mirror of https://github.com/F-Stack/f-stack.git
912 lines
21 KiB
C
912 lines
21 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <poll.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <net/if.h>
|
|
#include <sys/types.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_log.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_string_fns.h>
|
|
|
|
#include "compat_netmap.h"
|
|
|
|
struct netmap_port {
|
|
struct rte_mempool *pool;
|
|
struct netmap_if *nmif;
|
|
struct rte_eth_conf eth_conf;
|
|
struct rte_eth_txconf tx_conf;
|
|
struct rte_eth_rxconf rx_conf;
|
|
int32_t socket_id;
|
|
uint16_t nr_tx_rings;
|
|
uint16_t nr_rx_rings;
|
|
uint32_t nr_tx_slots;
|
|
uint32_t nr_rx_slots;
|
|
uint16_t tx_burst;
|
|
uint16_t rx_burst;
|
|
uint32_t fd;
|
|
};
|
|
|
|
struct fd_port {
|
|
uint32_t port;
|
|
};
|
|
|
|
#ifndef POLLRDNORM
|
|
#define POLLRDNORM 0x0040
|
|
#endif
|
|
|
|
#ifndef POLLWRNORM
|
|
#define POLLWRNORM 0x0100
|
|
#endif
|
|
|
|
#define FD_PORT_FREE UINT32_MAX
|
|
#define FD_PORT_RSRV (FD_PORT_FREE - 1)
|
|
|
|
struct netmap_state {
|
|
struct rte_netmap_conf conf;
|
|
uintptr_t buf_start;
|
|
void *mem;
|
|
uint32_t mem_sz;
|
|
uint32_t netif_memsz;
|
|
};
|
|
|
|
|
|
#define COMPAT_NETMAP_MAX_NOFILE (2 * RTE_MAX_ETHPORTS)
|
|
#define COMPAT_NETMAP_MAX_BURST 64
|
|
#define COMPAT_NETMAP_MAX_PKT_PER_SYNC (2 * COMPAT_NETMAP_MAX_BURST)
|
|
|
|
static struct netmap_port ports[RTE_MAX_ETHPORTS];
|
|
static struct netmap_state netmap;
|
|
|
|
static struct fd_port fd_port[COMPAT_NETMAP_MAX_NOFILE];
|
|
static const int next_fd_start = RLIMIT_NOFILE + 1;
|
|
static rte_spinlock_t netmap_lock;
|
|
|
|
#define IDX_TO_FD(x) ((x) + next_fd_start)
|
|
#define FD_TO_IDX(x) ((x) - next_fd_start)
|
|
#define FD_VALID(x) ((x) >= next_fd_start && \
|
|
(x) < (typeof (x))(RTE_DIM(fd_port) + next_fd_start))
|
|
|
|
#define PORT_NUM_RINGS (2 * netmap.conf.max_rings)
|
|
#define PORT_NUM_SLOTS (PORT_NUM_RINGS * netmap.conf.max_slots)
|
|
|
|
#define BUF_IDX(port, ring, slot) \
|
|
(((port) * PORT_NUM_RINGS + (ring)) * netmap.conf.max_slots + \
|
|
(slot))
|
|
|
|
#define NETMAP_IF_RING_OFS(rid, rings, slots) ({\
|
|
struct netmap_if *_if; \
|
|
struct netmap_ring *_rg; \
|
|
sizeof(*_if) + \
|
|
(rings) * sizeof(_if->ring_ofs[0]) + \
|
|
(rid) * sizeof(*_rg) + \
|
|
(slots) * sizeof(_rg->slot[0]); \
|
|
})
|
|
|
|
static void netmap_unregif(uint32_t idx, uint32_t port);
|
|
|
|
|
|
static int32_t
|
|
ifname_to_portid(const char *ifname, uint8_t *port)
|
|
{
|
|
char *endptr;
|
|
uint64_t portid;
|
|
|
|
errno = 0;
|
|
portid = strtoul(ifname, &endptr, 10);
|
|
if (endptr == ifname || *endptr != '\0' ||
|
|
portid >= RTE_DIM(ports) || errno != 0)
|
|
return -EINVAL;
|
|
|
|
*port = (uint8_t)portid;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Given a dpdk mbuf, fill in the Netmap slot in ring r and its associated
|
|
* buffer with the data held by the mbuf.
|
|
* Note that mbuf chains are not supported.
|
|
*/
|
|
static void
|
|
mbuf_to_slot(struct rte_mbuf *mbuf, struct netmap_ring *r, uint32_t index)
|
|
{
|
|
char *data;
|
|
uint16_t length;
|
|
|
|
data = rte_pktmbuf_mtod(mbuf, char *);
|
|
length = rte_pktmbuf_data_len(mbuf);
|
|
|
|
if (length > r->nr_buf_size)
|
|
length = 0;
|
|
|
|
r->slot[index].len = length;
|
|
rte_memcpy(NETMAP_BUF(r, r->slot[index].buf_idx), data, length);
|
|
}
|
|
|
|
/**
|
|
* Given a Netmap ring and a slot index for that ring, construct a dpdk mbuf
|
|
* from the data held in the buffer associated with the slot.
|
|
* Allocation/deallocation of the dpdk mbuf are the responsability of the
|
|
* caller.
|
|
* Note that mbuf chains are not supported.
|
|
*/
|
|
static void
|
|
slot_to_mbuf(struct netmap_ring *r, uint32_t index, struct rte_mbuf *mbuf)
|
|
{
|
|
char *data;
|
|
uint16_t length;
|
|
|
|
rte_pktmbuf_reset(mbuf);
|
|
length = r->slot[index].len;
|
|
data = rte_pktmbuf_append(mbuf, length);
|
|
|
|
if (data != NULL)
|
|
rte_memcpy(data, NETMAP_BUF(r, r->slot[index].buf_idx), length);
|
|
}
|
|
|
|
static int32_t
|
|
fd_reserve(void)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i != RTE_DIM(fd_port) && fd_port[i].port != FD_PORT_FREE;
|
|
i++)
|
|
;
|
|
|
|
if (i == RTE_DIM(fd_port))
|
|
return -ENOMEM;
|
|
|
|
fd_port[i].port = FD_PORT_RSRV;
|
|
return IDX_TO_FD(i);
|
|
}
|
|
|
|
static int32_t
|
|
fd_release(int32_t fd)
|
|
{
|
|
uint32_t idx, port;
|
|
|
|
idx = FD_TO_IDX(fd);
|
|
|
|
if (!FD_VALID(fd) || (port = fd_port[idx].port) == FD_PORT_FREE)
|
|
return -EINVAL;
|
|
|
|
/* if we still have a valid port attached, release the port */
|
|
if (port < RTE_DIM(ports) && ports[port].fd == idx) {
|
|
netmap_unregif(idx, port);
|
|
}
|
|
|
|
fd_port[idx].port = FD_PORT_FREE;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
check_nmreq(struct nmreq *req, uint8_t *port)
|
|
{
|
|
int32_t rc;
|
|
uint8_t portid;
|
|
|
|
if (req == NULL)
|
|
return -EINVAL;
|
|
|
|
if (req->nr_version != NETMAP_API) {
|
|
req->nr_version = NETMAP_API;
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((rc = ifname_to_portid(req->nr_name, &portid)) != 0) {
|
|
RTE_LOG(ERR, USER1, "Invalid interface name:\"%s\" "
|
|
"in NIOCGINFO call\n", req->nr_name);
|
|
return rc;
|
|
}
|
|
|
|
if (ports[portid].pool == NULL) {
|
|
RTE_LOG(ERR, USER1, "Misconfigured portid %hhu\n", portid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*port = portid;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Simulate a Netmap NIOCGINFO ioctl: given a struct nmreq holding an interface
|
|
* name (a port number in our case), fill the struct nmreq in with advisory
|
|
* information about the interface: number of rings and their size, total memory
|
|
* required in the map, ...
|
|
* Those are preconfigured using rte_eth_{,tx,rx}conf and
|
|
* rte_netmap_port_conf structures
|
|
* and calls to rte_netmap_init_port() in the Netmap application.
|
|
*/
|
|
static int
|
|
ioctl_niocginfo(__rte_unused int fd, void * param)
|
|
{
|
|
uint8_t portid;
|
|
struct nmreq *req;
|
|
int32_t rc;
|
|
|
|
req = (struct nmreq *)param;
|
|
if ((rc = check_nmreq(req, &portid)) != 0)
|
|
return rc;
|
|
|
|
req->nr_tx_rings = (uint16_t)(ports[portid].nr_tx_rings - 1);
|
|
req->nr_rx_rings = (uint16_t)(ports[portid].nr_rx_rings - 1);
|
|
req->nr_tx_slots = ports[portid].nr_tx_slots;
|
|
req->nr_rx_slots = ports[portid].nr_rx_slots;
|
|
|
|
/* in current implementation we have all NETIFs shared aone region. */
|
|
req->nr_memsize = netmap.mem_sz;
|
|
req->nr_offset = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
netmap_ring_setup(struct netmap_ring *ring, uint8_t port, uint32_t ringid,
|
|
uint32_t num_slots)
|
|
{
|
|
uint32_t j;
|
|
|
|
ring->buf_ofs = netmap.buf_start - (uintptr_t)ring;
|
|
ring->num_slots = num_slots;
|
|
ring->cur = 0;
|
|
ring->reserved = 0;
|
|
ring->nr_buf_size = netmap.conf.max_bufsz;
|
|
ring->flags = 0;
|
|
ring->ts.tv_sec = 0;
|
|
ring->ts.tv_usec = 0;
|
|
|
|
for (j = 0; j < ring->num_slots; j++) {
|
|
ring->slot[j].buf_idx = BUF_IDX(port, ringid, j);
|
|
ring->slot[j].len = 0;
|
|
ring->flags = 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
netmap_regif(struct nmreq *req, uint32_t idx, uint8_t port)
|
|
{
|
|
struct netmap_if *nmif;
|
|
struct netmap_ring *ring;
|
|
uint32_t i, slots, start_ring;
|
|
int32_t rc;
|
|
|
|
if (ports[port].fd < RTE_DIM(fd_port)) {
|
|
RTE_LOG(ERR, USER1, "port %hhu already in use by fd: %u\n",
|
|
port, IDX_TO_FD(ports[port].fd));
|
|
return -EBUSY;
|
|
}
|
|
if (fd_port[idx].port != FD_PORT_RSRV) {
|
|
RTE_LOG(ERR, USER1, "fd: %u is misconfigured\n",
|
|
IDX_TO_FD(idx));
|
|
return -EBUSY;
|
|
}
|
|
|
|
nmif = ports[port].nmif;
|
|
|
|
/* setup netmap_if fields. */
|
|
memset(nmif, 0, netmap.netif_memsz);
|
|
|
|
/* only ALL rings supported right now. */
|
|
if (req->nr_ringid != 0)
|
|
return -EINVAL;
|
|
|
|
snprintf(nmif->ni_name, sizeof(nmif->ni_name), "%s", req->nr_name);
|
|
nmif->ni_version = req->nr_version;
|
|
|
|
/* Netmap uses ni_(r|t)x_rings + 1 */
|
|
nmif->ni_rx_rings = ports[port].nr_rx_rings - 1;
|
|
nmif->ni_tx_rings = ports[port].nr_tx_rings - 1;
|
|
|
|
/*
|
|
* Setup TX rings and slots.
|
|
* Refer to the comments in netmap.h for details
|
|
*/
|
|
|
|
slots = 0;
|
|
for (i = 0; i < nmif->ni_tx_rings + 1; i++) {
|
|
|
|
nmif->ring_ofs[i] = NETMAP_IF_RING_OFS(i,
|
|
PORT_NUM_RINGS, slots);
|
|
|
|
ring = NETMAP_TXRING(nmif, i);
|
|
netmap_ring_setup(ring, port, i, ports[port].nr_tx_slots);
|
|
ring->avail = ring->num_slots;
|
|
|
|
slots += ports[port].nr_tx_slots;
|
|
}
|
|
|
|
/*
|
|
* Setup RX rings and slots.
|
|
* Refer to the comments in netmap.h for details
|
|
*/
|
|
|
|
start_ring = i;
|
|
|
|
for (; i < nmif->ni_rx_rings + 1 + start_ring; i++) {
|
|
|
|
nmif->ring_ofs[i] = NETMAP_IF_RING_OFS(i,
|
|
PORT_NUM_RINGS, slots);
|
|
|
|
ring = NETMAP_RXRING(nmif, (i - start_ring));
|
|
netmap_ring_setup(ring, port, i, ports[port].nr_rx_slots);
|
|
ring->avail = 0;
|
|
|
|
slots += ports[port].nr_rx_slots;
|
|
}
|
|
|
|
if ((rc = rte_eth_dev_start(port)) < 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Couldn't start ethernet device %s (error %d)\n",
|
|
req->nr_name, rc);
|
|
return rc;
|
|
}
|
|
|
|
/* setup fdi <--> port relationtip. */
|
|
ports[port].fd = idx;
|
|
fd_port[idx].port = port;
|
|
|
|
req->nr_memsize = netmap.mem_sz;
|
|
req->nr_offset = (uintptr_t)nmif - (uintptr_t)netmap.mem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Simulate a Netmap NIOCREGIF ioctl:
|
|
*/
|
|
static int
|
|
ioctl_niocregif(int32_t fd, void * param)
|
|
{
|
|
uint8_t portid;
|
|
int32_t rc;
|
|
uint32_t idx;
|
|
struct nmreq *req;
|
|
|
|
req = (struct nmreq *)param;
|
|
if ((rc = check_nmreq(req, &portid)) != 0)
|
|
return rc;
|
|
|
|
idx = FD_TO_IDX(fd);
|
|
|
|
rte_spinlock_lock(&netmap_lock);
|
|
rc = netmap_regif(req, idx, portid);
|
|
rte_spinlock_unlock(&netmap_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
netmap_unregif(uint32_t idx, uint32_t port)
|
|
{
|
|
fd_port[idx].port = FD_PORT_RSRV;
|
|
ports[port].fd = UINT32_MAX;
|
|
rte_eth_dev_stop((uint8_t)port);
|
|
}
|
|
|
|
/**
|
|
* Simulate a Netmap NIOCUNREGIF ioctl: put an interface running in Netmap
|
|
* mode back in "normal" mode. In our case, we just stop the port associated
|
|
* with this file descriptor.
|
|
*/
|
|
static int
|
|
ioctl_niocunregif(int fd)
|
|
{
|
|
uint32_t idx, port;
|
|
int32_t rc;
|
|
|
|
idx = FD_TO_IDX(fd);
|
|
|
|
rte_spinlock_lock(&netmap_lock);
|
|
|
|
port = fd_port[idx].port;
|
|
if (port < RTE_DIM(ports) && ports[port].fd == idx) {
|
|
netmap_unregif(idx, port);
|
|
rc = 0;
|
|
} else {
|
|
RTE_LOG(ERR, USER1,
|
|
"%s: %d is not associated with valid port\n",
|
|
__func__, fd);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
rte_spinlock_unlock(&netmap_lock);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* A call to rx_sync_ring will try to fill a Netmap RX ring with as many
|
|
* packets as it can hold coming from its dpdk port.
|
|
*/
|
|
static inline int
|
|
rx_sync_ring(struct netmap_ring *ring, uint8_t port, uint16_t ring_number,
|
|
uint16_t max_burst)
|
|
{
|
|
int32_t i, n_rx;
|
|
uint16_t burst_size;
|
|
uint32_t cur_slot, n_free_slots;
|
|
struct rte_mbuf *rx_mbufs[COMPAT_NETMAP_MAX_BURST];
|
|
|
|
n_free_slots = ring->num_slots - (ring->avail + ring->reserved);
|
|
n_free_slots = RTE_MIN(n_free_slots, max_burst);
|
|
cur_slot = (ring->cur + ring->avail) & (ring->num_slots - 1);
|
|
|
|
while (n_free_slots) {
|
|
burst_size = (uint16_t)RTE_MIN(n_free_slots, RTE_DIM(rx_mbufs));
|
|
|
|
/* receive up to burst_size packets from the NIC's queue */
|
|
n_rx = rte_eth_rx_burst(port, ring_number, rx_mbufs,
|
|
burst_size);
|
|
|
|
if (n_rx == 0)
|
|
return 0;
|
|
if (unlikely(n_rx < 0))
|
|
return -1;
|
|
|
|
/* Put those n_rx packets in the Netmap structures */
|
|
for (i = 0; i < n_rx ; i++) {
|
|
mbuf_to_slot(rx_mbufs[i], ring, cur_slot);
|
|
rte_pktmbuf_free(rx_mbufs[i]);
|
|
cur_slot = NETMAP_RING_NEXT(ring, cur_slot);
|
|
}
|
|
|
|
/* Update the Netmap ring structure to reflect the change */
|
|
ring->avail += n_rx;
|
|
n_free_slots -= n_rx;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
rx_sync_if(uint32_t port)
|
|
{
|
|
uint16_t burst;
|
|
uint32_t i, rc;
|
|
struct netmap_if *nifp;
|
|
struct netmap_ring *r;
|
|
|
|
nifp = ports[port].nmif;
|
|
burst = ports[port].rx_burst;
|
|
rc = 0;
|
|
|
|
for (i = 0; i < nifp->ni_rx_rings + 1; i++) {
|
|
r = NETMAP_RXRING(nifp, i);
|
|
rx_sync_ring(r, (uint8_t)port, (uint16_t)i, burst);
|
|
rc += r->avail;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Simulate a Netmap NIOCRXSYNC ioctl:
|
|
*/
|
|
static int
|
|
ioctl_niocrxsync(int fd)
|
|
{
|
|
uint32_t idx, port;
|
|
|
|
idx = FD_TO_IDX(fd);
|
|
if ((port = fd_port[idx].port) < RTE_DIM(ports) &&
|
|
ports[port].fd == idx) {
|
|
return rx_sync_if(fd_port[idx].port);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A call to tx_sync_ring will try to empty a Netmap TX ring by converting its
|
|
* buffers into rte_mbufs and sending them out on the rings's dpdk port.
|
|
*/
|
|
static int
|
|
tx_sync_ring(struct netmap_ring *ring, uint8_t port, uint16_t ring_number,
|
|
struct rte_mempool *pool, uint16_t max_burst)
|
|
{
|
|
uint32_t i, n_tx;
|
|
uint16_t burst_size;
|
|
uint32_t cur_slot, n_used_slots;
|
|
struct rte_mbuf *tx_mbufs[COMPAT_NETMAP_MAX_BURST];
|
|
|
|
n_used_slots = ring->num_slots - ring->avail;
|
|
n_used_slots = RTE_MIN(n_used_slots, max_burst);
|
|
cur_slot = (ring->cur + ring->avail) & (ring->num_slots - 1);
|
|
|
|
while (n_used_slots) {
|
|
burst_size = (uint16_t)RTE_MIN(n_used_slots, RTE_DIM(tx_mbufs));
|
|
|
|
for (i = 0; i < burst_size; i++) {
|
|
tx_mbufs[i] = rte_pktmbuf_alloc(pool);
|
|
if (tx_mbufs[i] == NULL)
|
|
goto err;
|
|
|
|
slot_to_mbuf(ring, cur_slot, tx_mbufs[i]);
|
|
cur_slot = NETMAP_RING_NEXT(ring, cur_slot);
|
|
}
|
|
|
|
n_tx = rte_eth_tx_burst(port, ring_number, tx_mbufs,
|
|
burst_size);
|
|
|
|
/* Update the Netmap ring structure to reflect the change */
|
|
ring->avail += n_tx;
|
|
n_used_slots -= n_tx;
|
|
|
|
/* Return the mbufs that failed to transmit to their pool */
|
|
if (unlikely(n_tx != burst_size)) {
|
|
for (i = n_tx; i < burst_size; i++)
|
|
rte_pktmbuf_free(tx_mbufs[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for (; i == 0; --i)
|
|
rte_pktmbuf_free(tx_mbufs[i]);
|
|
|
|
RTE_LOG(ERR, USER1,
|
|
"Couldn't get mbuf from mempool is the mempool too small?\n");
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
tx_sync_if(uint32_t port)
|
|
{
|
|
uint16_t burst;
|
|
uint32_t i, rc;
|
|
struct netmap_if *nifp;
|
|
struct netmap_ring *r;
|
|
struct rte_mempool *mp;
|
|
|
|
nifp = ports[port].nmif;
|
|
mp = ports[port].pool;
|
|
burst = ports[port].tx_burst;
|
|
rc = 0;
|
|
|
|
for (i = 0; i < nifp->ni_tx_rings + 1; i++) {
|
|
r = NETMAP_TXRING(nifp, i);
|
|
tx_sync_ring(r, (uint8_t)port, (uint16_t)i, mp, burst);
|
|
rc += r->avail;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Simulate a Netmap NIOCTXSYNC ioctl:
|
|
*/
|
|
static inline int
|
|
ioctl_nioctxsync(int fd)
|
|
{
|
|
uint32_t idx, port;
|
|
|
|
idx = FD_TO_IDX(fd);
|
|
if ((port = fd_port[idx].port) < RTE_DIM(ports) &&
|
|
ports[port].fd == idx) {
|
|
return tx_sync_if(fd_port[idx].port);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Give the library a mempool of rte_mbufs with which it can do the
|
|
* rte_mbuf <--> netmap slot conversions.
|
|
*/
|
|
int
|
|
rte_netmap_init(const struct rte_netmap_conf *conf)
|
|
{
|
|
size_t buf_ofs, nmif_sz, sz;
|
|
size_t port_rings, port_slots, port_bufs;
|
|
uint32_t i, port_num;
|
|
|
|
port_num = RTE_MAX_ETHPORTS;
|
|
port_rings = 2 * conf->max_rings;
|
|
port_slots = port_rings * conf->max_slots;
|
|
port_bufs = port_slots;
|
|
|
|
nmif_sz = NETMAP_IF_RING_OFS(port_rings, port_rings, port_slots);
|
|
sz = nmif_sz * port_num;
|
|
|
|
buf_ofs = RTE_ALIGN_CEIL(sz, RTE_CACHE_LINE_SIZE);
|
|
sz = buf_ofs + port_bufs * conf->max_bufsz * port_num;
|
|
|
|
if (sz > UINT32_MAX ||
|
|
(netmap.mem = rte_zmalloc_socket(__func__, sz,
|
|
RTE_CACHE_LINE_SIZE, conf->socket_id)) == NULL) {
|
|
RTE_LOG(ERR, USER1, "%s: failed to allocate %zu bytes\n",
|
|
__func__, sz);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
netmap.mem_sz = sz;
|
|
netmap.netif_memsz = nmif_sz;
|
|
netmap.buf_start = (uintptr_t)netmap.mem + buf_ofs;
|
|
netmap.conf = *conf;
|
|
|
|
rte_spinlock_init(&netmap_lock);
|
|
|
|
/* Mark all ports as unused and set NETIF pointer. */
|
|
for (i = 0; i != RTE_DIM(ports); i++) {
|
|
ports[i].fd = UINT32_MAX;
|
|
ports[i].nmif = (struct netmap_if *)
|
|
((uintptr_t)netmap.mem + nmif_sz * i);
|
|
}
|
|
|
|
/* Mark all fd_ports as unused. */
|
|
for (i = 0; i != RTE_DIM(fd_port); i++) {
|
|
fd_port[i].port = FD_PORT_FREE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
rte_netmap_init_port(uint8_t portid, const struct rte_netmap_port_conf *conf)
|
|
{
|
|
int32_t ret;
|
|
uint16_t i;
|
|
uint16_t rx_slots, tx_slots;
|
|
|
|
if (conf == NULL ||
|
|
portid >= RTE_DIM(ports) ||
|
|
conf->nr_tx_rings > netmap.conf.max_rings ||
|
|
conf->nr_rx_rings > netmap.conf.max_rings) {
|
|
RTE_LOG(ERR, USER1, "%s(%hhu): invalid parameters\n",
|
|
__func__, portid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rx_slots = (uint16_t)rte_align32pow2(conf->nr_rx_slots);
|
|
tx_slots = (uint16_t)rte_align32pow2(conf->nr_tx_slots);
|
|
|
|
if (tx_slots > netmap.conf.max_slots ||
|
|
rx_slots > netmap.conf.max_slots) {
|
|
RTE_LOG(ERR, USER1, "%s(%hhu): invalid parameters\n",
|
|
__func__, portid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = rte_eth_dev_configure(portid, conf->nr_rx_rings,
|
|
conf->nr_tx_rings, conf->eth_conf);
|
|
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, USER1, "Couldn't configure port %hhu\n", portid);
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < conf->nr_tx_rings; i++) {
|
|
ret = rte_eth_tx_queue_setup(portid, i, tx_slots,
|
|
conf->socket_id, NULL);
|
|
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Couldn't configure TX queue %"PRIu16" of "
|
|
"port %"PRIu8"\n",
|
|
i, portid);
|
|
return ret;
|
|
}
|
|
|
|
ret = rte_eth_rx_queue_setup(portid, i, rx_slots,
|
|
conf->socket_id, NULL, conf->pool);
|
|
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Couldn't configure RX queue %"PRIu16" of "
|
|
"port %"PRIu8"\n",
|
|
i, portid);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* copy config to the private storage. */
|
|
ports[portid].eth_conf = conf->eth_conf[0];
|
|
ports[portid].pool = conf->pool;
|
|
ports[portid].socket_id = conf->socket_id;
|
|
ports[portid].nr_tx_rings = conf->nr_tx_rings;
|
|
ports[portid].nr_rx_rings = conf->nr_rx_rings;
|
|
ports[portid].nr_tx_slots = tx_slots;
|
|
ports[portid].nr_rx_slots = rx_slots;
|
|
ports[portid].tx_burst = conf->tx_burst;
|
|
ports[portid].rx_burst = conf->rx_burst;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_netmap_close(__rte_unused int fd)
|
|
{
|
|
int32_t rc;
|
|
|
|
rte_spinlock_lock(&netmap_lock);
|
|
rc = fd_release(fd);
|
|
rte_spinlock_unlock(&netmap_lock);
|
|
|
|
if (rc < 0) {
|
|
errno =-rc;
|
|
rc = -1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int rte_netmap_ioctl(int fd, uint32_t op, void *param)
|
|
{
|
|
int ret;
|
|
|
|
if (!FD_VALID(fd)) {
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
switch (op) {
|
|
|
|
case NIOCGINFO:
|
|
ret = ioctl_niocginfo(fd, param);
|
|
break;
|
|
|
|
case NIOCREGIF:
|
|
ret = ioctl_niocregif(fd, param);
|
|
break;
|
|
|
|
case NIOCUNREGIF:
|
|
ret = ioctl_niocunregif(fd);
|
|
break;
|
|
|
|
case NIOCRXSYNC:
|
|
ret = ioctl_niocrxsync(fd);
|
|
break;
|
|
|
|
case NIOCTXSYNC:
|
|
ret = ioctl_nioctxsync(fd);
|
|
break;
|
|
|
|
default:
|
|
ret = -ENOTTY;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
ret = -1;
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void *
|
|
rte_netmap_mmap(void *addr, size_t length,
|
|
int prot, int flags, int fd, off_t offset)
|
|
{
|
|
static const int cprot = PROT_WRITE | PROT_READ;
|
|
|
|
if (!FD_VALID(fd) || length + offset > netmap.mem_sz ||
|
|
(prot & cprot) != cprot ||
|
|
((flags & MAP_FIXED) != 0 && addr != NULL)) {
|
|
|
|
errno = EINVAL;
|
|
return MAP_FAILED;
|
|
}
|
|
|
|
return (void *)((uintptr_t)netmap.mem + (uintptr_t)offset);
|
|
}
|
|
|
|
/**
|
|
* Return a "fake" file descriptor with a value above RLIMIT_NOFILE so that
|
|
* any attempt to use that file descriptor with the usual API will fail.
|
|
*/
|
|
int
|
|
rte_netmap_open(__rte_unused const char *pathname, __rte_unused int flags)
|
|
{
|
|
int fd;
|
|
|
|
rte_spinlock_lock(&netmap_lock);
|
|
fd = fd_reserve();
|
|
rte_spinlock_unlock(&netmap_lock);
|
|
|
|
if (fd < 0) {
|
|
errno = -fd;
|
|
fd = -1;
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
/**
|
|
* Doesn't support timeout other than 0 or infinite (negative) timeout
|
|
*/
|
|
int
|
|
rte_netmap_poll(struct pollfd *fds, nfds_t nfds, int timeout)
|
|
{
|
|
int32_t count_it, ret;
|
|
uint32_t i, idx, port;
|
|
uint32_t want_rx, want_tx;
|
|
|
|
if (timeout > 0)
|
|
return -1;
|
|
|
|
ret = 0;
|
|
do {
|
|
for (i = 0; i < nfds; i++) {
|
|
|
|
count_it = 0;
|
|
|
|
if (!FD_VALID(fds[i].fd) || fds[i].events == 0) {
|
|
fds[i].revents = 0;
|
|
continue;
|
|
}
|
|
|
|
idx = FD_TO_IDX(fds[i].fd);
|
|
if ((port = fd_port[idx].port) >= RTE_DIM(ports) ||
|
|
ports[port].fd != idx) {
|
|
|
|
fds[i].revents |= POLLERR;
|
|
ret++;
|
|
continue;
|
|
}
|
|
|
|
want_rx = fds[i].events & (POLLIN | POLLRDNORM);
|
|
want_tx = fds[i].events & (POLLOUT | POLLWRNORM);
|
|
|
|
if (want_rx && rx_sync_if(port) > 0) {
|
|
fds[i].revents = (uint16_t)
|
|
(fds[i].revents | want_rx);
|
|
count_it = 1;
|
|
}
|
|
if (want_tx && tx_sync_if(port) > 0) {
|
|
fds[i].revents = (uint16_t)
|
|
(fds[i].revents | want_tx);
|
|
count_it = 1;
|
|
}
|
|
|
|
ret += count_it;
|
|
}
|
|
}
|
|
while ((ret == 0 && timeout < 0) || timeout);
|
|
|
|
return ret;
|
|
}
|