f-stack/dpdk/lib/eal/freebsd/eal_interrupts.c

751 lines
17 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#include <string.h>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/queue.h>
#include <unistd.h>
#include <rte_errno.h>
#include <rte_lcore.h>
#include <rte_spinlock.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_eal_trace.h>
#include "eal_private.h"
#include "eal_alarm_private.h"
#define MAX_INTR_EVENTS 16
/**
* union buffer for reading on different devices
*/
union rte_intr_read_buffer {
char charbuf[16]; /* for others */
};
TAILQ_HEAD(rte_intr_cb_list, rte_intr_callback);
TAILQ_HEAD(rte_intr_source_list, rte_intr_source);
struct rte_intr_callback {
TAILQ_ENTRY(rte_intr_callback) next;
rte_intr_callback_fn cb_fn; /**< callback address */
void *cb_arg; /**< parameter for callback */
uint8_t pending_delete; /**< delete after callback is called */
rte_intr_unregister_callback_fn ucb_fn; /**< fn to call before cb is deleted */
};
struct rte_intr_source {
TAILQ_ENTRY(rte_intr_source) next;
struct rte_intr_handle *intr_handle; /**< interrupt handle */
struct rte_intr_cb_list callbacks; /**< user callbacks */
uint32_t active;
};
/* global spinlock for interrupt data operation */
static rte_spinlock_t intr_lock = RTE_SPINLOCK_INITIALIZER;
/* interrupt sources list */
static struct rte_intr_source_list intr_sources;
/* interrupt handling thread */
static pthread_t intr_thread;
static volatile int kq = -1;
static int
intr_source_to_kevent(const struct rte_intr_handle *ih, struct kevent *ke)
{
/* alarm callbacks are special case */
if (rte_intr_type_get(ih) == RTE_INTR_HANDLE_ALARM) {
uint64_t timeout_ns;
/* get soonest alarm timeout */
if (eal_alarm_get_timeout_ns(&timeout_ns) < 0)
return -1;
ke->filter = EVFILT_TIMER;
/* timers are one shot */
ke->flags |= EV_ONESHOT;
ke->fflags = NOTE_NSECONDS;
ke->data = timeout_ns;
} else {
ke->filter = EVFILT_READ;
}
ke->ident = rte_intr_fd_get(ih);
return 0;
}
int
rte_intr_callback_register(const struct rte_intr_handle *intr_handle,
rte_intr_callback_fn cb, void *cb_arg)
{
struct rte_intr_callback *callback;
struct rte_intr_source *src;
int ret = 0, add_event = 0;
/* first do parameter checking */
if (rte_intr_fd_get(intr_handle) < 0 || cb == NULL) {
RTE_LOG(ERR, EAL,
"Registering with invalid input parameter\n");
return -EINVAL;
}
if (kq < 0) {
RTE_LOG(ERR, EAL, "Kqueue is not active: %d\n", kq);
return -ENODEV;
}
rte_spinlock_lock(&intr_lock);
/* find the source for this intr_handle */
TAILQ_FOREACH(src, &intr_sources, next) {
if (rte_intr_fd_get(src->intr_handle) == rte_intr_fd_get(intr_handle))
break;
}
/* if this is an alarm interrupt and it already has a callback,
* then we don't want to create a new callback because the only
* thing on the list should be eal_alarm_callback() and we may
* be called just to reset the timer.
*/
if (src != NULL &&
rte_intr_type_get(src->intr_handle) == RTE_INTR_HANDLE_ALARM &&
!TAILQ_EMPTY(&src->callbacks)) {
callback = NULL;
} else {
/* allocate a new interrupt callback entity */
callback = calloc(1, sizeof(*callback));
if (callback == NULL) {
RTE_LOG(ERR, EAL, "Can not allocate memory\n");
ret = -ENOMEM;
goto fail;
}
callback->cb_fn = cb;
callback->cb_arg = cb_arg;
callback->pending_delete = 0;
callback->ucb_fn = NULL;
if (src == NULL) {
src = calloc(1, sizeof(*src));
if (src == NULL) {
RTE_LOG(ERR, EAL, "Can not allocate memory\n");
ret = -ENOMEM;
goto fail;
} else {
src->intr_handle = rte_intr_instance_dup(intr_handle);
if (src->intr_handle == NULL) {
RTE_LOG(ERR, EAL, "Can not create intr instance\n");
ret = -ENOMEM;
free(src);
src = NULL;
goto fail;
}
TAILQ_INIT(&src->callbacks);
TAILQ_INSERT_TAIL(&intr_sources, src, next);
}
}
/* we had no interrupts for this */
if (TAILQ_EMPTY(&src->callbacks))
add_event = 1;
TAILQ_INSERT_TAIL(&(src->callbacks), callback, next);
}
/* add events to the queue. timer events are special as we need to
* re-set the timer.
*/
if (add_event ||
rte_intr_type_get(src->intr_handle) == RTE_INTR_HANDLE_ALARM) {
struct kevent ke;
memset(&ke, 0, sizeof(ke));
ke.flags = EV_ADD; /* mark for addition to the queue */
if (intr_source_to_kevent(intr_handle, &ke) < 0) {
RTE_LOG(ERR, EAL, "Cannot convert interrupt handle to kevent\n");
ret = -ENODEV;
goto fail;
}
/**
* add the intr file descriptor into wait list.
*/
if (kevent(kq, &ke, 1, NULL, 0, NULL) < 0) {
/* currently, nic_uio does not support interrupts, so
* this error will always be triggered and output to the
* user. so, don't output it unless debug log level set.
*/
if (errno == ENODEV)
RTE_LOG(DEBUG, EAL, "Interrupt handle %d not supported\n",
rte_intr_fd_get(src->intr_handle));
else
RTE_LOG(ERR, EAL, "Error adding fd %d kevent, %s\n",
rte_intr_fd_get(src->intr_handle),
strerror(errno));
ret = -errno;
goto fail;
}
}
rte_eal_trace_intr_callback_register(intr_handle, cb, cb_arg, ret);
rte_spinlock_unlock(&intr_lock);
return 0;
fail:
/* clean up */
if (src != NULL) {
if (callback != NULL)
TAILQ_REMOVE(&(src->callbacks), callback, next);
if (TAILQ_EMPTY(&(src->callbacks))) {
TAILQ_REMOVE(&intr_sources, src, next);
free(src);
}
}
free(callback);
rte_eal_trace_intr_callback_register(intr_handle, cb, cb_arg, ret);
rte_spinlock_unlock(&intr_lock);
return ret;
}
int
rte_intr_callback_unregister_pending(const struct rte_intr_handle *intr_handle,
rte_intr_callback_fn cb_fn, void *cb_arg,
rte_intr_unregister_callback_fn ucb_fn)
{
int ret;
struct rte_intr_source *src;
struct rte_intr_callback *cb, *next;
/* do parameter checking first */
if (rte_intr_fd_get(intr_handle) < 0) {
RTE_LOG(ERR, EAL,
"Unregistering with invalid input parameter\n");
return -EINVAL;
}
if (kq < 0) {
RTE_LOG(ERR, EAL, "Kqueue is not active\n");
return -ENODEV;
}
rte_spinlock_lock(&intr_lock);
/* check if the interrupt source for the fd is existent */
TAILQ_FOREACH(src, &intr_sources, next)
if (rte_intr_fd_get(src->intr_handle) == rte_intr_fd_get(intr_handle))
break;
/* No interrupt source registered for the fd */
if (src == NULL) {
ret = -ENOENT;
/* only usable if the source is active */
} else if (src->active == 0) {
ret = -EAGAIN;
} else {
ret = 0;
/* walk through the callbacks and mark all that match. */
for (cb = TAILQ_FIRST(&src->callbacks); cb != NULL; cb = next) {
next = TAILQ_NEXT(cb, next);
if (cb->cb_fn == cb_fn && (cb_arg == (void *)-1 ||
cb->cb_arg == cb_arg)) {
cb->pending_delete = 1;
cb->ucb_fn = ucb_fn;
ret++;
}
}
}
rte_spinlock_unlock(&intr_lock);
return ret;
}
int
rte_intr_callback_unregister(const struct rte_intr_handle *intr_handle,
rte_intr_callback_fn cb_fn, void *cb_arg)
{
int ret;
struct rte_intr_source *src;
struct rte_intr_callback *cb, *next;
/* do parameter checking first */
if (rte_intr_fd_get(intr_handle) < 0) {
RTE_LOG(ERR, EAL,
"Unregistering with invalid input parameter\n");
return -EINVAL;
}
if (kq < 0) {
RTE_LOG(ERR, EAL, "Kqueue is not active\n");
return -ENODEV;
}
rte_spinlock_lock(&intr_lock);
/* check if the interrupt source for the fd is existent */
TAILQ_FOREACH(src, &intr_sources, next)
if (rte_intr_fd_get(src->intr_handle) == rte_intr_fd_get(intr_handle))
break;
/* No interrupt source registered for the fd */
if (src == NULL) {
ret = -ENOENT;
/* interrupt source has some active callbacks right now. */
} else if (src->active != 0) {
ret = -EAGAIN;
/* ok to remove. */
} else {
struct kevent ke;
ret = 0;
/* remove it from the kqueue */
memset(&ke, 0, sizeof(ke));
ke.flags = EV_DELETE; /* mark for deletion from the queue */
if (intr_source_to_kevent(intr_handle, &ke) < 0) {
RTE_LOG(ERR, EAL, "Cannot convert to kevent\n");
ret = -ENODEV;
goto out;
}
/**
* remove intr file descriptor from wait list.
*/
if (kevent(kq, &ke, 1, NULL, 0, NULL) < 0) {
RTE_LOG(ERR, EAL, "Error removing fd %d kevent, %s\n",
rte_intr_fd_get(src->intr_handle),
strerror(errno));
/* removing non-existent even is an expected condition
* in some circumstances (e.g. oneshot events).
*/
}
/*walk through the callbacks and remove all that match. */
for (cb = TAILQ_FIRST(&src->callbacks); cb != NULL; cb = next) {
next = TAILQ_NEXT(cb, next);
if (cb->cb_fn == cb_fn && (cb_arg == (void *)-1 ||
cb->cb_arg == cb_arg)) {
TAILQ_REMOVE(&src->callbacks, cb, next);
free(cb);
ret++;
}
}
/* all callbacks for that source are removed. */
if (TAILQ_EMPTY(&src->callbacks)) {
TAILQ_REMOVE(&intr_sources, src, next);
free(src);
}
}
out:
rte_eal_trace_intr_callback_unregister(intr_handle, cb_fn, cb_arg,
ret);
rte_spinlock_unlock(&intr_lock);
return ret;
}
int
rte_intr_callback_unregister_sync(const struct rte_intr_handle *intr_handle,
rte_intr_callback_fn cb_fn, void *cb_arg)
{
int ret = 0;
while ((ret = rte_intr_callback_unregister(intr_handle, cb_fn, cb_arg)) == -EAGAIN)
rte_pause();
return ret;
}
int
rte_intr_enable(const struct rte_intr_handle *intr_handle)
{
int rc = 0;
if (intr_handle == NULL)
return -1;
if (rte_intr_type_get(intr_handle) == RTE_INTR_HANDLE_VDEV) {
rc = 0;
goto out;
}
if (rte_intr_fd_get(intr_handle) < 0 ||
rte_intr_dev_fd_get(intr_handle) < 0) {
rc = -1;
goto out;
}
switch (rte_intr_type_get(intr_handle)) {
/* not used at this moment */
case RTE_INTR_HANDLE_ALARM:
rc = -1;
break;
/* not used at this moment */
case RTE_INTR_HANDLE_DEV_EVENT:
rc = -1;
break;
/* unknown handle type */
default:
RTE_LOG(ERR, EAL, "Unknown handle type of fd %d\n",
rte_intr_fd_get(intr_handle));
rc = -1;
break;
}
out:
rte_eal_trace_intr_enable(intr_handle, rc);
return rc;
}
int
rte_intr_disable(const struct rte_intr_handle *intr_handle)
{
int rc = 0;
if (intr_handle == NULL)
return -1;
if (rte_intr_type_get(intr_handle) == RTE_INTR_HANDLE_VDEV) {
rc = 0;
goto out;
}
if (rte_intr_fd_get(intr_handle) < 0 ||
rte_intr_dev_fd_get(intr_handle) < 0) {
rc = -1;
goto out;
}
switch (rte_intr_type_get(intr_handle)) {
/* not used at this moment */
case RTE_INTR_HANDLE_ALARM:
rc = -1;
break;
/* not used at this moment */
case RTE_INTR_HANDLE_DEV_EVENT:
rc = -1;
break;
/* unknown handle type */
default:
RTE_LOG(ERR, EAL, "Unknown handle type of fd %d\n",
rte_intr_fd_get(intr_handle));
rc = -1;
break;
}
out:
rte_eal_trace_intr_disable(intr_handle, rc);
return rc;
}
int
rte_intr_ack(const struct rte_intr_handle *intr_handle)
{
if (rte_intr_type_get(intr_handle) == RTE_INTR_HANDLE_VDEV)
return 0;
return -1;
}
static void
eal_intr_process_interrupts(struct kevent *events, int nfds)
{
struct rte_intr_callback active_cb;
union rte_intr_read_buffer buf;
struct rte_intr_callback *cb, *next;
struct rte_intr_source *src;
bool call = false;
int n, bytes_read;
struct kevent ke;
for (n = 0; n < nfds; n++) {
int event_fd = events[n].ident;
rte_spinlock_lock(&intr_lock);
TAILQ_FOREACH(src, &intr_sources, next)
if (rte_intr_fd_get(src->intr_handle) == event_fd)
break;
if (src == NULL) {
rte_spinlock_unlock(&intr_lock);
continue;
}
/* mark this interrupt source as active and release the lock. */
src->active = 1;
rte_spinlock_unlock(&intr_lock);
/* set the length to be read dor different handle type */
switch (rte_intr_type_get(src->intr_handle)) {
case RTE_INTR_HANDLE_ALARM:
bytes_read = 0;
call = true;
break;
case RTE_INTR_HANDLE_VDEV:
case RTE_INTR_HANDLE_EXT:
bytes_read = 0;
call = true;
break;
case RTE_INTR_HANDLE_DEV_EVENT:
bytes_read = 0;
call = true;
break;
default:
bytes_read = 1;
break;
}
if (bytes_read > 0) {
/**
* read out to clear the ready-to-be-read flag
* for epoll_wait.
*/
bytes_read = read(event_fd, &buf, bytes_read);
if (bytes_read < 0) {
if (errno == EINTR || errno == EWOULDBLOCK)
continue;
RTE_LOG(ERR, EAL, "Error reading from file "
"descriptor %d: %s\n",
event_fd,
strerror(errno));
} else if (bytes_read == 0)
RTE_LOG(ERR, EAL, "Read nothing from file "
"descriptor %d\n", event_fd);
else
call = true;
}
/* grab a lock, again to call callbacks and update status. */
rte_spinlock_lock(&intr_lock);
if (call) {
/* Finally, call all callbacks. */
TAILQ_FOREACH(cb, &src->callbacks, next) {
/* make a copy and unlock. */
active_cb = *cb;
rte_spinlock_unlock(&intr_lock);
/* call the actual callback */
active_cb.cb_fn(active_cb.cb_arg);
/*get the lock back. */
rte_spinlock_lock(&intr_lock);
}
}
/* we done with that interrupt source, release it. */
src->active = 0;
/* check if any callback are supposed to be removed */
for (cb = TAILQ_FIRST(&src->callbacks); cb != NULL; cb = next) {
next = TAILQ_NEXT(cb, next);
if (cb->pending_delete) {
/* remove it from the kqueue */
memset(&ke, 0, sizeof(ke));
/* mark for deletion from the queue */
ke.flags = EV_DELETE;
if (intr_source_to_kevent(src->intr_handle, &ke) < 0) {
RTE_LOG(ERR, EAL, "Cannot convert to kevent\n");
rte_spinlock_unlock(&intr_lock);
return;
}
/**
* remove intr file descriptor from wait list.
*/
if (kevent(kq, &ke, 1, NULL, 0, NULL) < 0) {
RTE_LOG(ERR, EAL, "Error removing fd %d kevent, %s\n",
rte_intr_fd_get(src->intr_handle),
strerror(errno));
/* removing non-existent even is an expected
* condition in some circumstances
* (e.g. oneshot events).
*/
}
TAILQ_REMOVE(&src->callbacks, cb, next);
if (cb->ucb_fn)
cb->ucb_fn(src->intr_handle, cb->cb_arg);
free(cb);
}
}
/* all callbacks for that source are removed. */
if (TAILQ_EMPTY(&src->callbacks)) {
TAILQ_REMOVE(&intr_sources, src, next);
free(src);
}
rte_spinlock_unlock(&intr_lock);
}
}
static void *
eal_intr_thread_main(void *arg __rte_unused)
{
struct kevent events[MAX_INTR_EVENTS];
int nfds;
/* host thread, never break out */
for (;;) {
/* do not change anything, just wait */
nfds = kevent(kq, NULL, 0, events, MAX_INTR_EVENTS, NULL);
/* kevent fail */
if (nfds < 0) {
if (errno == EINTR)
continue;
RTE_LOG(ERR, EAL,
"kevent returns with fail\n");
break;
}
/* kevent timeout, will never happen here */
else if (nfds == 0)
continue;
/* kevent has at least one fd ready to read */
eal_intr_process_interrupts(events, nfds);
}
close(kq);
kq = -1;
return NULL;
}
int
rte_eal_intr_init(void)
{
int ret = 0;
/* init the global interrupt source head */
TAILQ_INIT(&intr_sources);
kq = kqueue();
if (kq < 0) {
RTE_LOG(ERR, EAL, "Cannot create kqueue instance\n");
return -1;
}
/* create the host thread to wait/handle the interrupt */
ret = rte_ctrl_thread_create(&intr_thread, "eal-intr-thread", NULL,
eal_intr_thread_main, NULL);
if (ret != 0) {
rte_errno = -ret;
RTE_LOG(ERR, EAL,
"Failed to create thread for interrupt handling\n");
}
return ret;
}
int
rte_intr_rx_ctl(struct rte_intr_handle *intr_handle,
int epfd, int op, unsigned int vec, void *data)
{
RTE_SET_USED(intr_handle);
RTE_SET_USED(epfd);
RTE_SET_USED(op);
RTE_SET_USED(vec);
RTE_SET_USED(data);
return -ENOTSUP;
}
int
rte_intr_efd_enable(struct rte_intr_handle *intr_handle, uint32_t nb_efd)
{
RTE_SET_USED(intr_handle);
RTE_SET_USED(nb_efd);
return 0;
}
void
rte_intr_efd_disable(struct rte_intr_handle *intr_handle)
{
RTE_SET_USED(intr_handle);
}
int
rte_intr_dp_is_en(struct rte_intr_handle *intr_handle)
{
RTE_SET_USED(intr_handle);
return 0;
}
int
rte_intr_allow_others(struct rte_intr_handle *intr_handle)
{
RTE_SET_USED(intr_handle);
return 1;
}
int
rte_intr_cap_multiple(struct rte_intr_handle *intr_handle)
{
RTE_SET_USED(intr_handle);
return 0;
}
int
rte_epoll_wait(int epfd, struct rte_epoll_event *events,
int maxevents, int timeout)
{
RTE_SET_USED(epfd);
RTE_SET_USED(events);
RTE_SET_USED(maxevents);
RTE_SET_USED(timeout);
return -ENOTSUP;
}
int
rte_epoll_wait_interruptible(int epfd, struct rte_epoll_event *events,
int maxevents, int timeout)
{
RTE_SET_USED(epfd);
RTE_SET_USED(events);
RTE_SET_USED(maxevents);
RTE_SET_USED(timeout);
return -ENOTSUP;
}
int
rte_epoll_ctl(int epfd, int op, int fd, struct rte_epoll_event *event)
{
RTE_SET_USED(epfd);
RTE_SET_USED(op);
RTE_SET_USED(fd);
RTE_SET_USED(event);
return -ENOTSUP;
}
int
rte_intr_tls_epfd(void)
{
return -ENOTSUP;
}
void
rte_intr_free_epoll_fd(struct rte_intr_handle *intr_handle)
{
RTE_SET_USED(intr_handle);
}
int rte_thread_is_intr(void)
{
return pthread_equal(intr_thread, pthread_self());
}