f-stack/dpdk/lib/eal/linux/eal_vfio.c

2202 lines
57 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#include <inttypes.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <rte_errno.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_eal_memconfig.h>
#include <rte_vfio.h>
#include "eal_filesystem.h"
#include "eal_memcfg.h"
#include "eal_vfio.h"
#include "eal_private.h"
#include "eal_internal_cfg.h"
#define VFIO_MEM_EVENT_CLB_NAME "vfio_mem_event_clb"
/* hot plug/unplug of VFIO groups may cause all DMA maps to be dropped. we can
* recreate the mappings for DPDK segments, but we cannot do so for memory that
* was registered by the user themselves, so we need to store the user mappings
* somewhere, to recreate them later.
*/
#define VFIO_MAX_USER_MEM_MAPS 256
struct user_mem_map {
uint64_t addr; /**< start VA */
uint64_t iova; /**< start IOVA */
uint64_t len; /**< total length of the mapping */
uint64_t chunk; /**< this mapping can be split in chunks of this size */
};
struct user_mem_maps {
rte_spinlock_recursive_t lock;
int n_maps;
struct user_mem_map maps[VFIO_MAX_USER_MEM_MAPS];
};
struct vfio_config {
int vfio_enabled;
int vfio_container_fd;
int vfio_active_groups;
const struct vfio_iommu_type *vfio_iommu_type;
struct vfio_group vfio_groups[VFIO_MAX_GROUPS];
struct user_mem_maps mem_maps;
};
/* per-process VFIO config */
static struct vfio_config vfio_cfgs[VFIO_MAX_CONTAINERS];
static struct vfio_config *default_vfio_cfg = &vfio_cfgs[0];
static int vfio_type1_dma_map(int);
static int vfio_type1_dma_mem_map(int, uint64_t, uint64_t, uint64_t, int);
static int vfio_spapr_dma_map(int);
static int vfio_spapr_dma_mem_map(int, uint64_t, uint64_t, uint64_t, int);
static int vfio_noiommu_dma_map(int);
static int vfio_noiommu_dma_mem_map(int, uint64_t, uint64_t, uint64_t, int);
static int vfio_dma_mem_map(struct vfio_config *vfio_cfg, uint64_t vaddr,
uint64_t iova, uint64_t len, int do_map);
/* IOMMU types we support */
static const struct vfio_iommu_type iommu_types[] = {
/* x86 IOMMU, otherwise known as type 1 */
{
.type_id = RTE_VFIO_TYPE1,
.name = "Type 1",
.partial_unmap = false,
.dma_map_func = &vfio_type1_dma_map,
.dma_user_map_func = &vfio_type1_dma_mem_map
},
/* ppc64 IOMMU, otherwise known as spapr */
{
.type_id = RTE_VFIO_SPAPR,
.name = "sPAPR",
.partial_unmap = true,
.dma_map_func = &vfio_spapr_dma_map,
.dma_user_map_func = &vfio_spapr_dma_mem_map
},
/* IOMMU-less mode */
{
.type_id = RTE_VFIO_NOIOMMU,
.name = "No-IOMMU",
.partial_unmap = true,
.dma_map_func = &vfio_noiommu_dma_map,
.dma_user_map_func = &vfio_noiommu_dma_mem_map
},
};
static int
is_null_map(const struct user_mem_map *map)
{
return map->addr == 0 && map->iova == 0 &&
map->len == 0 && map->chunk == 0;
}
/* we may need to merge user mem maps together in case of user mapping/unmapping
* chunks of memory, so we'll need a comparator function to sort segments.
*/
static int
user_mem_map_cmp(const void *a, const void *b)
{
const struct user_mem_map *umm_a = a;
const struct user_mem_map *umm_b = b;
/* move null entries to end */
if (is_null_map(umm_a))
return 1;
if (is_null_map(umm_b))
return -1;
/* sort by iova first */
if (umm_a->iova < umm_b->iova)
return -1;
if (umm_a->iova > umm_b->iova)
return 1;
if (umm_a->addr < umm_b->addr)
return -1;
if (umm_a->addr > umm_b->addr)
return 1;
if (umm_a->len < umm_b->len)
return -1;
if (umm_a->len > umm_b->len)
return 1;
if (umm_a->chunk < umm_b->chunk)
return -1;
if (umm_a->chunk > umm_b->chunk)
return 1;
return 0;
}
/*
* Take in an address range and list of current mappings, and produce a list of
* mappings that will be kept.
*/
static int
process_maps(struct user_mem_map *src, size_t src_len,
struct user_mem_map newmap[2], uint64_t vaddr, uint64_t len)
{
struct user_mem_map *src_first = &src[0];
struct user_mem_map *src_last = &src[src_len - 1];
struct user_mem_map *dst_first = &newmap[0];
/* we can get at most two new segments */
struct user_mem_map *dst_last = &newmap[1];
uint64_t first_off = vaddr - src_first->addr;
uint64_t last_off = (src_last->addr + src_last->len) - (vaddr + len);
int newmap_len = 0;
if (first_off != 0) {
dst_first->addr = src_first->addr;
dst_first->iova = src_first->iova;
dst_first->len = first_off;
dst_first->chunk = src_first->chunk;
newmap_len++;
}
if (last_off != 0) {
/* if we had start offset, we have two segments */
struct user_mem_map *last =
first_off == 0 ? dst_first : dst_last;
last->addr = (src_last->addr + src_last->len) - last_off;
last->iova = (src_last->iova + src_last->len) - last_off;
last->len = last_off;
last->chunk = src_last->chunk;
newmap_len++;
}
return newmap_len;
}
/* erase certain maps from the list */
static void
delete_maps(struct user_mem_maps *user_mem_maps, struct user_mem_map *del_maps,
size_t n_del)
{
int i;
size_t j;
for (i = 0, j = 0; i < VFIO_MAX_USER_MEM_MAPS && j < n_del; i++) {
struct user_mem_map *left = &user_mem_maps->maps[i];
struct user_mem_map *right = &del_maps[j];
if (user_mem_map_cmp(left, right) == 0) {
memset(left, 0, sizeof(*left));
j++;
user_mem_maps->n_maps--;
}
}
}
static void
copy_maps(struct user_mem_maps *user_mem_maps, struct user_mem_map *add_maps,
size_t n_add)
{
int i;
size_t j;
for (i = 0, j = 0; i < VFIO_MAX_USER_MEM_MAPS && j < n_add; i++) {
struct user_mem_map *left = &user_mem_maps->maps[i];
struct user_mem_map *right = &add_maps[j];
/* insert into empty space */
if (is_null_map(left)) {
memcpy(left, right, sizeof(*left));
j++;
user_mem_maps->n_maps++;
}
}
}
/* try merging two maps into one, return 1 if succeeded */
static int
merge_map(struct user_mem_map *left, struct user_mem_map *right)
{
/* merge the same maps into one */
if (memcmp(left, right, sizeof(struct user_mem_map)) == 0)
goto out;
if (left->addr + left->len != right->addr)
return 0;
if (left->iova + left->len != right->iova)
return 0;
if (left->chunk != right->chunk)
return 0;
left->len += right->len;
out:
memset(right, 0, sizeof(*right));
return 1;
}
static bool
addr_is_chunk_aligned(struct user_mem_map *maps, size_t n_maps,
uint64_t vaddr, uint64_t iova)
{
unsigned int i;
for (i = 0; i < n_maps; i++) {
struct user_mem_map *map = &maps[i];
uint64_t map_va_end = map->addr + map->len;
uint64_t map_iova_end = map->iova + map->len;
uint64_t map_va_off = vaddr - map->addr;
uint64_t map_iova_off = iova - map->iova;
/* we include end of the segment in comparison as well */
bool addr_in_map = (vaddr >= map->addr) && (vaddr <= map_va_end);
bool iova_in_map = (iova >= map->iova) && (iova <= map_iova_end);
/* chunk may not be power of two, so use modulo */
bool addr_is_aligned = (map_va_off % map->chunk) == 0;
bool iova_is_aligned = (map_iova_off % map->chunk) == 0;
if (addr_in_map && iova_in_map &&
addr_is_aligned && iova_is_aligned)
return true;
}
return false;
}
static int
find_user_mem_maps(struct user_mem_maps *user_mem_maps, uint64_t addr,
uint64_t iova, uint64_t len, struct user_mem_map *dst,
size_t dst_len)
{
uint64_t va_end = addr + len;
uint64_t iova_end = iova + len;
bool found = false;
size_t j;
int i, ret;
for (i = 0, j = 0; i < user_mem_maps->n_maps; i++) {
struct user_mem_map *map = &user_mem_maps->maps[i];
uint64_t map_va_end = map->addr + map->len;
uint64_t map_iova_end = map->iova + map->len;
bool start_addr_in_map = (addr >= map->addr) &&
(addr < map_va_end);
bool end_addr_in_map = (va_end > map->addr) &&
(va_end <= map_va_end);
bool start_iova_in_map = (iova >= map->iova) &&
(iova < map_iova_end);
bool end_iova_in_map = (iova_end > map->iova) &&
(iova_end <= map_iova_end);
/* do we have space in temporary map? */
if (j == dst_len) {
ret = -ENOSPC;
goto err;
}
/* check if current map is start of our segment */
if (!found && start_addr_in_map && start_iova_in_map)
found = true;
/* if we have previously found a segment, add it to the map */
if (found) {
/* copy the segment into our temporary map */
memcpy(&dst[j++], map, sizeof(*map));
/* if we match end of segment, quit */
if (end_addr_in_map && end_iova_in_map)
return j;
}
}
/* we didn't find anything */
ret = -ENOENT;
err:
memset(dst, 0, sizeof(*dst) * dst_len);
return ret;
}
/* this will sort all user maps, and merge/compact any adjacent maps */
static void
compact_user_maps(struct user_mem_maps *user_mem_maps)
{
int i;
qsort(user_mem_maps->maps, VFIO_MAX_USER_MEM_MAPS,
sizeof(user_mem_maps->maps[0]), user_mem_map_cmp);
/* we'll go over the list backwards when merging */
for (i = VFIO_MAX_USER_MEM_MAPS - 2; i >= 0; i--) {
struct user_mem_map *l, *r;
l = &user_mem_maps->maps[i];
r = &user_mem_maps->maps[i + 1];
if (is_null_map(l) || is_null_map(r))
continue;
/* try and merge the maps */
if (merge_map(l, r))
user_mem_maps->n_maps--;
}
/* the entries are still sorted, but now they have holes in them, so
* sort the list again.
*/
qsort(user_mem_maps->maps, VFIO_MAX_USER_MEM_MAPS,
sizeof(user_mem_maps->maps[0]), user_mem_map_cmp);
}
static int
vfio_open_group_fd(int iommu_group_num)
{
int vfio_group_fd;
char filename[PATH_MAX];
struct rte_mp_msg mp_req, *mp_rep;
struct rte_mp_reply mp_reply = {0};
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/* if primary, try to open the group */
if (internal_conf->process_type == RTE_PROC_PRIMARY) {
/* try regular group format */
snprintf(filename, sizeof(filename),
VFIO_GROUP_FMT, iommu_group_num);
vfio_group_fd = open(filename, O_RDWR);
if (vfio_group_fd < 0) {
/* if file not found, it's not an error */
if (errno != ENOENT) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
filename, strerror(errno));
return -1;
}
/* special case: try no-IOMMU path as well */
snprintf(filename, sizeof(filename),
VFIO_NOIOMMU_GROUP_FMT,
iommu_group_num);
vfio_group_fd = open(filename, O_RDWR);
if (vfio_group_fd < 0) {
if (errno != ENOENT) {
RTE_LOG(ERR, EAL,
"Cannot open %s: %s\n",
filename, strerror(errno));
return -1;
}
return -ENOENT;
}
/* noiommu group found */
}
return vfio_group_fd;
}
/* if we're in a secondary process, request group fd from the primary
* process via mp channel.
*/
p->req = SOCKET_REQ_GROUP;
p->group_num = iommu_group_num;
strcpy(mp_req.name, EAL_VFIO_MP);
mp_req.len_param = sizeof(*p);
mp_req.num_fds = 0;
vfio_group_fd = -1;
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
mp_reply.nb_received == 1) {
mp_rep = &mp_reply.msgs[0];
p = (struct vfio_mp_param *)mp_rep->param;
if (p->result == SOCKET_OK && mp_rep->num_fds == 1) {
vfio_group_fd = mp_rep->fds[0];
} else if (p->result == SOCKET_NO_FD) {
RTE_LOG(ERR, EAL, "Bad VFIO group fd\n");
vfio_group_fd = -ENOENT;
}
}
free(mp_reply.msgs);
if (vfio_group_fd < 0 && vfio_group_fd != -ENOENT)
RTE_LOG(ERR, EAL, "Cannot request VFIO group fd\n");
return vfio_group_fd;
}
static struct vfio_config *
get_vfio_cfg_by_group_num(int iommu_group_num)
{
struct vfio_config *vfio_cfg;
int i, j;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
vfio_cfg = &vfio_cfgs[i];
for (j = 0; j < VFIO_MAX_GROUPS; j++) {
if (vfio_cfg->vfio_groups[j].group_num ==
iommu_group_num)
return vfio_cfg;
}
}
return NULL;
}
static int
vfio_get_group_fd(struct vfio_config *vfio_cfg,
int iommu_group_num)
{
int i;
int vfio_group_fd;
struct vfio_group *cur_grp;
/* check if we already have the group descriptor open */
for (i = 0; i < VFIO_MAX_GROUPS; i++)
if (vfio_cfg->vfio_groups[i].group_num == iommu_group_num)
return vfio_cfg->vfio_groups[i].fd;
/* Lets see first if there is room for a new group */
if (vfio_cfg->vfio_active_groups == VFIO_MAX_GROUPS) {
RTE_LOG(ERR, EAL, "Maximum number of VFIO groups reached!\n");
return -1;
}
/* Now lets get an index for the new group */
for (i = 0; i < VFIO_MAX_GROUPS; i++)
if (vfio_cfg->vfio_groups[i].group_num == -1) {
cur_grp = &vfio_cfg->vfio_groups[i];
break;
}
/* This should not happen */
if (i == VFIO_MAX_GROUPS) {
RTE_LOG(ERR, EAL, "No VFIO group free slot found\n");
return -1;
}
vfio_group_fd = vfio_open_group_fd(iommu_group_num);
if (vfio_group_fd < 0) {
RTE_LOG(ERR, EAL, "Failed to open VFIO group %d\n",
iommu_group_num);
return vfio_group_fd;
}
cur_grp->group_num = iommu_group_num;
cur_grp->fd = vfio_group_fd;
vfio_cfg->vfio_active_groups++;
return vfio_group_fd;
}
static struct vfio_config *
get_vfio_cfg_by_group_fd(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i, j;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
vfio_cfg = &vfio_cfgs[i];
for (j = 0; j < VFIO_MAX_GROUPS; j++)
if (vfio_cfg->vfio_groups[j].fd == vfio_group_fd)
return vfio_cfg;
}
return NULL;
}
static struct vfio_config *
get_vfio_cfg_by_container_fd(int container_fd)
{
int i;
if (container_fd == RTE_VFIO_DEFAULT_CONTAINER_FD)
return default_vfio_cfg;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
if (vfio_cfgs[i].vfio_container_fd == container_fd)
return &vfio_cfgs[i];
}
return NULL;
}
int
rte_vfio_get_group_fd(int iommu_group_num)
{
struct vfio_config *vfio_cfg;
/* get the vfio_config it belongs to */
vfio_cfg = get_vfio_cfg_by_group_num(iommu_group_num);
vfio_cfg = vfio_cfg ? vfio_cfg : default_vfio_cfg;
return vfio_get_group_fd(vfio_cfg, iommu_group_num);
}
static int
get_vfio_group_idx(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i, j;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
vfio_cfg = &vfio_cfgs[i];
for (j = 0; j < VFIO_MAX_GROUPS; j++)
if (vfio_cfg->vfio_groups[j].fd == vfio_group_fd)
return j;
}
return -1;
}
static void
vfio_group_device_get(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i;
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid VFIO group fd!\n");
return;
}
i = get_vfio_group_idx(vfio_group_fd);
if (i < 0 || i > (VFIO_MAX_GROUPS - 1))
RTE_LOG(ERR, EAL, "Wrong VFIO group index (%d)\n", i);
else
vfio_cfg->vfio_groups[i].devices++;
}
static void
vfio_group_device_put(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i;
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid VFIO group fd!\n");
return;
}
i = get_vfio_group_idx(vfio_group_fd);
if (i < 0 || i > (VFIO_MAX_GROUPS - 1))
RTE_LOG(ERR, EAL, "Wrong VFIO group index (%d)\n", i);
else
vfio_cfg->vfio_groups[i].devices--;
}
static int
vfio_group_device_count(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i;
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid VFIO group fd!\n");
return -1;
}
i = get_vfio_group_idx(vfio_group_fd);
if (i < 0 || i > (VFIO_MAX_GROUPS - 1)) {
RTE_LOG(ERR, EAL, "Wrong VFIO group index (%d)\n", i);
return -1;
}
return vfio_cfg->vfio_groups[i].devices;
}
static void
vfio_mem_event_callback(enum rte_mem_event type, const void *addr, size_t len,
void *arg __rte_unused)
{
struct rte_memseg_list *msl;
struct rte_memseg *ms;
size_t cur_len = 0;
msl = rte_mem_virt2memseg_list(addr);
/* for IOVA as VA mode, no need to care for IOVA addresses */
if (rte_eal_iova_mode() == RTE_IOVA_VA && msl->external == 0) {
uint64_t vfio_va = (uint64_t)(uintptr_t)addr;
uint64_t page_sz = msl->page_sz;
/* Maintain granularity of DMA map/unmap to memseg size */
for (; cur_len < len; cur_len += page_sz) {
if (type == RTE_MEM_EVENT_ALLOC)
vfio_dma_mem_map(default_vfio_cfg, vfio_va,
vfio_va, page_sz, 1);
else
vfio_dma_mem_map(default_vfio_cfg, vfio_va,
vfio_va, page_sz, 0);
vfio_va += page_sz;
}
return;
}
/* memsegs are contiguous in memory */
ms = rte_mem_virt2memseg(addr, msl);
while (cur_len < len) {
/* some memory segments may have invalid IOVA */
if (ms->iova == RTE_BAD_IOVA) {
RTE_LOG(DEBUG, EAL,
"Memory segment at %p has bad IOVA, skipping\n",
ms->addr);
goto next;
}
if (type == RTE_MEM_EVENT_ALLOC)
vfio_dma_mem_map(default_vfio_cfg, ms->addr_64,
ms->iova, ms->len, 1);
else
vfio_dma_mem_map(default_vfio_cfg, ms->addr_64,
ms->iova, ms->len, 0);
next:
cur_len += ms->len;
++ms;
}
}
static int
vfio_sync_default_container(void)
{
struct rte_mp_msg mp_req, *mp_rep;
struct rte_mp_reply mp_reply = {0};
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
int iommu_type_id;
unsigned int i;
/* cannot be called from primary */
if (rte_eal_process_type() != RTE_PROC_SECONDARY)
return -1;
/* default container fd should have been opened in rte_vfio_enable() */
if (!default_vfio_cfg->vfio_enabled ||
default_vfio_cfg->vfio_container_fd < 0) {
RTE_LOG(ERR, EAL, "VFIO support is not initialized\n");
return -1;
}
/* find default container's IOMMU type */
p->req = SOCKET_REQ_IOMMU_TYPE;
strcpy(mp_req.name, EAL_VFIO_MP);
mp_req.len_param = sizeof(*p);
mp_req.num_fds = 0;
iommu_type_id = -1;
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
mp_reply.nb_received == 1) {
mp_rep = &mp_reply.msgs[0];
p = (struct vfio_mp_param *)mp_rep->param;
if (p->result == SOCKET_OK)
iommu_type_id = p->iommu_type_id;
}
free(mp_reply.msgs);
if (iommu_type_id < 0) {
RTE_LOG(ERR, EAL,
"Could not get IOMMU type for default container\n");
return -1;
}
/* we now have an fd for default container, as well as its IOMMU type.
* now, set up default VFIO container config to match.
*/
for (i = 0; i < RTE_DIM(iommu_types); i++) {
const struct vfio_iommu_type *t = &iommu_types[i];
if (t->type_id != iommu_type_id)
continue;
/* we found our IOMMU type */
default_vfio_cfg->vfio_iommu_type = t;
return 0;
}
RTE_LOG(ERR, EAL, "Could not find IOMMU type id (%i)\n",
iommu_type_id);
return -1;
}
int
rte_vfio_clear_group(int vfio_group_fd)
{
int i;
struct vfio_config *vfio_cfg;
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid VFIO group fd!\n");
return -1;
}
i = get_vfio_group_idx(vfio_group_fd);
if (i < 0)
return -1;
vfio_cfg->vfio_groups[i].group_num = -1;
vfio_cfg->vfio_groups[i].fd = -1;
vfio_cfg->vfio_groups[i].devices = 0;
vfio_cfg->vfio_active_groups--;
return 0;
}
int
rte_vfio_setup_device(const char *sysfs_base, const char *dev_addr,
int *vfio_dev_fd, struct vfio_device_info *device_info)
{
struct vfio_group_status group_status = {
.argsz = sizeof(group_status)
};
struct vfio_config *vfio_cfg;
struct user_mem_maps *user_mem_maps;
int vfio_container_fd;
int vfio_group_fd;
int iommu_group_num;
rte_uuid_t vf_token;
int i, ret;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/* get group number */
ret = rte_vfio_get_group_num(sysfs_base, dev_addr, &iommu_group_num);
if (ret == 0) {
RTE_LOG(NOTICE, EAL,
"%s not managed by VFIO driver, skipping\n",
dev_addr);
return 1;
}
/* if negative, something failed */
if (ret < 0)
return -1;
/* get the actual group fd */
vfio_group_fd = rte_vfio_get_group_fd(iommu_group_num);
if (vfio_group_fd < 0 && vfio_group_fd != -ENOENT)
return -1;
/*
* if vfio_group_fd == -ENOENT, that means the device
* isn't managed by VFIO
*/
if (vfio_group_fd == -ENOENT) {
RTE_LOG(NOTICE, EAL,
"%s not managed by VFIO driver, skipping\n",
dev_addr);
return 1;
}
/*
* at this point, we know that this group is viable (meaning, all devices
* are either bound to VFIO or not bound to anything)
*/
/* check if the group is viable */
ret = ioctl(vfio_group_fd, VFIO_GROUP_GET_STATUS, &group_status);
if (ret) {
RTE_LOG(ERR, EAL, "%s cannot get VFIO group status, "
"error %i (%s)\n", dev_addr, errno, strerror(errno));
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
} else if (!(group_status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
RTE_LOG(ERR, EAL, "%s VFIO group is not viable! "
"Not all devices in IOMMU group bound to VFIO or unbound\n",
dev_addr);
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/* get the vfio_config it belongs to */
vfio_cfg = get_vfio_cfg_by_group_num(iommu_group_num);
vfio_cfg = vfio_cfg ? vfio_cfg : default_vfio_cfg;
vfio_container_fd = vfio_cfg->vfio_container_fd;
user_mem_maps = &vfio_cfg->mem_maps;
/* check if group does not have a container yet */
if (!(group_status.flags & VFIO_GROUP_FLAGS_CONTAINER_SET)) {
/* add group to a container */
ret = ioctl(vfio_group_fd, VFIO_GROUP_SET_CONTAINER,
&vfio_container_fd);
if (ret) {
RTE_LOG(ERR, EAL,
"%s cannot add VFIO group to container, error "
"%i (%s)\n", dev_addr, errno, strerror(errno));
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/*
* pick an IOMMU type and set up DMA mappings for container
*
* needs to be done only once, only when first group is
* assigned to a container and only in primary process.
* Note this can happen several times with the hotplug
* functionality.
*/
if (internal_conf->process_type == RTE_PROC_PRIMARY &&
vfio_cfg->vfio_active_groups == 1 &&
vfio_group_device_count(vfio_group_fd) == 0) {
const struct vfio_iommu_type *t;
/* select an IOMMU type which we will be using */
t = vfio_set_iommu_type(vfio_container_fd);
if (!t) {
RTE_LOG(ERR, EAL,
"%s failed to select IOMMU type\n",
dev_addr);
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/* lock memory hotplug before mapping and release it
* after registering callback, to prevent races
*/
rte_mcfg_mem_read_lock();
if (vfio_cfg == default_vfio_cfg)
ret = t->dma_map_func(vfio_container_fd);
else
ret = 0;
if (ret) {
RTE_LOG(ERR, EAL,
"%s DMA remapping failed, error "
"%i (%s)\n",
dev_addr, errno, strerror(errno));
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
rte_mcfg_mem_read_unlock();
return -1;
}
vfio_cfg->vfio_iommu_type = t;
/* re-map all user-mapped segments */
rte_spinlock_recursive_lock(&user_mem_maps->lock);
/* this IOMMU type may not support DMA mapping, but
* if we have mappings in the list - that means we have
* previously mapped something successfully, so we can
* be sure that DMA mapping is supported.
*/
for (i = 0; i < user_mem_maps->n_maps; i++) {
struct user_mem_map *map;
map = &user_mem_maps->maps[i];
ret = t->dma_user_map_func(
vfio_container_fd,
map->addr, map->iova, map->len,
1);
if (ret) {
RTE_LOG(ERR, EAL, "Couldn't map user memory for DMA: "
"va: 0x%" PRIx64 " "
"iova: 0x%" PRIx64 " "
"len: 0x%" PRIu64 "\n",
map->addr, map->iova,
map->len);
rte_spinlock_recursive_unlock(
&user_mem_maps->lock);
rte_mcfg_mem_read_unlock();
return -1;
}
}
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
/* register callback for mem events */
if (vfio_cfg == default_vfio_cfg)
ret = rte_mem_event_callback_register(
VFIO_MEM_EVENT_CLB_NAME,
vfio_mem_event_callback, NULL);
else
ret = 0;
/* unlock memory hotplug */
rte_mcfg_mem_read_unlock();
if (ret && rte_errno != ENOTSUP) {
RTE_LOG(ERR, EAL, "Could not install memory event callback for VFIO\n");
return -1;
}
if (ret)
RTE_LOG(DEBUG, EAL, "Memory event callbacks not supported\n");
else
RTE_LOG(DEBUG, EAL, "Installed memory event callback for VFIO\n");
}
} else if (rte_eal_process_type() != RTE_PROC_PRIMARY &&
vfio_cfg == default_vfio_cfg &&
vfio_cfg->vfio_iommu_type == NULL) {
/* if we're not a primary process, we do not set up the VFIO
* container because it's already been set up by the primary
* process. instead, we simply ask the primary about VFIO type
* we are using, and set the VFIO config up appropriately.
*/
ret = vfio_sync_default_container();
if (ret < 0) {
RTE_LOG(ERR, EAL, "Could not sync default VFIO container\n");
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/* we have successfully initialized VFIO, notify user */
const struct vfio_iommu_type *t =
default_vfio_cfg->vfio_iommu_type;
RTE_LOG(INFO, EAL, "Using IOMMU type %d (%s)\n",
t->type_id, t->name);
}
rte_eal_vfio_get_vf_token(vf_token);
/* get a file descriptor for the device with VF token firstly */
if (!rte_uuid_is_null(vf_token)) {
char vf_token_str[RTE_UUID_STRLEN];
char dev[PATH_MAX];
rte_uuid_unparse(vf_token, vf_token_str, sizeof(vf_token_str));
snprintf(dev, sizeof(dev),
"%s vf_token=%s", dev_addr, vf_token_str);
*vfio_dev_fd = ioctl(vfio_group_fd, VFIO_GROUP_GET_DEVICE_FD,
dev);
if (*vfio_dev_fd >= 0)
goto dev_get_info;
}
/* get a file descriptor for the device */
*vfio_dev_fd = ioctl(vfio_group_fd, VFIO_GROUP_GET_DEVICE_FD, dev_addr);
if (*vfio_dev_fd < 0) {
/* if we cannot get a device fd, this implies a problem with
* the VFIO group or the container not having IOMMU configured.
*/
RTE_LOG(WARNING, EAL, "Getting a vfio_dev_fd for %s failed\n",
dev_addr);
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/* test and setup the device */
dev_get_info:
ret = ioctl(*vfio_dev_fd, VFIO_DEVICE_GET_INFO, device_info);
if (ret) {
RTE_LOG(ERR, EAL, "%s cannot get device info, "
"error %i (%s)\n", dev_addr, errno,
strerror(errno));
close(*vfio_dev_fd);
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
vfio_group_device_get(vfio_group_fd);
return 0;
}
int
rte_vfio_release_device(const char *sysfs_base, const char *dev_addr,
int vfio_dev_fd)
{
struct vfio_config *vfio_cfg;
int vfio_group_fd;
int iommu_group_num;
int ret;
/* we don't want any DMA mapping messages to come while we're detaching
* VFIO device, because this might be the last device and we might need
* to unregister the callback.
*/
rte_mcfg_mem_read_lock();
/* get group number */
ret = rte_vfio_get_group_num(sysfs_base, dev_addr, &iommu_group_num);
if (ret <= 0) {
RTE_LOG(WARNING, EAL, "%s not managed by VFIO driver\n",
dev_addr);
/* This is an error at this point. */
ret = -1;
goto out;
}
/* get the actual group fd */
vfio_group_fd = rte_vfio_get_group_fd(iommu_group_num);
if (vfio_group_fd < 0) {
RTE_LOG(INFO, EAL, "rte_vfio_get_group_fd failed for %s\n",
dev_addr);
ret = vfio_group_fd;
goto out;
}
/* get the vfio_config it belongs to */
vfio_cfg = get_vfio_cfg_by_group_num(iommu_group_num);
vfio_cfg = vfio_cfg ? vfio_cfg : default_vfio_cfg;
/* At this point we got an active group. Closing it will make the
* container detachment. If this is the last active group, VFIO kernel
* code will unset the container and the IOMMU mappings.
*/
/* Closing a device */
if (close(vfio_dev_fd) < 0) {
RTE_LOG(INFO, EAL, "Error when closing vfio_dev_fd for %s\n",
dev_addr);
ret = -1;
goto out;
}
/* An VFIO group can have several devices attached. Just when there is
* no devices remaining should the group be closed.
*/
vfio_group_device_put(vfio_group_fd);
if (!vfio_group_device_count(vfio_group_fd)) {
if (close(vfio_group_fd) < 0) {
RTE_LOG(INFO, EAL, "Error when closing vfio_group_fd for %s\n",
dev_addr);
ret = -1;
goto out;
}
if (rte_vfio_clear_group(vfio_group_fd) < 0) {
RTE_LOG(INFO, EAL, "Error when clearing group for %s\n",
dev_addr);
ret = -1;
goto out;
}
}
/* if there are no active device groups, unregister the callback to
* avoid spurious attempts to map/unmap memory from VFIO.
*/
if (vfio_cfg == default_vfio_cfg && vfio_cfg->vfio_active_groups == 0 &&
rte_eal_process_type() != RTE_PROC_SECONDARY)
rte_mem_event_callback_unregister(VFIO_MEM_EVENT_CLB_NAME,
NULL);
/* success */
ret = 0;
out:
rte_mcfg_mem_read_unlock();
return ret;
}
int
rte_vfio_enable(const char *modname)
{
/* initialize group list */
int i, j;
int vfio_available;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
rte_spinlock_recursive_t lock = RTE_SPINLOCK_RECURSIVE_INITIALIZER;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
vfio_cfgs[i].vfio_container_fd = -1;
vfio_cfgs[i].vfio_active_groups = 0;
vfio_cfgs[i].vfio_iommu_type = NULL;
vfio_cfgs[i].mem_maps.lock = lock;
for (j = 0; j < VFIO_MAX_GROUPS; j++) {
vfio_cfgs[i].vfio_groups[j].fd = -1;
vfio_cfgs[i].vfio_groups[j].group_num = -1;
vfio_cfgs[i].vfio_groups[j].devices = 0;
}
}
RTE_LOG(DEBUG, EAL, "Probing VFIO support...\n");
/* check if vfio module is loaded */
vfio_available = rte_eal_check_module(modname);
/* return error directly */
if (vfio_available == -1) {
RTE_LOG(INFO, EAL, "Could not get loaded module details!\n");
return -1;
}
/* return 0 if VFIO modules not loaded */
if (vfio_available == 0) {
RTE_LOG(DEBUG, EAL,
"VFIO modules not loaded, skipping VFIO support...\n");
return 0;
}
if (internal_conf->process_type == RTE_PROC_PRIMARY) {
/* open a new container */
default_vfio_cfg->vfio_container_fd =
rte_vfio_get_container_fd();
} else {
/* get the default container from the primary process */
default_vfio_cfg->vfio_container_fd =
vfio_get_default_container_fd();
}
/* check if we have VFIO driver enabled */
if (default_vfio_cfg->vfio_container_fd != -1) {
RTE_LOG(INFO, EAL, "VFIO support initialized\n");
default_vfio_cfg->vfio_enabled = 1;
} else {
RTE_LOG(NOTICE, EAL, "VFIO support could not be initialized\n");
}
return 0;
}
int
rte_vfio_is_enabled(const char *modname)
{
const int mod_available = rte_eal_check_module(modname) > 0;
return default_vfio_cfg->vfio_enabled && mod_available;
}
int
vfio_get_default_container_fd(void)
{
struct rte_mp_msg mp_req, *mp_rep;
struct rte_mp_reply mp_reply = {0};
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
int container_fd;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
if (default_vfio_cfg->vfio_enabled)
return default_vfio_cfg->vfio_container_fd;
if (internal_conf->process_type == RTE_PROC_PRIMARY) {
/* if we were secondary process we would try requesting
* container fd from the primary, but we're the primary
* process so just exit here
*/
return -1;
}
p->req = SOCKET_REQ_DEFAULT_CONTAINER;
strcpy(mp_req.name, EAL_VFIO_MP);
mp_req.len_param = sizeof(*p);
mp_req.num_fds = 0;
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
mp_reply.nb_received == 1) {
mp_rep = &mp_reply.msgs[0];
p = (struct vfio_mp_param *)mp_rep->param;
if (p->result == SOCKET_OK && mp_rep->num_fds == 1) {
container_fd = mp_rep->fds[0];
free(mp_reply.msgs);
return container_fd;
}
}
free(mp_reply.msgs);
RTE_LOG(ERR, EAL, "Cannot request default VFIO container fd\n");
return -1;
}
int
vfio_get_iommu_type(void)
{
if (default_vfio_cfg->vfio_iommu_type == NULL)
return -1;
return default_vfio_cfg->vfio_iommu_type->type_id;
}
const struct vfio_iommu_type *
vfio_set_iommu_type(int vfio_container_fd)
{
unsigned idx;
for (idx = 0; idx < RTE_DIM(iommu_types); idx++) {
const struct vfio_iommu_type *t = &iommu_types[idx];
int ret = ioctl(vfio_container_fd, VFIO_SET_IOMMU,
t->type_id);
if (!ret) {
RTE_LOG(INFO, EAL, "Using IOMMU type %d (%s)\n",
t->type_id, t->name);
return t;
}
/* not an error, there may be more supported IOMMU types */
RTE_LOG(DEBUG, EAL, "Set IOMMU type %d (%s) failed, error "
"%i (%s)\n", t->type_id, t->name, errno,
strerror(errno));
}
/* if we didn't find a suitable IOMMU type, fail */
return NULL;
}
int
vfio_has_supported_extensions(int vfio_container_fd)
{
int ret;
unsigned idx, n_extensions = 0;
for (idx = 0; idx < RTE_DIM(iommu_types); idx++) {
const struct vfio_iommu_type *t = &iommu_types[idx];
ret = ioctl(vfio_container_fd, VFIO_CHECK_EXTENSION,
t->type_id);
if (ret < 0) {
RTE_LOG(ERR, EAL, "Could not get IOMMU type, error "
"%i (%s)\n", errno, strerror(errno));
close(vfio_container_fd);
return -1;
} else if (ret == 1) {
/* we found a supported extension */
n_extensions++;
}
RTE_LOG(DEBUG, EAL, "IOMMU type %d (%s) is %s\n",
t->type_id, t->name,
ret ? "supported" : "not supported");
}
/* if we didn't find any supported IOMMU types, fail */
if (!n_extensions) {
close(vfio_container_fd);
return -1;
}
return 0;
}
int
rte_vfio_get_container_fd(void)
{
int ret, vfio_container_fd;
struct rte_mp_msg mp_req, *mp_rep;
struct rte_mp_reply mp_reply = {0};
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/* if we're in a primary process, try to open the container */
if (internal_conf->process_type == RTE_PROC_PRIMARY) {
vfio_container_fd = open(VFIO_CONTAINER_PATH, O_RDWR);
if (vfio_container_fd < 0) {
RTE_LOG(ERR, EAL,
"Cannot open VFIO container %s, error "
"%i (%s)\n", VFIO_CONTAINER_PATH,
errno, strerror(errno));
return -1;
}
/* check VFIO API version */
ret = ioctl(vfio_container_fd, VFIO_GET_API_VERSION);
if (ret != VFIO_API_VERSION) {
if (ret < 0)
RTE_LOG(ERR, EAL,
"Could not get VFIO API version, error "
"%i (%s)\n", errno, strerror(errno));
else
RTE_LOG(ERR, EAL, "Unsupported VFIO API version!\n");
close(vfio_container_fd);
return -1;
}
ret = vfio_has_supported_extensions(vfio_container_fd);
if (ret) {
RTE_LOG(ERR, EAL,
"No supported IOMMU extensions found!\n");
return -1;
}
return vfio_container_fd;
}
/*
* if we're in a secondary process, request container fd from the
* primary process via mp channel
*/
p->req = SOCKET_REQ_CONTAINER;
strcpy(mp_req.name, EAL_VFIO_MP);
mp_req.len_param = sizeof(*p);
mp_req.num_fds = 0;
vfio_container_fd = -1;
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
mp_reply.nb_received == 1) {
mp_rep = &mp_reply.msgs[0];
p = (struct vfio_mp_param *)mp_rep->param;
if (p->result == SOCKET_OK && mp_rep->num_fds == 1) {
vfio_container_fd = mp_rep->fds[0];
free(mp_reply.msgs);
return vfio_container_fd;
}
}
free(mp_reply.msgs);
RTE_LOG(ERR, EAL, "Cannot request VFIO container fd\n");
return -1;
}
int
rte_vfio_get_group_num(const char *sysfs_base,
const char *dev_addr, int *iommu_group_num)
{
char linkname[PATH_MAX];
char filename[PATH_MAX];
char *tok[16], *group_tok, *end;
int ret;
memset(linkname, 0, sizeof(linkname));
memset(filename, 0, sizeof(filename));
/* try to find out IOMMU group for this device */
snprintf(linkname, sizeof(linkname),
"%s/%s/iommu_group", sysfs_base, dev_addr);
ret = readlink(linkname, filename, sizeof(filename));
/* if the link doesn't exist, no VFIO for us */
if (ret < 0)
return 0;
ret = rte_strsplit(filename, sizeof(filename),
tok, RTE_DIM(tok), '/');
if (ret <= 0) {
RTE_LOG(ERR, EAL, "%s cannot get IOMMU group\n", dev_addr);
return -1;
}
/* IOMMU group is always the last token */
errno = 0;
group_tok = tok[ret - 1];
end = group_tok;
*iommu_group_num = strtol(group_tok, &end, 10);
if ((end != group_tok && *end != '\0') || errno != 0) {
RTE_LOG(ERR, EAL, "%s error parsing IOMMU number!\n", dev_addr);
return -1;
}
return 1;
}
static int
type1_map_contig(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
size_t len, void *arg)
{
int *vfio_container_fd = arg;
if (msl->external)
return 0;
return vfio_type1_dma_mem_map(*vfio_container_fd, ms->addr_64, ms->iova,
len, 1);
}
static int
type1_map(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
void *arg)
{
int *vfio_container_fd = arg;
/* skip external memory that isn't a heap */
if (msl->external && !msl->heap)
return 0;
/* skip any segments with invalid IOVA addresses */
if (ms->iova == RTE_BAD_IOVA)
return 0;
/* if IOVA mode is VA, we've already mapped the internal segments */
if (!msl->external && rte_eal_iova_mode() == RTE_IOVA_VA)
return 0;
return vfio_type1_dma_mem_map(*vfio_container_fd, ms->addr_64, ms->iova,
ms->len, 1);
}
static int
vfio_type1_dma_mem_map(int vfio_container_fd, uint64_t vaddr, uint64_t iova,
uint64_t len, int do_map)
{
struct vfio_iommu_type1_dma_map dma_map;
struct vfio_iommu_type1_dma_unmap dma_unmap;
int ret;
if (do_map != 0) {
memset(&dma_map, 0, sizeof(dma_map));
dma_map.argsz = sizeof(struct vfio_iommu_type1_dma_map);
dma_map.vaddr = vaddr;
dma_map.size = len;
dma_map.iova = iova;
dma_map.flags = VFIO_DMA_MAP_FLAG_READ |
VFIO_DMA_MAP_FLAG_WRITE;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_MAP_DMA, &dma_map);
if (ret) {
/**
* In case the mapping was already done EEXIST will be
* returned from kernel.
*/
if (errno == EEXIST) {
RTE_LOG(DEBUG, EAL,
"Memory segment is already mapped, skipping");
} else {
RTE_LOG(ERR, EAL,
"Cannot set up DMA remapping, error "
"%i (%s)\n", errno, strerror(errno));
return -1;
}
}
} else {
memset(&dma_unmap, 0, sizeof(dma_unmap));
dma_unmap.argsz = sizeof(struct vfio_iommu_type1_dma_unmap);
dma_unmap.size = len;
dma_unmap.iova = iova;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_UNMAP_DMA,
&dma_unmap);
if (ret) {
RTE_LOG(ERR, EAL, "Cannot clear DMA remapping, error "
"%i (%s)\n", errno, strerror(errno));
return -1;
} else if (dma_unmap.size != len) {
RTE_LOG(ERR, EAL, "Unexpected size %"PRIu64
" of DMA remapping cleared instead of %"PRIu64"\n",
(uint64_t)dma_unmap.size, len);
rte_errno = EIO;
return -1;
}
}
return 0;
}
static int
vfio_type1_dma_map(int vfio_container_fd)
{
if (rte_eal_iova_mode() == RTE_IOVA_VA) {
/* with IOVA as VA mode, we can get away with mapping contiguous
* chunks rather than going page-by-page.
*/
int ret = rte_memseg_contig_walk(type1_map_contig,
&vfio_container_fd);
if (ret)
return ret;
/* we have to continue the walk because we've skipped the
* external segments during the config walk.
*/
}
return rte_memseg_walk(type1_map, &vfio_container_fd);
}
/* Track the size of the statically allocated DMA window for SPAPR */
uint64_t spapr_dma_win_len;
uint64_t spapr_dma_win_page_sz;
static int
vfio_spapr_dma_do_map(int vfio_container_fd, uint64_t vaddr, uint64_t iova,
uint64_t len, int do_map)
{
struct vfio_iommu_spapr_register_memory reg = {
.argsz = sizeof(reg),
.vaddr = (uintptr_t) vaddr,
.size = len,
.flags = 0
};
int ret;
if (do_map != 0) {
struct vfio_iommu_type1_dma_map dma_map;
if (iova + len > spapr_dma_win_len) {
RTE_LOG(ERR, EAL, "DMA map attempt outside DMA window\n");
return -1;
}
ret = ioctl(vfio_container_fd,
VFIO_IOMMU_SPAPR_REGISTER_MEMORY, &reg);
if (ret) {
RTE_LOG(ERR, EAL,
"Cannot register vaddr for IOMMU, error "
"%i (%s)\n", errno, strerror(errno));
return -1;
}
memset(&dma_map, 0, sizeof(dma_map));
dma_map.argsz = sizeof(struct vfio_iommu_type1_dma_map);
dma_map.vaddr = vaddr;
dma_map.size = len;
dma_map.iova = iova;
dma_map.flags = VFIO_DMA_MAP_FLAG_READ |
VFIO_DMA_MAP_FLAG_WRITE;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_MAP_DMA, &dma_map);
if (ret) {
RTE_LOG(ERR, EAL, "Cannot map vaddr for IOMMU, error "
"%i (%s)\n", errno, strerror(errno));
return -1;
}
} else {
struct vfio_iommu_type1_dma_map dma_unmap;
memset(&dma_unmap, 0, sizeof(dma_unmap));
dma_unmap.argsz = sizeof(struct vfio_iommu_type1_dma_unmap);
dma_unmap.size = len;
dma_unmap.iova = iova;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_UNMAP_DMA,
&dma_unmap);
if (ret) {
RTE_LOG(ERR, EAL, "Cannot unmap vaddr for IOMMU, error "
"%i (%s)\n", errno, strerror(errno));
return -1;
}
ret = ioctl(vfio_container_fd,
VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY, &reg);
if (ret) {
RTE_LOG(ERR, EAL,
"Cannot unregister vaddr for IOMMU, error "
"%i (%s)\n", errno, strerror(errno));
return -1;
}
}
return ret;
}
static int
vfio_spapr_map_walk(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, void *arg)
{
int *vfio_container_fd = arg;
/* skip external memory that isn't a heap */
if (msl->external && !msl->heap)
return 0;
/* skip any segments with invalid IOVA addresses */
if (ms->iova == RTE_BAD_IOVA)
return 0;
return vfio_spapr_dma_do_map(*vfio_container_fd,
ms->addr_64, ms->iova, ms->len, 1);
}
struct spapr_size_walk_param {
uint64_t max_va;
uint64_t page_sz;
bool is_user_managed;
};
/*
* In order to set the DMA window size required for the SPAPR IOMMU
* we need to walk the existing virtual memory allocations as well as
* find the hugepage size used.
*/
static int
vfio_spapr_size_walk(const struct rte_memseg_list *msl, void *arg)
{
struct spapr_size_walk_param *param = arg;
uint64_t max = (uint64_t) msl->base_va + (uint64_t) msl->len;
if (msl->external && !msl->heap) {
/* ignore user managed external memory */
param->is_user_managed = true;
return 0;
}
if (max > param->max_va) {
param->page_sz = msl->page_sz;
param->max_va = max;
}
return 0;
}
/*
* Find the highest memory address used in physical or virtual address
* space and use that as the top of the DMA window.
*/
static int
find_highest_mem_addr(struct spapr_size_walk_param *param)
{
/* find the maximum IOVA address for setting the DMA window size */
if (rte_eal_iova_mode() == RTE_IOVA_PA) {
static const char proc_iomem[] = "/proc/iomem";
static const char str_sysram[] = "System RAM";
uint64_t start, end, max = 0;
char *line = NULL;
char *dash, *space;
size_t line_len;
/*
* Example "System RAM" in /proc/iomem:
* 00000000-1fffffffff : System RAM
* 200000000000-201fffffffff : System RAM
*/
FILE *fd = fopen(proc_iomem, "r");
if (fd == NULL) {
RTE_LOG(ERR, EAL, "Cannot open %s\n", proc_iomem);
return -1;
}
/* Scan /proc/iomem for the highest PA in the system */
while (getline(&line, &line_len, fd) != -1) {
if (strstr(line, str_sysram) == NULL)
continue;
space = strstr(line, " ");
dash = strstr(line, "-");
/* Validate the format of the memory string */
if (space == NULL || dash == NULL || space < dash) {
RTE_LOG(ERR, EAL, "Can't parse line \"%s\" in file %s\n",
line, proc_iomem);
continue;
}
start = strtoull(line, NULL, 16);
end = strtoull(dash + 1, NULL, 16);
RTE_LOG(DEBUG, EAL, "Found system RAM from 0x%" PRIx64
" to 0x%" PRIx64 "\n", start, end);
if (end > max)
max = end;
}
free(line);
fclose(fd);
if (max == 0) {
RTE_LOG(ERR, EAL, "Failed to find valid \"System RAM\" "
"entry in file %s\n", proc_iomem);
return -1;
}
spapr_dma_win_len = rte_align64pow2(max + 1);
return 0;
} else if (rte_eal_iova_mode() == RTE_IOVA_VA) {
RTE_LOG(DEBUG, EAL, "Highest VA address in memseg list is 0x%"
PRIx64 "\n", param->max_va);
spapr_dma_win_len = rte_align64pow2(param->max_va);
return 0;
}
spapr_dma_win_len = 0;
RTE_LOG(ERR, EAL, "Unsupported IOVA mode\n");
return -1;
}
/*
* The SPAPRv2 IOMMU supports 2 DMA windows with starting
* address at 0 or 1<<59. By default, a DMA window is set
* at address 0, 2GB long, with a 4KB page. For DPDK we
* must remove the default window and setup a new DMA window
* based on the hugepage size and memory requirements of
* the application before we can map memory for DMA.
*/
static int
spapr_dma_win_size(void)
{
struct spapr_size_walk_param param;
/* only create DMA window once */
if (spapr_dma_win_len > 0)
return 0;
/* walk the memseg list to find the page size/max VA address */
memset(&param, 0, sizeof(param));
if (rte_memseg_list_walk(vfio_spapr_size_walk, &param) < 0) {
RTE_LOG(ERR, EAL, "Failed to walk memseg list for DMA window size\n");
return -1;
}
/* we can't be sure if DMA window covers external memory */
if (param.is_user_managed)
RTE_LOG(WARNING, EAL, "Detected user managed external memory which may not be managed by the IOMMU\n");
/* check physical/virtual memory size */
if (find_highest_mem_addr(&param) < 0)
return -1;
RTE_LOG(DEBUG, EAL, "Setting DMA window size to 0x%" PRIx64 "\n",
spapr_dma_win_len);
spapr_dma_win_page_sz = param.page_sz;
rte_mem_set_dma_mask(__builtin_ctzll(spapr_dma_win_len));
return 0;
}
static int
vfio_spapr_create_dma_window(int vfio_container_fd)
{
struct vfio_iommu_spapr_tce_create create = {
.argsz = sizeof(create), };
struct vfio_iommu_spapr_tce_remove remove = {
.argsz = sizeof(remove), };
struct vfio_iommu_spapr_tce_info info = {
.argsz = sizeof(info), };
int ret;
ret = spapr_dma_win_size();
if (ret < 0)
return ret;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
if (ret) {
RTE_LOG(ERR, EAL, "Cannot get IOMMU info, error %i (%s)\n",
errno, strerror(errno));
return -1;
}
/*
* sPAPR v1/v2 IOMMU always has a default 1G DMA window set. The window
* can't be changed for v1 but it can be changed for v2. Since DPDK only
* supports v2, remove the default DMA window so it can be resized.
*/
remove.start_addr = info.dma32_window_start;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_SPAPR_TCE_REMOVE, &remove);
if (ret)
return -1;
/* create a new DMA window (start address is not selectable) */
create.window_size = spapr_dma_win_len;
create.page_shift = __builtin_ctzll(spapr_dma_win_page_sz);
create.levels = 1;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_SPAPR_TCE_CREATE, &create);
#ifdef VFIO_IOMMU_SPAPR_INFO_DDW
/*
* The vfio_iommu_spapr_tce_info structure was modified in
* Linux kernel 4.2.0 to add support for the
* vfio_iommu_spapr_tce_ddw_info structure needed to try
* multiple table levels. Skip the attempt if running with
* an older kernel.
*/
if (ret) {
/* if at first we don't succeed, try more levels */
uint32_t levels;
for (levels = create.levels + 1;
ret && levels <= info.ddw.levels; levels++) {
create.levels = levels;
ret = ioctl(vfio_container_fd,
VFIO_IOMMU_SPAPR_TCE_CREATE, &create);
}
}
#endif /* VFIO_IOMMU_SPAPR_INFO_DDW */
if (ret) {
RTE_LOG(ERR, EAL, "Cannot create new DMA window, error "
"%i (%s)\n", errno, strerror(errno));
RTE_LOG(ERR, EAL,
"Consider using a larger hugepage size if supported by the system\n");
return -1;
}
/* verify the start address */
if (create.start_addr != 0) {
RTE_LOG(ERR, EAL, "Received unsupported start address 0x%"
PRIx64 "\n", (uint64_t)create.start_addr);
return -1;
}
return ret;
}
static int
vfio_spapr_dma_mem_map(int vfio_container_fd, uint64_t vaddr,
uint64_t iova, uint64_t len, int do_map)
{
int ret = 0;
if (do_map) {
if (vfio_spapr_dma_do_map(vfio_container_fd,
vaddr, iova, len, 1)) {
RTE_LOG(ERR, EAL, "Failed to map DMA\n");
ret = -1;
}
} else {
if (vfio_spapr_dma_do_map(vfio_container_fd,
vaddr, iova, len, 0)) {
RTE_LOG(ERR, EAL, "Failed to unmap DMA\n");
ret = -1;
}
}
return ret;
}
static int
vfio_spapr_dma_map(int vfio_container_fd)
{
if (vfio_spapr_create_dma_window(vfio_container_fd) < 0) {
RTE_LOG(ERR, EAL, "Could not create new DMA window!\n");
return -1;
}
/* map all existing DPDK segments for DMA */
if (rte_memseg_walk(vfio_spapr_map_walk, &vfio_container_fd) < 0)
return -1;
return 0;
}
static int
vfio_noiommu_dma_map(int __rte_unused vfio_container_fd)
{
/* No-IOMMU mode does not need DMA mapping */
return 0;
}
static int
vfio_noiommu_dma_mem_map(int __rte_unused vfio_container_fd,
uint64_t __rte_unused vaddr,
uint64_t __rte_unused iova, uint64_t __rte_unused len,
int __rte_unused do_map)
{
/* No-IOMMU mode does not need DMA mapping */
return 0;
}
static int
vfio_dma_mem_map(struct vfio_config *vfio_cfg, uint64_t vaddr, uint64_t iova,
uint64_t len, int do_map)
{
const struct vfio_iommu_type *t = vfio_cfg->vfio_iommu_type;
if (!t) {
RTE_LOG(ERR, EAL, "VFIO support not initialized\n");
rte_errno = ENODEV;
return -1;
}
if (!t->dma_user_map_func) {
RTE_LOG(ERR, EAL,
"VFIO custom DMA region mapping not supported by IOMMU %s\n",
t->name);
rte_errno = ENOTSUP;
return -1;
}
return t->dma_user_map_func(vfio_cfg->vfio_container_fd, vaddr, iova,
len, do_map);
}
static int
container_dma_map(struct vfio_config *vfio_cfg, uint64_t vaddr, uint64_t iova,
uint64_t len)
{
struct user_mem_map *new_map;
struct user_mem_maps *user_mem_maps;
bool has_partial_unmap;
int ret = 0;
user_mem_maps = &vfio_cfg->mem_maps;
rte_spinlock_recursive_lock(&user_mem_maps->lock);
if (user_mem_maps->n_maps == VFIO_MAX_USER_MEM_MAPS) {
RTE_LOG(ERR, EAL, "No more space for user mem maps\n");
rte_errno = ENOMEM;
ret = -1;
goto out;
}
/* map the entry */
if (vfio_dma_mem_map(vfio_cfg, vaddr, iova, len, 1)) {
/* technically, this will fail if there are currently no devices
* plugged in, even if a device were added later, this mapping
* might have succeeded. however, since we cannot verify if this
* is a valid mapping without having a device attached, consider
* this to be unsupported, because we can't just store any old
* mapping and pollute list of active mappings willy-nilly.
*/
RTE_LOG(ERR, EAL, "Couldn't map new region for DMA\n");
ret = -1;
goto out;
}
/* do we have partial unmap support? */
has_partial_unmap = vfio_cfg->vfio_iommu_type->partial_unmap;
/* create new user mem map entry */
new_map = &user_mem_maps->maps[user_mem_maps->n_maps++];
new_map->addr = vaddr;
new_map->iova = iova;
new_map->len = len;
/* for IOMMU types supporting partial unmap, we don't need chunking */
new_map->chunk = has_partial_unmap ? 0 : len;
compact_user_maps(user_mem_maps);
out:
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
return ret;
}
static int
container_dma_unmap(struct vfio_config *vfio_cfg, uint64_t vaddr, uint64_t iova,
uint64_t len)
{
struct user_mem_map orig_maps[VFIO_MAX_USER_MEM_MAPS];
struct user_mem_map new_maps[2]; /* can be at most 2 */
struct user_mem_maps *user_mem_maps;
int n_orig, n_new, newlen, ret = 0;
bool has_partial_unmap;
user_mem_maps = &vfio_cfg->mem_maps;
rte_spinlock_recursive_lock(&user_mem_maps->lock);
/*
* Previously, we had adjacent mappings entirely contained within one
* mapping entry. Since we now store original mapping length in some
* cases, this is no longer the case, so unmapping can potentially go
* over multiple segments and split them in any number of ways.
*
* To complicate things further, some IOMMU types support arbitrary
* partial unmapping, while others will only support unmapping along the
* chunk size, so there are a lot of cases we need to handle. To make
* things easier code wise, instead of trying to adjust existing
* mappings, let's just rebuild them using information we have.
*/
/*
* first thing to do is check if there exists a mapping that includes
* the start and the end of our requested unmap. We need to collect all
* maps that include our unmapped region.
*/
n_orig = find_user_mem_maps(user_mem_maps, vaddr, iova, len,
orig_maps, RTE_DIM(orig_maps));
/* did we find anything? */
if (n_orig < 0) {
RTE_LOG(ERR, EAL, "Couldn't find previously mapped region\n");
rte_errno = EINVAL;
ret = -1;
goto out;
}
/* do we have partial unmap capability? */
has_partial_unmap = vfio_cfg->vfio_iommu_type->partial_unmap;
/*
* if we don't support partial unmap, we must check if start and end of
* current unmap region are chunk-aligned.
*/
if (!has_partial_unmap) {
bool start_aligned, end_aligned;
start_aligned = addr_is_chunk_aligned(orig_maps, n_orig,
vaddr, iova);
end_aligned = addr_is_chunk_aligned(orig_maps, n_orig,
vaddr + len, iova + len);
if (!start_aligned || !end_aligned) {
RTE_LOG(DEBUG, EAL, "DMA partial unmap unsupported\n");
rte_errno = ENOTSUP;
ret = -1;
goto out;
}
}
/*
* now we know we can potentially unmap the region, but we still have to
* figure out if there is enough space in our list to store remaining
* maps. for this, we will figure out how many segments we are going to
* remove, and how many new segments we are going to create.
*/
n_new = process_maps(orig_maps, n_orig, new_maps, vaddr, len);
/* can we store the new maps in our list? */
newlen = (user_mem_maps->n_maps - n_orig) + n_new;
if (newlen >= VFIO_MAX_USER_MEM_MAPS) {
RTE_LOG(ERR, EAL, "Not enough space to store partial mapping\n");
rte_errno = ENOMEM;
ret = -1;
goto out;
}
/* unmap the entry */
if (vfio_dma_mem_map(vfio_cfg, vaddr, iova, len, 0)) {
/* there may not be any devices plugged in, so unmapping will
* fail with ENODEV/ENOTSUP rte_errno values, but that doesn't
* stop us from removing the mapping, as the assumption is we
* won't be needing this memory any more and thus will want to
* prevent it from being remapped again on hotplug. so, only
* fail if we indeed failed to unmap (e.g. if the mapping was
* within our mapped range but had invalid alignment).
*/
if (rte_errno != ENODEV && rte_errno != ENOTSUP) {
RTE_LOG(ERR, EAL, "Couldn't unmap region for DMA\n");
ret = -1;
goto out;
} else {
RTE_LOG(DEBUG, EAL, "DMA unmapping failed, but removing mappings anyway\n");
}
}
/* we have unmapped the region, so now update the maps */
delete_maps(user_mem_maps, orig_maps, n_orig);
copy_maps(user_mem_maps, new_maps, n_new);
compact_user_maps(user_mem_maps);
out:
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
return ret;
}
int
rte_vfio_noiommu_is_enabled(void)
{
int fd;
ssize_t cnt;
char c;
fd = open(VFIO_NOIOMMU_MODE, O_RDONLY);
if (fd < 0) {
if (errno != ENOENT) {
RTE_LOG(ERR, EAL, "Cannot open VFIO noiommu file "
"%i (%s)\n", errno, strerror(errno));
return -1;
}
/*
* else the file does not exists
* i.e. noiommu is not enabled
*/
return 0;
}
cnt = read(fd, &c, 1);
close(fd);
if (cnt != 1) {
RTE_LOG(ERR, EAL, "Unable to read from VFIO noiommu file "
"%i (%s)\n", errno, strerror(errno));
return -1;
}
return c == 'Y';
}
int
rte_vfio_container_create(void)
{
int i;
/* Find an empty slot to store new vfio config */
for (i = 1; i < VFIO_MAX_CONTAINERS; i++) {
if (vfio_cfgs[i].vfio_container_fd == -1)
break;
}
if (i == VFIO_MAX_CONTAINERS) {
RTE_LOG(ERR, EAL, "Exceed max VFIO container limit\n");
return -1;
}
vfio_cfgs[i].vfio_container_fd = rte_vfio_get_container_fd();
if (vfio_cfgs[i].vfio_container_fd < 0) {
RTE_LOG(NOTICE, EAL, "Fail to create a new VFIO container\n");
return -1;
}
return vfio_cfgs[i].vfio_container_fd;
}
int
rte_vfio_container_destroy(int container_fd)
{
struct vfio_config *vfio_cfg;
int i;
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid VFIO container fd\n");
return -1;
}
for (i = 0; i < VFIO_MAX_GROUPS; i++)
if (vfio_cfg->vfio_groups[i].group_num != -1)
rte_vfio_container_group_unbind(container_fd,
vfio_cfg->vfio_groups[i].group_num);
close(container_fd);
vfio_cfg->vfio_container_fd = -1;
vfio_cfg->vfio_active_groups = 0;
vfio_cfg->vfio_iommu_type = NULL;
return 0;
}
int
rte_vfio_container_group_bind(int container_fd, int iommu_group_num)
{
struct vfio_config *vfio_cfg;
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid VFIO container fd\n");
return -1;
}
return vfio_get_group_fd(vfio_cfg, iommu_group_num);
}
int
rte_vfio_container_group_unbind(int container_fd, int iommu_group_num)
{
struct vfio_config *vfio_cfg;
struct vfio_group *cur_grp = NULL;
int i;
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid VFIO container fd\n");
return -1;
}
for (i = 0; i < VFIO_MAX_GROUPS; i++) {
if (vfio_cfg->vfio_groups[i].group_num == iommu_group_num) {
cur_grp = &vfio_cfg->vfio_groups[i];
break;
}
}
/* This should not happen */
if (i == VFIO_MAX_GROUPS || cur_grp == NULL) {
RTE_LOG(ERR, EAL, "Specified VFIO group number not found\n");
return -1;
}
if (cur_grp->fd >= 0 && close(cur_grp->fd) < 0) {
RTE_LOG(ERR, EAL,
"Error when closing vfio_group_fd for iommu_group_num "
"%d\n", iommu_group_num);
return -1;
}
cur_grp->group_num = -1;
cur_grp->fd = -1;
cur_grp->devices = 0;
vfio_cfg->vfio_active_groups--;
return 0;
}
int
rte_vfio_container_dma_map(int container_fd, uint64_t vaddr, uint64_t iova,
uint64_t len)
{
struct vfio_config *vfio_cfg;
if (len == 0) {
rte_errno = EINVAL;
return -1;
}
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid VFIO container fd\n");
return -1;
}
return container_dma_map(vfio_cfg, vaddr, iova, len);
}
int
rte_vfio_container_dma_unmap(int container_fd, uint64_t vaddr, uint64_t iova,
uint64_t len)
{
struct vfio_config *vfio_cfg;
if (len == 0) {
rte_errno = EINVAL;
return -1;
}
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid VFIO container fd\n");
return -1;
}
return container_dma_unmap(vfio_cfg, vaddr, iova, len);
}