f-stack/dpdk/drivers/event/dlb2/dlb2.c

4756 lines
128 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2020 Intel Corporation
*/
#include <assert.h>
#include <errno.h>
#include <nmmintrin.h>
#include <pthread.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <rte_common.h>
#include <rte_config.h>
#include <rte_cycles.h>
#include <rte_debug.h>
#include <rte_dev.h>
#include <rte_errno.h>
#include <rte_eventdev.h>
#include <eventdev_pmd.h>
#include <rte_io.h>
#include <rte_kvargs.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_power_intrinsics.h>
#include <rte_prefetch.h>
#include <rte_ring.h>
#include <rte_string_fns.h>
#include "dlb2_priv.h"
#include "dlb2_iface.h"
#include "dlb2_inline_fns.h"
/*
* Resources exposed to eventdev. Some values overridden at runtime using
* values returned by the DLB kernel driver.
*/
#if (RTE_EVENT_MAX_QUEUES_PER_DEV > UINT8_MAX)
#error "RTE_EVENT_MAX_QUEUES_PER_DEV cannot fit in member max_event_queues"
#endif
static struct rte_event_dev_info evdev_dlb2_default_info = {
.driver_name = "", /* probe will set */
.min_dequeue_timeout_ns = DLB2_MIN_DEQUEUE_TIMEOUT_NS,
.max_dequeue_timeout_ns = DLB2_MAX_DEQUEUE_TIMEOUT_NS,
#if (RTE_EVENT_MAX_QUEUES_PER_DEV < DLB2_MAX_NUM_LDB_QUEUES)
.max_event_queues = RTE_EVENT_MAX_QUEUES_PER_DEV,
#else
.max_event_queues = DLB2_MAX_NUM_LDB_QUEUES,
#endif
.max_event_queue_flows = DLB2_MAX_NUM_FLOWS,
.max_event_queue_priority_levels = DLB2_QID_PRIORITIES,
.max_event_priority_levels = DLB2_QID_PRIORITIES,
.max_event_ports = DLB2_MAX_NUM_LDB_PORTS,
.max_event_port_dequeue_depth = DLB2_MAX_CQ_DEPTH,
.max_event_port_enqueue_depth = DLB2_MAX_ENQUEUE_DEPTH,
.max_event_port_links = DLB2_MAX_NUM_QIDS_PER_LDB_CQ,
.max_num_events = DLB2_MAX_NUM_LDB_CREDITS,
.max_single_link_event_port_queue_pairs =
DLB2_MAX_NUM_DIR_PORTS(DLB2_HW_V2),
.event_dev_cap = (RTE_EVENT_DEV_CAP_EVENT_QOS |
RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED |
RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES |
RTE_EVENT_DEV_CAP_BURST_MODE |
RTE_EVENT_DEV_CAP_IMPLICIT_RELEASE_DISABLE |
RTE_EVENT_DEV_CAP_RUNTIME_PORT_LINK |
RTE_EVENT_DEV_CAP_MULTIPLE_QUEUE_PORT |
RTE_EVENT_DEV_CAP_MAINTENANCE_FREE),
};
struct process_local_port_data
dlb2_port[DLB2_MAX_NUM_PORTS_ALL][DLB2_NUM_PORT_TYPES];
static void
dlb2_free_qe_mem(struct dlb2_port *qm_port)
{
if (qm_port == NULL)
return;
rte_free(qm_port->qe4);
qm_port->qe4 = NULL;
rte_free(qm_port->int_arm_qe);
qm_port->int_arm_qe = NULL;
rte_free(qm_port->consume_qe);
qm_port->consume_qe = NULL;
rte_memzone_free(dlb2_port[qm_port->id][PORT_TYPE(qm_port)].mz);
dlb2_port[qm_port->id][PORT_TYPE(qm_port)].mz = NULL;
}
/* override defaults with value(s) provided on command line */
static void
dlb2_init_queue_depth_thresholds(struct dlb2_eventdev *dlb2,
int *qid_depth_thresholds)
{
int q;
for (q = 0; q < DLB2_MAX_NUM_QUEUES(dlb2->version); q++) {
if (qid_depth_thresholds[q] != 0)
dlb2->ev_queues[q].depth_threshold =
qid_depth_thresholds[q];
}
}
static int
dlb2_hw_query_resources(struct dlb2_eventdev *dlb2)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_hw_resource_info *dlb2_info = &handle->info;
int ret;
/* Query driver resources provisioned for this device */
ret = dlb2_iface_get_num_resources(handle,
&dlb2->hw_rsrc_query_results);
if (ret) {
DLB2_LOG_ERR("ioctl get dlb2 num resources, err=%d\n", ret);
return ret;
}
/* Complete filling in device resource info returned to evdev app,
* overriding any default values.
* The capabilities (CAPs) were set at compile time.
*/
evdev_dlb2_default_info.max_event_queues =
dlb2->hw_rsrc_query_results.num_ldb_queues;
evdev_dlb2_default_info.max_event_ports =
dlb2->hw_rsrc_query_results.num_ldb_ports;
if (dlb2->version == DLB2_HW_V2_5) {
evdev_dlb2_default_info.max_num_events =
dlb2->hw_rsrc_query_results.num_credits;
} else {
evdev_dlb2_default_info.max_num_events =
dlb2->hw_rsrc_query_results.num_ldb_credits;
}
/* Save off values used when creating the scheduling domain. */
handle->info.num_sched_domains =
dlb2->hw_rsrc_query_results.num_sched_domains;
if (dlb2->version == DLB2_HW_V2_5) {
handle->info.hw_rsrc_max.nb_events_limit =
dlb2->hw_rsrc_query_results.num_credits;
} else {
handle->info.hw_rsrc_max.nb_events_limit =
dlb2->hw_rsrc_query_results.num_ldb_credits;
}
handle->info.hw_rsrc_max.num_queues =
dlb2->hw_rsrc_query_results.num_ldb_queues +
dlb2->hw_rsrc_query_results.num_dir_ports;
handle->info.hw_rsrc_max.num_ldb_queues =
dlb2->hw_rsrc_query_results.num_ldb_queues;
handle->info.hw_rsrc_max.num_ldb_ports =
dlb2->hw_rsrc_query_results.num_ldb_ports;
handle->info.hw_rsrc_max.num_dir_ports =
dlb2->hw_rsrc_query_results.num_dir_ports;
handle->info.hw_rsrc_max.reorder_window_size =
dlb2->hw_rsrc_query_results.num_hist_list_entries;
rte_memcpy(dlb2_info, &handle->info.hw_rsrc_max, sizeof(*dlb2_info));
return 0;
}
#define DLB2_BASE_10 10
static int
dlb2_string_to_int(int *result, const char *str)
{
long ret;
char *endptr;
if (str == NULL || result == NULL)
return -EINVAL;
errno = 0;
ret = strtol(str, &endptr, DLB2_BASE_10);
if (errno)
return -errno;
/* long int and int may be different width for some architectures */
if (ret < INT_MIN || ret > INT_MAX || endptr == str)
return -EINVAL;
*result = ret;
return 0;
}
static int
set_numa_node(const char *key __rte_unused, const char *value, void *opaque)
{
int *socket_id = opaque;
int ret;
ret = dlb2_string_to_int(socket_id, value);
if (ret < 0)
return ret;
if (*socket_id > RTE_MAX_NUMA_NODES)
return -EINVAL;
return 0;
}
static int
set_max_num_events(const char *key __rte_unused,
const char *value,
void *opaque)
{
int *max_num_events = opaque;
int ret;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
ret = dlb2_string_to_int(max_num_events, value);
if (ret < 0)
return ret;
if (*max_num_events < 0 || *max_num_events >
DLB2_MAX_NUM_LDB_CREDITS) {
DLB2_LOG_ERR("dlb2: max_num_events must be between 0 and %d\n",
DLB2_MAX_NUM_LDB_CREDITS);
return -EINVAL;
}
return 0;
}
static int
set_num_dir_credits(const char *key __rte_unused,
const char *value,
void *opaque)
{
int *num_dir_credits = opaque;
int ret;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
ret = dlb2_string_to_int(num_dir_credits, value);
if (ret < 0)
return ret;
if (*num_dir_credits < 0 ||
*num_dir_credits > DLB2_MAX_NUM_DIR_CREDITS(DLB2_HW_V2)) {
DLB2_LOG_ERR("dlb2: num_dir_credits must be between 0 and %d\n",
DLB2_MAX_NUM_DIR_CREDITS(DLB2_HW_V2));
return -EINVAL;
}
return 0;
}
static int
set_dev_id(const char *key __rte_unused,
const char *value,
void *opaque)
{
int *dev_id = opaque;
int ret;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
ret = dlb2_string_to_int(dev_id, value);
if (ret < 0)
return ret;
return 0;
}
static int
set_cos(const char *key __rte_unused,
const char *value,
void *opaque)
{
enum dlb2_cos *cos_id = opaque;
int x = 0;
int ret;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
ret = dlb2_string_to_int(&x, value);
if (ret < 0)
return ret;
if (x != DLB2_COS_DEFAULT && (x < DLB2_COS_0 || x > DLB2_COS_3)) {
DLB2_LOG_ERR(
"COS %d out of range, must be DLB2_COS_DEFAULT or 0-3\n",
x);
return -EINVAL;
}
*cos_id = x;
return 0;
}
static int
set_poll_interval(const char *key __rte_unused,
const char *value,
void *opaque)
{
int *poll_interval = opaque;
int ret;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
ret = dlb2_string_to_int(poll_interval, value);
if (ret < 0)
return ret;
return 0;
}
static int
set_sw_credit_quanta(const char *key __rte_unused,
const char *value,
void *opaque)
{
int *sw_credit_quanta = opaque;
int ret;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
ret = dlb2_string_to_int(sw_credit_quanta, value);
if (ret < 0)
return ret;
return 0;
}
static int
set_hw_credit_quanta(const char *key __rte_unused,
const char *value,
void *opaque)
{
int *hw_credit_quanta = opaque;
int ret;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
ret = dlb2_string_to_int(hw_credit_quanta, value);
if (ret < 0)
return ret;
return 0;
}
static int
set_default_depth_thresh(const char *key __rte_unused,
const char *value,
void *opaque)
{
int *default_depth_thresh = opaque;
int ret;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
ret = dlb2_string_to_int(default_depth_thresh, value);
if (ret < 0)
return ret;
return 0;
}
static int
set_vector_opts_enab(const char *key __rte_unused,
const char *value,
void *opaque)
{
bool *dlb2_vector_opts_enabled = opaque;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
if ((*value == 'y') || (*value == 'Y'))
*dlb2_vector_opts_enabled = true;
else
*dlb2_vector_opts_enabled = false;
return 0;
}
static int
set_qid_depth_thresh(const char *key __rte_unused,
const char *value,
void *opaque)
{
struct dlb2_qid_depth_thresholds *qid_thresh = opaque;
int first, last, thresh, i;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
/* command line override may take one of the following 3 forms:
* qid_depth_thresh=all:<threshold_value> ... all queues
* qid_depth_thresh=qidA-qidB:<threshold_value> ... a range of queues
* qid_depth_thresh=qid:<threshold_value> ... just one queue
*/
if (sscanf(value, "all:%d", &thresh) == 1) {
first = 0;
last = DLB2_MAX_NUM_QUEUES(DLB2_HW_V2) - 1;
} else if (sscanf(value, "%d-%d:%d", &first, &last, &thresh) == 3) {
/* we have everything we need */
} else if (sscanf(value, "%d:%d", &first, &thresh) == 2) {
last = first;
} else {
DLB2_LOG_ERR("Error parsing qid depth devarg. Should be all:val, qid-qid:val, or qid:val\n");
return -EINVAL;
}
if (first > last || first < 0 ||
last >= DLB2_MAX_NUM_QUEUES(DLB2_HW_V2)) {
DLB2_LOG_ERR("Error parsing qid depth devarg, invalid qid value\n");
return -EINVAL;
}
if (thresh < 0 || thresh > DLB2_MAX_QUEUE_DEPTH_THRESHOLD) {
DLB2_LOG_ERR("Error parsing qid depth devarg, threshold > %d\n",
DLB2_MAX_QUEUE_DEPTH_THRESHOLD);
return -EINVAL;
}
for (i = first; i <= last; i++)
qid_thresh->val[i] = thresh; /* indexed by qid */
return 0;
}
static int
set_qid_depth_thresh_v2_5(const char *key __rte_unused,
const char *value,
void *opaque)
{
struct dlb2_qid_depth_thresholds *qid_thresh = opaque;
int first, last, thresh, i;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
/* command line override may take one of the following 3 forms:
* qid_depth_thresh=all:<threshold_value> ... all queues
* qid_depth_thresh=qidA-qidB:<threshold_value> ... a range of queues
* qid_depth_thresh=qid:<threshold_value> ... just one queue
*/
if (sscanf(value, "all:%d", &thresh) == 1) {
first = 0;
last = DLB2_MAX_NUM_QUEUES(DLB2_HW_V2_5) - 1;
} else if (sscanf(value, "%d-%d:%d", &first, &last, &thresh) == 3) {
/* we have everything we need */
} else if (sscanf(value, "%d:%d", &first, &thresh) == 2) {
last = first;
} else {
DLB2_LOG_ERR("Error parsing qid depth devarg. Should be all:val, qid-qid:val, or qid:val\n");
return -EINVAL;
}
if (first > last || first < 0 ||
last >= DLB2_MAX_NUM_QUEUES(DLB2_HW_V2_5)) {
DLB2_LOG_ERR("Error parsing qid depth devarg, invalid qid value\n");
return -EINVAL;
}
if (thresh < 0 || thresh > DLB2_MAX_QUEUE_DEPTH_THRESHOLD) {
DLB2_LOG_ERR("Error parsing qid depth devarg, threshold > %d\n",
DLB2_MAX_QUEUE_DEPTH_THRESHOLD);
return -EINVAL;
}
for (i = first; i <= last; i++)
qid_thresh->val[i] = thresh; /* indexed by qid */
return 0;
}
static void
dlb2_eventdev_info_get(struct rte_eventdev *dev,
struct rte_event_dev_info *dev_info)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
int ret;
ret = dlb2_hw_query_resources(dlb2);
if (ret) {
const struct rte_eventdev_data *data = dev->data;
DLB2_LOG_ERR("get resources err=%d, devid=%d\n",
ret, data->dev_id);
/* fn is void, so fall through and return values set up in
* probe
*/
}
/* Add num resources currently owned by this domain.
* These would become available if the scheduling domain were reset due
* to the application recalling eventdev_configure to *reconfigure* the
* domain.
*/
evdev_dlb2_default_info.max_event_ports += dlb2->num_ldb_ports;
evdev_dlb2_default_info.max_event_queues += dlb2->num_ldb_queues;
if (dlb2->version == DLB2_HW_V2_5) {
evdev_dlb2_default_info.max_num_events +=
dlb2->max_credits;
} else {
evdev_dlb2_default_info.max_num_events +=
dlb2->max_ldb_credits;
}
evdev_dlb2_default_info.max_event_queues =
RTE_MIN(evdev_dlb2_default_info.max_event_queues,
RTE_EVENT_MAX_QUEUES_PER_DEV);
evdev_dlb2_default_info.max_num_events =
RTE_MIN(evdev_dlb2_default_info.max_num_events,
dlb2->max_num_events_override);
*dev_info = evdev_dlb2_default_info;
}
static int
dlb2_hw_create_sched_domain(struct dlb2_hw_dev *handle,
const struct dlb2_hw_rsrcs *resources_asked,
uint8_t device_version)
{
int ret = 0;
struct dlb2_create_sched_domain_args *cfg;
if (resources_asked == NULL) {
DLB2_LOG_ERR("dlb2: dlb2_create NULL parameter\n");
ret = EINVAL;
goto error_exit;
}
/* Map generic qm resources to dlb2 resources */
cfg = &handle->cfg.resources;
/* DIR ports and queues */
cfg->num_dir_ports = resources_asked->num_dir_ports;
if (device_version == DLB2_HW_V2_5)
cfg->num_credits = resources_asked->num_credits;
else
cfg->num_dir_credits = resources_asked->num_dir_credits;
/* LDB queues */
cfg->num_ldb_queues = resources_asked->num_ldb_queues;
/* LDB ports */
cfg->cos_strict = 0; /* Best effort */
cfg->num_cos_ldb_ports[0] = 0;
cfg->num_cos_ldb_ports[1] = 0;
cfg->num_cos_ldb_ports[2] = 0;
cfg->num_cos_ldb_ports[3] = 0;
switch (handle->cos_id) {
case DLB2_COS_0:
cfg->num_ldb_ports = 0; /* no don't care ports */
cfg->num_cos_ldb_ports[0] =
resources_asked->num_ldb_ports;
break;
case DLB2_COS_1:
cfg->num_ldb_ports = 0; /* no don't care ports */
cfg->num_cos_ldb_ports[1] = resources_asked->num_ldb_ports;
break;
case DLB2_COS_2:
cfg->num_ldb_ports = 0; /* no don't care ports */
cfg->num_cos_ldb_ports[2] = resources_asked->num_ldb_ports;
break;
case DLB2_COS_3:
cfg->num_ldb_ports = 0; /* no don't care ports */
cfg->num_cos_ldb_ports[3] =
resources_asked->num_ldb_ports;
break;
case DLB2_COS_DEFAULT:
/* all ldb ports are don't care ports from a cos perspective */
cfg->num_ldb_ports =
resources_asked->num_ldb_ports;
break;
}
if (device_version == DLB2_HW_V2)
cfg->num_ldb_credits = resources_asked->num_ldb_credits;
cfg->num_atomic_inflights =
DLB2_NUM_ATOMIC_INFLIGHTS_PER_QUEUE *
cfg->num_ldb_queues;
cfg->num_hist_list_entries = resources_asked->num_ldb_ports *
evdev_dlb2_default_info.max_event_port_dequeue_depth;
if (device_version == DLB2_HW_V2_5) {
DLB2_LOG_DBG("sched domain create - ldb_qs=%d, ldb_ports=%d, dir_ports=%d, atomic_inflights=%d, hist_list_entries=%d, credits=%d\n",
cfg->num_ldb_queues,
resources_asked->num_ldb_ports,
cfg->num_dir_ports,
cfg->num_atomic_inflights,
cfg->num_hist_list_entries,
cfg->num_credits);
} else {
DLB2_LOG_DBG("sched domain create - ldb_qs=%d, ldb_ports=%d, dir_ports=%d, atomic_inflights=%d, hist_list_entries=%d, ldb_credits=%d, dir_credits=%d\n",
cfg->num_ldb_queues,
resources_asked->num_ldb_ports,
cfg->num_dir_ports,
cfg->num_atomic_inflights,
cfg->num_hist_list_entries,
cfg->num_ldb_credits,
cfg->num_dir_credits);
}
/* Configure the QM */
ret = dlb2_iface_sched_domain_create(handle, cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: domain create failed, ret = %d, extra status: %s\n",
ret,
dlb2_error_strings[cfg->response.status]);
goto error_exit;
}
handle->domain_id = cfg->response.id;
handle->cfg.configured = true;
error_exit:
return ret;
}
static void
dlb2_hw_reset_sched_domain(const struct rte_eventdev *dev, bool reconfig)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
enum dlb2_configuration_state config_state;
int i, j;
dlb2_iface_domain_reset(dlb2);
/* Free all dynamically allocated port memory */
for (i = 0; i < dlb2->num_ports; i++)
dlb2_free_qe_mem(&dlb2->ev_ports[i].qm_port);
/* If reconfiguring, mark the device's queues and ports as "previously
* configured." If the user doesn't reconfigure them, the PMD will
* reapply their previous configuration when the device is started.
*/
config_state = (reconfig) ? DLB2_PREV_CONFIGURED :
DLB2_NOT_CONFIGURED;
for (i = 0; i < dlb2->num_ports; i++) {
dlb2->ev_ports[i].qm_port.config_state = config_state;
/* Reset setup_done so ports can be reconfigured */
dlb2->ev_ports[i].setup_done = false;
for (j = 0; j < DLB2_MAX_NUM_QIDS_PER_LDB_CQ; j++)
dlb2->ev_ports[i].link[j].mapped = false;
}
for (i = 0; i < dlb2->num_queues; i++)
dlb2->ev_queues[i].qm_queue.config_state = config_state;
for (i = 0; i < DLB2_MAX_NUM_QUEUES(DLB2_HW_V2_5); i++)
dlb2->ev_queues[i].setup_done = false;
dlb2->num_ports = 0;
dlb2->num_ldb_ports = 0;
dlb2->num_dir_ports = 0;
dlb2->num_queues = 0;
dlb2->num_ldb_queues = 0;
dlb2->num_dir_queues = 0;
dlb2->configured = false;
}
/* Note: 1 QM instance per QM device, QM instance/device == event device */
static int
dlb2_eventdev_configure(const struct rte_eventdev *dev)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_hw_rsrcs *rsrcs = &handle->info.hw_rsrc_max;
const struct rte_eventdev_data *data = dev->data;
const struct rte_event_dev_config *config = &data->dev_conf;
int ret;
/* If this eventdev is already configured, we must release the current
* scheduling domain before attempting to configure a new one.
*/
if (dlb2->configured) {
dlb2_hw_reset_sched_domain(dev, true);
ret = dlb2_hw_query_resources(dlb2);
if (ret) {
DLB2_LOG_ERR("get resources err=%d, devid=%d\n",
ret, data->dev_id);
return ret;
}
}
if (config->nb_event_queues > rsrcs->num_queues) {
DLB2_LOG_ERR("nb_event_queues parameter (%d) exceeds the QM device's capabilities (%d).\n",
config->nb_event_queues,
rsrcs->num_queues);
return -EINVAL;
}
if (config->nb_event_ports > (rsrcs->num_ldb_ports
+ rsrcs->num_dir_ports)) {
DLB2_LOG_ERR("nb_event_ports parameter (%d) exceeds the QM device's capabilities (%d).\n",
config->nb_event_ports,
(rsrcs->num_ldb_ports + rsrcs->num_dir_ports));
return -EINVAL;
}
if (config->nb_events_limit > rsrcs->nb_events_limit) {
DLB2_LOG_ERR("nb_events_limit parameter (%d) exceeds the QM device's capabilities (%d).\n",
config->nb_events_limit,
rsrcs->nb_events_limit);
return -EINVAL;
}
if (config->event_dev_cfg & RTE_EVENT_DEV_CFG_PER_DEQUEUE_TIMEOUT)
dlb2->global_dequeue_wait = false;
else {
uint32_t timeout32;
dlb2->global_dequeue_wait = true;
/* note size mismatch of timeout vals in eventdev lib. */
timeout32 = config->dequeue_timeout_ns;
dlb2->global_dequeue_wait_ticks =
timeout32 * (rte_get_timer_hz() / 1E9);
}
/* Does this platform support umonitor/umwait? */
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_WAITPKG))
dlb2->umwait_allowed = true;
rsrcs->num_dir_ports = config->nb_single_link_event_port_queues;
rsrcs->num_ldb_ports = config->nb_event_ports - rsrcs->num_dir_ports;
/* 1 dir queue per dir port */
rsrcs->num_ldb_queues = config->nb_event_queues - rsrcs->num_dir_ports;
if (dlb2->version == DLB2_HW_V2_5) {
rsrcs->num_credits = 0;
if (rsrcs->num_ldb_queues || rsrcs->num_dir_ports)
rsrcs->num_credits = config->nb_events_limit;
} else {
/* Scale down nb_events_limit by 4 for directed credits,
* since there are 4x as many load-balanced credits.
*/
rsrcs->num_ldb_credits = 0;
rsrcs->num_dir_credits = 0;
if (rsrcs->num_ldb_queues)
rsrcs->num_ldb_credits = config->nb_events_limit;
if (rsrcs->num_dir_ports)
rsrcs->num_dir_credits = config->nb_events_limit / 2;
if (dlb2->num_dir_credits_override != -1)
rsrcs->num_dir_credits = dlb2->num_dir_credits_override;
}
if (dlb2_hw_create_sched_domain(handle, rsrcs, dlb2->version) < 0) {
DLB2_LOG_ERR("dlb2_hw_create_sched_domain failed\n");
return -ENODEV;
}
dlb2->new_event_limit = config->nb_events_limit;
__atomic_store_n(&dlb2->inflights, 0, __ATOMIC_SEQ_CST);
/* Save number of ports/queues for this event dev */
dlb2->num_ports = config->nb_event_ports;
dlb2->num_queues = config->nb_event_queues;
dlb2->num_dir_ports = rsrcs->num_dir_ports;
dlb2->num_ldb_ports = dlb2->num_ports - dlb2->num_dir_ports;
dlb2->num_ldb_queues = dlb2->num_queues - dlb2->num_dir_ports;
dlb2->num_dir_queues = dlb2->num_dir_ports;
if (dlb2->version == DLB2_HW_V2_5) {
dlb2->credit_pool = rsrcs->num_credits;
dlb2->max_credits = rsrcs->num_credits;
} else {
dlb2->ldb_credit_pool = rsrcs->num_ldb_credits;
dlb2->max_ldb_credits = rsrcs->num_ldb_credits;
dlb2->dir_credit_pool = rsrcs->num_dir_credits;
dlb2->max_dir_credits = rsrcs->num_dir_credits;
}
dlb2->configured = true;
return 0;
}
static void
dlb2_eventdev_port_default_conf_get(struct rte_eventdev *dev,
uint8_t port_id,
struct rte_event_port_conf *port_conf)
{
RTE_SET_USED(port_id);
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
port_conf->new_event_threshold = dlb2->new_event_limit;
port_conf->dequeue_depth = 32;
port_conf->enqueue_depth = DLB2_MAX_ENQUEUE_DEPTH;
port_conf->event_port_cfg = 0;
}
static void
dlb2_eventdev_queue_default_conf_get(struct rte_eventdev *dev,
uint8_t queue_id,
struct rte_event_queue_conf *queue_conf)
{
RTE_SET_USED(dev);
RTE_SET_USED(queue_id);
queue_conf->nb_atomic_flows = 1024;
queue_conf->nb_atomic_order_sequences = 64;
queue_conf->event_queue_cfg = 0;
queue_conf->priority = 0;
}
static int32_t
dlb2_get_sn_allocation(struct dlb2_eventdev *dlb2, int group)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_get_sn_allocation_args cfg;
int ret;
cfg.group = group;
ret = dlb2_iface_get_sn_allocation(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: get_sn_allocation ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return ret;
}
return cfg.response.id;
}
static int
dlb2_set_sn_allocation(struct dlb2_eventdev *dlb2, int group, int num)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_set_sn_allocation_args cfg;
int ret;
cfg.num = num;
cfg.group = group;
ret = dlb2_iface_set_sn_allocation(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: set_sn_allocation ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return ret;
}
return ret;
}
static int32_t
dlb2_get_sn_occupancy(struct dlb2_eventdev *dlb2, int group)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_get_sn_occupancy_args cfg;
int ret;
cfg.group = group;
ret = dlb2_iface_get_sn_occupancy(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: get_sn_occupancy ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return ret;
}
return cfg.response.id;
}
/* Query the current sequence number allocations and, if they conflict with the
* requested LDB queue configuration, attempt to re-allocate sequence numbers.
* This is best-effort; if it fails, the PMD will attempt to configure the
* load-balanced queue and return an error.
*/
static void
dlb2_program_sn_allocation(struct dlb2_eventdev *dlb2,
const struct rte_event_queue_conf *queue_conf)
{
int grp_occupancy[DLB2_NUM_SN_GROUPS];
int grp_alloc[DLB2_NUM_SN_GROUPS];
int i, sequence_numbers;
sequence_numbers = (int)queue_conf->nb_atomic_order_sequences;
for (i = 0; i < DLB2_NUM_SN_GROUPS; i++) {
int total_slots;
grp_alloc[i] = dlb2_get_sn_allocation(dlb2, i);
if (grp_alloc[i] < 0)
return;
total_slots = DLB2_MAX_LDB_SN_ALLOC / grp_alloc[i];
grp_occupancy[i] = dlb2_get_sn_occupancy(dlb2, i);
if (grp_occupancy[i] < 0)
return;
/* DLB has at least one available slot for the requested
* sequence numbers, so no further configuration required.
*/
if (grp_alloc[i] == sequence_numbers &&
grp_occupancy[i] < total_slots)
return;
}
/* None of the sequence number groups are configured for the requested
* sequence numbers, so we have to reconfigure one of them. This is
* only possible if a group is not in use.
*/
for (i = 0; i < DLB2_NUM_SN_GROUPS; i++) {
if (grp_occupancy[i] == 0)
break;
}
if (i == DLB2_NUM_SN_GROUPS) {
DLB2_LOG_ERR("[%s()] No groups with %d sequence_numbers are available or have free slots\n",
__func__, sequence_numbers);
return;
}
/* Attempt to configure slot i with the requested number of sequence
* numbers. Ignore the return value -- if this fails, the error will be
* caught during subsequent queue configuration.
*/
dlb2_set_sn_allocation(dlb2, i, sequence_numbers);
}
static int32_t
dlb2_hw_create_ldb_queue(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_queue *ev_queue,
const struct rte_event_queue_conf *evq_conf)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_queue *queue = &ev_queue->qm_queue;
struct dlb2_create_ldb_queue_args cfg;
int32_t ret;
uint32_t qm_qid;
int sched_type = -1;
if (evq_conf == NULL)
return -EINVAL;
if (evq_conf->event_queue_cfg & RTE_EVENT_QUEUE_CFG_ALL_TYPES) {
if (evq_conf->nb_atomic_order_sequences != 0)
sched_type = RTE_SCHED_TYPE_ORDERED;
else
sched_type = RTE_SCHED_TYPE_PARALLEL;
} else
sched_type = evq_conf->schedule_type;
cfg.num_atomic_inflights = DLB2_NUM_ATOMIC_INFLIGHTS_PER_QUEUE;
cfg.num_sequence_numbers = evq_conf->nb_atomic_order_sequences;
cfg.num_qid_inflights = evq_conf->nb_atomic_order_sequences;
if (sched_type != RTE_SCHED_TYPE_ORDERED) {
cfg.num_sequence_numbers = 0;
cfg.num_qid_inflights = 2048;
}
/* App should set this to the number of hardware flows they want, not
* the overall number of flows they're going to use. E.g. if app is
* using 64 flows and sets compression to 64, best-case they'll get
* 64 unique hashed flows in hardware.
*/
switch (evq_conf->nb_atomic_flows) {
/* Valid DLB2 compression levels */
case 64:
case 128:
case 256:
case 512:
case (1 * 1024): /* 1K */
case (2 * 1024): /* 2K */
case (4 * 1024): /* 4K */
case (64 * 1024): /* 64K */
cfg.lock_id_comp_level = evq_conf->nb_atomic_flows;
break;
default:
/* Invalid compression level */
cfg.lock_id_comp_level = 0; /* no compression */
}
if (ev_queue->depth_threshold == 0) {
cfg.depth_threshold = dlb2->default_depth_thresh;
ev_queue->depth_threshold =
dlb2->default_depth_thresh;
} else
cfg.depth_threshold = ev_queue->depth_threshold;
ret = dlb2_iface_ldb_queue_create(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: create LB event queue error, ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return -EINVAL;
}
qm_qid = cfg.response.id;
/* Save off queue config for debug, resource lookups, and reconfig */
queue->num_qid_inflights = cfg.num_qid_inflights;
queue->num_atm_inflights = cfg.num_atomic_inflights;
queue->sched_type = sched_type;
queue->config_state = DLB2_CONFIGURED;
DLB2_LOG_DBG("Created LB event queue %d, nb_inflights=%d, nb_seq=%d, qid inflights=%d\n",
qm_qid,
cfg.num_atomic_inflights,
cfg.num_sequence_numbers,
cfg.num_qid_inflights);
return qm_qid;
}
static int
dlb2_eventdev_ldb_queue_setup(struct rte_eventdev *dev,
struct dlb2_eventdev_queue *ev_queue,
const struct rte_event_queue_conf *queue_conf)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
int32_t qm_qid;
if (queue_conf->nb_atomic_order_sequences)
dlb2_program_sn_allocation(dlb2, queue_conf);
qm_qid = dlb2_hw_create_ldb_queue(dlb2, ev_queue, queue_conf);
if (qm_qid < 0) {
DLB2_LOG_ERR("Failed to create the load-balanced queue\n");
return qm_qid;
}
dlb2->qm_ldb_to_ev_queue_id[qm_qid] = ev_queue->id;
ev_queue->qm_queue.id = qm_qid;
return 0;
}
static int dlb2_num_dir_queues_setup(struct dlb2_eventdev *dlb2)
{
int i, num = 0;
for (i = 0; i < dlb2->num_queues; i++) {
if (dlb2->ev_queues[i].setup_done &&
dlb2->ev_queues[i].qm_queue.is_directed)
num++;
}
return num;
}
static void
dlb2_queue_link_teardown(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_queue *ev_queue)
{
struct dlb2_eventdev_port *ev_port;
int i, j;
for (i = 0; i < dlb2->num_ports; i++) {
ev_port = &dlb2->ev_ports[i];
for (j = 0; j < DLB2_MAX_NUM_QIDS_PER_LDB_CQ; j++) {
if (!ev_port->link[j].valid ||
ev_port->link[j].queue_id != ev_queue->id)
continue;
ev_port->link[j].valid = false;
ev_port->num_links--;
}
}
ev_queue->num_links = 0;
}
static int
dlb2_eventdev_queue_setup(struct rte_eventdev *dev,
uint8_t ev_qid,
const struct rte_event_queue_conf *queue_conf)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
struct dlb2_eventdev_queue *ev_queue;
int ret;
if (queue_conf == NULL)
return -EINVAL;
if (ev_qid >= dlb2->num_queues)
return -EINVAL;
ev_queue = &dlb2->ev_queues[ev_qid];
ev_queue->qm_queue.is_directed = queue_conf->event_queue_cfg &
RTE_EVENT_QUEUE_CFG_SINGLE_LINK;
ev_queue->id = ev_qid;
ev_queue->conf = *queue_conf;
if (!ev_queue->qm_queue.is_directed) {
ret = dlb2_eventdev_ldb_queue_setup(dev, ev_queue, queue_conf);
} else {
/* The directed queue isn't setup until link time, at which
* point we know its directed port ID. Directed queue setup
* will only fail if this queue is already setup or there are
* no directed queues left to configure.
*/
ret = 0;
ev_queue->qm_queue.config_state = DLB2_NOT_CONFIGURED;
if (ev_queue->setup_done ||
dlb2_num_dir_queues_setup(dlb2) == dlb2->num_dir_queues)
ret = -EINVAL;
}
/* Tear down pre-existing port->queue links */
if (!ret && dlb2->run_state == DLB2_RUN_STATE_STOPPED)
dlb2_queue_link_teardown(dlb2, ev_queue);
if (!ret)
ev_queue->setup_done = true;
return ret;
}
static int
dlb2_init_consume_qe(struct dlb2_port *qm_port, char *mz_name)
{
struct dlb2_cq_pop_qe *qe;
qe = rte_zmalloc(mz_name,
DLB2_NUM_QES_PER_CACHE_LINE *
sizeof(struct dlb2_cq_pop_qe),
RTE_CACHE_LINE_SIZE);
if (qe == NULL) {
DLB2_LOG_ERR("dlb2: no memory for consume_qe\n");
return -ENOMEM;
}
qm_port->consume_qe = qe;
qe->qe_valid = 0;
qe->qe_frag = 0;
qe->qe_comp = 0;
qe->cq_token = 1;
/* Tokens value is 0-based; i.e. '0' returns 1 token, '1' returns 2,
* and so on.
*/
qe->tokens = 0; /* set at run time */
qe->meas_lat = 0;
qe->no_dec = 0;
/* Completion IDs are disabled */
qe->cmp_id = 0;
return 0;
}
static int
dlb2_init_int_arm_qe(struct dlb2_port *qm_port, char *mz_name)
{
struct dlb2_enqueue_qe *qe;
qe = rte_zmalloc(mz_name,
DLB2_NUM_QES_PER_CACHE_LINE *
sizeof(struct dlb2_enqueue_qe),
RTE_CACHE_LINE_SIZE);
if (qe == NULL) {
DLB2_LOG_ERR("dlb2: no memory for complete_qe\n");
return -ENOMEM;
}
qm_port->int_arm_qe = qe;
/* V2 - INT ARM is CQ_TOKEN + FRAG */
qe->qe_valid = 0;
qe->qe_frag = 1;
qe->qe_comp = 0;
qe->cq_token = 1;
qe->meas_lat = 0;
qe->no_dec = 0;
/* Completion IDs are disabled */
qe->cmp_id = 0;
return 0;
}
static int
dlb2_init_qe_mem(struct dlb2_port *qm_port, char *mz_name)
{
int ret, sz;
sz = DLB2_NUM_QES_PER_CACHE_LINE * sizeof(struct dlb2_enqueue_qe);
qm_port->qe4 = rte_zmalloc(mz_name, sz, RTE_CACHE_LINE_SIZE);
if (qm_port->qe4 == NULL) {
DLB2_LOG_ERR("dlb2: no qe4 memory\n");
ret = -ENOMEM;
goto error_exit;
}
ret = dlb2_init_int_arm_qe(qm_port, mz_name);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: dlb2_init_int_arm_qe ret=%d\n", ret);
goto error_exit;
}
ret = dlb2_init_consume_qe(qm_port, mz_name);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: dlb2_init_consume_qe ret=%d\n", ret);
goto error_exit;
}
return 0;
error_exit:
dlb2_free_qe_mem(qm_port);
return ret;
}
static inline uint16_t
dlb2_event_enqueue_delayed(void *event_port,
const struct rte_event events[]);
static inline uint16_t
dlb2_event_enqueue_burst_delayed(void *event_port,
const struct rte_event events[],
uint16_t num);
static inline uint16_t
dlb2_event_enqueue_new_burst_delayed(void *event_port,
const struct rte_event events[],
uint16_t num);
static inline uint16_t
dlb2_event_enqueue_forward_burst_delayed(void *event_port,
const struct rte_event events[],
uint16_t num);
/* Generate the required bitmask for rotate-style expected QE gen bits.
* This requires a pattern of 1's and zeros, starting with expected as
* 1 bits, so when hardware writes 0's they're "new". This requires the
* ring size to be powers of 2 to wrap correctly.
*/
static void
dlb2_hw_cq_bitmask_init(struct dlb2_port *qm_port, uint32_t cq_depth)
{
uint64_t cq_build_mask = 0;
uint32_t i;
if (cq_depth > 64)
return; /* need to fall back to scalar code */
/*
* all 1's in first u64, all zeros in second is correct bit pattern to
* start. Special casing == 64 easier than adapting complex loop logic.
*/
if (cq_depth == 64) {
qm_port->cq_rolling_mask = 0;
qm_port->cq_rolling_mask_2 = -1;
return;
}
for (i = 0; i < 64; i += (cq_depth * 2))
cq_build_mask |= ((1ULL << cq_depth) - 1) << (i + cq_depth);
qm_port->cq_rolling_mask = cq_build_mask;
qm_port->cq_rolling_mask_2 = cq_build_mask;
}
static int
dlb2_hw_create_ldb_port(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port,
uint32_t dequeue_depth,
uint32_t enqueue_depth)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_create_ldb_port_args cfg = { {0} };
int ret;
struct dlb2_port *qm_port = NULL;
char mz_name[RTE_MEMZONE_NAMESIZE];
uint32_t qm_port_id;
uint16_t ldb_credit_high_watermark = 0;
uint16_t dir_credit_high_watermark = 0;
uint16_t credit_high_watermark = 0;
if (handle == NULL)
return -EINVAL;
if (dequeue_depth < DLB2_MIN_CQ_DEPTH) {
DLB2_LOG_ERR("dlb2: invalid enqueue_depth, must be at least %d\n",
DLB2_MIN_CQ_DEPTH);
return -EINVAL;
}
if (enqueue_depth < DLB2_MIN_ENQUEUE_DEPTH) {
DLB2_LOG_ERR("dlb2: invalid enqueue_depth, must be at least %d\n",
DLB2_MIN_ENQUEUE_DEPTH);
return -EINVAL;
}
rte_spinlock_lock(&handle->resource_lock);
/* We round up to the next power of 2 if necessary */
cfg.cq_depth = rte_align32pow2(dequeue_depth);
cfg.cq_depth_threshold = 1;
cfg.cq_history_list_size = cfg.cq_depth;
if (handle->cos_id == DLB2_COS_DEFAULT)
cfg.cos_id = 0;
else
cfg.cos_id = handle->cos_id;
cfg.cos_strict = 0;
/* User controls the LDB high watermark via enqueue depth. The DIR high
* watermark is equal, unless the directed credit pool is too small.
*/
if (dlb2->version == DLB2_HW_V2) {
ldb_credit_high_watermark = enqueue_depth;
/* If there are no directed ports, the kernel driver will
* ignore this port's directed credit settings. Don't use
* enqueue_depth if it would require more directed credits
* than are available.
*/
dir_credit_high_watermark =
RTE_MIN(enqueue_depth,
handle->cfg.num_dir_credits / dlb2->num_ports);
} else
credit_high_watermark = enqueue_depth;
/* Per QM values */
ret = dlb2_iface_ldb_port_create(handle, &cfg, dlb2->poll_mode);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: dlb2_ldb_port_create error, ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
goto error_exit;
}
qm_port_id = cfg.response.id;
DLB2_LOG_DBG("dlb2: ev_port %d uses qm LB port %d <<<<<\n",
ev_port->id, qm_port_id);
qm_port = &ev_port->qm_port;
qm_port->ev_port = ev_port; /* back ptr */
qm_port->dlb2 = dlb2; /* back ptr */
/*
* Allocate and init local qe struct(s).
* Note: MOVDIR64 requires the enqueue QE (qe4) to be aligned.
*/
snprintf(mz_name, sizeof(mz_name), "dlb2_ldb_port%d",
ev_port->id);
ret = dlb2_init_qe_mem(qm_port, mz_name);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: init_qe_mem failed, ret=%d\n", ret);
goto error_exit;
}
qm_port->id = qm_port_id;
if (dlb2->version == DLB2_HW_V2) {
qm_port->cached_ldb_credits = 0;
qm_port->cached_dir_credits = 0;
} else
qm_port->cached_credits = 0;
/* CQs with depth < 8 use an 8-entry queue, but withhold credits so
* the effective depth is smaller.
*/
qm_port->cq_depth = cfg.cq_depth <= 8 ? 8 : cfg.cq_depth;
qm_port->cq_idx = 0;
qm_port->cq_idx_unmasked = 0;
if (dlb2->poll_mode == DLB2_CQ_POLL_MODE_SPARSE)
qm_port->cq_depth_mask = (qm_port->cq_depth * 4) - 1;
else
qm_port->cq_depth_mask = qm_port->cq_depth - 1;
qm_port->gen_bit_shift = __builtin_popcount(qm_port->cq_depth_mask);
/* starting value of gen bit - it toggles at wrap time */
qm_port->gen_bit = 1;
dlb2_hw_cq_bitmask_init(qm_port, qm_port->cq_depth);
qm_port->int_armed = false;
/* Save off for later use in info and lookup APIs. */
qm_port->qid_mappings = &dlb2->qm_ldb_to_ev_queue_id[0];
qm_port->dequeue_depth = dequeue_depth;
qm_port->token_pop_thresh = dequeue_depth;
/* The default enqueue functions do not include delayed-pop support for
* performance reasons.
*/
if (qm_port->token_pop_mode == DELAYED_POP) {
dlb2->event_dev->enqueue = dlb2_event_enqueue_delayed;
dlb2->event_dev->enqueue_burst =
dlb2_event_enqueue_burst_delayed;
dlb2->event_dev->enqueue_new_burst =
dlb2_event_enqueue_new_burst_delayed;
dlb2->event_dev->enqueue_forward_burst =
dlb2_event_enqueue_forward_burst_delayed;
}
qm_port->owed_tokens = 0;
qm_port->issued_releases = 0;
/* Save config message too. */
rte_memcpy(&qm_port->cfg.ldb, &cfg, sizeof(qm_port->cfg.ldb));
/* update state */
qm_port->state = PORT_STARTED; /* enabled at create time */
qm_port->config_state = DLB2_CONFIGURED;
if (dlb2->version == DLB2_HW_V2) {
qm_port->dir_credits = dir_credit_high_watermark;
qm_port->ldb_credits = ldb_credit_high_watermark;
qm_port->credit_pool[DLB2_DIR_QUEUE] = &dlb2->dir_credit_pool;
qm_port->credit_pool[DLB2_LDB_QUEUE] = &dlb2->ldb_credit_pool;
DLB2_LOG_DBG("dlb2: created ldb port %d, depth = %d, ldb credits=%d, dir credits=%d\n",
qm_port_id,
dequeue_depth,
qm_port->ldb_credits,
qm_port->dir_credits);
} else {
qm_port->credits = credit_high_watermark;
qm_port->credit_pool[DLB2_COMBINED_POOL] = &dlb2->credit_pool;
DLB2_LOG_DBG("dlb2: created ldb port %d, depth = %d, credits=%d\n",
qm_port_id,
dequeue_depth,
qm_port->credits);
}
qm_port->use_scalar = false;
#if (!defined RTE_ARCH_X86_64)
qm_port->use_scalar = true;
#else
if ((qm_port->cq_depth > 64) ||
(!rte_is_power_of_2(qm_port->cq_depth)) ||
(dlb2->vector_opts_enabled == false))
qm_port->use_scalar = true;
#endif
rte_spinlock_unlock(&handle->resource_lock);
return 0;
error_exit:
if (qm_port)
dlb2_free_qe_mem(qm_port);
rte_spinlock_unlock(&handle->resource_lock);
DLB2_LOG_ERR("dlb2: create ldb port failed!\n");
return ret;
}
static void
dlb2_port_link_teardown(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port)
{
struct dlb2_eventdev_queue *ev_queue;
int i;
for (i = 0; i < DLB2_MAX_NUM_QIDS_PER_LDB_CQ; i++) {
if (!ev_port->link[i].valid)
continue;
ev_queue = &dlb2->ev_queues[ev_port->link[i].queue_id];
ev_port->link[i].valid = false;
ev_port->num_links--;
ev_queue->num_links--;
}
}
static int
dlb2_hw_create_dir_port(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port,
uint32_t dequeue_depth,
uint32_t enqueue_depth)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_create_dir_port_args cfg = { {0} };
int ret;
struct dlb2_port *qm_port = NULL;
char mz_name[RTE_MEMZONE_NAMESIZE];
uint32_t qm_port_id;
uint16_t ldb_credit_high_watermark = 0;
uint16_t dir_credit_high_watermark = 0;
uint16_t credit_high_watermark = 0;
if (dlb2 == NULL || handle == NULL)
return -EINVAL;
if (dequeue_depth < DLB2_MIN_CQ_DEPTH) {
DLB2_LOG_ERR("dlb2: invalid dequeue_depth, must be %d-%d\n",
DLB2_MIN_CQ_DEPTH, DLB2_MAX_INPUT_QUEUE_DEPTH);
return -EINVAL;
}
if (enqueue_depth < DLB2_MIN_ENQUEUE_DEPTH) {
DLB2_LOG_ERR("dlb2: invalid enqueue_depth, must be at least %d\n",
DLB2_MIN_ENQUEUE_DEPTH);
return -EINVAL;
}
rte_spinlock_lock(&handle->resource_lock);
/* Directed queues are configured at link time. */
cfg.queue_id = -1;
/* We round up to the next power of 2 if necessary */
cfg.cq_depth = rte_align32pow2(dequeue_depth);
cfg.cq_depth_threshold = 1;
/* User controls the LDB high watermark via enqueue depth. The DIR high
* watermark is equal, unless the directed credit pool is too small.
*/
if (dlb2->version == DLB2_HW_V2) {
ldb_credit_high_watermark = enqueue_depth;
/* Don't use enqueue_depth if it would require more directed
* credits than are available.
*/
dir_credit_high_watermark =
RTE_MIN(enqueue_depth,
handle->cfg.num_dir_credits / dlb2->num_ports);
} else
credit_high_watermark = enqueue_depth;
/* Per QM values */
ret = dlb2_iface_dir_port_create(handle, &cfg, dlb2->poll_mode);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: dlb2_dir_port_create error, ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
goto error_exit;
}
qm_port_id = cfg.response.id;
DLB2_LOG_DBG("dlb2: ev_port %d uses qm DIR port %d <<<<<\n",
ev_port->id, qm_port_id);
qm_port = &ev_port->qm_port;
qm_port->ev_port = ev_port; /* back ptr */
qm_port->dlb2 = dlb2; /* back ptr */
/*
* Init local qe struct(s).
* Note: MOVDIR64 requires the enqueue QE to be aligned
*/
snprintf(mz_name, sizeof(mz_name), "dlb2_dir_port%d",
ev_port->id);
ret = dlb2_init_qe_mem(qm_port, mz_name);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: init_qe_mem failed, ret=%d\n", ret);
goto error_exit;
}
qm_port->id = qm_port_id;
if (dlb2->version == DLB2_HW_V2) {
qm_port->cached_ldb_credits = 0;
qm_port->cached_dir_credits = 0;
} else
qm_port->cached_credits = 0;
/* CQs with depth < 8 use an 8-entry queue, but withhold credits so
* the effective depth is smaller.
*/
qm_port->cq_depth = cfg.cq_depth <= 8 ? 8 : cfg.cq_depth;
qm_port->cq_idx = 0;
qm_port->cq_idx_unmasked = 0;
if (dlb2->poll_mode == DLB2_CQ_POLL_MODE_SPARSE)
qm_port->cq_depth_mask = (cfg.cq_depth * 4) - 1;
else
qm_port->cq_depth_mask = cfg.cq_depth - 1;
qm_port->gen_bit_shift = __builtin_popcount(qm_port->cq_depth_mask);
/* starting value of gen bit - it toggles at wrap time */
qm_port->gen_bit = 1;
dlb2_hw_cq_bitmask_init(qm_port, qm_port->cq_depth);
qm_port->int_armed = false;
/* Save off for later use in info and lookup APIs. */
qm_port->qid_mappings = &dlb2->qm_dir_to_ev_queue_id[0];
qm_port->dequeue_depth = dequeue_depth;
/* Directed ports are auto-pop, by default. */
qm_port->token_pop_mode = AUTO_POP;
qm_port->owed_tokens = 0;
qm_port->issued_releases = 0;
/* Save config message too. */
rte_memcpy(&qm_port->cfg.dir, &cfg, sizeof(qm_port->cfg.dir));
/* update state */
qm_port->state = PORT_STARTED; /* enabled at create time */
qm_port->config_state = DLB2_CONFIGURED;
if (dlb2->version == DLB2_HW_V2) {
qm_port->dir_credits = dir_credit_high_watermark;
qm_port->ldb_credits = ldb_credit_high_watermark;
qm_port->credit_pool[DLB2_DIR_QUEUE] = &dlb2->dir_credit_pool;
qm_port->credit_pool[DLB2_LDB_QUEUE] = &dlb2->ldb_credit_pool;
DLB2_LOG_DBG("dlb2: created dir port %d, depth = %d cr=%d,%d\n",
qm_port_id,
dequeue_depth,
dir_credit_high_watermark,
ldb_credit_high_watermark);
} else {
qm_port->credits = credit_high_watermark;
qm_port->credit_pool[DLB2_COMBINED_POOL] = &dlb2->credit_pool;
DLB2_LOG_DBG("dlb2: created dir port %d, depth = %d cr=%d\n",
qm_port_id,
dequeue_depth,
credit_high_watermark);
}
#if (!defined RTE_ARCH_X86_64)
qm_port->use_scalar = true;
#else
if ((qm_port->cq_depth > 64) ||
(!rte_is_power_of_2(qm_port->cq_depth)) ||
(dlb2->vector_opts_enabled == false))
qm_port->use_scalar = true;
#endif
rte_spinlock_unlock(&handle->resource_lock);
return 0;
error_exit:
if (qm_port)
dlb2_free_qe_mem(qm_port);
rte_spinlock_unlock(&handle->resource_lock);
DLB2_LOG_ERR("dlb2: create dir port failed!\n");
return ret;
}
static int
dlb2_eventdev_port_setup(struct rte_eventdev *dev,
uint8_t ev_port_id,
const struct rte_event_port_conf *port_conf)
{
struct dlb2_eventdev *dlb2;
struct dlb2_eventdev_port *ev_port;
int ret;
uint32_t hw_credit_quanta, sw_credit_quanta;
if (dev == NULL || port_conf == NULL) {
DLB2_LOG_ERR("Null parameter\n");
return -EINVAL;
}
dlb2 = dlb2_pmd_priv(dev);
if (ev_port_id >= DLB2_MAX_NUM_PORTS(dlb2->version))
return -EINVAL;
if (port_conf->dequeue_depth >
evdev_dlb2_default_info.max_event_port_dequeue_depth ||
port_conf->enqueue_depth >
evdev_dlb2_default_info.max_event_port_enqueue_depth)
return -EINVAL;
ev_port = &dlb2->ev_ports[ev_port_id];
/* configured? */
if (ev_port->setup_done) {
DLB2_LOG_ERR("evport %d is already configured\n", ev_port_id);
return -EINVAL;
}
ev_port->qm_port.is_directed = port_conf->event_port_cfg &
RTE_EVENT_PORT_CFG_SINGLE_LINK;
if (!ev_port->qm_port.is_directed) {
ret = dlb2_hw_create_ldb_port(dlb2,
ev_port,
port_conf->dequeue_depth,
port_conf->enqueue_depth);
if (ret < 0) {
DLB2_LOG_ERR("Failed to create the lB port ve portId=%d\n",
ev_port_id);
return ret;
}
} else {
ret = dlb2_hw_create_dir_port(dlb2,
ev_port,
port_conf->dequeue_depth,
port_conf->enqueue_depth);
if (ret < 0) {
DLB2_LOG_ERR("Failed to create the DIR port\n");
return ret;
}
}
/* Save off port config for reconfig */
ev_port->conf = *port_conf;
ev_port->id = ev_port_id;
ev_port->enq_configured = true;
ev_port->setup_done = true;
ev_port->inflight_max = port_conf->new_event_threshold;
ev_port->implicit_release = !(port_conf->event_port_cfg &
RTE_EVENT_PORT_CFG_DISABLE_IMPL_REL);
ev_port->outstanding_releases = 0;
ev_port->inflight_credits = 0;
ev_port->dlb2 = dlb2; /* reverse link */
/* Default for worker ports */
sw_credit_quanta = dlb2->sw_credit_quanta;
hw_credit_quanta = dlb2->hw_credit_quanta;
if (port_conf->event_port_cfg & RTE_EVENT_PORT_CFG_HINT_PRODUCER) {
/* Producer type ports. Mostly enqueue */
sw_credit_quanta = DLB2_SW_CREDIT_P_QUANTA_DEFAULT;
hw_credit_quanta = DLB2_SW_CREDIT_P_BATCH_SZ;
}
if (port_conf->event_port_cfg & RTE_EVENT_PORT_CFG_HINT_CONSUMER) {
/* Consumer type ports. Mostly dequeue */
sw_credit_quanta = DLB2_SW_CREDIT_C_QUANTA_DEFAULT;
hw_credit_quanta = DLB2_SW_CREDIT_C_BATCH_SZ;
}
ev_port->credit_update_quanta = sw_credit_quanta;
ev_port->qm_port.hw_credit_quanta = hw_credit_quanta;
/* Tear down pre-existing port->queue links */
if (dlb2->run_state == DLB2_RUN_STATE_STOPPED)
dlb2_port_link_teardown(dlb2, &dlb2->ev_ports[ev_port_id]);
dev->data->ports[ev_port_id] = &dlb2->ev_ports[ev_port_id];
return 0;
}
static int16_t
dlb2_hw_map_ldb_qid_to_port(struct dlb2_hw_dev *handle,
uint32_t qm_port_id,
uint16_t qm_qid,
uint8_t priority)
{
struct dlb2_map_qid_args cfg;
int32_t ret;
if (handle == NULL)
return -EINVAL;
/* Build message */
cfg.port_id = qm_port_id;
cfg.qid = qm_qid;
cfg.priority = EV_TO_DLB2_PRIO(priority);
ret = dlb2_iface_map_qid(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: map qid error, ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
DLB2_LOG_ERR("dlb2: grp=%d, qm_port=%d, qm_qid=%d prio=%d\n",
handle->domain_id, cfg.port_id,
cfg.qid,
cfg.priority);
} else {
DLB2_LOG_DBG("dlb2: mapped queue %d to qm_port %d\n",
qm_qid, qm_port_id);
}
return ret;
}
static int
dlb2_event_queue_join_ldb(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port,
struct dlb2_eventdev_queue *ev_queue,
uint8_t priority)
{
int first_avail = -1;
int ret, i;
for (i = 0; i < DLB2_MAX_NUM_QIDS_PER_LDB_CQ; i++) {
if (ev_port->link[i].valid) {
if (ev_port->link[i].queue_id == ev_queue->id &&
ev_port->link[i].priority == priority) {
if (ev_port->link[i].mapped)
return 0; /* already mapped */
first_avail = i;
}
} else if (first_avail == -1)
first_avail = i;
}
if (first_avail == -1) {
DLB2_LOG_ERR("dlb2: qm_port %d has no available QID slots.\n",
ev_port->qm_port.id);
return -EINVAL;
}
ret = dlb2_hw_map_ldb_qid_to_port(&dlb2->qm_instance,
ev_port->qm_port.id,
ev_queue->qm_queue.id,
priority);
if (!ret)
ev_port->link[first_avail].mapped = true;
return ret;
}
static int32_t
dlb2_hw_create_dir_queue(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_queue *ev_queue,
int32_t qm_port_id)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_create_dir_queue_args cfg;
int32_t ret;
/* The directed port is always configured before its queue */
cfg.port_id = qm_port_id;
if (ev_queue->depth_threshold == 0) {
cfg.depth_threshold = dlb2->default_depth_thresh;
ev_queue->depth_threshold =
dlb2->default_depth_thresh;
} else
cfg.depth_threshold = ev_queue->depth_threshold;
ret = dlb2_iface_dir_queue_create(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: create DIR event queue error, ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return -EINVAL;
}
return cfg.response.id;
}
static int
dlb2_eventdev_dir_queue_setup(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_queue *ev_queue,
struct dlb2_eventdev_port *ev_port)
{
int32_t qm_qid;
qm_qid = dlb2_hw_create_dir_queue(dlb2, ev_queue, ev_port->qm_port.id);
if (qm_qid < 0) {
DLB2_LOG_ERR("Failed to create the DIR queue\n");
return qm_qid;
}
dlb2->qm_dir_to_ev_queue_id[qm_qid] = ev_queue->id;
ev_queue->qm_queue.id = qm_qid;
return 0;
}
static int
dlb2_do_port_link(struct rte_eventdev *dev,
struct dlb2_eventdev_queue *ev_queue,
struct dlb2_eventdev_port *ev_port,
uint8_t prio)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
int err;
/* Don't link until start time. */
if (dlb2->run_state == DLB2_RUN_STATE_STOPPED)
return 0;
if (ev_queue->qm_queue.is_directed)
err = dlb2_eventdev_dir_queue_setup(dlb2, ev_queue, ev_port);
else
err = dlb2_event_queue_join_ldb(dlb2, ev_port, ev_queue, prio);
if (err) {
DLB2_LOG_ERR("port link failure for %s ev_q %d, ev_port %d\n",
ev_queue->qm_queue.is_directed ? "DIR" : "LDB",
ev_queue->id, ev_port->id);
rte_errno = err;
return -1;
}
return 0;
}
static int
dlb2_validate_port_link(struct dlb2_eventdev_port *ev_port,
uint8_t queue_id,
bool link_exists,
int index)
{
struct dlb2_eventdev *dlb2 = ev_port->dlb2;
struct dlb2_eventdev_queue *ev_queue;
bool port_is_dir, queue_is_dir;
if (queue_id > dlb2->num_queues) {
rte_errno = -EINVAL;
return -1;
}
ev_queue = &dlb2->ev_queues[queue_id];
if (!ev_queue->setup_done &&
ev_queue->qm_queue.config_state != DLB2_PREV_CONFIGURED) {
rte_errno = -EINVAL;
return -1;
}
port_is_dir = ev_port->qm_port.is_directed;
queue_is_dir = ev_queue->qm_queue.is_directed;
if (port_is_dir != queue_is_dir) {
DLB2_LOG_ERR("%s queue %u can't link to %s port %u\n",
queue_is_dir ? "DIR" : "LDB", ev_queue->id,
port_is_dir ? "DIR" : "LDB", ev_port->id);
rte_errno = -EINVAL;
return -1;
}
/* Check if there is space for the requested link */
if (!link_exists && index == -1) {
DLB2_LOG_ERR("no space for new link\n");
rte_errno = -ENOSPC;
return -1;
}
/* Check if the directed port is already linked */
if (ev_port->qm_port.is_directed && ev_port->num_links > 0 &&
!link_exists) {
DLB2_LOG_ERR("Can't link DIR port %d to >1 queues\n",
ev_port->id);
rte_errno = -EINVAL;
return -1;
}
/* Check if the directed queue is already linked */
if (ev_queue->qm_queue.is_directed && ev_queue->num_links > 0 &&
!link_exists) {
DLB2_LOG_ERR("Can't link DIR queue %d to >1 ports\n",
ev_queue->id);
rte_errno = -EINVAL;
return -1;
}
return 0;
}
static int
dlb2_eventdev_port_link(struct rte_eventdev *dev, void *event_port,
const uint8_t queues[], const uint8_t priorities[],
uint16_t nb_links)
{
struct dlb2_eventdev_port *ev_port = event_port;
struct dlb2_eventdev *dlb2;
int i, j;
RTE_SET_USED(dev);
if (ev_port == NULL) {
DLB2_LOG_ERR("dlb2: evport not setup\n");
rte_errno = -EINVAL;
return 0;
}
if (!ev_port->setup_done &&
ev_port->qm_port.config_state != DLB2_PREV_CONFIGURED) {
DLB2_LOG_ERR("dlb2: evport not setup\n");
rte_errno = -EINVAL;
return 0;
}
/* Note: rte_event_port_link() ensures the PMD won't receive a NULL
* queues pointer.
*/
if (nb_links == 0) {
DLB2_LOG_DBG("dlb2: nb_links is 0\n");
return 0; /* Ignore and return success */
}
dlb2 = ev_port->dlb2;
DLB2_LOG_DBG("Linking %u queues to %s port %d\n",
nb_links,
ev_port->qm_port.is_directed ? "DIR" : "LDB",
ev_port->id);
for (i = 0; i < nb_links; i++) {
struct dlb2_eventdev_queue *ev_queue;
uint8_t queue_id, prio;
bool found = false;
int index = -1;
queue_id = queues[i];
prio = priorities[i];
/* Check if the link already exists. */
for (j = 0; j < DLB2_MAX_NUM_QIDS_PER_LDB_CQ; j++)
if (ev_port->link[j].valid) {
if (ev_port->link[j].queue_id == queue_id) {
found = true;
index = j;
break;
}
} else if (index == -1) {
index = j;
}
/* could not link */
if (index == -1)
break;
/* Check if already linked at the requested priority */
if (found && ev_port->link[j].priority == prio)
continue;
if (dlb2_validate_port_link(ev_port, queue_id, found, index))
break; /* return index of offending queue */
ev_queue = &dlb2->ev_queues[queue_id];
if (dlb2_do_port_link(dev, ev_queue, ev_port, prio))
break; /* return index of offending queue */
ev_queue->num_links++;
ev_port->link[index].queue_id = queue_id;
ev_port->link[index].priority = prio;
ev_port->link[index].valid = true;
/* Entry already exists? If so, then must be prio change */
if (!found)
ev_port->num_links++;
}
return i;
}
static int16_t
dlb2_hw_unmap_ldb_qid_from_port(struct dlb2_hw_dev *handle,
uint32_t qm_port_id,
uint16_t qm_qid)
{
struct dlb2_unmap_qid_args cfg;
int32_t ret;
if (handle == NULL)
return -EINVAL;
cfg.port_id = qm_port_id;
cfg.qid = qm_qid;
ret = dlb2_iface_unmap_qid(handle, &cfg);
if (ret < 0)
DLB2_LOG_ERR("dlb2: unmap qid error, ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return ret;
}
static int
dlb2_event_queue_detach_ldb(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port,
struct dlb2_eventdev_queue *ev_queue)
{
int ret, i;
/* Don't unlink until start time. */
if (dlb2->run_state == DLB2_RUN_STATE_STOPPED)
return 0;
for (i = 0; i < DLB2_MAX_NUM_QIDS_PER_LDB_CQ; i++) {
if (ev_port->link[i].valid &&
ev_port->link[i].queue_id == ev_queue->id)
break; /* found */
}
/* This is expected with eventdev API!
* It blindly attempts to unmap all queues.
*/
if (i == DLB2_MAX_NUM_QIDS_PER_LDB_CQ) {
DLB2_LOG_DBG("dlb2: ignoring LB QID %d not mapped for qm_port %d.\n",
ev_queue->qm_queue.id,
ev_port->qm_port.id);
return 0;
}
ret = dlb2_hw_unmap_ldb_qid_from_port(&dlb2->qm_instance,
ev_port->qm_port.id,
ev_queue->qm_queue.id);
if (!ret)
ev_port->link[i].mapped = false;
return ret;
}
static int
dlb2_eventdev_port_unlink(struct rte_eventdev *dev, void *event_port,
uint8_t queues[], uint16_t nb_unlinks)
{
struct dlb2_eventdev_port *ev_port = event_port;
struct dlb2_eventdev *dlb2;
int i;
RTE_SET_USED(dev);
if (!ev_port->setup_done) {
DLB2_LOG_ERR("dlb2: evport %d is not configured\n",
ev_port->id);
rte_errno = -EINVAL;
return 0;
}
if (queues == NULL || nb_unlinks == 0) {
DLB2_LOG_DBG("dlb2: queues is NULL or nb_unlinks is 0\n");
return 0; /* Ignore and return success */
}
if (ev_port->qm_port.is_directed) {
DLB2_LOG_DBG("dlb2: ignore unlink from dir port %d\n",
ev_port->id);
rte_errno = 0;
return nb_unlinks; /* as if success */
}
dlb2 = ev_port->dlb2;
for (i = 0; i < nb_unlinks; i++) {
struct dlb2_eventdev_queue *ev_queue;
int ret, j;
if (queues[i] >= dlb2->num_queues) {
DLB2_LOG_ERR("dlb2: invalid queue id %d\n", queues[i]);
rte_errno = -EINVAL;
return i; /* return index of offending queue */
}
ev_queue = &dlb2->ev_queues[queues[i]];
/* Does a link exist? */
for (j = 0; j < DLB2_MAX_NUM_QIDS_PER_LDB_CQ; j++)
if (ev_port->link[j].queue_id == queues[i] &&
ev_port->link[j].valid)
break;
if (j == DLB2_MAX_NUM_QIDS_PER_LDB_CQ)
continue;
ret = dlb2_event_queue_detach_ldb(dlb2, ev_port, ev_queue);
if (ret) {
DLB2_LOG_ERR("unlink err=%d for port %d queue %d\n",
ret, ev_port->id, queues[i]);
rte_errno = -ENOENT;
return i; /* return index of offending queue */
}
ev_port->link[j].valid = false;
ev_port->num_links--;
ev_queue->num_links--;
}
return nb_unlinks;
}
static int
dlb2_eventdev_port_unlinks_in_progress(struct rte_eventdev *dev,
void *event_port)
{
struct dlb2_eventdev_port *ev_port = event_port;
struct dlb2_eventdev *dlb2;
struct dlb2_hw_dev *handle;
struct dlb2_pending_port_unmaps_args cfg;
int ret;
RTE_SET_USED(dev);
if (!ev_port->setup_done) {
DLB2_LOG_ERR("dlb2: evport %d is not configured\n",
ev_port->id);
rte_errno = -EINVAL;
return 0;
}
cfg.port_id = ev_port->qm_port.id;
dlb2 = ev_port->dlb2;
handle = &dlb2->qm_instance;
ret = dlb2_iface_pending_port_unmaps(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: num_unlinks_in_progress ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return ret;
}
return cfg.response.id;
}
static int
dlb2_eventdev_reapply_configuration(struct rte_eventdev *dev)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
int ret, i;
/* If an event queue or port was previously configured, but hasn't been
* reconfigured, reapply its original configuration.
*/
for (i = 0; i < dlb2->num_queues; i++) {
struct dlb2_eventdev_queue *ev_queue;
ev_queue = &dlb2->ev_queues[i];
if (ev_queue->qm_queue.config_state != DLB2_PREV_CONFIGURED)
continue;
ret = dlb2_eventdev_queue_setup(dev, i, &ev_queue->conf);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: failed to reconfigure queue %d", i);
return ret;
}
}
for (i = 0; i < dlb2->num_ports; i++) {
struct dlb2_eventdev_port *ev_port = &dlb2->ev_ports[i];
if (ev_port->qm_port.config_state != DLB2_PREV_CONFIGURED)
continue;
ret = dlb2_eventdev_port_setup(dev, i, &ev_port->conf);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: failed to reconfigure ev_port %d",
i);
return ret;
}
}
return 0;
}
static int
dlb2_eventdev_apply_port_links(struct rte_eventdev *dev)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
int i;
/* Perform requested port->queue links */
for (i = 0; i < dlb2->num_ports; i++) {
struct dlb2_eventdev_port *ev_port = &dlb2->ev_ports[i];
int j;
for (j = 0; j < DLB2_MAX_NUM_QIDS_PER_LDB_CQ; j++) {
struct dlb2_eventdev_queue *ev_queue;
uint8_t prio, queue_id;
if (!ev_port->link[j].valid)
continue;
prio = ev_port->link[j].priority;
queue_id = ev_port->link[j].queue_id;
if (dlb2_validate_port_link(ev_port, queue_id, true, j))
return -EINVAL;
ev_queue = &dlb2->ev_queues[queue_id];
if (dlb2_do_port_link(dev, ev_queue, ev_port, prio))
return -EINVAL;
}
}
return 0;
}
static int
dlb2_eventdev_start(struct rte_eventdev *dev)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_start_domain_args cfg;
int ret, i;
rte_spinlock_lock(&dlb2->qm_instance.resource_lock);
if (dlb2->run_state != DLB2_RUN_STATE_STOPPED) {
DLB2_LOG_ERR("bad state %d for dev_start\n",
(int)dlb2->run_state);
rte_spinlock_unlock(&dlb2->qm_instance.resource_lock);
return -EINVAL;
}
dlb2->run_state = DLB2_RUN_STATE_STARTING;
rte_spinlock_unlock(&dlb2->qm_instance.resource_lock);
/* If the device was configured more than once, some event ports and/or
* queues may need to be reconfigured.
*/
ret = dlb2_eventdev_reapply_configuration(dev);
if (ret)
return ret;
/* The DLB PMD delays port links until the device is started. */
ret = dlb2_eventdev_apply_port_links(dev);
if (ret)
return ret;
for (i = 0; i < dlb2->num_ports; i++) {
if (!dlb2->ev_ports[i].setup_done) {
DLB2_LOG_ERR("dlb2: port %d not setup", i);
return -ESTALE;
}
}
for (i = 0; i < dlb2->num_queues; i++) {
if (dlb2->ev_queues[i].num_links == 0) {
DLB2_LOG_ERR("dlb2: queue %d is not linked", i);
return -ENOLINK;
}
}
ret = dlb2_iface_sched_domain_start(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: sched_domain_start ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return ret;
}
dlb2->run_state = DLB2_RUN_STATE_STARTED;
DLB2_LOG_DBG("dlb2: sched_domain_start completed OK\n");
return 0;
}
static uint8_t cmd_byte_map[DLB2_NUM_PORT_TYPES][DLB2_NUM_HW_SCHED_TYPES] = {
{
/* Load-balanced cmd bytes */
[RTE_EVENT_OP_NEW] = DLB2_NEW_CMD_BYTE,
[RTE_EVENT_OP_FORWARD] = DLB2_FWD_CMD_BYTE,
[RTE_EVENT_OP_RELEASE] = DLB2_COMP_CMD_BYTE,
},
{
/* Directed cmd bytes */
[RTE_EVENT_OP_NEW] = DLB2_NEW_CMD_BYTE,
[RTE_EVENT_OP_FORWARD] = DLB2_NEW_CMD_BYTE,
[RTE_EVENT_OP_RELEASE] = DLB2_NOOP_CMD_BYTE,
},
};
static inline uint32_t
dlb2_port_credits_get(struct dlb2_port *qm_port,
enum dlb2_hw_queue_types type)
{
uint32_t credits = *qm_port->credit_pool[type];
/* By default hw_credit_quanta is DLB2_SW_CREDIT_BATCH_SZ */
uint32_t batch_size = qm_port->hw_credit_quanta;
if (unlikely(credits < batch_size))
batch_size = credits;
if (likely(credits &&
__atomic_compare_exchange_n(
qm_port->credit_pool[type],
&credits, credits - batch_size, false,
__ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)))
return batch_size;
else
return 0;
}
static inline void
dlb2_replenish_sw_credits(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port)
{
uint16_t quanta = ev_port->credit_update_quanta;
if (ev_port->inflight_credits >= quanta * 2) {
/* Replenish credits, saving one quanta for enqueues */
uint16_t val = ev_port->inflight_credits - quanta;
__atomic_fetch_sub(&dlb2->inflights, val, __ATOMIC_SEQ_CST);
ev_port->inflight_credits -= val;
}
}
static inline int
dlb2_check_enqueue_sw_credits(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port)
{
uint32_t sw_inflights = __atomic_load_n(&dlb2->inflights,
__ATOMIC_SEQ_CST);
const int num = 1;
if (unlikely(ev_port->inflight_max < sw_inflights)) {
DLB2_INC_STAT(ev_port->stats.traffic.tx_nospc_inflight_max, 1);
rte_errno = -ENOSPC;
return 1;
}
if (ev_port->inflight_credits < num) {
/* check if event enqueue brings ev_port over max threshold */
uint32_t credit_update_quanta = ev_port->credit_update_quanta;
if (sw_inflights + credit_update_quanta >
dlb2->new_event_limit) {
DLB2_INC_STAT(
ev_port->stats.traffic.tx_nospc_new_event_limit,
1);
rte_errno = -ENOSPC;
return 1;
}
__atomic_fetch_add(&dlb2->inflights, credit_update_quanta,
__ATOMIC_SEQ_CST);
ev_port->inflight_credits += (credit_update_quanta);
if (ev_port->inflight_credits < num) {
DLB2_INC_STAT(
ev_port->stats.traffic.tx_nospc_inflight_credits,
1);
rte_errno = -ENOSPC;
return 1;
}
}
return 0;
}
static inline int
dlb2_check_enqueue_hw_ldb_credits(struct dlb2_port *qm_port)
{
if (unlikely(qm_port->cached_ldb_credits == 0)) {
qm_port->cached_ldb_credits =
dlb2_port_credits_get(qm_port,
DLB2_LDB_QUEUE);
if (unlikely(qm_port->cached_ldb_credits == 0)) {
DLB2_INC_STAT(
qm_port->ev_port->stats.traffic.tx_nospc_ldb_hw_credits,
1);
DLB2_LOG_DBG("ldb credits exhausted\n");
return 1; /* credits exhausted */
}
}
return 0;
}
static inline int
dlb2_check_enqueue_hw_dir_credits(struct dlb2_port *qm_port)
{
if (unlikely(qm_port->cached_dir_credits == 0)) {
qm_port->cached_dir_credits =
dlb2_port_credits_get(qm_port,
DLB2_DIR_QUEUE);
if (unlikely(qm_port->cached_dir_credits == 0)) {
DLB2_INC_STAT(
qm_port->ev_port->stats.traffic.tx_nospc_dir_hw_credits,
1);
DLB2_LOG_DBG("dir credits exhausted\n");
return 1; /* credits exhausted */
}
}
return 0;
}
static inline int
dlb2_check_enqueue_hw_credits(struct dlb2_port *qm_port)
{
if (unlikely(qm_port->cached_credits == 0)) {
qm_port->cached_credits =
dlb2_port_credits_get(qm_port,
DLB2_COMBINED_POOL);
if (unlikely(qm_port->cached_credits == 0)) {
DLB2_INC_STAT(
qm_port->ev_port->stats.traffic.tx_nospc_hw_credits, 1);
DLB2_LOG_DBG("credits exhausted\n");
return 1; /* credits exhausted */
}
}
return 0;
}
static __rte_always_inline void
dlb2_pp_write(struct dlb2_enqueue_qe *qe4,
struct process_local_port_data *port_data)
{
dlb2_movdir64b(port_data->pp_addr, qe4);
}
static inline int
dlb2_consume_qe_immediate(struct dlb2_port *qm_port, int num)
{
struct process_local_port_data *port_data;
struct dlb2_cq_pop_qe *qe;
RTE_ASSERT(qm_port->config_state == DLB2_CONFIGURED);
qe = qm_port->consume_qe;
qe->tokens = num - 1;
/* No store fence needed since no pointer is being sent, and CQ token
* pops can be safely reordered with other HCWs.
*/
port_data = &dlb2_port[qm_port->id][PORT_TYPE(qm_port)];
dlb2_movntdq_single(port_data->pp_addr, qe);
DLB2_LOG_DBG("dlb2: consume immediate - %d QEs\n", num);
qm_port->owed_tokens = 0;
return 0;
}
static inline void
dlb2_hw_do_enqueue(struct dlb2_port *qm_port,
bool do_sfence,
struct process_local_port_data *port_data)
{
/* Since MOVDIR64B is weakly-ordered, use an SFENCE to ensure that
* application writes complete before enqueueing the QE.
*/
if (do_sfence)
rte_wmb();
dlb2_pp_write(qm_port->qe4, port_data);
}
static inline void
dlb2_construct_token_pop_qe(struct dlb2_port *qm_port, int idx)
{
struct dlb2_cq_pop_qe *qe = (void *)qm_port->qe4;
int num = qm_port->owed_tokens;
qe[idx].cmd_byte = DLB2_POP_CMD_BYTE;
qe[idx].tokens = num - 1;
qm_port->owed_tokens = 0;
}
static inline void
dlb2_event_build_hcws(struct dlb2_port *qm_port,
const struct rte_event ev[],
int num,
uint8_t *sched_type,
uint8_t *queue_id)
{
struct dlb2_enqueue_qe *qe;
uint16_t sched_word[4];
__m128i sse_qe[2];
int i;
qe = qm_port->qe4;
sse_qe[0] = _mm_setzero_si128();
sse_qe[1] = _mm_setzero_si128();
switch (num) {
case 4:
/* Construct the metadata portion of two HCWs in one 128b SSE
* register. HCW metadata is constructed in the SSE registers
* like so:
* sse_qe[0][63:0]: qe[0]'s metadata
* sse_qe[0][127:64]: qe[1]'s metadata
* sse_qe[1][63:0]: qe[2]'s metadata
* sse_qe[1][127:64]: qe[3]'s metadata
*/
/* Convert the event operation into a command byte and store it
* in the metadata:
* sse_qe[0][63:56] = cmd_byte_map[is_directed][ev[0].op]
* sse_qe[0][127:120] = cmd_byte_map[is_directed][ev[1].op]
* sse_qe[1][63:56] = cmd_byte_map[is_directed][ev[2].op]
* sse_qe[1][127:120] = cmd_byte_map[is_directed][ev[3].op]
*/
#define DLB2_QE_CMD_BYTE 7
sse_qe[0] = _mm_insert_epi8(sse_qe[0],
cmd_byte_map[qm_port->is_directed][ev[0].op],
DLB2_QE_CMD_BYTE);
sse_qe[0] = _mm_insert_epi8(sse_qe[0],
cmd_byte_map[qm_port->is_directed][ev[1].op],
DLB2_QE_CMD_BYTE + 8);
sse_qe[1] = _mm_insert_epi8(sse_qe[1],
cmd_byte_map[qm_port->is_directed][ev[2].op],
DLB2_QE_CMD_BYTE);
sse_qe[1] = _mm_insert_epi8(sse_qe[1],
cmd_byte_map[qm_port->is_directed][ev[3].op],
DLB2_QE_CMD_BYTE + 8);
/* Store priority, scheduling type, and queue ID in the sched
* word array because these values are re-used when the
* destination is a directed queue.
*/
sched_word[0] = EV_TO_DLB2_PRIO(ev[0].priority) << 10 |
sched_type[0] << 8 |
queue_id[0];
sched_word[1] = EV_TO_DLB2_PRIO(ev[1].priority) << 10 |
sched_type[1] << 8 |
queue_id[1];
sched_word[2] = EV_TO_DLB2_PRIO(ev[2].priority) << 10 |
sched_type[2] << 8 |
queue_id[2];
sched_word[3] = EV_TO_DLB2_PRIO(ev[3].priority) << 10 |
sched_type[3] << 8 |
queue_id[3];
/* Store the event priority, scheduling type, and queue ID in
* the metadata:
* sse_qe[0][31:16] = sched_word[0]
* sse_qe[0][95:80] = sched_word[1]
* sse_qe[1][31:16] = sched_word[2]
* sse_qe[1][95:80] = sched_word[3]
*/
#define DLB2_QE_QID_SCHED_WORD 1
sse_qe[0] = _mm_insert_epi16(sse_qe[0],
sched_word[0],
DLB2_QE_QID_SCHED_WORD);
sse_qe[0] = _mm_insert_epi16(sse_qe[0],
sched_word[1],
DLB2_QE_QID_SCHED_WORD + 4);
sse_qe[1] = _mm_insert_epi16(sse_qe[1],
sched_word[2],
DLB2_QE_QID_SCHED_WORD);
sse_qe[1] = _mm_insert_epi16(sse_qe[1],
sched_word[3],
DLB2_QE_QID_SCHED_WORD + 4);
/* If the destination is a load-balanced queue, store the lock
* ID. If it is a directed queue, DLB places this field in
* bytes 10-11 of the received QE, so we format it accordingly:
* sse_qe[0][47:32] = dir queue ? sched_word[0] : flow_id[0]
* sse_qe[0][111:96] = dir queue ? sched_word[1] : flow_id[1]
* sse_qe[1][47:32] = dir queue ? sched_word[2] : flow_id[2]
* sse_qe[1][111:96] = dir queue ? sched_word[3] : flow_id[3]
*/
#define DLB2_QE_LOCK_ID_WORD 2
sse_qe[0] = _mm_insert_epi16(sse_qe[0],
(sched_type[0] == DLB2_SCHED_DIRECTED) ?
sched_word[0] : ev[0].flow_id,
DLB2_QE_LOCK_ID_WORD);
sse_qe[0] = _mm_insert_epi16(sse_qe[0],
(sched_type[1] == DLB2_SCHED_DIRECTED) ?
sched_word[1] : ev[1].flow_id,
DLB2_QE_LOCK_ID_WORD + 4);
sse_qe[1] = _mm_insert_epi16(sse_qe[1],
(sched_type[2] == DLB2_SCHED_DIRECTED) ?
sched_word[2] : ev[2].flow_id,
DLB2_QE_LOCK_ID_WORD);
sse_qe[1] = _mm_insert_epi16(sse_qe[1],
(sched_type[3] == DLB2_SCHED_DIRECTED) ?
sched_word[3] : ev[3].flow_id,
DLB2_QE_LOCK_ID_WORD + 4);
/* Store the event type and sub event type in the metadata:
* sse_qe[0][15:0] = flow_id[0]
* sse_qe[0][79:64] = flow_id[1]
* sse_qe[1][15:0] = flow_id[2]
* sse_qe[1][79:64] = flow_id[3]
*/
#define DLB2_QE_EV_TYPE_WORD 0
sse_qe[0] = _mm_insert_epi16(sse_qe[0],
ev[0].sub_event_type << 8 |
ev[0].event_type,
DLB2_QE_EV_TYPE_WORD);
sse_qe[0] = _mm_insert_epi16(sse_qe[0],
ev[1].sub_event_type << 8 |
ev[1].event_type,
DLB2_QE_EV_TYPE_WORD + 4);
sse_qe[1] = _mm_insert_epi16(sse_qe[1],
ev[2].sub_event_type << 8 |
ev[2].event_type,
DLB2_QE_EV_TYPE_WORD);
sse_qe[1] = _mm_insert_epi16(sse_qe[1],
ev[3].sub_event_type << 8 |
ev[3].event_type,
DLB2_QE_EV_TYPE_WORD + 4);
/* Store the metadata to memory (use the double-precision
* _mm_storeh_pd because there is no integer function for
* storing the upper 64b):
* qe[0] metadata = sse_qe[0][63:0]
* qe[1] metadata = sse_qe[0][127:64]
* qe[2] metadata = sse_qe[1][63:0]
* qe[3] metadata = sse_qe[1][127:64]
*/
_mm_storel_epi64((__m128i *)&qe[0].u.opaque_data, sse_qe[0]);
_mm_storeh_pd((double *)&qe[1].u.opaque_data,
(__m128d)sse_qe[0]);
_mm_storel_epi64((__m128i *)&qe[2].u.opaque_data, sse_qe[1]);
_mm_storeh_pd((double *)&qe[3].u.opaque_data,
(__m128d)sse_qe[1]);
qe[0].data = ev[0].u64;
qe[1].data = ev[1].u64;
qe[2].data = ev[2].u64;
qe[3].data = ev[3].u64;
break;
case 3:
case 2:
case 1:
for (i = 0; i < num; i++) {
qe[i].cmd_byte =
cmd_byte_map[qm_port->is_directed][ev[i].op];
qe[i].sched_type = sched_type[i];
qe[i].data = ev[i].u64;
qe[i].qid = queue_id[i];
qe[i].priority = EV_TO_DLB2_PRIO(ev[i].priority);
qe[i].lock_id = ev[i].flow_id;
if (sched_type[i] == DLB2_SCHED_DIRECTED) {
struct dlb2_msg_info *info =
(struct dlb2_msg_info *)&qe[i].lock_id;
info->qid = queue_id[i];
info->sched_type = DLB2_SCHED_DIRECTED;
info->priority = qe[i].priority;
}
qe[i].u.event_type.major = ev[i].event_type;
qe[i].u.event_type.sub = ev[i].sub_event_type;
}
break;
case 0:
break;
}
}
static inline int
dlb2_event_enqueue_prep(struct dlb2_eventdev_port *ev_port,
struct dlb2_port *qm_port,
const struct rte_event ev[],
uint8_t *sched_type,
uint8_t *queue_id)
{
struct dlb2_eventdev *dlb2 = ev_port->dlb2;
struct dlb2_eventdev_queue *ev_queue;
uint16_t *cached_credits = NULL;
struct dlb2_queue *qm_queue;
ev_queue = &dlb2->ev_queues[ev->queue_id];
qm_queue = &ev_queue->qm_queue;
*queue_id = qm_queue->id;
/* Ignore sched_type and hardware credits on release events */
if (ev->op == RTE_EVENT_OP_RELEASE)
goto op_check;
if (!qm_queue->is_directed) {
/* Load balanced destination queue */
if (dlb2->version == DLB2_HW_V2) {
if (dlb2_check_enqueue_hw_ldb_credits(qm_port)) {
rte_errno = -ENOSPC;
return 1;
}
cached_credits = &qm_port->cached_ldb_credits;
} else {
if (dlb2_check_enqueue_hw_credits(qm_port)) {
rte_errno = -ENOSPC;
return 1;
}
cached_credits = &qm_port->cached_credits;
}
switch (ev->sched_type) {
case RTE_SCHED_TYPE_ORDERED:
DLB2_LOG_DBG("dlb2: put_qe: RTE_SCHED_TYPE_ORDERED\n");
if (qm_queue->sched_type != RTE_SCHED_TYPE_ORDERED) {
DLB2_LOG_ERR("dlb2: tried to send ordered event to unordered queue %d\n",
*queue_id);
rte_errno = -EINVAL;
return 1;
}
*sched_type = DLB2_SCHED_ORDERED;
break;
case RTE_SCHED_TYPE_ATOMIC:
DLB2_LOG_DBG("dlb2: put_qe: RTE_SCHED_TYPE_ATOMIC\n");
*sched_type = DLB2_SCHED_ATOMIC;
break;
case RTE_SCHED_TYPE_PARALLEL:
DLB2_LOG_DBG("dlb2: put_qe: RTE_SCHED_TYPE_PARALLEL\n");
if (qm_queue->sched_type == RTE_SCHED_TYPE_ORDERED)
*sched_type = DLB2_SCHED_ORDERED;
else
*sched_type = DLB2_SCHED_UNORDERED;
break;
default:
DLB2_LOG_ERR("Unsupported LDB sched type in put_qe\n");
DLB2_INC_STAT(ev_port->stats.tx_invalid, 1);
rte_errno = -EINVAL;
return 1;
}
} else {
/* Directed destination queue */
if (dlb2->version == DLB2_HW_V2) {
if (dlb2_check_enqueue_hw_dir_credits(qm_port)) {
rte_errno = -ENOSPC;
return 1;
}
cached_credits = &qm_port->cached_dir_credits;
} else {
if (dlb2_check_enqueue_hw_credits(qm_port)) {
rte_errno = -ENOSPC;
return 1;
}
cached_credits = &qm_port->cached_credits;
}
DLB2_LOG_DBG("dlb2: put_qe: RTE_SCHED_TYPE_DIRECTED\n");
*sched_type = DLB2_SCHED_DIRECTED;
}
op_check:
switch (ev->op) {
case RTE_EVENT_OP_NEW:
/* Check that a sw credit is available */
if (dlb2_check_enqueue_sw_credits(dlb2, ev_port)) {
rte_errno = -ENOSPC;
return 1;
}
ev_port->inflight_credits--;
(*cached_credits)--;
break;
case RTE_EVENT_OP_FORWARD:
/* Check for outstanding_releases underflow. If this occurs,
* the application is not using the EVENT_OPs correctly; for
* example, forwarding or releasing events that were not
* dequeued.
*/
RTE_ASSERT(ev_port->outstanding_releases > 0);
ev_port->outstanding_releases--;
qm_port->issued_releases++;
(*cached_credits)--;
break;
case RTE_EVENT_OP_RELEASE:
ev_port->inflight_credits++;
/* Check for outstanding_releases underflow. If this occurs,
* the application is not using the EVENT_OPs correctly; for
* example, forwarding or releasing events that were not
* dequeued.
*/
RTE_ASSERT(ev_port->outstanding_releases > 0);
ev_port->outstanding_releases--;
qm_port->issued_releases++;
/* Replenish s/w credits if enough are cached */
dlb2_replenish_sw_credits(dlb2, ev_port);
break;
}
DLB2_INC_STAT(ev_port->stats.tx_op_cnt[ev->op], 1);
DLB2_INC_STAT(ev_port->stats.traffic.tx_ok, 1);
#ifndef RTE_LIBRTE_PMD_DLB_QUELL_STATS
if (ev->op != RTE_EVENT_OP_RELEASE) {
DLB2_INC_STAT(ev_port->stats.queue[ev->queue_id].enq_ok, 1);
DLB2_INC_STAT(ev_port->stats.tx_sched_cnt[*sched_type], 1);
}
#endif
return 0;
}
static inline uint16_t
__dlb2_event_enqueue_burst(void *event_port,
const struct rte_event events[],
uint16_t num,
bool use_delayed)
{
struct dlb2_eventdev_port *ev_port = event_port;
struct dlb2_port *qm_port = &ev_port->qm_port;
struct process_local_port_data *port_data;
int num_tx;
int i;
RTE_ASSERT(ev_port->enq_configured);
RTE_ASSERT(events != NULL);
i = 0;
port_data = &dlb2_port[qm_port->id][PORT_TYPE(qm_port)];
num_tx = RTE_MIN(num, ev_port->conf.enqueue_depth);
while (i < num_tx) {
uint8_t sched_types[DLB2_NUM_QES_PER_CACHE_LINE];
uint8_t queue_ids[DLB2_NUM_QES_PER_CACHE_LINE];
int pop_offs = 0;
int j = 0;
memset(qm_port->qe4,
0,
DLB2_NUM_QES_PER_CACHE_LINE *
sizeof(struct dlb2_enqueue_qe));
for (; j < DLB2_NUM_QES_PER_CACHE_LINE && (i + j) < num; j++) {
const struct rte_event *ev = &events[i + j];
int16_t thresh = qm_port->token_pop_thresh;
if (use_delayed &&
qm_port->token_pop_mode == DELAYED_POP &&
(ev->op == RTE_EVENT_OP_FORWARD ||
ev->op == RTE_EVENT_OP_RELEASE) &&
qm_port->issued_releases >= thresh - 1) {
/* Insert the token pop QE and break out. This
* may result in a partial HCW, but that is
* simpler than supporting arbitrary QE
* insertion.
*/
dlb2_construct_token_pop_qe(qm_port, j);
/* Reset the releases for the next QE batch */
qm_port->issued_releases -= thresh;
pop_offs = 1;
j++;
break;
}
if (dlb2_event_enqueue_prep(ev_port, qm_port, ev,
&sched_types[j],
&queue_ids[j]))
break;
}
if (j == 0)
break;
dlb2_event_build_hcws(qm_port, &events[i], j - pop_offs,
sched_types, queue_ids);
dlb2_hw_do_enqueue(qm_port, i == 0, port_data);
/* Don't include the token pop QE in the enqueue count */
i += j - pop_offs;
/* Don't interpret j < DLB2_NUM_... as out-of-credits if
* pop_offs != 0
*/
if (j < DLB2_NUM_QES_PER_CACHE_LINE && pop_offs == 0)
break;
}
return i;
}
static uint16_t
dlb2_event_enqueue_burst(void *event_port,
const struct rte_event events[],
uint16_t num)
{
return __dlb2_event_enqueue_burst(event_port, events, num, false);
}
static uint16_t
dlb2_event_enqueue_burst_delayed(void *event_port,
const struct rte_event events[],
uint16_t num)
{
return __dlb2_event_enqueue_burst(event_port, events, num, true);
}
static inline uint16_t
dlb2_event_enqueue(void *event_port,
const struct rte_event events[])
{
return __dlb2_event_enqueue_burst(event_port, events, 1, false);
}
static inline uint16_t
dlb2_event_enqueue_delayed(void *event_port,
const struct rte_event events[])
{
return __dlb2_event_enqueue_burst(event_port, events, 1, true);
}
static uint16_t
dlb2_event_enqueue_new_burst(void *event_port,
const struct rte_event events[],
uint16_t num)
{
return __dlb2_event_enqueue_burst(event_port, events, num, false);
}
static uint16_t
dlb2_event_enqueue_new_burst_delayed(void *event_port,
const struct rte_event events[],
uint16_t num)
{
return __dlb2_event_enqueue_burst(event_port, events, num, true);
}
static uint16_t
dlb2_event_enqueue_forward_burst(void *event_port,
const struct rte_event events[],
uint16_t num)
{
return __dlb2_event_enqueue_burst(event_port, events, num, false);
}
static uint16_t
dlb2_event_enqueue_forward_burst_delayed(void *event_port,
const struct rte_event events[],
uint16_t num)
{
return __dlb2_event_enqueue_burst(event_port, events, num, true);
}
static void
dlb2_event_release(struct dlb2_eventdev *dlb2,
uint8_t port_id,
int n)
{
struct process_local_port_data *port_data;
struct dlb2_eventdev_port *ev_port;
struct dlb2_port *qm_port;
int i;
if (port_id > dlb2->num_ports) {
DLB2_LOG_ERR("Invalid port id %d in dlb2-event_release\n",
port_id);
rte_errno = -EINVAL;
return;
}
ev_port = &dlb2->ev_ports[port_id];
qm_port = &ev_port->qm_port;
port_data = &dlb2_port[qm_port->id][PORT_TYPE(qm_port)];
i = 0;
if (qm_port->is_directed) {
i = n;
goto sw_credit_update;
}
while (i < n) {
int pop_offs = 0;
int j = 0;
/* Zero-out QEs */
_mm_storeu_si128((void *)&qm_port->qe4[0], _mm_setzero_si128());
_mm_storeu_si128((void *)&qm_port->qe4[1], _mm_setzero_si128());
_mm_storeu_si128((void *)&qm_port->qe4[2], _mm_setzero_si128());
_mm_storeu_si128((void *)&qm_port->qe4[3], _mm_setzero_si128());
for (; j < DLB2_NUM_QES_PER_CACHE_LINE && (i + j) < n; j++) {
int16_t thresh = qm_port->token_pop_thresh;
if (qm_port->token_pop_mode == DELAYED_POP &&
qm_port->issued_releases >= thresh - 1) {
/* Insert the token pop QE */
dlb2_construct_token_pop_qe(qm_port, j);
/* Reset the releases for the next QE batch */
qm_port->issued_releases -= thresh;
pop_offs = 1;
j++;
break;
}
qm_port->qe4[j].cmd_byte = DLB2_COMP_CMD_BYTE;
qm_port->issued_releases++;
}
dlb2_hw_do_enqueue(qm_port, i == 0, port_data);
/* Don't include the token pop QE in the release count */
i += j - pop_offs;
}
sw_credit_update:
/* each release returns one credit */
if (unlikely(!ev_port->outstanding_releases)) {
DLB2_LOG_ERR("%s: Outstanding releases underflowed.\n",
__func__);
return;
}
ev_port->outstanding_releases -= i;
ev_port->inflight_credits += i;
/* Replenish s/w credits if enough releases are performed */
dlb2_replenish_sw_credits(dlb2, ev_port);
}
static inline void
dlb2_port_credits_inc(struct dlb2_port *qm_port, int num)
{
uint32_t batch_size = qm_port->hw_credit_quanta;
/* increment port credits, and return to pool if exceeds threshold */
if (!qm_port->is_directed) {
if (qm_port->dlb2->version == DLB2_HW_V2) {
qm_port->cached_ldb_credits += num;
if (qm_port->cached_ldb_credits >= 2 * batch_size) {
__atomic_fetch_add(
qm_port->credit_pool[DLB2_LDB_QUEUE],
batch_size, __ATOMIC_SEQ_CST);
qm_port->cached_ldb_credits -= batch_size;
}
} else {
qm_port->cached_credits += num;
if (qm_port->cached_credits >= 2 * batch_size) {
__atomic_fetch_add(
qm_port->credit_pool[DLB2_COMBINED_POOL],
batch_size, __ATOMIC_SEQ_CST);
qm_port->cached_credits -= batch_size;
}
}
} else {
if (qm_port->dlb2->version == DLB2_HW_V2) {
qm_port->cached_dir_credits += num;
if (qm_port->cached_dir_credits >= 2 * batch_size) {
__atomic_fetch_add(
qm_port->credit_pool[DLB2_DIR_QUEUE],
batch_size, __ATOMIC_SEQ_CST);
qm_port->cached_dir_credits -= batch_size;
}
} else {
qm_port->cached_credits += num;
if (qm_port->cached_credits >= 2 * batch_size) {
__atomic_fetch_add(
qm_port->credit_pool[DLB2_COMBINED_POOL],
batch_size, __ATOMIC_SEQ_CST);
qm_port->cached_credits -= batch_size;
}
}
}
}
#define CLB_MASK_IDX 0
#define CLB_VAL_IDX 1
static int
dlb2_monitor_callback(const uint64_t val,
const uint64_t opaque[RTE_POWER_MONITOR_OPAQUE_SZ])
{
/* abort if the value matches */
return (val & opaque[CLB_MASK_IDX]) == opaque[CLB_VAL_IDX] ? -1 : 0;
}
static inline int
dlb2_dequeue_wait(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port,
struct dlb2_port *qm_port,
uint64_t timeout,
uint64_t start_ticks)
{
struct process_local_port_data *port_data;
uint64_t elapsed_ticks;
port_data = &dlb2_port[qm_port->id][PORT_TYPE(qm_port)];
elapsed_ticks = rte_get_timer_cycles() - start_ticks;
/* Wait/poll time expired */
if (elapsed_ticks >= timeout) {
return 1;
} else if (dlb2->umwait_allowed) {
struct rte_power_monitor_cond pmc;
volatile struct dlb2_dequeue_qe *cq_base;
union {
uint64_t raw_qe[2];
struct dlb2_dequeue_qe qe;
} qe_mask;
uint64_t expected_value;
volatile uint64_t *monitor_addr;
qe_mask.qe.cq_gen = 1; /* set mask */
cq_base = port_data->cq_base;
monitor_addr = (volatile uint64_t *)(volatile void *)
&cq_base[qm_port->cq_idx];
monitor_addr++; /* cq_gen bit is in second 64bit location */
if (qm_port->gen_bit)
expected_value = qe_mask.raw_qe[1];
else
expected_value = 0;
pmc.addr = monitor_addr;
/* store expected value and comparison mask in opaque data */
pmc.opaque[CLB_VAL_IDX] = expected_value;
pmc.opaque[CLB_MASK_IDX] = qe_mask.raw_qe[1];
/* set up callback */
pmc.fn = dlb2_monitor_callback;
pmc.size = sizeof(uint64_t);
rte_power_monitor(&pmc, timeout + start_ticks);
DLB2_INC_STAT(ev_port->stats.traffic.rx_umonitor_umwait, 1);
} else {
uint64_t poll_interval = dlb2->poll_interval;
uint64_t curr_ticks = rte_get_timer_cycles();
uint64_t init_ticks = curr_ticks;
while ((curr_ticks - start_ticks < timeout) &&
(curr_ticks - init_ticks < poll_interval))
curr_ticks = rte_get_timer_cycles();
}
return 0;
}
static __rte_noinline int
dlb2_process_dequeue_qes(struct dlb2_eventdev_port *ev_port,
struct dlb2_port *qm_port,
struct rte_event *events,
struct dlb2_dequeue_qe *qes,
int cnt)
{
uint8_t *qid_mappings = qm_port->qid_mappings;
int i, num, evq_id;
for (i = 0, num = 0; i < cnt; i++) {
struct dlb2_dequeue_qe *qe = &qes[i];
int sched_type_map[DLB2_NUM_HW_SCHED_TYPES] = {
[DLB2_SCHED_ATOMIC] = RTE_SCHED_TYPE_ATOMIC,
[DLB2_SCHED_UNORDERED] = RTE_SCHED_TYPE_PARALLEL,
[DLB2_SCHED_ORDERED] = RTE_SCHED_TYPE_ORDERED,
[DLB2_SCHED_DIRECTED] = RTE_SCHED_TYPE_ATOMIC,
};
/* Fill in event information.
* Note that flow_id must be embedded in the data by
* the app, such as the mbuf RSS hash field if the data
* buffer is a mbuf.
*/
if (unlikely(qe->error)) {
DLB2_LOG_ERR("QE error bit ON\n");
DLB2_INC_STAT(ev_port->stats.traffic.rx_drop, 1);
dlb2_consume_qe_immediate(qm_port, 1);
continue; /* Ignore */
}
events[num].u64 = qe->data;
events[num].flow_id = qe->flow_id;
events[num].priority = DLB2_TO_EV_PRIO((uint8_t)qe->priority);
events[num].event_type = qe->u.event_type.major;
events[num].sub_event_type = qe->u.event_type.sub;
events[num].sched_type = sched_type_map[qe->sched_type];
events[num].impl_opaque = qe->qid_depth;
/* qid not preserved for directed queues */
if (qm_port->is_directed)
evq_id = ev_port->link[0].queue_id;
else
evq_id = qid_mappings[qe->qid];
events[num].queue_id = evq_id;
DLB2_INC_STAT(
ev_port->stats.queue[evq_id].qid_depth[qe->qid_depth],
1);
DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qe->sched_type], 1);
num++;
}
DLB2_INC_STAT(ev_port->stats.traffic.rx_ok, num);
return num;
}
static inline int
dlb2_process_dequeue_four_qes(struct dlb2_eventdev_port *ev_port,
struct dlb2_port *qm_port,
struct rte_event *events,
struct dlb2_dequeue_qe *qes)
{
int sched_type_map[] = {
[DLB2_SCHED_ATOMIC] = RTE_SCHED_TYPE_ATOMIC,
[DLB2_SCHED_UNORDERED] = RTE_SCHED_TYPE_PARALLEL,
[DLB2_SCHED_ORDERED] = RTE_SCHED_TYPE_ORDERED,
[DLB2_SCHED_DIRECTED] = RTE_SCHED_TYPE_ATOMIC,
};
const int num_events = DLB2_NUM_QES_PER_CACHE_LINE;
uint8_t *qid_mappings = qm_port->qid_mappings;
__m128i sse_evt[2];
/* In the unlikely case that any of the QE error bits are set, process
* them one at a time.
*/
if (unlikely(qes[0].error || qes[1].error ||
qes[2].error || qes[3].error))
return dlb2_process_dequeue_qes(ev_port, qm_port, events,
qes, num_events);
events[0].u64 = qes[0].data;
events[1].u64 = qes[1].data;
events[2].u64 = qes[2].data;
events[3].u64 = qes[3].data;
/* Construct the metadata portion of two struct rte_events
* in one 128b SSE register. Event metadata is constructed in the SSE
* registers like so:
* sse_evt[0][63:0]: event[0]'s metadata
* sse_evt[0][127:64]: event[1]'s metadata
* sse_evt[1][63:0]: event[2]'s metadata
* sse_evt[1][127:64]: event[3]'s metadata
*/
sse_evt[0] = _mm_setzero_si128();
sse_evt[1] = _mm_setzero_si128();
/* Convert the hardware queue ID to an event queue ID and store it in
* the metadata:
* sse_evt[0][47:40] = qid_mappings[qes[0].qid]
* sse_evt[0][111:104] = qid_mappings[qes[1].qid]
* sse_evt[1][47:40] = qid_mappings[qes[2].qid]
* sse_evt[1][111:104] = qid_mappings[qes[3].qid]
*/
#define DLB_EVENT_QUEUE_ID_BYTE 5
sse_evt[0] = _mm_insert_epi8(sse_evt[0],
qid_mappings[qes[0].qid],
DLB_EVENT_QUEUE_ID_BYTE);
sse_evt[0] = _mm_insert_epi8(sse_evt[0],
qid_mappings[qes[1].qid],
DLB_EVENT_QUEUE_ID_BYTE + 8);
sse_evt[1] = _mm_insert_epi8(sse_evt[1],
qid_mappings[qes[2].qid],
DLB_EVENT_QUEUE_ID_BYTE);
sse_evt[1] = _mm_insert_epi8(sse_evt[1],
qid_mappings[qes[3].qid],
DLB_EVENT_QUEUE_ID_BYTE + 8);
/* Convert the hardware priority to an event priority and store it in
* the metadata, while also returning the queue depth status
* value captured by the hardware, storing it in impl_opaque, which can
* be read by the application but not modified
* sse_evt[0][55:48] = DLB2_TO_EV_PRIO(qes[0].priority)
* sse_evt[0][63:56] = qes[0].qid_depth
* sse_evt[0][119:112] = DLB2_TO_EV_PRIO(qes[1].priority)
* sse_evt[0][127:120] = qes[1].qid_depth
* sse_evt[1][55:48] = DLB2_TO_EV_PRIO(qes[2].priority)
* sse_evt[1][63:56] = qes[2].qid_depth
* sse_evt[1][119:112] = DLB2_TO_EV_PRIO(qes[3].priority)
* sse_evt[1][127:120] = qes[3].qid_depth
*/
#define DLB_EVENT_PRIO_IMPL_OPAQUE_WORD 3
#define DLB_BYTE_SHIFT 8
sse_evt[0] =
_mm_insert_epi16(sse_evt[0],
DLB2_TO_EV_PRIO((uint8_t)qes[0].priority) |
(qes[0].qid_depth << DLB_BYTE_SHIFT),
DLB_EVENT_PRIO_IMPL_OPAQUE_WORD);
sse_evt[0] =
_mm_insert_epi16(sse_evt[0],
DLB2_TO_EV_PRIO((uint8_t)qes[1].priority) |
(qes[1].qid_depth << DLB_BYTE_SHIFT),
DLB_EVENT_PRIO_IMPL_OPAQUE_WORD + 4);
sse_evt[1] =
_mm_insert_epi16(sse_evt[1],
DLB2_TO_EV_PRIO((uint8_t)qes[2].priority) |
(qes[2].qid_depth << DLB_BYTE_SHIFT),
DLB_EVENT_PRIO_IMPL_OPAQUE_WORD);
sse_evt[1] =
_mm_insert_epi16(sse_evt[1],
DLB2_TO_EV_PRIO((uint8_t)qes[3].priority) |
(qes[3].qid_depth << DLB_BYTE_SHIFT),
DLB_EVENT_PRIO_IMPL_OPAQUE_WORD + 4);
/* Write the event type, sub event type, and flow_id to the event
* metadata.
* sse_evt[0][31:0] = qes[0].flow_id |
* qes[0].u.event_type.major << 28 |
* qes[0].u.event_type.sub << 20;
* sse_evt[0][95:64] = qes[1].flow_id |
* qes[1].u.event_type.major << 28 |
* qes[1].u.event_type.sub << 20;
* sse_evt[1][31:0] = qes[2].flow_id |
* qes[2].u.event_type.major << 28 |
* qes[2].u.event_type.sub << 20;
* sse_evt[1][95:64] = qes[3].flow_id |
* qes[3].u.event_type.major << 28 |
* qes[3].u.event_type.sub << 20;
*/
#define DLB_EVENT_EV_TYPE_DW 0
#define DLB_EVENT_EV_TYPE_SHIFT 28
#define DLB_EVENT_SUB_EV_TYPE_SHIFT 20
sse_evt[0] = _mm_insert_epi32(sse_evt[0],
qes[0].flow_id |
qes[0].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
qes[0].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
DLB_EVENT_EV_TYPE_DW);
sse_evt[0] = _mm_insert_epi32(sse_evt[0],
qes[1].flow_id |
qes[1].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
qes[1].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
DLB_EVENT_EV_TYPE_DW + 2);
sse_evt[1] = _mm_insert_epi32(sse_evt[1],
qes[2].flow_id |
qes[2].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
qes[2].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
DLB_EVENT_EV_TYPE_DW);
sse_evt[1] = _mm_insert_epi32(sse_evt[1],
qes[3].flow_id |
qes[3].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
qes[3].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
DLB_EVENT_EV_TYPE_DW + 2);
/* Write the sched type to the event metadata. 'op' and 'rsvd' are not
* set:
* sse_evt[0][39:32] = sched_type_map[qes[0].sched_type] << 6
* sse_evt[0][103:96] = sched_type_map[qes[1].sched_type] << 6
* sse_evt[1][39:32] = sched_type_map[qes[2].sched_type] << 6
* sse_evt[1][103:96] = sched_type_map[qes[3].sched_type] << 6
*/
#define DLB_EVENT_SCHED_TYPE_BYTE 4
#define DLB_EVENT_SCHED_TYPE_SHIFT 6
sse_evt[0] = _mm_insert_epi8(sse_evt[0],
sched_type_map[qes[0].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
DLB_EVENT_SCHED_TYPE_BYTE);
sse_evt[0] = _mm_insert_epi8(sse_evt[0],
sched_type_map[qes[1].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
DLB_EVENT_SCHED_TYPE_BYTE + 8);
sse_evt[1] = _mm_insert_epi8(sse_evt[1],
sched_type_map[qes[2].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
DLB_EVENT_SCHED_TYPE_BYTE);
sse_evt[1] = _mm_insert_epi8(sse_evt[1],
sched_type_map[qes[3].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
DLB_EVENT_SCHED_TYPE_BYTE + 8);
/* Store the metadata to the event (use the double-precision
* _mm_storeh_pd because there is no integer function for storing the
* upper 64b):
* events[0].event = sse_evt[0][63:0]
* events[1].event = sse_evt[0][127:64]
* events[2].event = sse_evt[1][63:0]
* events[3].event = sse_evt[1][127:64]
*/
_mm_storel_epi64((__m128i *)&events[0].event, sse_evt[0]);
_mm_storeh_pd((double *)&events[1].event, (__m128d) sse_evt[0]);
_mm_storel_epi64((__m128i *)&events[2].event, sse_evt[1]);
_mm_storeh_pd((double *)&events[3].event, (__m128d) sse_evt[1]);
DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qes[0].sched_type], 1);
DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qes[1].sched_type], 1);
DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qes[2].sched_type], 1);
DLB2_INC_STAT(ev_port->stats.rx_sched_cnt[qes[3].sched_type], 1);
DLB2_INC_STAT(
ev_port->stats.queue[events[0].queue_id].
qid_depth[qes[0].qid_depth],
1);
DLB2_INC_STAT(
ev_port->stats.queue[events[1].queue_id].
qid_depth[qes[1].qid_depth],
1);
DLB2_INC_STAT(
ev_port->stats.queue[events[2].queue_id].
qid_depth[qes[2].qid_depth],
1);
DLB2_INC_STAT(
ev_port->stats.queue[events[3].queue_id].
qid_depth[qes[3].qid_depth],
1);
DLB2_INC_STAT(ev_port->stats.traffic.rx_ok, num_events);
return num_events;
}
static __rte_always_inline int
dlb2_recv_qe_sparse(struct dlb2_port *qm_port, struct dlb2_dequeue_qe *qe)
{
volatile struct dlb2_dequeue_qe *cq_addr;
uint8_t xor_mask[2] = {0x0F, 0x00};
const uint8_t and_mask = 0x0F;
__m128i *qes = (__m128i *)qe;
uint8_t gen_bits, gen_bit;
uintptr_t addr[4];
uint16_t idx;
cq_addr = dlb2_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
idx = qm_port->cq_idx_unmasked & qm_port->cq_depth_mask;
/* Load the next 4 QEs */
addr[0] = (uintptr_t)&cq_addr[idx];
addr[1] = (uintptr_t)&cq_addr[(idx + 4) & qm_port->cq_depth_mask];
addr[2] = (uintptr_t)&cq_addr[(idx + 8) & qm_port->cq_depth_mask];
addr[3] = (uintptr_t)&cq_addr[(idx + 12) & qm_port->cq_depth_mask];
/* Prefetch next batch of QEs (all CQs occupy minimum 8 cache lines) */
rte_prefetch0(&cq_addr[(idx + 16) & qm_port->cq_depth_mask]);
rte_prefetch0(&cq_addr[(idx + 20) & qm_port->cq_depth_mask]);
rte_prefetch0(&cq_addr[(idx + 24) & qm_port->cq_depth_mask]);
rte_prefetch0(&cq_addr[(idx + 28) & qm_port->cq_depth_mask]);
/* Correct the xor_mask for wrap-around QEs */
gen_bit = qm_port->gen_bit;
xor_mask[gen_bit] ^= !!((idx + 4) > qm_port->cq_depth_mask) << 1;
xor_mask[gen_bit] ^= !!((idx + 8) > qm_port->cq_depth_mask) << 2;
xor_mask[gen_bit] ^= !!((idx + 12) > qm_port->cq_depth_mask) << 3;
/* Read the cache lines backwards to ensure that if QE[N] (N > 0) is
* valid, then QEs[0:N-1] are too.
*/
qes[3] = _mm_load_si128((__m128i *)(void *)addr[3]);
rte_compiler_barrier();
qes[2] = _mm_load_si128((__m128i *)(void *)addr[2]);
rte_compiler_barrier();
qes[1] = _mm_load_si128((__m128i *)(void *)addr[1]);
rte_compiler_barrier();
qes[0] = _mm_load_si128((__m128i *)(void *)addr[0]);
/* Extract and combine the gen bits */
gen_bits = ((_mm_extract_epi8(qes[0], 15) & 0x1) << 0) |
((_mm_extract_epi8(qes[1], 15) & 0x1) << 1) |
((_mm_extract_epi8(qes[2], 15) & 0x1) << 2) |
((_mm_extract_epi8(qes[3], 15) & 0x1) << 3);
/* XOR the combined bits such that a 1 represents a valid QE */
gen_bits ^= xor_mask[gen_bit];
/* Mask off gen bits we don't care about */
gen_bits &= and_mask;
return __builtin_popcount(gen_bits);
}
static inline void
_process_deq_qes_vec_impl(struct dlb2_port *qm_port,
struct rte_event *events,
__m128i v_qe_3,
__m128i v_qe_2,
__m128i v_qe_1,
__m128i v_qe_0,
__m128i v_qe_meta,
__m128i v_qe_status,
uint32_t valid_events)
{
/* Look up the event QIDs, using the hardware QIDs to index the
* port's QID mapping.
*
* Each v_qe_[0-4] is just a 16-byte load of the whole QE. It is
* passed along in registers as the QE data is required later.
*
* v_qe_meta is an u32 unpack of all 4x QEs. A.k.a, it contains one
* 32-bit slice of each QE, so makes up a full SSE register. This
* allows parallel processing of 4x QEs in a single register.
*/
__m128i v_qid_done = {0};
int hw_qid0 = _mm_extract_epi8(v_qe_meta, 2);
int hw_qid1 = _mm_extract_epi8(v_qe_meta, 6);
int hw_qid2 = _mm_extract_epi8(v_qe_meta, 10);
int hw_qid3 = _mm_extract_epi8(v_qe_meta, 14);
int ev_qid0 = qm_port->qid_mappings[hw_qid0];
int ev_qid1 = qm_port->qid_mappings[hw_qid1];
int ev_qid2 = qm_port->qid_mappings[hw_qid2];
int ev_qid3 = qm_port->qid_mappings[hw_qid3];
int hw_sched0 = _mm_extract_epi8(v_qe_meta, 3) & 3ul;
int hw_sched1 = _mm_extract_epi8(v_qe_meta, 7) & 3ul;
int hw_sched2 = _mm_extract_epi8(v_qe_meta, 11) & 3ul;
int hw_sched3 = _mm_extract_epi8(v_qe_meta, 15) & 3ul;
v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid0, 2);
v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid1, 6);
v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid2, 10);
v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid3, 14);
/* Schedule field remapping using byte shuffle
* - Full byte containing sched field handled here (op, rsvd are zero)
* - Note sanitizing the register requires two masking ANDs:
* 1) to strip prio/msg_type from byte for correct shuffle lookup
* 2) to strip any non-sched-field lanes from any results to OR later
* - Final byte result is >> 10 to another byte-lane inside the u32.
* This makes the final combination OR easier to make the rte_event.
*/
__m128i v_sched_done;
__m128i v_sched_bits;
{
static const uint8_t sched_type_map[16] = {
[DLB2_SCHED_ATOMIC] = RTE_SCHED_TYPE_ATOMIC,
[DLB2_SCHED_UNORDERED] = RTE_SCHED_TYPE_PARALLEL,
[DLB2_SCHED_ORDERED] = RTE_SCHED_TYPE_ORDERED,
[DLB2_SCHED_DIRECTED] = RTE_SCHED_TYPE_ATOMIC,
};
static const uint8_t sched_and_mask[16] = {
0x00, 0x00, 0x00, 0x03,
0x00, 0x00, 0x00, 0x03,
0x00, 0x00, 0x00, 0x03,
0x00, 0x00, 0x00, 0x03,
};
const __m128i v_sched_map = _mm_loadu_si128(
(const __m128i *)sched_type_map);
__m128i v_sched_mask = _mm_loadu_si128(
(const __m128i *)&sched_and_mask);
v_sched_bits = _mm_and_si128(v_qe_meta, v_sched_mask);
__m128i v_sched_remapped = _mm_shuffle_epi8(v_sched_map,
v_sched_bits);
__m128i v_preshift = _mm_and_si128(v_sched_remapped,
v_sched_mask);
v_sched_done = _mm_srli_epi32(v_preshift, 10);
}
/* Priority handling
* - QE provides 3 bits of priority
* - Shift << 3 to move to MSBs for byte-prio in rte_event
* - Mask bits to avoid pollution, leaving only 3 prio MSBs in reg
*/
__m128i v_prio_done;
{
static const uint8_t prio_mask[16] = {
0x00, 0x00, 0x00, 0x07 << 5,
0x00, 0x00, 0x00, 0x07 << 5,
0x00, 0x00, 0x00, 0x07 << 5,
0x00, 0x00, 0x00, 0x07 << 5,
};
__m128i v_prio_mask = _mm_loadu_si128(
(const __m128i *)prio_mask);
__m128i v_prio_shifted = _mm_slli_epi32(v_qe_meta, 3);
v_prio_done = _mm_and_si128(v_prio_shifted, v_prio_mask);
}
/* Event Sub/Type handling:
* we want to keep the lower 12 bits of each QE. Shift up by 20 bits
* to get the sub/ev type data into rte_event location, clearing the
* lower 20 bits in the process.
*/
__m128i v_types_done;
{
static const uint8_t event_mask[16] = {
0x0f, 0x00, 0x00, 0x00,
0x0f, 0x00, 0x00, 0x00,
0x0f, 0x00, 0x00, 0x00,
0x0f, 0x00, 0x00, 0x00,
};
static const uint8_t sub_event_mask[16] = {
0xff, 0x00, 0x00, 0x00,
0xff, 0x00, 0x00, 0x00,
0xff, 0x00, 0x00, 0x00,
0xff, 0x00, 0x00, 0x00,
};
static const uint8_t flow_mask[16] = {
0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0x00, 0x00,
};
__m128i v_event_mask = _mm_loadu_si128(
(const __m128i *)event_mask);
__m128i v_sub_event_mask = _mm_loadu_si128(
(const __m128i *)sub_event_mask);
__m128i v_flow_mask = _mm_loadu_si128(
(const __m128i *)flow_mask);
__m128i v_sub = _mm_srli_epi32(v_qe_meta, 8);
v_sub = _mm_and_si128(v_sub, v_sub_event_mask);
__m128i v_type = _mm_and_si128(v_qe_meta, v_event_mask);
v_type = _mm_slli_epi32(v_type, 8);
v_types_done = _mm_or_si128(v_type, v_sub);
v_types_done = _mm_slli_epi32(v_types_done, 20);
__m128i v_flow = _mm_and_si128(v_qe_status, v_flow_mask);
v_types_done = _mm_or_si128(v_types_done, v_flow);
}
/* Combine QID, Sched and Prio fields, then Shift >> 8 bits to align
* with the rte_event, allowing unpacks to move/blend with payload.
*/
__m128i v_q_s_p_done;
{
__m128i v_qid_sched = _mm_or_si128(v_qid_done, v_sched_done);
__m128i v_q_s_prio = _mm_or_si128(v_qid_sched, v_prio_done);
v_q_s_p_done = _mm_srli_epi32(v_q_s_prio, 8);
}
__m128i v_unpk_ev_23, v_unpk_ev_01, v_ev_2, v_ev_3, v_ev_0, v_ev_1;
/* Unpack evs into u64 metadata, then indiv events */
v_unpk_ev_23 = _mm_unpackhi_epi32(v_types_done, v_q_s_p_done);
v_unpk_ev_01 = _mm_unpacklo_epi32(v_types_done, v_q_s_p_done);
switch (valid_events) {
case 4:
v_ev_3 = _mm_blend_epi16(v_unpk_ev_23, v_qe_3, 0x0F);
v_ev_3 = _mm_alignr_epi8(v_ev_3, v_ev_3, 8);
_mm_storeu_si128((__m128i *)&events[3], v_ev_3);
DLB2_INC_STAT(qm_port->ev_port->stats.rx_sched_cnt[hw_sched3],
1);
/* fallthrough */
case 3:
v_ev_2 = _mm_unpacklo_epi64(v_unpk_ev_23, v_qe_2);
_mm_storeu_si128((__m128i *)&events[2], v_ev_2);
DLB2_INC_STAT(qm_port->ev_port->stats.rx_sched_cnt[hw_sched2],
1);
/* fallthrough */
case 2:
v_ev_1 = _mm_blend_epi16(v_unpk_ev_01, v_qe_1, 0x0F);
v_ev_1 = _mm_alignr_epi8(v_ev_1, v_ev_1, 8);
_mm_storeu_si128((__m128i *)&events[1], v_ev_1);
DLB2_INC_STAT(qm_port->ev_port->stats.rx_sched_cnt[hw_sched1],
1);
/* fallthrough */
case 1:
v_ev_0 = _mm_unpacklo_epi64(v_unpk_ev_01, v_qe_0);
_mm_storeu_si128((__m128i *)&events[0], v_ev_0);
DLB2_INC_STAT(qm_port->ev_port->stats.rx_sched_cnt[hw_sched0],
1);
}
}
static __rte_always_inline int
dlb2_recv_qe_sparse_vec(struct dlb2_port *qm_port, void *events,
uint32_t max_events)
{
/* Using unmasked idx for perf, and masking manually */
uint16_t idx = qm_port->cq_idx_unmasked;
volatile struct dlb2_dequeue_qe *cq_addr;
cq_addr = dlb2_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
uintptr_t qe_ptr_3 = (uintptr_t)&cq_addr[(idx + 12) &
qm_port->cq_depth_mask];
uintptr_t qe_ptr_2 = (uintptr_t)&cq_addr[(idx + 8) &
qm_port->cq_depth_mask];
uintptr_t qe_ptr_1 = (uintptr_t)&cq_addr[(idx + 4) &
qm_port->cq_depth_mask];
uintptr_t qe_ptr_0 = (uintptr_t)&cq_addr[(idx + 0) &
qm_port->cq_depth_mask];
/* Load QEs from CQ: use compiler barriers to avoid load reordering */
__m128i v_qe_3 = _mm_loadu_si128((const __m128i *)qe_ptr_3);
rte_compiler_barrier();
__m128i v_qe_2 = _mm_loadu_si128((const __m128i *)qe_ptr_2);
rte_compiler_barrier();
__m128i v_qe_1 = _mm_loadu_si128((const __m128i *)qe_ptr_1);
rte_compiler_barrier();
__m128i v_qe_0 = _mm_loadu_si128((const __m128i *)qe_ptr_0);
/* Generate the pkt_shuffle mask;
* - Avoids load in otherwise load-heavy section of code
* - Moves bytes 3,7,11,15 (gen bit bytes) to LSB bytes in XMM
*/
const uint32_t stat_shuf_bytes = (15 << 24) | (11 << 16) | (7 << 8) | 3;
__m128i v_zeros = _mm_setzero_si128();
__m128i v_ffff = _mm_cmpeq_epi8(v_zeros, v_zeros);
__m128i v_stat_shuf_mask = _mm_insert_epi32(v_ffff, stat_shuf_bytes, 0);
/* Extract u32 components required from the QE
* - QE[64 to 95 ] for metadata (qid, sched, prio, event type, ...)
* - QE[96 to 127] for status (cq gen bit, error)
*
* Note that stage 1 of the unpacking is re-used for both u32 extracts
*/
__m128i v_qe_02 = _mm_unpackhi_epi32(v_qe_0, v_qe_2);
__m128i v_qe_13 = _mm_unpackhi_epi32(v_qe_1, v_qe_3);
__m128i v_qe_status = _mm_unpackhi_epi32(v_qe_02, v_qe_13);
__m128i v_qe_meta = _mm_unpacklo_epi32(v_qe_02, v_qe_13);
/* Status byte (gen_bit, error) handling:
* - Shuffle to lanes 0,1,2,3, clear all others
* - Shift right by 7 for gen bit to MSB, movemask to scalar
* - Shift right by 2 for error bit to MSB, movemask to scalar
*/
__m128i v_qe_shuffled = _mm_shuffle_epi8(v_qe_status, v_stat_shuf_mask);
__m128i v_qes_shift_gen_bit = _mm_slli_epi32(v_qe_shuffled, 7);
int32_t qe_gen_bits = _mm_movemask_epi8(v_qes_shift_gen_bit) & 0xf;
/* Expected vs Reality of QE Gen bits
* - cq_rolling_mask provides expected bits
* - QE loads, unpacks/shuffle and movemask provides reality
* - XOR of the two gives bitmask of new packets
* - POPCNT to get the number of new events
*/
uint64_t rolling = qm_port->cq_rolling_mask & 0xF;
uint64_t qe_xor_bits = (qe_gen_bits ^ rolling);
uint32_t count_new = __builtin_popcount(qe_xor_bits);
count_new = RTE_MIN(count_new, max_events);
if (!count_new)
return 0;
/* emulate a 128 bit rotate using 2x 64-bit numbers and bit-shifts */
uint64_t m_rshift = qm_port->cq_rolling_mask >> count_new;
uint64_t m_lshift = qm_port->cq_rolling_mask << (64 - count_new);
uint64_t m2_rshift = qm_port->cq_rolling_mask_2 >> count_new;
uint64_t m2_lshift = qm_port->cq_rolling_mask_2 << (64 - count_new);
/* shifted out of m2 into MSB of m */
qm_port->cq_rolling_mask = (m_rshift | m2_lshift);
/* shifted out of m "looped back" into MSB of m2 */
qm_port->cq_rolling_mask_2 = (m2_rshift | m_lshift);
/* Prefetch the next QEs - should run as IPC instead of cycles */
rte_prefetch0(&cq_addr[(idx + 16) & qm_port->cq_depth_mask]);
rte_prefetch0(&cq_addr[(idx + 20) & qm_port->cq_depth_mask]);
rte_prefetch0(&cq_addr[(idx + 24) & qm_port->cq_depth_mask]);
rte_prefetch0(&cq_addr[(idx + 28) & qm_port->cq_depth_mask]);
/* Convert QEs from XMM regs to events and store events directly */
_process_deq_qes_vec_impl(qm_port, events, v_qe_3, v_qe_2, v_qe_1,
v_qe_0, v_qe_meta, v_qe_status, count_new);
return count_new;
}
static inline void
dlb2_inc_cq_idx(struct dlb2_port *qm_port, int cnt)
{
uint16_t idx = qm_port->cq_idx_unmasked + cnt;
qm_port->cq_idx_unmasked = idx;
qm_port->cq_idx = idx & qm_port->cq_depth_mask;
qm_port->gen_bit = (~(idx >> qm_port->gen_bit_shift)) & 0x1;
}
static inline int16_t
dlb2_hw_dequeue_sparse(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port,
struct rte_event *events,
uint16_t max_num,
uint64_t dequeue_timeout_ticks)
{
uint64_t start_ticks = 0ULL;
struct dlb2_port *qm_port;
int num = 0;
bool use_scalar;
uint64_t timeout;
qm_port = &ev_port->qm_port;
use_scalar = qm_port->use_scalar;
if (!dlb2->global_dequeue_wait)
timeout = dequeue_timeout_ticks;
else
timeout = dlb2->global_dequeue_wait_ticks;
start_ticks = rte_get_timer_cycles();
use_scalar = use_scalar || (max_num & 0x3);
while (num < max_num) {
struct dlb2_dequeue_qe qes[DLB2_NUM_QES_PER_CACHE_LINE];
int num_avail;
if (use_scalar) {
int n_iter = 0;
uint64_t m_rshift, m_lshift, m2_rshift, m2_lshift;
num_avail = dlb2_recv_qe_sparse(qm_port, qes);
num_avail = RTE_MIN(num_avail, max_num - num);
dlb2_inc_cq_idx(qm_port, num_avail << 2);
if (num_avail == DLB2_NUM_QES_PER_CACHE_LINE)
n_iter = dlb2_process_dequeue_four_qes(ev_port,
qm_port,
&events[num],
&qes[0]);
else if (num_avail)
n_iter = dlb2_process_dequeue_qes(ev_port,
qm_port,
&events[num],
&qes[0],
num_avail);
if (n_iter != 0) {
num += n_iter;
/* update rolling_mask for vector code support */
m_rshift = qm_port->cq_rolling_mask >> n_iter;
m_lshift = qm_port->cq_rolling_mask << (64 - n_iter);
m2_rshift = qm_port->cq_rolling_mask_2 >> n_iter;
m2_lshift = qm_port->cq_rolling_mask_2 <<
(64 - n_iter);
qm_port->cq_rolling_mask = (m_rshift | m2_lshift);
qm_port->cq_rolling_mask_2 = (m2_rshift | m_lshift);
}
} else { /* !use_scalar */
num_avail = dlb2_recv_qe_sparse_vec(qm_port,
&events[num],
max_num - num);
dlb2_inc_cq_idx(qm_port, num_avail << 2);
num += num_avail;
DLB2_INC_STAT(ev_port->stats.traffic.rx_ok, num_avail);
}
if (!num_avail) {
if ((timeout == 0) || (num > 0))
/* Not waiting in any form or 1+ events recd */
break;
else if (dlb2_dequeue_wait(dlb2, ev_port, qm_port,
timeout, start_ticks))
break;
}
}
qm_port->owed_tokens += num;
if (num) {
if (qm_port->token_pop_mode == AUTO_POP)
dlb2_consume_qe_immediate(qm_port, num);
ev_port->outstanding_releases += num;
dlb2_port_credits_inc(qm_port, num);
}
return num;
}
static __rte_always_inline int
dlb2_recv_qe(struct dlb2_port *qm_port, struct dlb2_dequeue_qe *qe,
uint8_t *offset)
{
uint8_t xor_mask[2][4] = { {0x0F, 0x0E, 0x0C, 0x08},
{0x00, 0x01, 0x03, 0x07} };
uint8_t and_mask[4] = {0x0F, 0x0E, 0x0C, 0x08};
volatile struct dlb2_dequeue_qe *cq_addr;
__m128i *qes = (__m128i *)qe;
uint64_t *cache_line_base;
uint8_t gen_bits;
cq_addr = dlb2_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
cq_addr = &cq_addr[qm_port->cq_idx];
cache_line_base = (void *)(((uintptr_t)cq_addr) & ~0x3F);
*offset = ((uintptr_t)cq_addr & 0x30) >> 4;
/* Load the next CQ cache line from memory. Pack these reads as tight
* as possible to reduce the chance that DLB invalidates the line while
* the CPU is reading it. Read the cache line backwards to ensure that
* if QE[N] (N > 0) is valid, then QEs[0:N-1] are too.
*
* (Valid QEs start at &qe[offset])
*/
qes[3] = _mm_load_si128((__m128i *)&cache_line_base[6]);
qes[2] = _mm_load_si128((__m128i *)&cache_line_base[4]);
qes[1] = _mm_load_si128((__m128i *)&cache_line_base[2]);
qes[0] = _mm_load_si128((__m128i *)&cache_line_base[0]);
/* Evict the cache line ASAP */
rte_cldemote(cache_line_base);
/* Extract and combine the gen bits */
gen_bits = ((_mm_extract_epi8(qes[0], 15) & 0x1) << 0) |
((_mm_extract_epi8(qes[1], 15) & 0x1) << 1) |
((_mm_extract_epi8(qes[2], 15) & 0x1) << 2) |
((_mm_extract_epi8(qes[3], 15) & 0x1) << 3);
/* XOR the combined bits such that a 1 represents a valid QE */
gen_bits ^= xor_mask[qm_port->gen_bit][*offset];
/* Mask off gen bits we don't care about */
gen_bits &= and_mask[*offset];
return __builtin_popcount(gen_bits);
}
static inline int16_t
dlb2_hw_dequeue(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port,
struct rte_event *events,
uint16_t max_num,
uint64_t dequeue_timeout_ticks)
{
uint64_t timeout;
uint64_t start_ticks = 0ULL;
struct dlb2_port *qm_port;
int num = 0;
qm_port = &ev_port->qm_port;
/* We have a special implementation for waiting. Wait can be:
* 1) no waiting at all
* 2) busy poll only
* 3) wait for interrupt. If wakeup and poll time
* has expired, then return to caller
* 4) umonitor/umwait repeatedly up to poll time
*/
/* If configured for per dequeue wait, then use wait value provided
* to this API. Otherwise we must use the global
* value from eventdev config time.
*/
if (!dlb2->global_dequeue_wait)
timeout = dequeue_timeout_ticks;
else
timeout = dlb2->global_dequeue_wait_ticks;
start_ticks = rte_get_timer_cycles();
while (num < max_num) {
struct dlb2_dequeue_qe qes[DLB2_NUM_QES_PER_CACHE_LINE];
uint8_t offset;
int num_avail;
/* Copy up to 4 QEs from the current cache line into qes */
num_avail = dlb2_recv_qe(qm_port, qes, &offset);
/* But don't process more than the user requested */
num_avail = RTE_MIN(num_avail, max_num - num);
dlb2_inc_cq_idx(qm_port, num_avail);
if (num_avail == DLB2_NUM_QES_PER_CACHE_LINE)
num += dlb2_process_dequeue_four_qes(ev_port,
qm_port,
&events[num],
&qes[offset]);
else if (num_avail)
num += dlb2_process_dequeue_qes(ev_port,
qm_port,
&events[num],
&qes[offset],
num_avail);
else if ((timeout == 0) || (num > 0))
/* Not waiting in any form, or 1+ events received? */
break;
else if (dlb2_dequeue_wait(dlb2, ev_port, qm_port,
timeout, start_ticks))
break;
}
qm_port->owed_tokens += num;
if (num) {
if (qm_port->token_pop_mode == AUTO_POP)
dlb2_consume_qe_immediate(qm_port, num);
ev_port->outstanding_releases += num;
dlb2_port_credits_inc(qm_port, num);
}
return num;
}
static uint16_t
dlb2_event_dequeue_burst(void *event_port, struct rte_event *ev, uint16_t num,
uint64_t wait)
{
struct dlb2_eventdev_port *ev_port = event_port;
struct dlb2_port *qm_port = &ev_port->qm_port;
struct dlb2_eventdev *dlb2 = ev_port->dlb2;
uint16_t cnt;
RTE_ASSERT(ev_port->setup_done);
RTE_ASSERT(ev != NULL);
if (ev_port->implicit_release && ev_port->outstanding_releases > 0) {
uint16_t out_rels = ev_port->outstanding_releases;
dlb2_event_release(dlb2, ev_port->id, out_rels);
DLB2_INC_STAT(ev_port->stats.tx_implicit_rel, out_rels);
}
if (qm_port->token_pop_mode == DEFERRED_POP && qm_port->owed_tokens)
dlb2_consume_qe_immediate(qm_port, qm_port->owed_tokens);
cnt = dlb2_hw_dequeue(dlb2, ev_port, ev, num, wait);
DLB2_INC_STAT(ev_port->stats.traffic.total_polls, 1);
DLB2_INC_STAT(ev_port->stats.traffic.zero_polls, ((cnt == 0) ? 1 : 0));
return cnt;
}
static uint16_t
dlb2_event_dequeue(void *event_port, struct rte_event *ev, uint64_t wait)
{
return dlb2_event_dequeue_burst(event_port, ev, 1, wait);
}
static uint16_t
dlb2_event_dequeue_burst_sparse(void *event_port, struct rte_event *ev,
uint16_t num, uint64_t wait)
{
struct dlb2_eventdev_port *ev_port = event_port;
struct dlb2_port *qm_port = &ev_port->qm_port;
struct dlb2_eventdev *dlb2 = ev_port->dlb2;
uint16_t cnt;
RTE_ASSERT(ev_port->setup_done);
RTE_ASSERT(ev != NULL);
if (ev_port->implicit_release && ev_port->outstanding_releases > 0) {
uint16_t out_rels = ev_port->outstanding_releases;
dlb2_event_release(dlb2, ev_port->id, out_rels);
DLB2_INC_STAT(ev_port->stats.tx_implicit_rel, out_rels);
}
if (qm_port->token_pop_mode == DEFERRED_POP && qm_port->owed_tokens)
dlb2_consume_qe_immediate(qm_port, qm_port->owed_tokens);
cnt = dlb2_hw_dequeue_sparse(dlb2, ev_port, ev, num, wait);
DLB2_INC_STAT(ev_port->stats.traffic.total_polls, 1);
DLB2_INC_STAT(ev_port->stats.traffic.zero_polls, ((cnt == 0) ? 1 : 0));
return cnt;
}
static uint16_t
dlb2_event_dequeue_sparse(void *event_port, struct rte_event *ev,
uint64_t wait)
{
return dlb2_event_dequeue_burst_sparse(event_port, ev, 1, wait);
}
static void
dlb2_flush_port(struct rte_eventdev *dev, int port_id)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
eventdev_stop_flush_t flush;
struct rte_event ev;
uint8_t dev_id;
void *arg;
int i;
flush = dev->dev_ops->dev_stop_flush;
dev_id = dev->data->dev_id;
arg = dev->data->dev_stop_flush_arg;
while (rte_event_dequeue_burst(dev_id, port_id, &ev, 1, 0)) {
if (flush)
flush(dev_id, ev, arg);
if (dlb2->ev_ports[port_id].qm_port.is_directed)
continue;
ev.op = RTE_EVENT_OP_RELEASE;
rte_event_enqueue_burst(dev_id, port_id, &ev, 1);
}
/* Enqueue any additional outstanding releases */
ev.op = RTE_EVENT_OP_RELEASE;
for (i = dlb2->ev_ports[port_id].outstanding_releases; i > 0; i--)
rte_event_enqueue_burst(dev_id, port_id, &ev, 1);
}
static uint32_t
dlb2_get_ldb_queue_depth(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_queue *queue)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_get_ldb_queue_depth_args cfg;
int ret;
cfg.queue_id = queue->qm_queue.id;
ret = dlb2_iface_get_ldb_queue_depth(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: get_ldb_queue_depth ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return ret;
}
return cfg.response.id;
}
static uint32_t
dlb2_get_dir_queue_depth(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_queue *queue)
{
struct dlb2_hw_dev *handle = &dlb2->qm_instance;
struct dlb2_get_dir_queue_depth_args cfg;
int ret;
cfg.queue_id = queue->qm_queue.id;
ret = dlb2_iface_get_dir_queue_depth(handle, &cfg);
if (ret < 0) {
DLB2_LOG_ERR("dlb2: get_dir_queue_depth ret=%d (driver status: %s)\n",
ret, dlb2_error_strings[cfg.response.status]);
return ret;
}
return cfg.response.id;
}
uint32_t
dlb2_get_queue_depth(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_queue *queue)
{
if (queue->qm_queue.is_directed)
return dlb2_get_dir_queue_depth(dlb2, queue);
else
return dlb2_get_ldb_queue_depth(dlb2, queue);
}
static bool
dlb2_queue_is_empty(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_queue *queue)
{
return dlb2_get_queue_depth(dlb2, queue) == 0;
}
static bool
dlb2_linked_queues_empty(struct dlb2_eventdev *dlb2)
{
int i;
for (i = 0; i < dlb2->num_queues; i++) {
if (dlb2->ev_queues[i].num_links == 0)
continue;
if (!dlb2_queue_is_empty(dlb2, &dlb2->ev_queues[i]))
return false;
}
return true;
}
static bool
dlb2_queues_empty(struct dlb2_eventdev *dlb2)
{
int i;
for (i = 0; i < dlb2->num_queues; i++) {
if (!dlb2_queue_is_empty(dlb2, &dlb2->ev_queues[i]))
return false;
}
return true;
}
static void
dlb2_drain(struct rte_eventdev *dev)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
struct dlb2_eventdev_port *ev_port = NULL;
uint8_t dev_id;
int i;
dev_id = dev->data->dev_id;
while (!dlb2_linked_queues_empty(dlb2)) {
/* Flush all the ev_ports, which will drain all their connected
* queues.
*/
for (i = 0; i < dlb2->num_ports; i++)
dlb2_flush_port(dev, i);
}
/* The queues are empty, but there may be events left in the ports. */
for (i = 0; i < dlb2->num_ports; i++)
dlb2_flush_port(dev, i);
/* If the domain's queues are empty, we're done. */
if (dlb2_queues_empty(dlb2))
return;
/* Else, there must be at least one unlinked load-balanced queue.
* Select a load-balanced port with which to drain the unlinked
* queue(s).
*/
for (i = 0; i < dlb2->num_ports; i++) {
ev_port = &dlb2->ev_ports[i];
if (!ev_port->qm_port.is_directed)
break;
}
if (i == dlb2->num_ports) {
DLB2_LOG_ERR("internal error: no LDB ev_ports\n");
return;
}
rte_errno = 0;
rte_event_port_unlink(dev_id, ev_port->id, NULL, 0);
if (rte_errno) {
DLB2_LOG_ERR("internal error: failed to unlink ev_port %d\n",
ev_port->id);
return;
}
for (i = 0; i < dlb2->num_queues; i++) {
uint8_t qid, prio;
int ret;
if (dlb2_queue_is_empty(dlb2, &dlb2->ev_queues[i]))
continue;
qid = i;
prio = 0;
/* Link the ev_port to the queue */
ret = rte_event_port_link(dev_id, ev_port->id, &qid, &prio, 1);
if (ret != 1) {
DLB2_LOG_ERR("internal error: failed to link ev_port %d to queue %d\n",
ev_port->id, qid);
return;
}
/* Flush the queue */
while (!dlb2_queue_is_empty(dlb2, &dlb2->ev_queues[i]))
dlb2_flush_port(dev, ev_port->id);
/* Drain any extant events in the ev_port. */
dlb2_flush_port(dev, ev_port->id);
/* Unlink the ev_port from the queue */
ret = rte_event_port_unlink(dev_id, ev_port->id, &qid, 1);
if (ret != 1) {
DLB2_LOG_ERR("internal error: failed to unlink ev_port %d to queue %d\n",
ev_port->id, qid);
return;
}
}
}
static void
dlb2_eventdev_stop(struct rte_eventdev *dev)
{
struct dlb2_eventdev *dlb2 = dlb2_pmd_priv(dev);
rte_spinlock_lock(&dlb2->qm_instance.resource_lock);
if (dlb2->run_state == DLB2_RUN_STATE_STOPPED) {
DLB2_LOG_DBG("Internal error: already stopped\n");
rte_spinlock_unlock(&dlb2->qm_instance.resource_lock);
return;
} else if (dlb2->run_state != DLB2_RUN_STATE_STARTED) {
DLB2_LOG_ERR("Internal error: bad state %d for dev_stop\n",
(int)dlb2->run_state);
rte_spinlock_unlock(&dlb2->qm_instance.resource_lock);
return;
}
dlb2->run_state = DLB2_RUN_STATE_STOPPING;
rte_spinlock_unlock(&dlb2->qm_instance.resource_lock);
dlb2_drain(dev);
dlb2->run_state = DLB2_RUN_STATE_STOPPED;
}
static int
dlb2_eventdev_close(struct rte_eventdev *dev)
{
dlb2_hw_reset_sched_domain(dev, false);
return 0;
}
static void
dlb2_eventdev_queue_release(struct rte_eventdev *dev, uint8_t id)
{
RTE_SET_USED(dev);
RTE_SET_USED(id);
/* This function intentionally left blank. */
}
static void
dlb2_eventdev_port_release(void *port)
{
struct dlb2_eventdev_port *ev_port = port;
struct dlb2_port *qm_port;
if (ev_port) {
qm_port = &ev_port->qm_port;
if (qm_port->config_state == DLB2_CONFIGURED)
dlb2_free_qe_mem(qm_port);
}
}
static int
dlb2_eventdev_timeout_ticks(struct rte_eventdev *dev, uint64_t ns,
uint64_t *timeout_ticks)
{
RTE_SET_USED(dev);
uint64_t cycles_per_ns = rte_get_timer_hz() / 1E9;
*timeout_ticks = ns * cycles_per_ns;
return 0;
}
static void
dlb2_entry_points_init(struct rte_eventdev *dev)
{
struct dlb2_eventdev *dlb2;
/* Expose PMD's eventdev interface */
static struct eventdev_ops dlb2_eventdev_entry_ops = {
.dev_infos_get = dlb2_eventdev_info_get,
.dev_configure = dlb2_eventdev_configure,
.dev_start = dlb2_eventdev_start,
.dev_stop = dlb2_eventdev_stop,
.dev_close = dlb2_eventdev_close,
.queue_def_conf = dlb2_eventdev_queue_default_conf_get,
.queue_setup = dlb2_eventdev_queue_setup,
.queue_release = dlb2_eventdev_queue_release,
.port_def_conf = dlb2_eventdev_port_default_conf_get,
.port_setup = dlb2_eventdev_port_setup,
.port_release = dlb2_eventdev_port_release,
.port_link = dlb2_eventdev_port_link,
.port_unlink = dlb2_eventdev_port_unlink,
.port_unlinks_in_progress =
dlb2_eventdev_port_unlinks_in_progress,
.timeout_ticks = dlb2_eventdev_timeout_ticks,
.dump = dlb2_eventdev_dump,
.xstats_get = dlb2_eventdev_xstats_get,
.xstats_get_names = dlb2_eventdev_xstats_get_names,
.xstats_get_by_name = dlb2_eventdev_xstats_get_by_name,
.xstats_reset = dlb2_eventdev_xstats_reset,
.dev_selftest = test_dlb2_eventdev,
};
/* Expose PMD's eventdev interface */
dev->dev_ops = &dlb2_eventdev_entry_ops;
dev->enqueue = dlb2_event_enqueue;
dev->enqueue_burst = dlb2_event_enqueue_burst;
dev->enqueue_new_burst = dlb2_event_enqueue_new_burst;
dev->enqueue_forward_burst = dlb2_event_enqueue_forward_burst;
dlb2 = dev->data->dev_private;
if (dlb2->poll_mode == DLB2_CQ_POLL_MODE_SPARSE) {
dev->dequeue = dlb2_event_dequeue_sparse;
dev->dequeue_burst = dlb2_event_dequeue_burst_sparse;
} else {
dev->dequeue = dlb2_event_dequeue;
dev->dequeue_burst = dlb2_event_dequeue_burst;
}
}
int
dlb2_primary_eventdev_probe(struct rte_eventdev *dev,
const char *name,
struct dlb2_devargs *dlb2_args)
{
struct dlb2_eventdev *dlb2;
int err, i;
dlb2 = dev->data->dev_private;
dlb2->event_dev = dev; /* backlink */
evdev_dlb2_default_info.driver_name = name;
dlb2->max_num_events_override = dlb2_args->max_num_events;
dlb2->num_dir_credits_override = dlb2_args->num_dir_credits_override;
dlb2->qm_instance.cos_id = dlb2_args->cos_id;
dlb2->poll_interval = dlb2_args->poll_interval;
dlb2->sw_credit_quanta = dlb2_args->sw_credit_quanta;
dlb2->hw_credit_quanta = dlb2_args->hw_credit_quanta;
dlb2->default_depth_thresh = dlb2_args->default_depth_thresh;
dlb2->vector_opts_enabled = dlb2_args->vector_opts_enabled;
err = dlb2_iface_open(&dlb2->qm_instance, name);
if (err < 0) {
DLB2_LOG_ERR("could not open event hardware device, err=%d\n",
err);
return err;
}
err = dlb2_iface_get_device_version(&dlb2->qm_instance,
&dlb2->revision);
if (err < 0) {
DLB2_LOG_ERR("dlb2: failed to get the device version, err=%d\n",
err);
return err;
}
err = dlb2_hw_query_resources(dlb2);
if (err) {
DLB2_LOG_ERR("get resources err=%d for %s\n",
err, name);
return err;
}
dlb2_iface_hardware_init(&dlb2->qm_instance);
err = dlb2_iface_get_cq_poll_mode(&dlb2->qm_instance, &dlb2->poll_mode);
if (err < 0) {
DLB2_LOG_ERR("dlb2: failed to get the poll mode, err=%d\n",
err);
return err;
}
/* Complete xtstats runtime initialization */
err = dlb2_xstats_init(dlb2);
if (err) {
DLB2_LOG_ERR("dlb2: failed to init xstats, err=%d\n", err);
return err;
}
/* Initialize each port's token pop mode */
for (i = 0; i < DLB2_MAX_NUM_PORTS(dlb2->version); i++)
dlb2->ev_ports[i].qm_port.token_pop_mode = AUTO_POP;
rte_spinlock_init(&dlb2->qm_instance.resource_lock);
dlb2_iface_low_level_io_init();
dlb2_entry_points_init(dev);
dlb2_init_queue_depth_thresholds(dlb2,
dlb2_args->qid_depth_thresholds.val);
return 0;
}
int
dlb2_secondary_eventdev_probe(struct rte_eventdev *dev,
const char *name)
{
struct dlb2_eventdev *dlb2;
int err;
dlb2 = dev->data->dev_private;
evdev_dlb2_default_info.driver_name = name;
err = dlb2_iface_open(&dlb2->qm_instance, name);
if (err < 0) {
DLB2_LOG_ERR("could not open event hardware device, err=%d\n",
err);
return err;
}
err = dlb2_hw_query_resources(dlb2);
if (err) {
DLB2_LOG_ERR("get resources err=%d for %s\n",
err, name);
return err;
}
dlb2_iface_low_level_io_init();
dlb2_entry_points_init(dev);
return 0;
}
int
dlb2_parse_params(const char *params,
const char *name,
struct dlb2_devargs *dlb2_args,
uint8_t version)
{
int ret = 0;
static const char * const args[] = { NUMA_NODE_ARG,
DLB2_MAX_NUM_EVENTS,
DLB2_NUM_DIR_CREDITS,
DEV_ID_ARG,
DLB2_QID_DEPTH_THRESH_ARG,
DLB2_COS_ARG,
DLB2_POLL_INTERVAL_ARG,
DLB2_SW_CREDIT_QUANTA_ARG,
DLB2_HW_CREDIT_QUANTA_ARG,
DLB2_DEPTH_THRESH_ARG,
DLB2_VECTOR_OPTS_ENAB_ARG,
NULL };
if (params != NULL && params[0] != '\0') {
struct rte_kvargs *kvlist = rte_kvargs_parse(params, args);
if (kvlist == NULL) {
RTE_LOG(INFO, PMD,
"Ignoring unsupported parameters when creating device '%s'\n",
name);
} else {
int ret = rte_kvargs_process(kvlist, NUMA_NODE_ARG,
set_numa_node,
&dlb2_args->socket_id);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing numa node parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
ret = rte_kvargs_process(kvlist, DLB2_MAX_NUM_EVENTS,
set_max_num_events,
&dlb2_args->max_num_events);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing max_num_events parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
if (version == DLB2_HW_V2) {
ret = rte_kvargs_process(kvlist,
DLB2_NUM_DIR_CREDITS,
set_num_dir_credits,
&dlb2_args->num_dir_credits_override);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing num_dir_credits parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
}
ret = rte_kvargs_process(kvlist, DEV_ID_ARG,
set_dev_id,
&dlb2_args->dev_id);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing dev_id parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
if (version == DLB2_HW_V2) {
ret = rte_kvargs_process(
kvlist,
DLB2_QID_DEPTH_THRESH_ARG,
set_qid_depth_thresh,
&dlb2_args->qid_depth_thresholds);
} else {
ret = rte_kvargs_process(
kvlist,
DLB2_QID_DEPTH_THRESH_ARG,
set_qid_depth_thresh_v2_5,
&dlb2_args->qid_depth_thresholds);
}
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing qid_depth_thresh parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
ret = rte_kvargs_process(kvlist, DLB2_COS_ARG,
set_cos,
&dlb2_args->cos_id);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing cos parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
ret = rte_kvargs_process(kvlist, DLB2_POLL_INTERVAL_ARG,
set_poll_interval,
&dlb2_args->poll_interval);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing poll interval parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
ret = rte_kvargs_process(kvlist,
DLB2_SW_CREDIT_QUANTA_ARG,
set_sw_credit_quanta,
&dlb2_args->sw_credit_quanta);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing sw credit quanta parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
ret = rte_kvargs_process(kvlist,
DLB2_HW_CREDIT_QUANTA_ARG,
set_hw_credit_quanta,
&dlb2_args->hw_credit_quanta);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing hw credit quanta parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
ret = rte_kvargs_process(kvlist, DLB2_DEPTH_THRESH_ARG,
set_default_depth_thresh,
&dlb2_args->default_depth_thresh);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing set depth thresh parameter",
name);
rte_kvargs_free(kvlist);
return ret;
}
ret = rte_kvargs_process(kvlist,
DLB2_VECTOR_OPTS_ENAB_ARG,
set_vector_opts_enab,
&dlb2_args->vector_opts_enabled);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing vector opts enabled",
name);
rte_kvargs_free(kvlist);
return ret;
}
rte_kvargs_free(kvlist);
}
}
return ret;
}
RTE_LOG_REGISTER_DEFAULT(eventdev_dlb2_log_level, NOTICE);