f-stack/dpdk/lib/librte_vhost/virtio_net.c

1670 lines
39 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdint.h>
#include <stdbool.h>
#include <linux/virtio_net.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_vhost.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include <rte_arp.h>
#include <rte_spinlock.h>
#include <rte_malloc.h>
#include "iotlb.h"
#include "vhost.h"
#define MAX_PKT_BURST 32
#define MAX_BATCH_LEN 256
static __rte_always_inline bool
rxvq_is_mergeable(struct virtio_net *dev)
{
return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
}
static bool
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
{
return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
}
static __rte_always_inline void *
alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t desc_addr, uint64_t desc_len)
{
void *idesc;
uint64_t src, dst;
uint64_t len, remain = desc_len;
idesc = rte_malloc(__func__, desc_len, 0);
if (unlikely(!idesc))
return 0;
dst = (uint64_t)(uintptr_t)idesc;
while (remain) {
len = remain;
src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
VHOST_ACCESS_RO);
if (unlikely(!src || !len)) {
rte_free(idesc);
return 0;
}
rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
remain -= len;
dst += len;
desc_addr += len;
}
return idesc;
}
static __rte_always_inline void
free_ind_table(void *idesc)
{
rte_free(idesc);
}
static __rte_always_inline void
do_flush_shadow_used_ring_split(struct virtio_net *dev,
struct vhost_virtqueue *vq,
uint16_t to, uint16_t from, uint16_t size)
{
rte_memcpy(&vq->used->ring[to],
&vq->shadow_used_split[from],
size * sizeof(struct vring_used_elem));
vhost_log_cache_used_vring(dev, vq,
offsetof(struct vring_used, ring[to]),
size * sizeof(struct vring_used_elem));
}
static __rte_always_inline void
flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
if (used_idx + vq->shadow_used_idx <= vq->size) {
do_flush_shadow_used_ring_split(dev, vq, used_idx, 0,
vq->shadow_used_idx);
} else {
uint16_t size;
/* update used ring interval [used_idx, vq->size] */
size = vq->size - used_idx;
do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size);
/* update the left half used ring interval [0, left_size] */
do_flush_shadow_used_ring_split(dev, vq, 0, size,
vq->shadow_used_idx - size);
}
vq->last_used_idx += vq->shadow_used_idx;
rte_smp_wmb();
vhost_log_cache_sync(dev, vq);
*(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
vq->shadow_used_idx = 0;
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
}
static __rte_always_inline void
update_shadow_used_ring_split(struct vhost_virtqueue *vq,
uint16_t desc_idx, uint32_t len)
{
uint16_t i = vq->shadow_used_idx++;
vq->shadow_used_split[i].id = desc_idx;
vq->shadow_used_split[i].len = len;
}
static __rte_always_inline void
flush_shadow_used_ring_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq)
{
int i;
uint16_t used_idx = vq->last_used_idx;
/* Split loop in two to save memory barriers */
for (i = 0; i < vq->shadow_used_idx; i++) {
vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id;
vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len;
used_idx += vq->shadow_used_packed[i].count;
if (used_idx >= vq->size)
used_idx -= vq->size;
}
rte_smp_wmb();
for (i = 0; i < vq->shadow_used_idx; i++) {
uint16_t flags;
if (vq->shadow_used_packed[i].len)
flags = VRING_DESC_F_WRITE;
else
flags = 0;
if (vq->used_wrap_counter) {
flags |= VRING_DESC_F_USED;
flags |= VRING_DESC_F_AVAIL;
} else {
flags &= ~VRING_DESC_F_USED;
flags &= ~VRING_DESC_F_AVAIL;
}
vq->desc_packed[vq->last_used_idx].flags = flags;
vhost_log_cache_used_vring(dev, vq,
vq->last_used_idx *
sizeof(struct vring_packed_desc),
sizeof(struct vring_packed_desc));
vq->last_used_idx += vq->shadow_used_packed[i].count;
if (vq->last_used_idx >= vq->size) {
vq->used_wrap_counter ^= 1;
vq->last_used_idx -= vq->size;
}
}
rte_smp_wmb();
vq->shadow_used_idx = 0;
vhost_log_cache_sync(dev, vq);
}
static __rte_always_inline void
update_shadow_used_ring_packed(struct vhost_virtqueue *vq,
uint16_t desc_idx, uint32_t len, uint16_t count)
{
uint16_t i = vq->shadow_used_idx++;
vq->shadow_used_packed[i].id = desc_idx;
vq->shadow_used_packed[i].len = len;
vq->shadow_used_packed[i].count = count;
}
static inline void
do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
struct batch_copy_elem *elem = vq->batch_copy_elems;
uint16_t count = vq->batch_copy_nb_elems;
int i;
for (i = 0; i < count; i++) {
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
vhost_log_cache_write(dev, vq, elem[i].log_addr, elem[i].len);
PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
}
vq->batch_copy_nb_elems = 0;
}
static inline void
do_data_copy_dequeue(struct vhost_virtqueue *vq)
{
struct batch_copy_elem *elem = vq->batch_copy_elems;
uint16_t count = vq->batch_copy_nb_elems;
int i;
for (i = 0; i < count; i++)
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
vq->batch_copy_nb_elems = 0;
}
/* avoid write operation when necessary, to lessen cache issues */
#define ASSIGN_UNLESS_EQUAL(var, val) do { \
if ((var) != (val)) \
(var) = (val); \
} while (0)
static __rte_always_inline void
virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
{
uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
if (m_buf->ol_flags & PKT_TX_TCP_SEG)
csum_l4 |= PKT_TX_TCP_CKSUM;
if (csum_l4) {
net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
switch (csum_l4) {
case PKT_TX_TCP_CKSUM:
net_hdr->csum_offset = (offsetof(struct tcp_hdr,
cksum));
break;
case PKT_TX_UDP_CKSUM:
net_hdr->csum_offset = (offsetof(struct udp_hdr,
dgram_cksum));
break;
case PKT_TX_SCTP_CKSUM:
net_hdr->csum_offset = (offsetof(struct sctp_hdr,
cksum));
break;
}
} else {
ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
}
/* IP cksum verification cannot be bypassed, then calculate here */
if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
struct ipv4_hdr *ipv4_hdr;
ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
m_buf->l2_len);
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
}
if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
if (m_buf->ol_flags & PKT_TX_IPV4)
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
else
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
net_hdr->gso_size = m_buf->tso_segsz;
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
+ m_buf->l4_len;
} else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
net_hdr->gso_size = m_buf->tso_segsz;
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
m_buf->l4_len;
} else {
ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
}
}
static __rte_always_inline int
map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct buf_vector *buf_vec, uint16_t *vec_idx,
uint64_t desc_iova, uint64_t desc_len, uint8_t perm)
{
uint16_t vec_id = *vec_idx;
while (desc_len) {
uint64_t desc_addr;
uint64_t desc_chunck_len = desc_len;
if (unlikely(vec_id >= BUF_VECTOR_MAX))
return -1;
desc_addr = vhost_iova_to_vva(dev, vq,
desc_iova,
&desc_chunck_len,
perm);
if (unlikely(!desc_addr))
return -1;
buf_vec[vec_id].buf_iova = desc_iova;
buf_vec[vec_id].buf_addr = desc_addr;
buf_vec[vec_id].buf_len = desc_chunck_len;
desc_len -= desc_chunck_len;
desc_iova += desc_chunck_len;
vec_id++;
}
*vec_idx = vec_id;
return 0;
}
static __rte_always_inline int
fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t avail_idx, uint16_t *vec_idx,
struct buf_vector *buf_vec, uint16_t *desc_chain_head,
uint32_t *desc_chain_len, uint8_t perm)
{
uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
uint16_t vec_id = *vec_idx;
uint32_t len = 0;
uint64_t dlen;
struct vring_desc *descs = vq->desc;
struct vring_desc *idesc = NULL;
*desc_chain_head = idx;
if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
dlen = vq->desc[idx].len;
descs = (struct vring_desc *)(uintptr_t)
vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
&dlen,
VHOST_ACCESS_RO);
if (unlikely(!descs))
return -1;
if (unlikely(dlen < vq->desc[idx].len)) {
/*
* The indirect desc table is not contiguous
* in process VA space, we have to copy it.
*/
idesc = alloc_copy_ind_table(dev, vq,
vq->desc[idx].addr, vq->desc[idx].len);
if (unlikely(!idesc))
return -1;
descs = idesc;
}
idx = 0;
}
while (1) {
if (unlikely(idx >= vq->size)) {
free_ind_table(idesc);
return -1;
}
len += descs[idx].len;
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
descs[idx].addr, descs[idx].len,
perm))) {
free_ind_table(idesc);
return -1;
}
if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
break;
idx = descs[idx].next;
}
*desc_chain_len = len;
*vec_idx = vec_id;
if (unlikely(!!idesc))
free_ind_table(idesc);
return 0;
}
/*
* Returns -1 on fail, 0 on success
*/
static inline int
reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t size, struct buf_vector *buf_vec,
uint16_t *num_buffers, uint16_t avail_head,
uint16_t *nr_vec)
{
uint16_t cur_idx;
uint16_t vec_idx = 0;
uint16_t max_tries, tries = 0;
uint16_t head_idx = 0;
uint32_t len = 0;
*num_buffers = 0;
cur_idx = vq->last_avail_idx;
if (rxvq_is_mergeable(dev))
max_tries = vq->size - 1;
else
max_tries = 1;
while (size > 0) {
if (unlikely(cur_idx == avail_head))
return -1;
/*
* if we tried all available ring items, and still
* can't get enough buf, it means something abnormal
* happened.
*/
if (unlikely(++tries > max_tries))
return -1;
if (unlikely(fill_vec_buf_split(dev, vq, cur_idx,
&vec_idx, buf_vec,
&head_idx, &len,
VHOST_ACCESS_RW) < 0))
return -1;
len = RTE_MIN(len, size);
update_shadow_used_ring_split(vq, head_idx, len);
size -= len;
cur_idx++;
*num_buffers += 1;
}
*nr_vec = vec_idx;
return 0;
}
static __rte_always_inline int
fill_vec_buf_packed_indirect(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct vring_packed_desc *desc, uint16_t *vec_idx,
struct buf_vector *buf_vec, uint32_t *len, uint8_t perm)
{
uint16_t i;
uint32_t nr_descs;
uint16_t vec_id = *vec_idx;
uint64_t dlen;
struct vring_packed_desc *descs, *idescs = NULL;
dlen = desc->len;
descs = (struct vring_packed_desc *)(uintptr_t)
vhost_iova_to_vva(dev, vq, desc->addr, &dlen, VHOST_ACCESS_RO);
if (unlikely(!descs))
return -1;
if (unlikely(dlen < desc->len)) {
/*
* The indirect desc table is not contiguous
* in process VA space, we have to copy it.
*/
idescs = alloc_copy_ind_table(dev, vq, desc->addr, desc->len);
if (unlikely(!idescs))
return -1;
descs = idescs;
}
nr_descs = desc->len / sizeof(struct vring_packed_desc);
if (unlikely(nr_descs >= vq->size)) {
free_ind_table(idescs);
return -1;
}
for (i = 0; i < nr_descs; i++) {
if (unlikely(vec_id >= BUF_VECTOR_MAX)) {
free_ind_table(idescs);
return -1;
}
*len += descs[i].len;
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
descs[i].addr, descs[i].len,
perm)))
return -1;
}
*vec_idx = vec_id;
if (unlikely(!!idescs))
free_ind_table(idescs);
return 0;
}
static __rte_always_inline int
fill_vec_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint16_t avail_idx, uint16_t *desc_count,
struct buf_vector *buf_vec, uint16_t *vec_idx,
uint16_t *buf_id, uint32_t *len, uint8_t perm)
{
bool wrap_counter = vq->avail_wrap_counter;
struct vring_packed_desc *descs = vq->desc_packed;
uint16_t vec_id = *vec_idx;
if (avail_idx < vq->last_avail_idx)
wrap_counter ^= 1;
if (unlikely(!desc_is_avail(&descs[avail_idx], wrap_counter)))
return -1;
*desc_count = 0;
*len = 0;
while (1) {
if (unlikely(vec_id >= BUF_VECTOR_MAX))
return -1;
*desc_count += 1;
*buf_id = descs[avail_idx].id;
if (descs[avail_idx].flags & VRING_DESC_F_INDIRECT) {
if (unlikely(fill_vec_buf_packed_indirect(dev, vq,
&descs[avail_idx],
&vec_id, buf_vec,
len, perm) < 0))
return -1;
} else {
*len += descs[avail_idx].len;
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
descs[avail_idx].addr,
descs[avail_idx].len,
perm)))
return -1;
}
if ((descs[avail_idx].flags & VRING_DESC_F_NEXT) == 0)
break;
if (++avail_idx >= vq->size) {
avail_idx -= vq->size;
wrap_counter ^= 1;
}
}
*vec_idx = vec_id;
return 0;
}
/*
* Returns -1 on fail, 0 on success
*/
static inline int
reserve_avail_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t size, struct buf_vector *buf_vec,
uint16_t *nr_vec, uint16_t *num_buffers,
uint16_t *nr_descs)
{
uint16_t avail_idx;
uint16_t vec_idx = 0;
uint16_t max_tries, tries = 0;
uint16_t buf_id = 0;
uint32_t len = 0;
uint16_t desc_count;
*num_buffers = 0;
avail_idx = vq->last_avail_idx;
if (rxvq_is_mergeable(dev))
max_tries = vq->size - 1;
else
max_tries = 1;
while (size > 0) {
/*
* if we tried all available ring items, and still
* can't get enough buf, it means something abnormal
* happened.
*/
if (unlikely(++tries > max_tries))
return -1;
if (unlikely(fill_vec_buf_packed(dev, vq,
avail_idx, &desc_count,
buf_vec, &vec_idx,
&buf_id, &len,
VHOST_ACCESS_RW) < 0))
return -1;
len = RTE_MIN(len, size);
update_shadow_used_ring_packed(vq, buf_id, len, desc_count);
size -= len;
avail_idx += desc_count;
if (avail_idx >= vq->size)
avail_idx -= vq->size;
*nr_descs += desc_count;
*num_buffers += 1;
}
*nr_vec = vec_idx;
return 0;
}
static __rte_always_inline int
copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf *m, struct buf_vector *buf_vec,
uint16_t nr_vec, uint16_t num_buffers)
{
uint32_t vec_idx = 0;
uint32_t mbuf_offset, mbuf_avail;
uint32_t buf_offset, buf_avail;
uint64_t buf_addr, buf_iova, buf_len;
uint32_t cpy_len;
uint64_t hdr_addr;
struct rte_mbuf *hdr_mbuf;
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
int error = 0;
if (unlikely(m == NULL)) {
error = -1;
goto out;
}
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
if (nr_vec > 1)
rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
error = -1;
goto out;
}
hdr_mbuf = m;
hdr_addr = buf_addr;
if (unlikely(buf_len < dev->vhost_hlen))
hdr = &tmp_hdr;
else
hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
dev->vid, num_buffers);
if (unlikely(buf_len < dev->vhost_hlen)) {
buf_offset = dev->vhost_hlen - buf_len;
vec_idx++;
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
buf_avail = buf_len - buf_offset;
} else {
buf_offset = dev->vhost_hlen;
buf_avail = buf_len - dev->vhost_hlen;
}
mbuf_avail = rte_pktmbuf_data_len(m);
mbuf_offset = 0;
while (mbuf_avail != 0 || m->next != NULL) {
/* done with current buf, get the next one */
if (buf_avail == 0) {
vec_idx++;
if (unlikely(vec_idx >= nr_vec)) {
error = -1;
goto out;
}
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
/* Prefetch next buffer address. */
if (vec_idx + 1 < nr_vec)
rte_prefetch0((void *)(uintptr_t)
buf_vec[vec_idx + 1].buf_addr);
buf_offset = 0;
buf_avail = buf_len;
}
/* done with current mbuf, get the next one */
if (mbuf_avail == 0) {
m = m->next;
mbuf_offset = 0;
mbuf_avail = rte_pktmbuf_data_len(m);
}
if (hdr_addr) {
virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
if (rxvq_is_mergeable(dev))
ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
num_buffers);
if (unlikely(hdr == &tmp_hdr)) {
uint64_t len;
uint64_t remain = dev->vhost_hlen;
uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
uint64_t iova = buf_vec[0].buf_iova;
uint16_t hdr_vec_idx = 0;
while (remain) {
len = RTE_MIN(remain,
buf_vec[hdr_vec_idx].buf_len);
dst = buf_vec[hdr_vec_idx].buf_addr;
rte_memcpy((void *)(uintptr_t)dst,
(void *)(uintptr_t)src,
len);
PRINT_PACKET(dev, (uintptr_t)dst,
(uint32_t)len, 0);
vhost_log_cache_write(dev, vq,
iova, len);
remain -= len;
iova += len;
src += len;
hdr_vec_idx++;
}
} else {
PRINT_PACKET(dev, (uintptr_t)hdr_addr,
dev->vhost_hlen, 0);
vhost_log_cache_write(dev, vq,
buf_vec[0].buf_iova,
dev->vhost_hlen);
}
hdr_addr = 0;
}
cpy_len = RTE_MIN(buf_avail, mbuf_avail);
if (likely(cpy_len > MAX_BATCH_LEN ||
vq->batch_copy_nb_elems >= vq->size)) {
rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)),
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
cpy_len);
vhost_log_cache_write(dev, vq, buf_iova + buf_offset,
cpy_len);
PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset),
cpy_len, 0);
} else {
batch_copy[vq->batch_copy_nb_elems].dst =
(void *)((uintptr_t)(buf_addr + buf_offset));
batch_copy[vq->batch_copy_nb_elems].src =
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
batch_copy[vq->batch_copy_nb_elems].log_addr =
buf_iova + buf_offset;
batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
vq->batch_copy_nb_elems++;
}
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
buf_avail -= cpy_len;
buf_offset += cpy_len;
}
out:
return error;
}
static __rte_always_inline uint32_t
virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint32_t count)
{
uint32_t pkt_idx = 0;
uint16_t num_buffers;
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint16_t avail_head;
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
avail_head = *((volatile uint16_t *)&vq->avail->idx);
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
uint16_t nr_vec = 0;
if (unlikely(reserve_avail_buf_split(dev, vq,
pkt_len, buf_vec, &num_buffers,
avail_head, &nr_vec) < 0)) {
VHOST_LOG_DEBUG(VHOST_DATA,
"(%d) failed to get enough desc from vring\n",
dev->vid);
vq->shadow_used_idx -= num_buffers;
break;
}
rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
dev->vid, vq->last_avail_idx,
vq->last_avail_idx + num_buffers);
if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
buf_vec, nr_vec,
num_buffers) < 0) {
vq->shadow_used_idx -= num_buffers;
break;
}
vq->last_avail_idx += num_buffers;
}
do_data_copy_enqueue(dev, vq);
if (likely(vq->shadow_used_idx)) {
flush_shadow_used_ring_split(dev, vq);
vhost_vring_call_split(dev, vq);
}
return pkt_idx;
}
static __rte_always_inline uint32_t
virtio_dev_rx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf **pkts, uint32_t count)
{
uint32_t pkt_idx = 0;
uint16_t num_buffers;
struct buf_vector buf_vec[BUF_VECTOR_MAX];
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
uint16_t nr_vec = 0;
uint16_t nr_descs = 0;
if (unlikely(reserve_avail_buf_packed(dev, vq,
pkt_len, buf_vec, &nr_vec,
&num_buffers, &nr_descs) < 0)) {
VHOST_LOG_DEBUG(VHOST_DATA,
"(%d) failed to get enough desc from vring\n",
dev->vid);
vq->shadow_used_idx -= num_buffers;
break;
}
rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
dev->vid, vq->last_avail_idx,
vq->last_avail_idx + num_buffers);
if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
buf_vec, nr_vec,
num_buffers) < 0) {
vq->shadow_used_idx -= num_buffers;
break;
}
vq->last_avail_idx += nr_descs;
if (vq->last_avail_idx >= vq->size) {
vq->last_avail_idx -= vq->size;
vq->avail_wrap_counter ^= 1;
}
}
do_data_copy_enqueue(dev, vq);
if (likely(vq->shadow_used_idx)) {
flush_shadow_used_ring_packed(dev, vq);
vhost_vring_call_packed(dev, vq);
}
return pkt_idx;
}
static __rte_always_inline uint32_t
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
uint32_t nb_tx = 0;
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
rte_spinlock_lock(&vq->access_lock);
if (unlikely(vq->enabled == 0))
goto out_access_unlock;
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_lock(vq);
if (unlikely(vq->access_ok == 0))
if (unlikely(vring_translate(dev, vq) < 0))
goto out;
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
if (count == 0)
goto out;
if (vq_is_packed(dev))
nb_tx = virtio_dev_rx_packed(dev, vq, pkts, count);
else
nb_tx = virtio_dev_rx_split(dev, vq, pkts, count);
out:
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_unlock(vq);
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
return nb_tx;
}
uint16_t
rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
struct rte_mbuf **pkts, uint16_t count)
{
struct virtio_net *dev = get_device(vid);
if (!dev)
return 0;
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
RTE_LOG(ERR, VHOST_DATA,
"(%d) %s: built-in vhost net backend is disabled.\n",
dev->vid, __func__);
return 0;
}
return virtio_dev_rx(dev, queue_id, pkts, count);
}
static inline bool
virtio_net_with_host_offload(struct virtio_net *dev)
{
if (dev->features &
((1ULL << VIRTIO_NET_F_CSUM) |
(1ULL << VIRTIO_NET_F_HOST_ECN) |
(1ULL << VIRTIO_NET_F_HOST_TSO4) |
(1ULL << VIRTIO_NET_F_HOST_TSO6) |
(1ULL << VIRTIO_NET_F_HOST_UFO)))
return true;
return false;
}
static void
parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
{
struct ipv4_hdr *ipv4_hdr;
struct ipv6_hdr *ipv6_hdr;
void *l3_hdr = NULL;
struct ether_hdr *eth_hdr;
uint16_t ethertype;
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
m->l2_len = sizeof(struct ether_hdr);
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
if (ethertype == ETHER_TYPE_VLAN) {
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
m->l2_len += sizeof(struct vlan_hdr);
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
}
l3_hdr = (char *)eth_hdr + m->l2_len;
switch (ethertype) {
case ETHER_TYPE_IPv4:
ipv4_hdr = l3_hdr;
*l4_proto = ipv4_hdr->next_proto_id;
m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
*l4_hdr = (char *)l3_hdr + m->l3_len;
m->ol_flags |= PKT_TX_IPV4;
break;
case ETHER_TYPE_IPv6:
ipv6_hdr = l3_hdr;
*l4_proto = ipv6_hdr->proto;
m->l3_len = sizeof(struct ipv6_hdr);
*l4_hdr = (char *)l3_hdr + m->l3_len;
m->ol_flags |= PKT_TX_IPV6;
break;
default:
m->l3_len = 0;
*l4_proto = 0;
*l4_hdr = NULL;
break;
}
}
static __rte_always_inline void
vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
{
uint16_t l4_proto = 0;
void *l4_hdr = NULL;
struct tcp_hdr *tcp_hdr = NULL;
if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
return;
parse_ethernet(m, &l4_proto, &l4_hdr);
if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
if (hdr->csum_start == (m->l2_len + m->l3_len)) {
switch (hdr->csum_offset) {
case (offsetof(struct tcp_hdr, cksum)):
if (l4_proto == IPPROTO_TCP)
m->ol_flags |= PKT_TX_TCP_CKSUM;
break;
case (offsetof(struct udp_hdr, dgram_cksum)):
if (l4_proto == IPPROTO_UDP)
m->ol_flags |= PKT_TX_UDP_CKSUM;
break;
case (offsetof(struct sctp_hdr, cksum)):
if (l4_proto == IPPROTO_SCTP)
m->ol_flags |= PKT_TX_SCTP_CKSUM;
break;
default:
break;
}
}
}
if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
case VIRTIO_NET_HDR_GSO_TCPV4:
case VIRTIO_NET_HDR_GSO_TCPV6:
tcp_hdr = l4_hdr;
m->ol_flags |= PKT_TX_TCP_SEG;
m->tso_segsz = hdr->gso_size;
m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
break;
case VIRTIO_NET_HDR_GSO_UDP:
m->ol_flags |= PKT_TX_UDP_SEG;
m->tso_segsz = hdr->gso_size;
m->l4_len = sizeof(struct udp_hdr);
break;
default:
RTE_LOG(WARNING, VHOST_DATA,
"unsupported gso type %u.\n", hdr->gso_type);
break;
}
}
}
static __rte_always_inline void
put_zmbuf(struct zcopy_mbuf *zmbuf)
{
zmbuf->in_use = 0;
}
static __rte_always_inline int
copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct buf_vector *buf_vec, uint16_t nr_vec,
struct rte_mbuf *m, struct rte_mempool *mbuf_pool)
{
uint32_t buf_avail, buf_offset;
uint64_t buf_addr, buf_iova, buf_len;
uint32_t mbuf_avail, mbuf_offset;
uint32_t cpy_len;
struct rte_mbuf *cur = m, *prev = m;
struct virtio_net_hdr tmp_hdr;
struct virtio_net_hdr *hdr = NULL;
/* A counter to avoid desc dead loop chain */
uint16_t vec_idx = 0;
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
int error = 0;
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
error = -1;
goto out;
}
if (likely(nr_vec > 1))
rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
if (virtio_net_with_host_offload(dev)) {
if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) {
uint64_t len;
uint64_t remain = sizeof(struct virtio_net_hdr);
uint64_t src;
uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr;
uint16_t hdr_vec_idx = 0;
/*
* No luck, the virtio-net header doesn't fit
* in a contiguous virtual area.
*/
while (remain) {
len = RTE_MIN(remain,
buf_vec[hdr_vec_idx].buf_len);
src = buf_vec[hdr_vec_idx].buf_addr;
rte_memcpy((void *)(uintptr_t)dst,
(void *)(uintptr_t)src, len);
remain -= len;
dst += len;
hdr_vec_idx++;
}
hdr = &tmp_hdr;
} else {
hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr);
rte_prefetch0(hdr);
}
}
/*
* A virtio driver normally uses at least 2 desc buffers
* for Tx: the first for storing the header, and others
* for storing the data.
*/
if (unlikely(buf_len < dev->vhost_hlen)) {
buf_offset = dev->vhost_hlen - buf_len;
vec_idx++;
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
buf_avail = buf_len - buf_offset;
} else if (buf_len == dev->vhost_hlen) {
if (unlikely(++vec_idx >= nr_vec))
goto out;
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
buf_offset = 0;
buf_avail = buf_len;
} else {
buf_offset = dev->vhost_hlen;
buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
}
rte_prefetch0((void *)(uintptr_t)
(buf_addr + buf_offset));
PRINT_PACKET(dev,
(uintptr_t)(buf_addr + buf_offset),
(uint32_t)buf_avail, 0);
mbuf_offset = 0;
mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
while (1) {
uint64_t hpa;
cpy_len = RTE_MIN(buf_avail, mbuf_avail);
/*
* A desc buf might across two host physical pages that are
* not continuous. In such case (gpa_to_hpa returns 0), data
* will be copied even though zero copy is enabled.
*/
if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
buf_iova + buf_offset, cpy_len)))) {
cur->data_len = cpy_len;
cur->data_off = 0;
cur->buf_addr =
(void *)(uintptr_t)(buf_addr + buf_offset);
cur->buf_iova = hpa;
/*
* In zero copy mode, one mbuf can only reference data
* for one or partial of one desc buff.
*/
mbuf_avail = cpy_len;
} else {
if (likely(cpy_len > MAX_BATCH_LEN ||
vq->batch_copy_nb_elems >= vq->size ||
(hdr && cur == m))) {
rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
mbuf_offset),
(void *)((uintptr_t)(buf_addr +
buf_offset)),
cpy_len);
} else {
batch_copy[vq->batch_copy_nb_elems].dst =
rte_pktmbuf_mtod_offset(cur, void *,
mbuf_offset);
batch_copy[vq->batch_copy_nb_elems].src =
(void *)((uintptr_t)(buf_addr +
buf_offset));
batch_copy[vq->batch_copy_nb_elems].len =
cpy_len;
vq->batch_copy_nb_elems++;
}
}
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
buf_avail -= cpy_len;
buf_offset += cpy_len;
/* This buf reaches to its end, get the next one */
if (buf_avail == 0) {
if (++vec_idx >= nr_vec)
break;
buf_addr = buf_vec[vec_idx].buf_addr;
buf_iova = buf_vec[vec_idx].buf_iova;
buf_len = buf_vec[vec_idx].buf_len;
/*
* Prefecth desc n + 1 buffer while
* desc n buffer is processed.
*/
if (vec_idx + 1 < nr_vec)
rte_prefetch0((void *)(uintptr_t)
buf_vec[vec_idx + 1].buf_addr);
buf_offset = 0;
buf_avail = buf_len;
PRINT_PACKET(dev, (uintptr_t)buf_addr,
(uint32_t)buf_avail, 0);
}
/*
* This mbuf reaches to its end, get a new one
* to hold more data.
*/
if (mbuf_avail == 0) {
cur = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(cur == NULL)) {
RTE_LOG(ERR, VHOST_DATA, "Failed to "
"allocate memory for mbuf.\n");
error = -1;
goto out;
}
if (unlikely(dev->dequeue_zero_copy))
rte_mbuf_refcnt_update(cur, 1);
prev->next = cur;
prev->data_len = mbuf_offset;
m->nb_segs += 1;
m->pkt_len += mbuf_offset;
prev = cur;
mbuf_offset = 0;
mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
}
}
prev->data_len = mbuf_offset;
m->pkt_len += mbuf_offset;
if (hdr)
vhost_dequeue_offload(hdr, m);
out:
return error;
}
static __rte_always_inline struct zcopy_mbuf *
get_zmbuf(struct vhost_virtqueue *vq)
{
uint16_t i;
uint16_t last;
int tries = 0;
/* search [last_zmbuf_idx, zmbuf_size) */
i = vq->last_zmbuf_idx;
last = vq->zmbuf_size;
again:
for (; i < last; i++) {
if (vq->zmbufs[i].in_use == 0) {
vq->last_zmbuf_idx = i + 1;
vq->zmbufs[i].in_use = 1;
return &vq->zmbufs[i];
}
}
tries++;
if (tries == 1) {
/* search [0, last_zmbuf_idx) */
i = 0;
last = vq->last_zmbuf_idx;
goto again;
}
return NULL;
}
static __rte_always_inline bool
mbuf_is_consumed(struct rte_mbuf *m)
{
while (m) {
if (rte_mbuf_refcnt_read(m) > 1)
return false;
m = m->next;
}
return true;
}
static __rte_always_inline void
restore_mbuf(struct rte_mbuf *m)
{
uint32_t mbuf_size, priv_size;
while (m) {
priv_size = rte_pktmbuf_priv_size(m->pool);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
/* start of buffer is after mbuf structure and priv data */
m->buf_addr = (char *)m + mbuf_size;
m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
m = m->next;
}
}
static __rte_always_inline uint16_t
virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
{
uint16_t i;
uint16_t free_entries;
if (unlikely(dev->dequeue_zero_copy)) {
struct zcopy_mbuf *zmbuf, *next;
for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
zmbuf != NULL; zmbuf = next) {
next = TAILQ_NEXT(zmbuf, next);
if (mbuf_is_consumed(zmbuf->mbuf)) {
update_shadow_used_ring_split(vq,
zmbuf->desc_idx, 0);
TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
restore_mbuf(zmbuf->mbuf);
rte_pktmbuf_free(zmbuf->mbuf);
put_zmbuf(zmbuf);
vq->nr_zmbuf -= 1;
}
}
if (likely(vq->shadow_used_idx)) {
flush_shadow_used_ring_split(dev, vq);
vhost_vring_call_split(dev, vq);
}
}
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
free_entries = *((volatile uint16_t *)&vq->avail->idx) -
vq->last_avail_idx;
if (free_entries == 0)
return 0;
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
count = RTE_MIN(count, MAX_PKT_BURST);
count = RTE_MIN(count, free_entries);
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
dev->vid, count);
for (i = 0; i < count; i++) {
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint16_t head_idx;
uint32_t dummy_len;
uint16_t nr_vec = 0;
int err;
if (unlikely(fill_vec_buf_split(dev, vq,
vq->last_avail_idx + i,
&nr_vec, buf_vec,
&head_idx, &dummy_len,
VHOST_ACCESS_RO) < 0))
break;
if (likely(dev->dequeue_zero_copy == 0))
update_shadow_used_ring_split(vq, head_idx, 0);
rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(pkts[i] == NULL)) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to allocate memory for mbuf.\n");
break;
}
err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
mbuf_pool);
if (unlikely(err)) {
rte_pktmbuf_free(pkts[i]);
break;
}
if (unlikely(dev->dequeue_zero_copy)) {
struct zcopy_mbuf *zmbuf;
zmbuf = get_zmbuf(vq);
if (!zmbuf) {
rte_pktmbuf_free(pkts[i]);
break;
}
zmbuf->mbuf = pkts[i];
zmbuf->desc_idx = head_idx;
/*
* Pin lock the mbuf; we will check later to see
* whether the mbuf is freed (when we are the last
* user) or not. If that's the case, we then could
* update the used ring safely.
*/
rte_mbuf_refcnt_update(pkts[i], 1);
vq->nr_zmbuf += 1;
TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
}
}
vq->last_avail_idx += i;
if (likely(dev->dequeue_zero_copy == 0)) {
do_data_copy_dequeue(vq);
if (unlikely(i < count))
vq->shadow_used_idx = i;
if (likely(vq->shadow_used_idx)) {
flush_shadow_used_ring_split(dev, vq);
vhost_vring_call_split(dev, vq);
}
}
return i;
}
static __rte_always_inline uint16_t
virtio_dev_tx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
{
uint16_t i;
rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]);
if (unlikely(dev->dequeue_zero_copy)) {
struct zcopy_mbuf *zmbuf, *next;
for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
zmbuf != NULL; zmbuf = next) {
next = TAILQ_NEXT(zmbuf, next);
if (mbuf_is_consumed(zmbuf->mbuf)) {
update_shadow_used_ring_packed(vq,
zmbuf->desc_idx,
0,
zmbuf->desc_count);
TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
restore_mbuf(zmbuf->mbuf);
rte_pktmbuf_free(zmbuf->mbuf);
put_zmbuf(zmbuf);
vq->nr_zmbuf -= 1;
}
}
if (likely(vq->shadow_used_idx)) {
flush_shadow_used_ring_packed(dev, vq);
vhost_vring_call_packed(dev, vq);
}
}
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
count = RTE_MIN(count, MAX_PKT_BURST);
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
dev->vid, count);
for (i = 0; i < count; i++) {
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint16_t buf_id;
uint32_t dummy_len;
uint16_t desc_count, nr_vec = 0;
int err;
if (unlikely(fill_vec_buf_packed(dev, vq,
vq->last_avail_idx, &desc_count,
buf_vec, &nr_vec,
&buf_id, &dummy_len,
VHOST_ACCESS_RO) < 0))
break;
if (likely(dev->dequeue_zero_copy == 0))
update_shadow_used_ring_packed(vq, buf_id, 0,
desc_count);
rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(pkts[i] == NULL)) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to allocate memory for mbuf.\n");
break;
}
err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
mbuf_pool);
if (unlikely(err)) {
rte_pktmbuf_free(pkts[i]);
break;
}
if (unlikely(dev->dequeue_zero_copy)) {
struct zcopy_mbuf *zmbuf;
zmbuf = get_zmbuf(vq);
if (!zmbuf) {
rte_pktmbuf_free(pkts[i]);
break;
}
zmbuf->mbuf = pkts[i];
zmbuf->desc_idx = buf_id;
zmbuf->desc_count = desc_count;
/*
* Pin lock the mbuf; we will check later to see
* whether the mbuf is freed (when we are the last
* user) or not. If that's the case, we then could
* update the used ring safely.
*/
rte_mbuf_refcnt_update(pkts[i], 1);
vq->nr_zmbuf += 1;
TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
}
vq->last_avail_idx += desc_count;
if (vq->last_avail_idx >= vq->size) {
vq->last_avail_idx -= vq->size;
vq->avail_wrap_counter ^= 1;
}
}
if (likely(dev->dequeue_zero_copy == 0)) {
do_data_copy_dequeue(vq);
if (unlikely(i < count))
vq->shadow_used_idx = i;
if (likely(vq->shadow_used_idx)) {
flush_shadow_used_ring_packed(dev, vq);
vhost_vring_call_packed(dev, vq);
}
}
return i;
}
uint16_t
rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
{
struct virtio_net *dev;
struct rte_mbuf *rarp_mbuf = NULL;
struct vhost_virtqueue *vq;
dev = get_device(vid);
if (!dev)
return 0;
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
RTE_LOG(ERR, VHOST_DATA,
"(%d) %s: built-in vhost net backend is disabled.\n",
dev->vid, __func__);
return 0;
}
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
return 0;
if (unlikely(vq->enabled == 0)) {
count = 0;
goto out_access_unlock;
}
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_lock(vq);
if (unlikely(vq->access_ok == 0))
if (unlikely(vring_translate(dev, vq) < 0)) {
count = 0;
goto out;
}
/*
* Construct a RARP broadcast packet, and inject it to the "pkts"
* array, to looks like that guest actually send such packet.
*
* Check user_send_rarp() for more information.
*
* broadcast_rarp shares a cacheline in the virtio_net structure
* with some fields that are accessed during enqueue and
* rte_atomic16_cmpset() causes a write if using cmpxchg. This could
* result in false sharing between enqueue and dequeue.
*
* Prevent unnecessary false sharing by reading broadcast_rarp first
* and only performing cmpset if the read indicates it is likely to
* be set.
*/
if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
rte_atomic16_cmpset((volatile uint16_t *)
&dev->broadcast_rarp.cnt, 1, 0))) {
rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
if (rarp_mbuf == NULL) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to make RARP packet.\n");
count = 0;
goto out;
}
count -= 1;
}
if (vq_is_packed(dev))
count = virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count);
else
count = virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count);
out:
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_unlock(vq);
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
if (unlikely(rarp_mbuf != NULL)) {
/*
* Inject it to the head of "pkts" array, so that switch's mac
* learning table will get updated first.
*/
memmove(&pkts[1], pkts, count * sizeof(struct rte_mbuf *));
pkts[0] = rarp_mbuf;
count += 1;
}
return count;
}