
|
return -EFAULT;
|
|
}
|
|
|
|
static int
|
|
cryptodev_kasumi_init(const char *name,
|
|
const char *input_args)
|
|
{
|
|
struct rte_crypto_vdev_init_params init_params = {
|
|
RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS,
|
|
RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS,
|
|
rte_socket_id()
|
|
};
|
|
|
|
rte_cryptodev_parse_vdev_init_params(&init_params, input_args);
|
|
|
|
RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
|
|
init_params.socket_id);
|
|
RTE_LOG(INFO, PMD, " Max number of queue pairs = %d\n",
|
|
init_params.max_nb_queue_pairs);
|
|
RTE_LOG(INFO, PMD, " Max number of sessions = %d\n",
|
|
init_params.max_nb_sessions);
|
|
|
|
return cryptodev_kasumi_create(name, &init_params);
|
|
}
|
|
|
|
static int
|
|
cryptodev_kasumi_uninit(const char *name)
|
|
{
|
|
if (name == NULL)
|
|
return -EINVAL;
|
|
|
|
RTE_LOG(INFO, PMD, "Closing KASUMI crypto device %s"
|
|
" on numa socket %u\n",
|
|
name, rte_socket_id());
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct rte_driver cryptodev_kasumi_pmd_drv = {
|
|
.type = PMD_VDEV,
|
|
.init = cryptodev_kasumi_init,
|
|
.uninit = cryptodev_kasumi_uninit
|
|
};
|
|
|
|
PMD_REGISTER_DRIVER(cryptodev_kasumi_pmd_drv, CRYPTODEV_NAME_KASUMI_PMD);
|
|
DRIVER_REGISTER_PARAM_STRING(CRYPTODEV_NAME_KASUMI_PMD,
|
|
"max_nb_queue_pairs=<int> "
|
|
"max_nb_sessions=<int> "
|
|
"socket_id=<int>");
|