mirror of https://github.com/F-Stack/f-stack.git
1326 lines
34 KiB
C
1326 lines
34 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation.
|
|
* Copyright(c) 2016 6WIND S.A.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <errno.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_spinlock.h>
|
|
|
|
#include "rte_mempool.h"
|
|
|
|
TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
|
|
|
|
static struct rte_tailq_elem rte_mempool_tailq = {
|
|
.name = "RTE_MEMPOOL",
|
|
};
|
|
EAL_REGISTER_TAILQ(rte_mempool_tailq)
|
|
|
|
#define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
|
|
#define CALC_CACHE_FLUSHTHRESH(c) \
|
|
((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
|
|
|
|
/*
|
|
* return the greatest common divisor between a and b (fast algorithm)
|
|
*
|
|
*/
|
|
static unsigned get_gcd(unsigned a, unsigned b)
|
|
{
|
|
unsigned c;
|
|
|
|
if (0 == a)
|
|
return b;
|
|
if (0 == b)
|
|
return a;
|
|
|
|
if (a < b) {
|
|
c = a;
|
|
a = b;
|
|
b = c;
|
|
}
|
|
|
|
while (b != 0) {
|
|
c = a % b;
|
|
a = b;
|
|
b = c;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Depending on memory configuration, objects addresses are spread
|
|
* between channels and ranks in RAM: the pool allocator will add
|
|
* padding between objects. This function return the new size of the
|
|
* object.
|
|
*/
|
|
static unsigned optimize_object_size(unsigned obj_size)
|
|
{
|
|
unsigned nrank, nchan;
|
|
unsigned new_obj_size;
|
|
|
|
/* get number of channels */
|
|
nchan = rte_memory_get_nchannel();
|
|
if (nchan == 0)
|
|
nchan = 4;
|
|
|
|
nrank = rte_memory_get_nrank();
|
|
if (nrank == 0)
|
|
nrank = 1;
|
|
|
|
/* process new object size */
|
|
new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
|
|
while (get_gcd(new_obj_size, nrank * nchan) != 1)
|
|
new_obj_size++;
|
|
return new_obj_size * RTE_MEMPOOL_ALIGN;
|
|
}
|
|
|
|
struct pagesz_walk_arg {
|
|
int socket_id;
|
|
size_t min;
|
|
};
|
|
|
|
static int
|
|
find_min_pagesz(const struct rte_memseg_list *msl, void *arg)
|
|
{
|
|
struct pagesz_walk_arg *wa = arg;
|
|
bool valid;
|
|
|
|
/*
|
|
* we need to only look at page sizes available for a particular socket
|
|
* ID. so, we either need an exact match on socket ID (can match both
|
|
* native and external memory), or, if SOCKET_ID_ANY was specified as a
|
|
* socket ID argument, we must only look at native memory and ignore any
|
|
* page sizes associated with external memory.
|
|
*/
|
|
valid = msl->socket_id == wa->socket_id;
|
|
valid |= wa->socket_id == SOCKET_ID_ANY && msl->external == 0;
|
|
|
|
if (valid && msl->page_sz < wa->min)
|
|
wa->min = msl->page_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t
|
|
get_min_page_size(int socket_id)
|
|
{
|
|
struct pagesz_walk_arg wa;
|
|
|
|
wa.min = SIZE_MAX;
|
|
wa.socket_id = socket_id;
|
|
|
|
rte_memseg_list_walk(find_min_pagesz, &wa);
|
|
|
|
return wa.min == SIZE_MAX ? (size_t) getpagesize() : wa.min;
|
|
}
|
|
|
|
|
|
static void
|
|
mempool_add_elem(struct rte_mempool *mp, __rte_unused void *opaque,
|
|
void *obj, rte_iova_t iova)
|
|
{
|
|
struct rte_mempool_objhdr *hdr;
|
|
struct rte_mempool_objtlr *tlr __rte_unused;
|
|
|
|
/* set mempool ptr in header */
|
|
hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
|
|
hdr->mp = mp;
|
|
hdr->iova = iova;
|
|
STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
|
|
mp->populated_size++;
|
|
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
|
|
tlr = __mempool_get_trailer(obj);
|
|
tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
|
|
#endif
|
|
}
|
|
|
|
/* call obj_cb() for each mempool element */
|
|
uint32_t
|
|
rte_mempool_obj_iter(struct rte_mempool *mp,
|
|
rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
|
|
{
|
|
struct rte_mempool_objhdr *hdr;
|
|
void *obj;
|
|
unsigned n = 0;
|
|
|
|
STAILQ_FOREACH(hdr, &mp->elt_list, next) {
|
|
obj = (char *)hdr + sizeof(*hdr);
|
|
obj_cb(mp, obj_cb_arg, obj, n);
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* call mem_cb() for each mempool memory chunk */
|
|
uint32_t
|
|
rte_mempool_mem_iter(struct rte_mempool *mp,
|
|
rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
|
|
{
|
|
struct rte_mempool_memhdr *hdr;
|
|
unsigned n = 0;
|
|
|
|
STAILQ_FOREACH(hdr, &mp->mem_list, next) {
|
|
mem_cb(mp, mem_cb_arg, hdr, n);
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* get the header, trailer and total size of a mempool element. */
|
|
uint32_t
|
|
rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
|
|
struct rte_mempool_objsz *sz)
|
|
{
|
|
struct rte_mempool_objsz lsz;
|
|
|
|
sz = (sz != NULL) ? sz : &lsz;
|
|
|
|
sz->header_size = sizeof(struct rte_mempool_objhdr);
|
|
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
|
|
sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
|
|
RTE_MEMPOOL_ALIGN);
|
|
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
sz->trailer_size = sizeof(struct rte_mempool_objtlr);
|
|
#else
|
|
sz->trailer_size = 0;
|
|
#endif
|
|
|
|
/* element size is 8 bytes-aligned at least */
|
|
sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
|
|
|
|
/* expand trailer to next cache line */
|
|
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
|
|
sz->total_size = sz->header_size + sz->elt_size +
|
|
sz->trailer_size;
|
|
sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
|
|
(sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
|
|
RTE_MEMPOOL_ALIGN_MASK);
|
|
}
|
|
|
|
/*
|
|
* increase trailer to add padding between objects in order to
|
|
* spread them across memory channels/ranks
|
|
*/
|
|
if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
|
|
unsigned new_size;
|
|
new_size = optimize_object_size(sz->header_size + sz->elt_size +
|
|
sz->trailer_size);
|
|
sz->trailer_size = new_size - sz->header_size - sz->elt_size;
|
|
}
|
|
|
|
/* this is the size of an object, including header and trailer */
|
|
sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
|
|
|
|
return sz->total_size;
|
|
}
|
|
|
|
/* free a memchunk allocated with rte_memzone_reserve() */
|
|
static void
|
|
rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
|
|
void *opaque)
|
|
{
|
|
const struct rte_memzone *mz = opaque;
|
|
rte_memzone_free(mz);
|
|
}
|
|
|
|
/* Free memory chunks used by a mempool. Objects must be in pool */
|
|
static void
|
|
rte_mempool_free_memchunks(struct rte_mempool *mp)
|
|
{
|
|
struct rte_mempool_memhdr *memhdr;
|
|
void *elt;
|
|
|
|
while (!STAILQ_EMPTY(&mp->elt_list)) {
|
|
rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
|
|
(void)elt;
|
|
STAILQ_REMOVE_HEAD(&mp->elt_list, next);
|
|
mp->populated_size--;
|
|
}
|
|
|
|
while (!STAILQ_EMPTY(&mp->mem_list)) {
|
|
memhdr = STAILQ_FIRST(&mp->mem_list);
|
|
STAILQ_REMOVE_HEAD(&mp->mem_list, next);
|
|
if (memhdr->free_cb != NULL)
|
|
memhdr->free_cb(memhdr, memhdr->opaque);
|
|
rte_free(memhdr);
|
|
mp->nb_mem_chunks--;
|
|
}
|
|
}
|
|
|
|
static int
|
|
mempool_ops_alloc_once(struct rte_mempool *mp)
|
|
{
|
|
int ret;
|
|
|
|
/* create the internal ring if not already done */
|
|
if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) {
|
|
ret = rte_mempool_ops_alloc(mp);
|
|
if (ret != 0)
|
|
return ret;
|
|
mp->flags |= MEMPOOL_F_POOL_CREATED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Add objects in the pool, using a physically contiguous memory
|
|
* zone. Return the number of objects added, or a negative value
|
|
* on error.
|
|
*/
|
|
int
|
|
rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
|
|
rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
|
|
void *opaque)
|
|
{
|
|
unsigned i = 0;
|
|
size_t off;
|
|
struct rte_mempool_memhdr *memhdr;
|
|
int ret;
|
|
|
|
ret = mempool_ops_alloc_once(mp);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/* mempool is already populated */
|
|
if (mp->populated_size >= mp->size)
|
|
return -ENOSPC;
|
|
|
|
memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
|
|
if (memhdr == NULL)
|
|
return -ENOMEM;
|
|
|
|
memhdr->mp = mp;
|
|
memhdr->addr = vaddr;
|
|
memhdr->iova = iova;
|
|
memhdr->len = len;
|
|
memhdr->free_cb = free_cb;
|
|
memhdr->opaque = opaque;
|
|
|
|
if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
|
|
off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
|
|
else
|
|
off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_CACHE_LINE_SIZE) - vaddr;
|
|
|
|
if (off > len) {
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
i = rte_mempool_ops_populate(mp, mp->size - mp->populated_size,
|
|
(char *)vaddr + off,
|
|
(iova == RTE_BAD_IOVA) ? RTE_BAD_IOVA : (iova + off),
|
|
len - off, mempool_add_elem, NULL);
|
|
|
|
/* not enough room to store one object */
|
|
if (i == 0) {
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
|
|
mp->nb_mem_chunks++;
|
|
return i;
|
|
|
|
fail:
|
|
rte_free(memhdr);
|
|
return ret;
|
|
}
|
|
|
|
/* Populate the mempool with a virtual area. Return the number of
|
|
* objects added, or a negative value on error.
|
|
*/
|
|
int
|
|
rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
|
|
size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
|
|
void *opaque)
|
|
{
|
|
rte_iova_t iova;
|
|
size_t off, phys_len;
|
|
int ret, cnt = 0;
|
|
|
|
/* address and len must be page-aligned */
|
|
if (RTE_PTR_ALIGN_CEIL(addr, pg_sz) != addr)
|
|
return -EINVAL;
|
|
if (RTE_ALIGN_CEIL(len, pg_sz) != len)
|
|
return -EINVAL;
|
|
|
|
if (mp->flags & MEMPOOL_F_NO_IOVA_CONTIG)
|
|
return rte_mempool_populate_iova(mp, addr, RTE_BAD_IOVA,
|
|
len, free_cb, opaque);
|
|
|
|
for (off = 0; off + pg_sz <= len &&
|
|
mp->populated_size < mp->size; off += phys_len) {
|
|
|
|
iova = rte_mem_virt2iova(addr + off);
|
|
|
|
if (iova == RTE_BAD_IOVA && rte_eal_has_hugepages()) {
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
/* populate with the largest group of contiguous pages */
|
|
for (phys_len = pg_sz; off + phys_len < len; phys_len += pg_sz) {
|
|
rte_iova_t iova_tmp;
|
|
|
|
iova_tmp = rte_mem_virt2iova(addr + off + phys_len);
|
|
|
|
if (iova_tmp != iova + phys_len)
|
|
break;
|
|
}
|
|
|
|
ret = rte_mempool_populate_iova(mp, addr + off, iova,
|
|
phys_len, free_cb, opaque);
|
|
if (ret < 0)
|
|
goto fail;
|
|
/* no need to call the free callback for next chunks */
|
|
free_cb = NULL;
|
|
cnt += ret;
|
|
}
|
|
|
|
return cnt;
|
|
|
|
fail:
|
|
rte_mempool_free_memchunks(mp);
|
|
return ret;
|
|
}
|
|
|
|
/* Default function to populate the mempool: allocate memory in memzones,
|
|
* and populate them. Return the number of objects added, or a negative
|
|
* value on error.
|
|
*/
|
|
int
|
|
rte_mempool_populate_default(struct rte_mempool *mp)
|
|
{
|
|
unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
|
|
char mz_name[RTE_MEMZONE_NAMESIZE];
|
|
const struct rte_memzone *mz;
|
|
ssize_t mem_size;
|
|
size_t align, pg_sz, pg_shift;
|
|
rte_iova_t iova;
|
|
unsigned mz_id, n;
|
|
int ret;
|
|
bool no_contig, try_contig, no_pageshift, external;
|
|
|
|
ret = mempool_ops_alloc_once(mp);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/* check if we can retrieve a valid socket ID */
|
|
ret = rte_malloc_heap_socket_is_external(mp->socket_id);
|
|
if (ret < 0)
|
|
return -EINVAL;
|
|
external = ret;
|
|
|
|
/* mempool must not be populated */
|
|
if (mp->nb_mem_chunks != 0)
|
|
return -EEXIST;
|
|
|
|
no_contig = mp->flags & MEMPOOL_F_NO_IOVA_CONTIG;
|
|
|
|
/*
|
|
* the following section calculates page shift and page size values.
|
|
*
|
|
* these values impact the result of calc_mem_size operation, which
|
|
* returns the amount of memory that should be allocated to store the
|
|
* desired number of objects. when not zero, it allocates more memory
|
|
* for the padding between objects, to ensure that an object does not
|
|
* cross a page boundary. in other words, page size/shift are to be set
|
|
* to zero if mempool elements won't care about page boundaries.
|
|
* there are several considerations for page size and page shift here.
|
|
*
|
|
* if we don't need our mempools to have physically contiguous objects,
|
|
* then just set page shift and page size to 0, because the user has
|
|
* indicated that there's no need to care about anything.
|
|
*
|
|
* if we do need contiguous objects, there is also an option to reserve
|
|
* the entire mempool memory as one contiguous block of memory, in
|
|
* which case the page shift and alignment wouldn't matter as well.
|
|
*
|
|
* if we require contiguous objects, but not necessarily the entire
|
|
* mempool reserved space to be contiguous, then there are two options.
|
|
*
|
|
* if our IO addresses are virtual, not actual physical (IOVA as VA
|
|
* case), then no page shift needed - our memory allocation will give us
|
|
* contiguous IO memory as far as the hardware is concerned, so
|
|
* act as if we're getting contiguous memory.
|
|
*
|
|
* if our IO addresses are physical, we may get memory from bigger
|
|
* pages, or we might get memory from smaller pages, and how much of it
|
|
* we require depends on whether we want bigger or smaller pages.
|
|
* However, requesting each and every memory size is too much work, so
|
|
* what we'll do instead is walk through the page sizes available, pick
|
|
* the smallest one and set up page shift to match that one. We will be
|
|
* wasting some space this way, but it's much nicer than looping around
|
|
* trying to reserve each and every page size.
|
|
*
|
|
* However, since size calculation will produce page-aligned sizes, it
|
|
* makes sense to first try and see if we can reserve the entire memzone
|
|
* in one contiguous chunk as well (otherwise we might end up wasting a
|
|
* 1G page on a 10MB memzone). If we fail to get enough contiguous
|
|
* memory, then we'll go and reserve space page-by-page.
|
|
*
|
|
* We also have to take into account the fact that memory that we're
|
|
* going to allocate from can belong to an externally allocated memory
|
|
* area, in which case the assumption of IOVA as VA mode being
|
|
* synonymous with IOVA contiguousness will not hold. We should also try
|
|
* to go for contiguous memory even if we're in no-huge mode, because
|
|
* external memory may in fact be IOVA-contiguous.
|
|
*/
|
|
external = rte_malloc_heap_socket_is_external(mp->socket_id) == 1;
|
|
no_pageshift = no_contig ||
|
|
(!external && rte_eal_iova_mode() == RTE_IOVA_VA);
|
|
try_contig = !no_contig && !no_pageshift &&
|
|
(rte_eal_has_hugepages() || external);
|
|
|
|
if (no_pageshift) {
|
|
pg_sz = 0;
|
|
pg_shift = 0;
|
|
} else if (try_contig) {
|
|
pg_sz = get_min_page_size(mp->socket_id);
|
|
pg_shift = rte_bsf32(pg_sz);
|
|
} else {
|
|
pg_sz = getpagesize();
|
|
pg_shift = rte_bsf32(pg_sz);
|
|
}
|
|
|
|
for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
|
|
size_t min_chunk_size;
|
|
unsigned int flags;
|
|
|
|
if (try_contig || no_pageshift)
|
|
mem_size = rte_mempool_ops_calc_mem_size(mp, n,
|
|
0, &min_chunk_size, &align);
|
|
else
|
|
mem_size = rte_mempool_ops_calc_mem_size(mp, n,
|
|
pg_shift, &min_chunk_size, &align);
|
|
|
|
if (mem_size < 0) {
|
|
ret = mem_size;
|
|
goto fail;
|
|
}
|
|
|
|
ret = snprintf(mz_name, sizeof(mz_name),
|
|
RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
|
|
if (ret < 0 || ret >= (int)sizeof(mz_name)) {
|
|
ret = -ENAMETOOLONG;
|
|
goto fail;
|
|
}
|
|
|
|
flags = mz_flags;
|
|
|
|
/* if we're trying to reserve contiguous memory, add appropriate
|
|
* memzone flag.
|
|
*/
|
|
if (try_contig)
|
|
flags |= RTE_MEMZONE_IOVA_CONTIG;
|
|
|
|
mz = rte_memzone_reserve_aligned(mz_name, mem_size,
|
|
mp->socket_id, flags, align);
|
|
|
|
/* if we were trying to allocate contiguous memory, failed and
|
|
* minimum required contiguous chunk fits minimum page, adjust
|
|
* memzone size to the page size, and try again.
|
|
*/
|
|
if (mz == NULL && try_contig && min_chunk_size <= pg_sz) {
|
|
try_contig = false;
|
|
flags &= ~RTE_MEMZONE_IOVA_CONTIG;
|
|
|
|
mem_size = rte_mempool_ops_calc_mem_size(mp, n,
|
|
pg_shift, &min_chunk_size, &align);
|
|
if (mem_size < 0) {
|
|
ret = mem_size;
|
|
goto fail;
|
|
}
|
|
|
|
mz = rte_memzone_reserve_aligned(mz_name, mem_size,
|
|
mp->socket_id, flags, align);
|
|
}
|
|
/* don't try reserving with 0 size if we were asked to reserve
|
|
* IOVA-contiguous memory.
|
|
*/
|
|
if (min_chunk_size < (size_t)mem_size && mz == NULL) {
|
|
/* not enough memory, retry with the biggest zone we
|
|
* have
|
|
*/
|
|
mz = rte_memzone_reserve_aligned(mz_name, 0,
|
|
mp->socket_id, flags,
|
|
RTE_MAX(pg_sz, align));
|
|
}
|
|
if (mz == NULL) {
|
|
ret = -rte_errno;
|
|
goto fail;
|
|
}
|
|
|
|
if (mz->len < min_chunk_size) {
|
|
rte_memzone_free(mz);
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (no_contig)
|
|
iova = RTE_BAD_IOVA;
|
|
else
|
|
iova = mz->iova;
|
|
|
|
if (no_pageshift || try_contig)
|
|
ret = rte_mempool_populate_iova(mp, mz->addr,
|
|
iova, mz->len,
|
|
rte_mempool_memchunk_mz_free,
|
|
(void *)(uintptr_t)mz);
|
|
else
|
|
ret = rte_mempool_populate_virt(mp, mz->addr,
|
|
RTE_ALIGN_FLOOR(mz->len, pg_sz), pg_sz,
|
|
rte_mempool_memchunk_mz_free,
|
|
(void *)(uintptr_t)mz);
|
|
if (ret < 0) {
|
|
rte_memzone_free(mz);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return mp->size;
|
|
|
|
fail:
|
|
rte_mempool_free_memchunks(mp);
|
|
return ret;
|
|
}
|
|
|
|
/* return the memory size required for mempool objects in anonymous mem */
|
|
static ssize_t
|
|
get_anon_size(const struct rte_mempool *mp)
|
|
{
|
|
ssize_t size;
|
|
size_t pg_sz, pg_shift;
|
|
size_t min_chunk_size;
|
|
size_t align;
|
|
|
|
pg_sz = getpagesize();
|
|
pg_shift = rte_bsf32(pg_sz);
|
|
size = rte_mempool_ops_calc_mem_size(mp, mp->size, pg_shift,
|
|
&min_chunk_size, &align);
|
|
|
|
return size;
|
|
}
|
|
|
|
/* unmap a memory zone mapped by rte_mempool_populate_anon() */
|
|
static void
|
|
rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
|
|
void *opaque)
|
|
{
|
|
ssize_t size;
|
|
|
|
/*
|
|
* Calculate size since memhdr->len has contiguous chunk length
|
|
* which may be smaller if anon map is split into many contiguous
|
|
* chunks. Result must be the same as we calculated on populate.
|
|
*/
|
|
size = get_anon_size(memhdr->mp);
|
|
if (size < 0)
|
|
return;
|
|
|
|
munmap(opaque, size);
|
|
}
|
|
|
|
/* populate the mempool with an anonymous mapping */
|
|
int
|
|
rte_mempool_populate_anon(struct rte_mempool *mp)
|
|
{
|
|
ssize_t size;
|
|
int ret;
|
|
char *addr;
|
|
|
|
/* mempool is already populated, error */
|
|
if ((!STAILQ_EMPTY(&mp->mem_list)) || mp->nb_mem_chunks != 0) {
|
|
rte_errno = EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
ret = mempool_ops_alloc_once(mp);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
size = get_anon_size(mp);
|
|
if (size < 0) {
|
|
rte_errno = -size;
|
|
return 0;
|
|
}
|
|
|
|
/* get chunk of virtually continuous memory */
|
|
addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
|
|
if (addr == MAP_FAILED) {
|
|
rte_errno = errno;
|
|
return 0;
|
|
}
|
|
/* can't use MMAP_LOCKED, it does not exist on BSD */
|
|
if (mlock(addr, size) < 0) {
|
|
rte_errno = errno;
|
|
munmap(addr, size);
|
|
return 0;
|
|
}
|
|
|
|
ret = rte_mempool_populate_virt(mp, addr, size, getpagesize(),
|
|
rte_mempool_memchunk_anon_free, addr);
|
|
if (ret == 0)
|
|
goto fail;
|
|
|
|
return mp->populated_size;
|
|
|
|
fail:
|
|
rte_mempool_free_memchunks(mp);
|
|
return 0;
|
|
}
|
|
|
|
/* free a mempool */
|
|
void
|
|
rte_mempool_free(struct rte_mempool *mp)
|
|
{
|
|
struct rte_mempool_list *mempool_list = NULL;
|
|
struct rte_tailq_entry *te;
|
|
|
|
if (mp == NULL)
|
|
return;
|
|
|
|
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
/* find out tailq entry */
|
|
TAILQ_FOREACH(te, mempool_list, next) {
|
|
if (te->data == (void *)mp)
|
|
break;
|
|
}
|
|
|
|
if (te != NULL) {
|
|
TAILQ_REMOVE(mempool_list, te, next);
|
|
rte_free(te);
|
|
}
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
rte_mempool_free_memchunks(mp);
|
|
rte_mempool_ops_free(mp);
|
|
rte_memzone_free(mp->mz);
|
|
}
|
|
|
|
static void
|
|
mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
|
|
{
|
|
cache->size = size;
|
|
cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
|
|
cache->len = 0;
|
|
}
|
|
|
|
/*
|
|
* Create and initialize a cache for objects that are retrieved from and
|
|
* returned to an underlying mempool. This structure is identical to the
|
|
* local_cache[lcore_id] pointed to by the mempool structure.
|
|
*/
|
|
struct rte_mempool_cache *
|
|
rte_mempool_cache_create(uint32_t size, int socket_id)
|
|
{
|
|
struct rte_mempool_cache *cache;
|
|
|
|
if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (cache == NULL) {
|
|
RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n");
|
|
rte_errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
|
|
mempool_cache_init(cache, size);
|
|
|
|
return cache;
|
|
}
|
|
|
|
/*
|
|
* Free a cache. It's the responsibility of the user to make sure that any
|
|
* remaining objects in the cache are flushed to the corresponding
|
|
* mempool.
|
|
*/
|
|
void
|
|
rte_mempool_cache_free(struct rte_mempool_cache *cache)
|
|
{
|
|
rte_free(cache);
|
|
}
|
|
|
|
/* create an empty mempool */
|
|
struct rte_mempool *
|
|
rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
|
|
unsigned cache_size, unsigned private_data_size,
|
|
int socket_id, unsigned flags)
|
|
{
|
|
char mz_name[RTE_MEMZONE_NAMESIZE];
|
|
struct rte_mempool_list *mempool_list;
|
|
struct rte_mempool *mp = NULL;
|
|
struct rte_tailq_entry *te = NULL;
|
|
const struct rte_memzone *mz = NULL;
|
|
size_t mempool_size;
|
|
unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
|
|
struct rte_mempool_objsz objsz;
|
|
unsigned lcore_id;
|
|
int ret;
|
|
|
|
/* compilation-time checks */
|
|
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
|
|
RTE_CACHE_LINE_MASK) != 0);
|
|
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
|
|
RTE_CACHE_LINE_MASK) != 0);
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
|
|
RTE_CACHE_LINE_MASK) != 0);
|
|
RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
|
|
RTE_CACHE_LINE_MASK) != 0);
|
|
#endif
|
|
|
|
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
|
|
|
|
/* asked for zero items */
|
|
if (n == 0) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
/* asked cache too big */
|
|
if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
|
|
CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
/* "no cache align" imply "no spread" */
|
|
if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
|
|
flags |= MEMPOOL_F_NO_SPREAD;
|
|
|
|
/* calculate mempool object sizes. */
|
|
if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
/*
|
|
* reserve a memory zone for this mempool: private data is
|
|
* cache-aligned
|
|
*/
|
|
private_data_size = (private_data_size +
|
|
RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
|
|
|
|
|
|
/* try to allocate tailq entry */
|
|
te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
|
|
if (te == NULL) {
|
|
RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
|
|
goto exit_unlock;
|
|
}
|
|
|
|
mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
|
|
mempool_size += private_data_size;
|
|
mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
|
|
|
|
ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
|
|
if (ret < 0 || ret >= (int)sizeof(mz_name)) {
|
|
rte_errno = ENAMETOOLONG;
|
|
goto exit_unlock;
|
|
}
|
|
|
|
mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
|
|
if (mz == NULL)
|
|
goto exit_unlock;
|
|
|
|
/* init the mempool structure */
|
|
mp = mz->addr;
|
|
memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size));
|
|
ret = snprintf(mp->name, sizeof(mp->name), "%s", name);
|
|
if (ret < 0 || ret >= (int)sizeof(mp->name)) {
|
|
rte_errno = ENAMETOOLONG;
|
|
goto exit_unlock;
|
|
}
|
|
mp->mz = mz;
|
|
mp->size = n;
|
|
mp->flags = flags;
|
|
mp->socket_id = socket_id;
|
|
mp->elt_size = objsz.elt_size;
|
|
mp->header_size = objsz.header_size;
|
|
mp->trailer_size = objsz.trailer_size;
|
|
/* Size of default caches, zero means disabled. */
|
|
mp->cache_size = cache_size;
|
|
mp->private_data_size = private_data_size;
|
|
STAILQ_INIT(&mp->elt_list);
|
|
STAILQ_INIT(&mp->mem_list);
|
|
|
|
/*
|
|
* local_cache pointer is set even if cache_size is zero.
|
|
* The local_cache points to just past the elt_pa[] array.
|
|
*/
|
|
mp->local_cache = (struct rte_mempool_cache *)
|
|
RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));
|
|
|
|
/* Init all default caches. */
|
|
if (cache_size != 0) {
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
|
|
mempool_cache_init(&mp->local_cache[lcore_id],
|
|
cache_size);
|
|
}
|
|
|
|
te->data = mp;
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
TAILQ_INSERT_TAIL(mempool_list, te, next);
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
return mp;
|
|
|
|
exit_unlock:
|
|
rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
rte_free(te);
|
|
rte_mempool_free(mp);
|
|
return NULL;
|
|
}
|
|
|
|
/* create the mempool */
|
|
struct rte_mempool *
|
|
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
|
|
unsigned cache_size, unsigned private_data_size,
|
|
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
|
|
rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
|
|
int socket_id, unsigned flags)
|
|
{
|
|
int ret;
|
|
struct rte_mempool *mp;
|
|
|
|
mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
|
|
private_data_size, socket_id, flags);
|
|
if (mp == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
|
|
* set the correct index into the table of ops structs.
|
|
*/
|
|
if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET))
|
|
ret = rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
|
|
else if (flags & MEMPOOL_F_SP_PUT)
|
|
ret = rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
|
|
else if (flags & MEMPOOL_F_SC_GET)
|
|
ret = rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
|
|
else
|
|
ret = rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
|
|
|
|
if (ret)
|
|
goto fail;
|
|
|
|
/* call the mempool priv initializer */
|
|
if (mp_init)
|
|
mp_init(mp, mp_init_arg);
|
|
|
|
if (rte_mempool_populate_default(mp) < 0)
|
|
goto fail;
|
|
|
|
/* call the object initializers */
|
|
if (obj_init)
|
|
rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
|
|
|
|
return mp;
|
|
|
|
fail:
|
|
rte_mempool_free(mp);
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the number of entries in the mempool */
|
|
unsigned int
|
|
rte_mempool_avail_count(const struct rte_mempool *mp)
|
|
{
|
|
unsigned count;
|
|
unsigned lcore_id;
|
|
|
|
count = rte_mempool_ops_get_count(mp);
|
|
|
|
if (mp->cache_size == 0)
|
|
return count;
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
|
|
count += mp->local_cache[lcore_id].len;
|
|
|
|
/*
|
|
* due to race condition (access to len is not locked), the
|
|
* total can be greater than size... so fix the result
|
|
*/
|
|
if (count > mp->size)
|
|
return mp->size;
|
|
return count;
|
|
}
|
|
|
|
/* return the number of entries allocated from the mempool */
|
|
unsigned int
|
|
rte_mempool_in_use_count(const struct rte_mempool *mp)
|
|
{
|
|
return mp->size - rte_mempool_avail_count(mp);
|
|
}
|
|
|
|
/* dump the cache status */
|
|
static unsigned
|
|
rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
|
|
{
|
|
unsigned lcore_id;
|
|
unsigned count = 0;
|
|
unsigned cache_count;
|
|
|
|
fprintf(f, " internal cache infos:\n");
|
|
fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size);
|
|
|
|
if (mp->cache_size == 0)
|
|
return count;
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
cache_count = mp->local_cache[lcore_id].len;
|
|
fprintf(f, " cache_count[%u]=%"PRIu32"\n",
|
|
lcore_id, cache_count);
|
|
count += cache_count;
|
|
}
|
|
fprintf(f, " total_cache_count=%u\n", count);
|
|
return count;
|
|
}
|
|
|
|
#ifndef __INTEL_COMPILER
|
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
/* check and update cookies or panic (internal) */
|
|
void rte_mempool_check_cookies(const struct rte_mempool *mp,
|
|
void * const *obj_table_const, unsigned n, int free)
|
|
{
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
struct rte_mempool_objhdr *hdr;
|
|
struct rte_mempool_objtlr *tlr;
|
|
uint64_t cookie;
|
|
void *tmp;
|
|
void *obj;
|
|
void **obj_table;
|
|
|
|
/* Force to drop the "const" attribute. This is done only when
|
|
* DEBUG is enabled */
|
|
tmp = (void *) obj_table_const;
|
|
obj_table = tmp;
|
|
|
|
while (n--) {
|
|
obj = obj_table[n];
|
|
|
|
if (rte_mempool_from_obj(obj) != mp)
|
|
rte_panic("MEMPOOL: object is owned by another "
|
|
"mempool\n");
|
|
|
|
hdr = __mempool_get_header(obj);
|
|
cookie = hdr->cookie;
|
|
|
|
if (free == 0) {
|
|
if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
|
|
RTE_LOG(CRIT, MEMPOOL,
|
|
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
|
|
obj, (const void *) mp, cookie);
|
|
rte_panic("MEMPOOL: bad header cookie (put)\n");
|
|
}
|
|
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
|
|
} else if (free == 1) {
|
|
if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
|
|
RTE_LOG(CRIT, MEMPOOL,
|
|
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
|
|
obj, (const void *) mp, cookie);
|
|
rte_panic("MEMPOOL: bad header cookie (get)\n");
|
|
}
|
|
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
|
|
} else if (free == 2) {
|
|
if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
|
|
cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
|
|
RTE_LOG(CRIT, MEMPOOL,
|
|
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
|
|
obj, (const void *) mp, cookie);
|
|
rte_panic("MEMPOOL: bad header cookie (audit)\n");
|
|
}
|
|
}
|
|
tlr = __mempool_get_trailer(obj);
|
|
cookie = tlr->cookie;
|
|
if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
|
|
RTE_LOG(CRIT, MEMPOOL,
|
|
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
|
|
obj, (const void *) mp, cookie);
|
|
rte_panic("MEMPOOL: bad trailer cookie\n");
|
|
}
|
|
}
|
|
#else
|
|
RTE_SET_USED(mp);
|
|
RTE_SET_USED(obj_table_const);
|
|
RTE_SET_USED(n);
|
|
RTE_SET_USED(free);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
|
|
void * const *first_obj_table_const, unsigned int n, int free)
|
|
{
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
struct rte_mempool_info info;
|
|
const size_t total_elt_sz =
|
|
mp->header_size + mp->elt_size + mp->trailer_size;
|
|
unsigned int i, j;
|
|
|
|
rte_mempool_ops_get_info(mp, &info);
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
void *first_obj = first_obj_table_const[i];
|
|
|
|
for (j = 0; j < info.contig_block_size; ++j) {
|
|
void *obj;
|
|
|
|
obj = (void *)((uintptr_t)first_obj + j * total_elt_sz);
|
|
rte_mempool_check_cookies(mp, &obj, 1, free);
|
|
}
|
|
}
|
|
#else
|
|
RTE_SET_USED(mp);
|
|
RTE_SET_USED(first_obj_table_const);
|
|
RTE_SET_USED(n);
|
|
RTE_SET_USED(free);
|
|
#endif
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
static void
|
|
mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
|
|
void *obj, __rte_unused unsigned idx)
|
|
{
|
|
__mempool_check_cookies(mp, &obj, 1, 2);
|
|
}
|
|
|
|
static void
|
|
mempool_audit_cookies(struct rte_mempool *mp)
|
|
{
|
|
unsigned num;
|
|
|
|
num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
|
|
if (num != mp->size) {
|
|
rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
|
|
"iterated only over %u elements\n",
|
|
mp, mp->size, num);
|
|
}
|
|
}
|
|
#else
|
|
#define mempool_audit_cookies(mp) do {} while(0)
|
|
#endif
|
|
|
|
#ifndef __INTEL_COMPILER
|
|
#pragma GCC diagnostic error "-Wcast-qual"
|
|
#endif
|
|
|
|
/* check cookies before and after objects */
|
|
static void
|
|
mempool_audit_cache(const struct rte_mempool *mp)
|
|
{
|
|
/* check cache size consistency */
|
|
unsigned lcore_id;
|
|
|
|
if (mp->cache_size == 0)
|
|
return;
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
const struct rte_mempool_cache *cache;
|
|
cache = &mp->local_cache[lcore_id];
|
|
if (cache->len > cache->flushthresh) {
|
|
RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
|
|
lcore_id);
|
|
rte_panic("MEMPOOL: invalid cache len\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check the consistency of mempool (size, cookies, ...) */
|
|
void
|
|
rte_mempool_audit(struct rte_mempool *mp)
|
|
{
|
|
mempool_audit_cache(mp);
|
|
mempool_audit_cookies(mp);
|
|
|
|
/* For case where mempool DEBUG is not set, and cache size is 0 */
|
|
RTE_SET_USED(mp);
|
|
}
|
|
|
|
/* dump the status of the mempool on the console */
|
|
void
|
|
rte_mempool_dump(FILE *f, struct rte_mempool *mp)
|
|
{
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
struct rte_mempool_info info;
|
|
struct rte_mempool_debug_stats sum;
|
|
unsigned lcore_id;
|
|
#endif
|
|
struct rte_mempool_memhdr *memhdr;
|
|
unsigned common_count;
|
|
unsigned cache_count;
|
|
size_t mem_len = 0;
|
|
|
|
RTE_ASSERT(f != NULL);
|
|
RTE_ASSERT(mp != NULL);
|
|
|
|
fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
|
|
fprintf(f, " flags=%x\n", mp->flags);
|
|
fprintf(f, " pool=%p\n", mp->pool_data);
|
|
fprintf(f, " iova=0x%" PRIx64 "\n", mp->mz->iova);
|
|
fprintf(f, " nb_mem_chunks=%u\n", mp->nb_mem_chunks);
|
|
fprintf(f, " size=%"PRIu32"\n", mp->size);
|
|
fprintf(f, " populated_size=%"PRIu32"\n", mp->populated_size);
|
|
fprintf(f, " header_size=%"PRIu32"\n", mp->header_size);
|
|
fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size);
|
|
fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size);
|
|
fprintf(f, " total_obj_size=%"PRIu32"\n",
|
|
mp->header_size + mp->elt_size + mp->trailer_size);
|
|
|
|
fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size);
|
|
|
|
STAILQ_FOREACH(memhdr, &mp->mem_list, next)
|
|
mem_len += memhdr->len;
|
|
if (mem_len != 0) {
|
|
fprintf(f, " avg bytes/object=%#Lf\n",
|
|
(long double)mem_len / mp->size);
|
|
}
|
|
|
|
cache_count = rte_mempool_dump_cache(f, mp);
|
|
common_count = rte_mempool_ops_get_count(mp);
|
|
if ((cache_count + common_count) > mp->size)
|
|
common_count = mp->size - cache_count;
|
|
fprintf(f, " common_pool_count=%u\n", common_count);
|
|
|
|
/* sum and dump statistics */
|
|
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
|
|
rte_mempool_ops_get_info(mp, &info);
|
|
memset(&sum, 0, sizeof(sum));
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
sum.put_bulk += mp->stats[lcore_id].put_bulk;
|
|
sum.put_objs += mp->stats[lcore_id].put_objs;
|
|
sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
|
|
sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
|
|
sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
|
|
sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
|
|
sum.get_success_blks += mp->stats[lcore_id].get_success_blks;
|
|
sum.get_fail_blks += mp->stats[lcore_id].get_fail_blks;
|
|
}
|
|
fprintf(f, " stats:\n");
|
|
fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk);
|
|
fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs);
|
|
fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
|
|
fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs);
|
|
fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
|
|
fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
|
|
if (info.contig_block_size > 0) {
|
|
fprintf(f, " get_success_blks=%"PRIu64"\n",
|
|
sum.get_success_blks);
|
|
fprintf(f, " get_fail_blks=%"PRIu64"\n", sum.get_fail_blks);
|
|
}
|
|
#else
|
|
fprintf(f, " no statistics available\n");
|
|
#endif
|
|
|
|
rte_mempool_audit(mp);
|
|
}
|
|
|
|
/* dump the status of all mempools on the console */
|
|
void
|
|
rte_mempool_list_dump(FILE *f)
|
|
{
|
|
struct rte_mempool *mp = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_mempool_list *mempool_list;
|
|
|
|
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
TAILQ_FOREACH(te, mempool_list, next) {
|
|
mp = (struct rte_mempool *) te->data;
|
|
rte_mempool_dump(f, mp);
|
|
}
|
|
|
|
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
}
|
|
|
|
/* search a mempool from its name */
|
|
struct rte_mempool *
|
|
rte_mempool_lookup(const char *name)
|
|
{
|
|
struct rte_mempool *mp = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_mempool_list *mempool_list;
|
|
|
|
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
TAILQ_FOREACH(te, mempool_list, next) {
|
|
mp = (struct rte_mempool *) te->data;
|
|
if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
|
|
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
if (te == NULL) {
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
|
|
return mp;
|
|
}
|
|
|
|
void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
|
|
void *arg)
|
|
{
|
|
struct rte_tailq_entry *te = NULL;
|
|
struct rte_mempool_list *mempool_list;
|
|
void *tmp_te;
|
|
|
|
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
|
|
TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
|
|
(*func)((struct rte_mempool *) te->data, arg);
|
|
}
|
|
|
|
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
|
|
}
|