f-stack/dpdk/app/test-bbdev/test_bbdev_perf.c

2406 lines
67 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdio.h>
#include <inttypes.h>
#include <math.h>
#include <rte_eal.h>
#include <rte_common.h>
#include <rte_dev.h>
#include <rte_launch.h>
#include <rte_bbdev.h>
#include <rte_cycles.h>
#include <rte_lcore.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include <rte_hexdump.h>
#include "main.h"
#include "test_bbdev_vector.h"
#define GET_SOCKET(socket_id) (((socket_id) == SOCKET_ID_ANY) ? 0 : (socket_id))
#define MAX_QUEUES RTE_MAX_LCORE
#define OPS_CACHE_SIZE 256U
#define OPS_POOL_SIZE_MIN 511U /* 0.5K per queue */
#define SYNC_WAIT 0
#define SYNC_START 1
#define INVALID_QUEUE_ID -1
static struct test_bbdev_vector test_vector;
/* Switch between PMD and Interrupt for throughput TC */
static bool intr_enabled;
/* Represents tested active devices */
static struct active_device {
const char *driver_name;
uint8_t dev_id;
uint16_t supported_ops;
uint16_t queue_ids[MAX_QUEUES];
uint16_t nb_queues;
struct rte_mempool *ops_mempool;
struct rte_mempool *in_mbuf_pool;
struct rte_mempool *hard_out_mbuf_pool;
struct rte_mempool *soft_out_mbuf_pool;
} active_devs[RTE_BBDEV_MAX_DEVS];
static uint8_t nb_active_devs;
/* Data buffers used by BBDEV ops */
struct test_buffers {
struct rte_bbdev_op_data *inputs;
struct rte_bbdev_op_data *hard_outputs;
struct rte_bbdev_op_data *soft_outputs;
};
/* Operation parameters specific for given test case */
struct test_op_params {
struct rte_mempool *mp;
struct rte_bbdev_dec_op *ref_dec_op;
struct rte_bbdev_enc_op *ref_enc_op;
uint16_t burst_sz;
uint16_t num_to_process;
uint16_t num_lcores;
int vector_mask;
rte_atomic16_t sync;
struct test_buffers q_bufs[RTE_MAX_NUMA_NODES][MAX_QUEUES];
};
/* Contains per lcore params */
struct thread_params {
uint8_t dev_id;
uint16_t queue_id;
uint64_t start_time;
double mops;
double mbps;
rte_atomic16_t nb_dequeued;
rte_atomic16_t processing_status;
struct test_op_params *op_params;
};
#ifdef RTE_BBDEV_OFFLOAD_COST
/* Stores time statistics */
struct test_time_stats {
/* Stores software enqueue total working time */
uint64_t enq_sw_tot_time;
/* Stores minimum value of software enqueue working time */
uint64_t enq_sw_min_time;
/* Stores maximum value of software enqueue working time */
uint64_t enq_sw_max_time;
/* Stores turbo enqueue total working time */
uint64_t enq_tur_tot_time;
/* Stores minimum value of turbo enqueue working time */
uint64_t enq_tur_min_time;
/* Stores maximum value of turbo enqueue working time */
uint64_t enq_tur_max_time;
/* Stores dequeue total working time */
uint64_t deq_tot_time;
/* Stores minimum value of dequeue working time */
uint64_t deq_min_time;
/* Stores maximum value of dequeue working time */
uint64_t deq_max_time;
};
#endif
typedef int (test_case_function)(struct active_device *ad,
struct test_op_params *op_params);
static inline void
set_avail_op(struct active_device *ad, enum rte_bbdev_op_type op_type)
{
ad->supported_ops |= (1 << op_type);
}
static inline bool
is_avail_op(struct active_device *ad, enum rte_bbdev_op_type op_type)
{
return ad->supported_ops & (1 << op_type);
}
static inline bool
flags_match(uint32_t flags_req, uint32_t flags_present)
{
return (flags_req & flags_present) == flags_req;
}
static void
clear_soft_out_cap(uint32_t *op_flags)
{
*op_flags &= ~RTE_BBDEV_TURBO_SOFT_OUTPUT;
*op_flags &= ~RTE_BBDEV_TURBO_POS_LLR_1_BIT_SOFT_OUT;
*op_flags &= ~RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT;
}
static int
check_dev_cap(const struct rte_bbdev_info *dev_info)
{
unsigned int i;
unsigned int nb_inputs, nb_soft_outputs, nb_hard_outputs;
const struct rte_bbdev_op_cap *op_cap = dev_info->drv.capabilities;
nb_inputs = test_vector.entries[DATA_INPUT].nb_segments;
nb_soft_outputs = test_vector.entries[DATA_SOFT_OUTPUT].nb_segments;
nb_hard_outputs = test_vector.entries[DATA_HARD_OUTPUT].nb_segments;
for (i = 0; op_cap->type != RTE_BBDEV_OP_NONE; ++i, ++op_cap) {
if (op_cap->type != test_vector.op_type)
continue;
if (op_cap->type == RTE_BBDEV_OP_TURBO_DEC) {
const struct rte_bbdev_op_cap_turbo_dec *cap =
&op_cap->cap.turbo_dec;
/* Ignore lack of soft output capability, just skip
* checking if soft output is valid.
*/
if ((test_vector.turbo_dec.op_flags &
RTE_BBDEV_TURBO_SOFT_OUTPUT) &&
!(cap->capability_flags &
RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
printf(
"WARNING: Device \"%s\" does not support soft output - soft output flags will be ignored.\n",
dev_info->dev_name);
clear_soft_out_cap(
&test_vector.turbo_dec.op_flags);
}
if (!flags_match(test_vector.turbo_dec.op_flags,
cap->capability_flags))
return TEST_FAILED;
if (nb_inputs > cap->num_buffers_src) {
printf("Too many inputs defined: %u, max: %u\n",
nb_inputs, cap->num_buffers_src);
return TEST_FAILED;
}
if (nb_soft_outputs > cap->num_buffers_soft_out &&
(test_vector.turbo_dec.op_flags &
RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
printf(
"Too many soft outputs defined: %u, max: %u\n",
nb_soft_outputs,
cap->num_buffers_soft_out);
return TEST_FAILED;
}
if (nb_hard_outputs > cap->num_buffers_hard_out) {
printf(
"Too many hard outputs defined: %u, max: %u\n",
nb_hard_outputs,
cap->num_buffers_hard_out);
return TEST_FAILED;
}
if (intr_enabled && !(cap->capability_flags &
RTE_BBDEV_TURBO_DEC_INTERRUPTS)) {
printf(
"Dequeue interrupts are not supported!\n");
return TEST_FAILED;
}
return TEST_SUCCESS;
} else if (op_cap->type == RTE_BBDEV_OP_TURBO_ENC) {
const struct rte_bbdev_op_cap_turbo_enc *cap =
&op_cap->cap.turbo_enc;
if (!flags_match(test_vector.turbo_enc.op_flags,
cap->capability_flags))
return TEST_FAILED;
if (nb_inputs > cap->num_buffers_src) {
printf("Too many inputs defined: %u, max: %u\n",
nb_inputs, cap->num_buffers_src);
return TEST_FAILED;
}
if (nb_hard_outputs > cap->num_buffers_dst) {
printf(
"Too many hard outputs defined: %u, max: %u\n",
nb_hard_outputs, cap->num_buffers_src);
return TEST_FAILED;
}
if (intr_enabled && !(cap->capability_flags &
RTE_BBDEV_TURBO_ENC_INTERRUPTS)) {
printf(
"Dequeue interrupts are not supported!\n");
return TEST_FAILED;
}
return TEST_SUCCESS;
}
}
if ((i == 0) && (test_vector.op_type == RTE_BBDEV_OP_NONE))
return TEST_SUCCESS; /* Special case for NULL device */
return TEST_FAILED;
}
/* calculates optimal mempool size not smaller than the val */
static unsigned int
optimal_mempool_size(unsigned int val)
{
return rte_align32pow2(val + 1) - 1;
}
/* allocates mbuf mempool for inputs and outputs */
static struct rte_mempool *
create_mbuf_pool(struct op_data_entries *entries, uint8_t dev_id,
int socket_id, unsigned int mbuf_pool_size,
const char *op_type_str)
{
unsigned int i;
uint32_t max_seg_sz = 0;
char pool_name[RTE_MEMPOOL_NAMESIZE];
/* find max input segment size */
for (i = 0; i < entries->nb_segments; ++i)
if (entries->segments[i].length > max_seg_sz)
max_seg_sz = entries->segments[i].length;
snprintf(pool_name, sizeof(pool_name), "%s_pool_%u", op_type_str,
dev_id);
return rte_pktmbuf_pool_create(pool_name, mbuf_pool_size, 0, 0,
RTE_MAX(max_seg_sz + RTE_PKTMBUF_HEADROOM,
(unsigned int)RTE_MBUF_DEFAULT_BUF_SIZE), socket_id);
}
static int
create_mempools(struct active_device *ad, int socket_id,
enum rte_bbdev_op_type org_op_type, uint16_t num_ops)
{
struct rte_mempool *mp;
unsigned int ops_pool_size, mbuf_pool_size = 0;
char pool_name[RTE_MEMPOOL_NAMESIZE];
const char *op_type_str;
enum rte_bbdev_op_type op_type = org_op_type;
struct op_data_entries *in = &test_vector.entries[DATA_INPUT];
struct op_data_entries *hard_out =
&test_vector.entries[DATA_HARD_OUTPUT];
struct op_data_entries *soft_out =
&test_vector.entries[DATA_SOFT_OUTPUT];
/* allocate ops mempool */
ops_pool_size = optimal_mempool_size(RTE_MAX(
/* Ops used plus 1 reference op */
RTE_MAX((unsigned int)(ad->nb_queues * num_ops + 1),
/* Minimal cache size plus 1 reference op */
(unsigned int)(1.5 * rte_lcore_count() *
OPS_CACHE_SIZE + 1)),
OPS_POOL_SIZE_MIN));
if (org_op_type == RTE_BBDEV_OP_NONE)
op_type = RTE_BBDEV_OP_TURBO_ENC;
op_type_str = rte_bbdev_op_type_str(op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
snprintf(pool_name, sizeof(pool_name), "%s_pool_%u", op_type_str,
ad->dev_id);
mp = rte_bbdev_op_pool_create(pool_name, op_type,
ops_pool_size, OPS_CACHE_SIZE, socket_id);
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %u items ops pool for dev %u on socket %u.",
ops_pool_size,
ad->dev_id,
socket_id);
ad->ops_mempool = mp;
/* Do not create inputs and outputs mbufs for BaseBand Null Device */
if (org_op_type == RTE_BBDEV_OP_NONE)
return TEST_SUCCESS;
/* Inputs */
mbuf_pool_size = optimal_mempool_size(ops_pool_size * in->nb_segments);
mp = create_mbuf_pool(in, ad->dev_id, socket_id, mbuf_pool_size, "in");
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %u items input pktmbuf pool for dev %u on socket %u.",
mbuf_pool_size,
ad->dev_id,
socket_id);
ad->in_mbuf_pool = mp;
/* Hard outputs */
mbuf_pool_size = optimal_mempool_size(ops_pool_size *
hard_out->nb_segments);
mp = create_mbuf_pool(hard_out, ad->dev_id, socket_id, mbuf_pool_size,
"hard_out");
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %u items hard output pktmbuf pool for dev %u on socket %u.",
mbuf_pool_size,
ad->dev_id,
socket_id);
ad->hard_out_mbuf_pool = mp;
if (soft_out->nb_segments == 0)
return TEST_SUCCESS;
/* Soft outputs */
mbuf_pool_size = optimal_mempool_size(ops_pool_size *
soft_out->nb_segments);
mp = create_mbuf_pool(soft_out, ad->dev_id, socket_id, mbuf_pool_size,
"soft_out");
TEST_ASSERT_NOT_NULL(mp,
"ERROR Failed to create %uB soft output pktmbuf pool for dev %u on socket %u.",
mbuf_pool_size,
ad->dev_id,
socket_id);
ad->soft_out_mbuf_pool = mp;
return 0;
}
static int
add_bbdev_dev(uint8_t dev_id, struct rte_bbdev_info *info,
struct test_bbdev_vector *vector)
{
int ret;
unsigned int queue_id;
struct rte_bbdev_queue_conf qconf;
struct active_device *ad = &active_devs[nb_active_devs];
unsigned int nb_queues;
enum rte_bbdev_op_type op_type = vector->op_type;
nb_queues = RTE_MIN(rte_lcore_count(), info->drv.max_num_queues);
/* setup device */
ret = rte_bbdev_setup_queues(dev_id, nb_queues, info->socket_id);
if (ret < 0) {
printf("rte_bbdev_setup_queues(%u, %u, %d) ret %i\n",
dev_id, nb_queues, info->socket_id, ret);
return TEST_FAILED;
}
/* configure interrupts if needed */
if (intr_enabled) {
ret = rte_bbdev_intr_enable(dev_id);
if (ret < 0) {
printf("rte_bbdev_intr_enable(%u) ret %i\n", dev_id,
ret);
return TEST_FAILED;
}
}
/* setup device queues */
qconf.socket = info->socket_id;
qconf.queue_size = info->drv.default_queue_conf.queue_size;
qconf.priority = 0;
qconf.deferred_start = 0;
qconf.op_type = op_type;
for (queue_id = 0; queue_id < nb_queues; ++queue_id) {
ret = rte_bbdev_queue_configure(dev_id, queue_id, &qconf);
if (ret != 0) {
printf(
"Allocated all queues (id=%u) at prio%u on dev%u\n",
queue_id, qconf.priority, dev_id);
qconf.priority++;
ret = rte_bbdev_queue_configure(ad->dev_id, queue_id,
&qconf);
}
if (ret != 0) {
printf("All queues on dev %u allocated: %u\n",
dev_id, queue_id);
break;
}
ad->queue_ids[queue_id] = queue_id;
}
TEST_ASSERT(queue_id != 0,
"ERROR Failed to configure any queues on dev %u",
dev_id);
ad->nb_queues = queue_id;
set_avail_op(ad, op_type);
return TEST_SUCCESS;
}
static int
add_active_device(uint8_t dev_id, struct rte_bbdev_info *info,
struct test_bbdev_vector *vector)
{
int ret;
active_devs[nb_active_devs].driver_name = info->drv.driver_name;
active_devs[nb_active_devs].dev_id = dev_id;
ret = add_bbdev_dev(dev_id, info, vector);
if (ret == TEST_SUCCESS)
++nb_active_devs;
return ret;
}
static uint8_t
populate_active_devices(void)
{
int ret;
uint8_t dev_id;
uint8_t nb_devs_added = 0;
struct rte_bbdev_info info;
RTE_BBDEV_FOREACH(dev_id) {
rte_bbdev_info_get(dev_id, &info);
if (check_dev_cap(&info)) {
printf(
"Device %d (%s) does not support specified capabilities\n",
dev_id, info.dev_name);
continue;
}
ret = add_active_device(dev_id, &info, &test_vector);
if (ret != 0) {
printf("Adding active bbdev %s skipped\n",
info.dev_name);
continue;
}
nb_devs_added++;
}
return nb_devs_added;
}
static int
read_test_vector(void)
{
int ret;
memset(&test_vector, 0, sizeof(test_vector));
printf("Test vector file = %s\n", get_vector_filename());
ret = test_bbdev_vector_read(get_vector_filename(), &test_vector);
TEST_ASSERT_SUCCESS(ret, "Failed to parse file %s\n",
get_vector_filename());
return TEST_SUCCESS;
}
static int
testsuite_setup(void)
{
TEST_ASSERT_SUCCESS(read_test_vector(), "Test suite setup failed\n");
if (populate_active_devices() == 0) {
printf("No suitable devices found!\n");
return TEST_SKIPPED;
}
return TEST_SUCCESS;
}
static int
interrupt_testsuite_setup(void)
{
TEST_ASSERT_SUCCESS(read_test_vector(), "Test suite setup failed\n");
/* Enable interrupts */
intr_enabled = true;
/* Special case for NULL device (RTE_BBDEV_OP_NONE) */
if (populate_active_devices() == 0 ||
test_vector.op_type == RTE_BBDEV_OP_NONE) {
intr_enabled = false;
printf("No suitable devices found!\n");
return TEST_SKIPPED;
}
return TEST_SUCCESS;
}
static void
testsuite_teardown(void)
{
uint8_t dev_id;
/* Unconfigure devices */
RTE_BBDEV_FOREACH(dev_id)
rte_bbdev_close(dev_id);
/* Clear active devices structs. */
memset(active_devs, 0, sizeof(active_devs));
nb_active_devs = 0;
}
static int
ut_setup(void)
{
uint8_t i, dev_id;
for (i = 0; i < nb_active_devs; i++) {
dev_id = active_devs[i].dev_id;
/* reset bbdev stats */
TEST_ASSERT_SUCCESS(rte_bbdev_stats_reset(dev_id),
"Failed to reset stats of bbdev %u", dev_id);
/* start the device */
TEST_ASSERT_SUCCESS(rte_bbdev_start(dev_id),
"Failed to start bbdev %u", dev_id);
}
return TEST_SUCCESS;
}
static void
ut_teardown(void)
{
uint8_t i, dev_id;
struct rte_bbdev_stats stats;
for (i = 0; i < nb_active_devs; i++) {
dev_id = active_devs[i].dev_id;
/* read stats and print */
rte_bbdev_stats_get(dev_id, &stats);
/* Stop the device */
rte_bbdev_stop(dev_id);
}
}
static int
init_op_data_objs(struct rte_bbdev_op_data *bufs,
struct op_data_entries *ref_entries,
struct rte_mempool *mbuf_pool, const uint16_t n,
enum op_data_type op_type, uint16_t min_alignment)
{
int ret;
unsigned int i, j;
for (i = 0; i < n; ++i) {
char *data;
struct op_data_buf *seg = &ref_entries->segments[0];
struct rte_mbuf *m_head = rte_pktmbuf_alloc(mbuf_pool);
TEST_ASSERT_NOT_NULL(m_head,
"Not enough mbufs in %d data type mbuf pool (needed %u, available %u)",
op_type, n * ref_entries->nb_segments,
mbuf_pool->size);
bufs[i].data = m_head;
bufs[i].offset = 0;
bufs[i].length = 0;
if (op_type == DATA_INPUT) {
data = rte_pktmbuf_append(m_head, seg->length);
TEST_ASSERT_NOT_NULL(data,
"Couldn't append %u bytes to mbuf from %d data type mbuf pool",
seg->length, op_type);
TEST_ASSERT(data == RTE_PTR_ALIGN(data, min_alignment),
"Data addr in mbuf (%p) is not aligned to device min alignment (%u)",
data, min_alignment);
rte_memcpy(data, seg->addr, seg->length);
bufs[i].length += seg->length;
for (j = 1; j < ref_entries->nb_segments; ++j) {
struct rte_mbuf *m_tail =
rte_pktmbuf_alloc(mbuf_pool);
TEST_ASSERT_NOT_NULL(m_tail,
"Not enough mbufs in %d data type mbuf pool (needed %u, available %u)",
op_type,
n * ref_entries->nb_segments,
mbuf_pool->size);
seg += 1;
data = rte_pktmbuf_append(m_tail, seg->length);
TEST_ASSERT_NOT_NULL(data,
"Couldn't append %u bytes to mbuf from %d data type mbuf pool",
seg->length, op_type);
TEST_ASSERT(data == RTE_PTR_ALIGN(data,
min_alignment),
"Data addr in mbuf (%p) is not aligned to device min alignment (%u)",
data, min_alignment);
rte_memcpy(data, seg->addr, seg->length);
bufs[i].length += seg->length;
ret = rte_pktmbuf_chain(m_head, m_tail);
TEST_ASSERT_SUCCESS(ret,
"Couldn't chain mbufs from %d data type mbuf pool",
op_type);
}
}
}
return 0;
}
static int
allocate_buffers_on_socket(struct rte_bbdev_op_data **buffers, const int len,
const int socket)
{
int i;
*buffers = rte_zmalloc_socket(NULL, len, 0, socket);
if (*buffers == NULL) {
printf("WARNING: Failed to allocate op_data on socket %d\n",
socket);
/* try to allocate memory on other detected sockets */
for (i = 0; i < socket; i++) {
*buffers = rte_zmalloc_socket(NULL, len, 0, i);
if (*buffers != NULL)
break;
}
}
return (*buffers == NULL) ? TEST_FAILED : TEST_SUCCESS;
}
static void
limit_input_llr_val_range(struct rte_bbdev_op_data *input_ops,
uint16_t n, int8_t max_llr_modulus)
{
uint16_t i, byte_idx;
for (i = 0; i < n; ++i) {
struct rte_mbuf *m = input_ops[i].data;
while (m != NULL) {
int8_t *llr = rte_pktmbuf_mtod_offset(m, int8_t *,
input_ops[i].offset);
for (byte_idx = 0; byte_idx < input_ops[i].length;
++byte_idx)
llr[byte_idx] = round((double)max_llr_modulus *
llr[byte_idx] / INT8_MAX);
m = m->next;
}
}
}
static int
fill_queue_buffers(struct test_op_params *op_params,
struct rte_mempool *in_mp, struct rte_mempool *hard_out_mp,
struct rte_mempool *soft_out_mp, uint16_t queue_id,
const struct rte_bbdev_op_cap *capabilities,
uint16_t min_alignment, const int socket_id)
{
int ret;
enum op_data_type type;
const uint16_t n = op_params->num_to_process;
struct rte_mempool *mbuf_pools[DATA_NUM_TYPES] = {
in_mp,
soft_out_mp,
hard_out_mp,
};
struct rte_bbdev_op_data **queue_ops[DATA_NUM_TYPES] = {
&op_params->q_bufs[socket_id][queue_id].inputs,
&op_params->q_bufs[socket_id][queue_id].soft_outputs,
&op_params->q_bufs[socket_id][queue_id].hard_outputs,
};
for (type = DATA_INPUT; type < DATA_NUM_TYPES; ++type) {
struct op_data_entries *ref_entries =
&test_vector.entries[type];
if (ref_entries->nb_segments == 0)
continue;
ret = allocate_buffers_on_socket(queue_ops[type],
n * sizeof(struct rte_bbdev_op_data),
socket_id);
TEST_ASSERT_SUCCESS(ret,
"Couldn't allocate memory for rte_bbdev_op_data structs");
ret = init_op_data_objs(*queue_ops[type], ref_entries,
mbuf_pools[type], n, type, min_alignment);
TEST_ASSERT_SUCCESS(ret,
"Couldn't init rte_bbdev_op_data structs");
}
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
limit_input_llr_val_range(*queue_ops[DATA_INPUT], n,
capabilities->cap.turbo_dec.max_llr_modulus);
return 0;
}
static void
free_buffers(struct active_device *ad, struct test_op_params *op_params)
{
unsigned int i, j;
rte_mempool_free(ad->ops_mempool);
rte_mempool_free(ad->in_mbuf_pool);
rte_mempool_free(ad->hard_out_mbuf_pool);
rte_mempool_free(ad->soft_out_mbuf_pool);
for (i = 0; i < rte_lcore_count(); ++i) {
for (j = 0; j < RTE_MAX_NUMA_NODES; ++j) {
rte_free(op_params->q_bufs[j][i].inputs);
rte_free(op_params->q_bufs[j][i].hard_outputs);
rte_free(op_params->q_bufs[j][i].soft_outputs);
}
}
}
static void
copy_reference_dec_op(struct rte_bbdev_dec_op **ops, unsigned int n,
unsigned int start_idx,
struct rte_bbdev_op_data *inputs,
struct rte_bbdev_op_data *hard_outputs,
struct rte_bbdev_op_data *soft_outputs,
struct rte_bbdev_dec_op *ref_op)
{
unsigned int i;
struct rte_bbdev_op_turbo_dec *turbo_dec = &ref_op->turbo_dec;
for (i = 0; i < n; ++i) {
if (turbo_dec->code_block_mode == 0) {
ops[i]->turbo_dec.tb_params.ea =
turbo_dec->tb_params.ea;
ops[i]->turbo_dec.tb_params.eb =
turbo_dec->tb_params.eb;
ops[i]->turbo_dec.tb_params.k_pos =
turbo_dec->tb_params.k_pos;
ops[i]->turbo_dec.tb_params.k_neg =
turbo_dec->tb_params.k_neg;
ops[i]->turbo_dec.tb_params.c =
turbo_dec->tb_params.c;
ops[i]->turbo_dec.tb_params.c_neg =
turbo_dec->tb_params.c_neg;
ops[i]->turbo_dec.tb_params.cab =
turbo_dec->tb_params.cab;
} else {
ops[i]->turbo_dec.cb_params.e = turbo_dec->cb_params.e;
ops[i]->turbo_dec.cb_params.k = turbo_dec->cb_params.k;
}
ops[i]->turbo_dec.ext_scale = turbo_dec->ext_scale;
ops[i]->turbo_dec.iter_max = turbo_dec->iter_max;
ops[i]->turbo_dec.iter_min = turbo_dec->iter_min;
ops[i]->turbo_dec.op_flags = turbo_dec->op_flags;
ops[i]->turbo_dec.rv_index = turbo_dec->rv_index;
ops[i]->turbo_dec.num_maps = turbo_dec->num_maps;
ops[i]->turbo_dec.code_block_mode = turbo_dec->code_block_mode;
ops[i]->turbo_dec.hard_output = hard_outputs[start_idx + i];
ops[i]->turbo_dec.input = inputs[start_idx + i];
if (soft_outputs != NULL)
ops[i]->turbo_dec.soft_output =
soft_outputs[start_idx + i];
}
}
static void
copy_reference_enc_op(struct rte_bbdev_enc_op **ops, unsigned int n,
unsigned int start_idx,
struct rte_bbdev_op_data *inputs,
struct rte_bbdev_op_data *outputs,
struct rte_bbdev_enc_op *ref_op)
{
unsigned int i;
struct rte_bbdev_op_turbo_enc *turbo_enc = &ref_op->turbo_enc;
for (i = 0; i < n; ++i) {
if (turbo_enc->code_block_mode == 0) {
ops[i]->turbo_enc.tb_params.ea =
turbo_enc->tb_params.ea;
ops[i]->turbo_enc.tb_params.eb =
turbo_enc->tb_params.eb;
ops[i]->turbo_enc.tb_params.k_pos =
turbo_enc->tb_params.k_pos;
ops[i]->turbo_enc.tb_params.k_neg =
turbo_enc->tb_params.k_neg;
ops[i]->turbo_enc.tb_params.c =
turbo_enc->tb_params.c;
ops[i]->turbo_enc.tb_params.c_neg =
turbo_enc->tb_params.c_neg;
ops[i]->turbo_enc.tb_params.cab =
turbo_enc->tb_params.cab;
ops[i]->turbo_enc.tb_params.ncb_pos =
turbo_enc->tb_params.ncb_pos;
ops[i]->turbo_enc.tb_params.ncb_neg =
turbo_enc->tb_params.ncb_neg;
ops[i]->turbo_enc.tb_params.r = turbo_enc->tb_params.r;
} else {
ops[i]->turbo_enc.cb_params.e = turbo_enc->cb_params.e;
ops[i]->turbo_enc.cb_params.k = turbo_enc->cb_params.k;
ops[i]->turbo_enc.cb_params.ncb =
turbo_enc->cb_params.ncb;
}
ops[i]->turbo_enc.rv_index = turbo_enc->rv_index;
ops[i]->turbo_enc.op_flags = turbo_enc->op_flags;
ops[i]->turbo_enc.code_block_mode = turbo_enc->code_block_mode;
ops[i]->turbo_enc.output = outputs[start_idx + i];
ops[i]->turbo_enc.input = inputs[start_idx + i];
}
}
static int
check_dec_status_and_ordering(struct rte_bbdev_dec_op *op,
unsigned int order_idx, const int expected_status)
{
TEST_ASSERT(op->status == expected_status,
"op_status (%d) != expected_status (%d)",
op->status, expected_status);
TEST_ASSERT((void *)(uintptr_t)order_idx == op->opaque_data,
"Ordering error, expected %p, got %p",
(void *)(uintptr_t)order_idx, op->opaque_data);
return TEST_SUCCESS;
}
static int
check_enc_status_and_ordering(struct rte_bbdev_enc_op *op,
unsigned int order_idx, const int expected_status)
{
TEST_ASSERT(op->status == expected_status,
"op_status (%d) != expected_status (%d)",
op->status, expected_status);
TEST_ASSERT((void *)(uintptr_t)order_idx == op->opaque_data,
"Ordering error, expected %p, got %p",
(void *)(uintptr_t)order_idx, op->opaque_data);
return TEST_SUCCESS;
}
static inline int
validate_op_chain(struct rte_bbdev_op_data *op,
struct op_data_entries *orig_op)
{
uint8_t i;
struct rte_mbuf *m = op->data;
uint8_t nb_dst_segments = orig_op->nb_segments;
TEST_ASSERT(nb_dst_segments == m->nb_segs,
"Number of segments differ in original (%u) and filled (%u) op",
nb_dst_segments, m->nb_segs);
for (i = 0; i < nb_dst_segments; ++i) {
/* Apply offset to the first mbuf segment */
uint16_t offset = (i == 0) ? op->offset : 0;
uint16_t data_len = m->data_len - offset;
TEST_ASSERT(orig_op->segments[i].length == data_len,
"Length of segment differ in original (%u) and filled (%u) op",
orig_op->segments[i].length, data_len);
TEST_ASSERT_BUFFERS_ARE_EQUAL(orig_op->segments[i].addr,
rte_pktmbuf_mtod_offset(m, uint32_t *, offset),
data_len,
"Output buffers (CB=%u) are not equal", i);
m = m->next;
}
return TEST_SUCCESS;
}
static int
validate_dec_buffers(struct rte_bbdev_dec_op *ref_op, struct test_buffers *bufs,
const uint16_t num_to_process)
{
int i;
struct op_data_entries *hard_data_orig =
&test_vector.entries[DATA_HARD_OUTPUT];
struct op_data_entries *soft_data_orig =
&test_vector.entries[DATA_SOFT_OUTPUT];
for (i = 0; i < num_to_process; i++) {
TEST_ASSERT_SUCCESS(validate_op_chain(&bufs->hard_outputs[i],
hard_data_orig),
"Hard output buffers are not equal");
if (ref_op->turbo_dec.op_flags &
RTE_BBDEV_TURBO_SOFT_OUTPUT)
TEST_ASSERT_SUCCESS(validate_op_chain(
&bufs->soft_outputs[i],
soft_data_orig),
"Soft output buffers are not equal");
}
return TEST_SUCCESS;
}
static int
validate_enc_buffers(struct test_buffers *bufs, const uint16_t num_to_process)
{
int i;
struct op_data_entries *hard_data_orig =
&test_vector.entries[DATA_HARD_OUTPUT];
for (i = 0; i < num_to_process; i++)
TEST_ASSERT_SUCCESS(validate_op_chain(&bufs->hard_outputs[i],
hard_data_orig), "");
return TEST_SUCCESS;
}
static int
validate_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
struct rte_bbdev_dec_op *ref_op, const int vector_mask)
{
unsigned int i;
int ret;
struct op_data_entries *hard_data_orig =
&test_vector.entries[DATA_HARD_OUTPUT];
struct op_data_entries *soft_data_orig =
&test_vector.entries[DATA_SOFT_OUTPUT];
struct rte_bbdev_op_turbo_dec *ops_td;
struct rte_bbdev_op_data *hard_output;
struct rte_bbdev_op_data *soft_output;
struct rte_bbdev_op_turbo_dec *ref_td = &ref_op->turbo_dec;
for (i = 0; i < n; ++i) {
ops_td = &ops[i]->turbo_dec;
hard_output = &ops_td->hard_output;
soft_output = &ops_td->soft_output;
if (vector_mask & TEST_BBDEV_VF_EXPECTED_ITER_COUNT)
TEST_ASSERT(ops_td->iter_count <= ref_td->iter_count,
"Returned iter_count (%d) > expected iter_count (%d)",
ops_td->iter_count, ref_td->iter_count);
ret = check_dec_status_and_ordering(ops[i], i, ref_op->status);
TEST_ASSERT_SUCCESS(ret,
"Checking status and ordering for decoder failed");
TEST_ASSERT_SUCCESS(validate_op_chain(hard_output,
hard_data_orig),
"Hard output buffers (CB=%u) are not equal",
i);
if (ref_op->turbo_dec.op_flags & RTE_BBDEV_TURBO_SOFT_OUTPUT)
TEST_ASSERT_SUCCESS(validate_op_chain(soft_output,
soft_data_orig),
"Soft output buffers (CB=%u) are not equal",
i);
}
return TEST_SUCCESS;
}
static int
validate_enc_op(struct rte_bbdev_enc_op **ops, const uint16_t n,
struct rte_bbdev_enc_op *ref_op)
{
unsigned int i;
int ret;
struct op_data_entries *hard_data_orig =
&test_vector.entries[DATA_HARD_OUTPUT];
for (i = 0; i < n; ++i) {
ret = check_enc_status_and_ordering(ops[i], i, ref_op->status);
TEST_ASSERT_SUCCESS(ret,
"Checking status and ordering for encoder failed");
TEST_ASSERT_SUCCESS(validate_op_chain(
&ops[i]->turbo_enc.output,
hard_data_orig),
"Output buffers (CB=%u) are not equal",
i);
}
return TEST_SUCCESS;
}
static void
create_reference_dec_op(struct rte_bbdev_dec_op *op)
{
unsigned int i;
struct op_data_entries *entry;
op->turbo_dec = test_vector.turbo_dec;
entry = &test_vector.entries[DATA_INPUT];
for (i = 0; i < entry->nb_segments; ++i)
op->turbo_dec.input.length +=
entry->segments[i].length;
}
static void
create_reference_enc_op(struct rte_bbdev_enc_op *op)
{
unsigned int i;
struct op_data_entries *entry;
op->turbo_enc = test_vector.turbo_enc;
entry = &test_vector.entries[DATA_INPUT];
for (i = 0; i < entry->nb_segments; ++i)
op->turbo_enc.input.length +=
entry->segments[i].length;
}
static int
init_test_op_params(struct test_op_params *op_params,
enum rte_bbdev_op_type op_type, const int expected_status,
const int vector_mask, struct rte_mempool *ops_mp,
uint16_t burst_sz, uint16_t num_to_process, uint16_t num_lcores)
{
int ret = 0;
if (op_type == RTE_BBDEV_OP_TURBO_DEC)
ret = rte_bbdev_dec_op_alloc_bulk(ops_mp,
&op_params->ref_dec_op, 1);
else
ret = rte_bbdev_enc_op_alloc_bulk(ops_mp,
&op_params->ref_enc_op, 1);
TEST_ASSERT_SUCCESS(ret, "rte_bbdev_op_alloc_bulk() failed");
op_params->mp = ops_mp;
op_params->burst_sz = burst_sz;
op_params->num_to_process = num_to_process;
op_params->num_lcores = num_lcores;
op_params->vector_mask = vector_mask;
if (op_type == RTE_BBDEV_OP_TURBO_DEC)
op_params->ref_dec_op->status = expected_status;
else if (op_type == RTE_BBDEV_OP_TURBO_ENC)
op_params->ref_enc_op->status = expected_status;
return 0;
}
static int
run_test_case_on_device(test_case_function *test_case_func, uint8_t dev_id,
struct test_op_params *op_params)
{
int t_ret, f_ret, socket_id = SOCKET_ID_ANY;
unsigned int i;
struct active_device *ad;
unsigned int burst_sz = get_burst_sz();
enum rte_bbdev_op_type op_type = test_vector.op_type;
const struct rte_bbdev_op_cap *capabilities = NULL;
ad = &active_devs[dev_id];
/* Check if device supports op_type */
if (!is_avail_op(ad, test_vector.op_type))
return TEST_SUCCESS;
struct rte_bbdev_info info;
rte_bbdev_info_get(ad->dev_id, &info);
socket_id = GET_SOCKET(info.socket_id);
f_ret = create_mempools(ad, socket_id, op_type,
get_num_ops());
if (f_ret != TEST_SUCCESS) {
printf("Couldn't create mempools");
goto fail;
}
if (op_type == RTE_BBDEV_OP_NONE)
op_type = RTE_BBDEV_OP_TURBO_ENC;
f_ret = init_test_op_params(op_params, test_vector.op_type,
test_vector.expected_status,
test_vector.mask,
ad->ops_mempool,
burst_sz,
get_num_ops(),
get_num_lcores());
if (f_ret != TEST_SUCCESS) {
printf("Couldn't init test op params");
goto fail;
}
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC) {
/* Find Decoder capabilities */
const struct rte_bbdev_op_cap *cap = info.drv.capabilities;
while (cap->type != RTE_BBDEV_OP_NONE) {
if (cap->type == RTE_BBDEV_OP_TURBO_DEC) {
capabilities = cap;
break;
}
}
TEST_ASSERT_NOT_NULL(capabilities,
"Couldn't find Decoder capabilities");
create_reference_dec_op(op_params->ref_dec_op);
} else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC)
create_reference_enc_op(op_params->ref_enc_op);
for (i = 0; i < ad->nb_queues; ++i) {
f_ret = fill_queue_buffers(op_params,
ad->in_mbuf_pool,
ad->hard_out_mbuf_pool,
ad->soft_out_mbuf_pool,
ad->queue_ids[i],
capabilities,
info.drv.min_alignment,
socket_id);
if (f_ret != TEST_SUCCESS) {
printf("Couldn't init queue buffers");
goto fail;
}
}
/* Run test case function */
t_ret = test_case_func(ad, op_params);
/* Free active device resources and return */
free_buffers(ad, op_params);
return t_ret;
fail:
free_buffers(ad, op_params);
return TEST_FAILED;
}
/* Run given test function per active device per supported op type
* per burst size.
*/
static int
run_test_case(test_case_function *test_case_func)
{
int ret = 0;
uint8_t dev;
/* Alloc op_params */
struct test_op_params *op_params = rte_zmalloc(NULL,
sizeof(struct test_op_params), RTE_CACHE_LINE_SIZE);
TEST_ASSERT_NOT_NULL(op_params, "Failed to alloc %zuB for op_params",
RTE_ALIGN(sizeof(struct test_op_params),
RTE_CACHE_LINE_SIZE));
/* For each device run test case function */
for (dev = 0; dev < nb_active_devs; ++dev)
ret |= run_test_case_on_device(test_case_func, dev, op_params);
rte_free(op_params);
return ret;
}
static void
dequeue_event_callback(uint16_t dev_id,
enum rte_bbdev_event_type event, void *cb_arg,
void *ret_param)
{
int ret;
uint16_t i;
uint64_t total_time;
uint16_t deq, burst_sz, num_to_process;
uint16_t queue_id = INVALID_QUEUE_ID;
struct rte_bbdev_dec_op *dec_ops[MAX_BURST];
struct rte_bbdev_enc_op *enc_ops[MAX_BURST];
struct test_buffers *bufs;
struct rte_bbdev_info info;
/* Input length in bytes, million operations per second,
* million bits per second.
*/
double in_len;
struct thread_params *tp = cb_arg;
RTE_SET_USED(ret_param);
queue_id = tp->queue_id;
/* Find matching thread params using queue_id */
for (i = 0; i < MAX_QUEUES; ++i, ++tp)
if (tp->queue_id == queue_id)
break;
if (i == MAX_QUEUES) {
printf("%s: Queue_id from interrupt details was not found!\n",
__func__);
return;
}
if (unlikely(event != RTE_BBDEV_EVENT_DEQUEUE)) {
rte_atomic16_set(&tp->processing_status, TEST_FAILED);
printf(
"Dequeue interrupt handler called for incorrect event!\n");
return;
}
burst_sz = tp->op_params->burst_sz;
num_to_process = tp->op_params->num_to_process;
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
deq = rte_bbdev_dequeue_dec_ops(dev_id, queue_id, dec_ops,
burst_sz);
else
deq = rte_bbdev_dequeue_enc_ops(dev_id, queue_id, enc_ops,
burst_sz);
if (deq < burst_sz) {
printf(
"After receiving the interrupt all operations should be dequeued. Expected: %u, got: %u\n",
burst_sz, deq);
rte_atomic16_set(&tp->processing_status, TEST_FAILED);
return;
}
if (rte_atomic16_read(&tp->nb_dequeued) + deq < num_to_process) {
rte_atomic16_add(&tp->nb_dequeued, deq);
return;
}
total_time = rte_rdtsc_precise() - tp->start_time;
rte_bbdev_info_get(dev_id, &info);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
ret = TEST_SUCCESS;
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
ret = validate_dec_buffers(tp->op_params->ref_dec_op, bufs,
num_to_process);
else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC)
ret = validate_enc_buffers(bufs, num_to_process);
if (ret) {
printf("Buffers validation failed\n");
rte_atomic16_set(&tp->processing_status, TEST_FAILED);
}
switch (test_vector.op_type) {
case RTE_BBDEV_OP_TURBO_DEC:
in_len = tp->op_params->ref_dec_op->turbo_dec.input.length;
break;
case RTE_BBDEV_OP_TURBO_ENC:
in_len = tp->op_params->ref_enc_op->turbo_enc.input.length;
break;
case RTE_BBDEV_OP_NONE:
in_len = 0.0;
break;
default:
printf("Unknown op type: %d\n", test_vector.op_type);
rte_atomic16_set(&tp->processing_status, TEST_FAILED);
return;
}
tp->mops = ((double)num_to_process / 1000000.0) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps = ((double)num_to_process * in_len * 8 / 1000000.0) /
((double)total_time / (double)rte_get_tsc_hz());
rte_atomic16_add(&tp->nb_dequeued, deq);
}
static int
throughput_intr_lcore_dec(void *arg)
{
struct thread_params *tp = arg;
unsigned int enqueued;
struct rte_bbdev_dec_op *ops[MAX_BURST];
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_to_process = tp->op_params->num_to_process;
struct test_buffers *bufs = NULL;
unsigned int allocs_failed = 0;
struct rte_bbdev_info info;
int ret;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
"Failed to enable interrupts for dev: %u, queue_id: %u",
tp->dev_id, queue_id);
rte_bbdev_info_get(tp->dev_id, &info);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
rte_atomic16_clear(&tp->processing_status);
rte_atomic16_clear(&tp->nb_dequeued);
while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
rte_pause();
tp->start_time = rte_rdtsc_precise();
for (enqueued = 0; enqueued < num_to_process;) {
uint16_t num_to_enq = burst_sz;
if (unlikely(num_to_process - enqueued < num_to_enq))
num_to_enq = num_to_process - enqueued;
ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops,
num_to_enq);
if (ret != 0) {
allocs_failed++;
continue;
}
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_dec_op(ops, num_to_enq, enqueued,
bufs->inputs,
bufs->hard_outputs,
bufs->soft_outputs,
tp->op_params->ref_dec_op);
enqueued += rte_bbdev_enqueue_dec_ops(tp->dev_id, queue_id, ops,
num_to_enq);
rte_bbdev_dec_op_free_bulk(ops, num_to_enq);
}
if (allocs_failed > 0)
printf("WARNING: op allocations failed: %u times\n",
allocs_failed);
return TEST_SUCCESS;
}
static int
throughput_intr_lcore_enc(void *arg)
{
struct thread_params *tp = arg;
unsigned int enqueued;
struct rte_bbdev_enc_op *ops[MAX_BURST];
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_to_process = tp->op_params->num_to_process;
struct test_buffers *bufs = NULL;
unsigned int allocs_failed = 0;
struct rte_bbdev_info info;
int ret;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
"Failed to enable interrupts for dev: %u, queue_id: %u",
tp->dev_id, queue_id);
rte_bbdev_info_get(tp->dev_id, &info);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
rte_atomic16_clear(&tp->processing_status);
rte_atomic16_clear(&tp->nb_dequeued);
while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
rte_pause();
tp->start_time = rte_rdtsc_precise();
for (enqueued = 0; enqueued < num_to_process;) {
uint16_t num_to_enq = burst_sz;
if (unlikely(num_to_process - enqueued < num_to_enq))
num_to_enq = num_to_process - enqueued;
ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp, ops,
num_to_enq);
if (ret != 0) {
allocs_failed++;
continue;
}
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_enc_op(ops, num_to_enq, enqueued,
bufs->inputs,
bufs->hard_outputs,
tp->op_params->ref_enc_op);
enqueued += rte_bbdev_enqueue_enc_ops(tp->dev_id, queue_id, ops,
num_to_enq);
rte_bbdev_enc_op_free_bulk(ops, num_to_enq);
}
if (allocs_failed > 0)
printf("WARNING: op allocations failed: %u times\n",
allocs_failed);
return TEST_SUCCESS;
}
static int
throughput_pmd_lcore_dec(void *arg)
{
struct thread_params *tp = arg;
unsigned int enqueued, dequeued;
struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t total_time, start_time;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_to_process = tp->op_params->num_to_process;
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
struct test_buffers *bufs = NULL;
unsigned int allocs_failed = 0;
int ret;
struct rte_bbdev_info info;
/* Input length in bytes, million operations per second, million bits
* per second.
*/
double in_len;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(tp->dev_id, &info);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
rte_pause();
start_time = rte_rdtsc_precise();
for (enqueued = 0, dequeued = 0; dequeued < num_to_process;) {
uint16_t deq;
if (likely(enqueued < num_to_process)) {
uint16_t num_to_enq = burst_sz;
if (unlikely(num_to_process - enqueued < num_to_enq))
num_to_enq = num_to_process - enqueued;
ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp,
ops_enq, num_to_enq);
if (ret != 0) {
allocs_failed++;
goto do_dequeue;
}
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_dec_op(ops_enq, num_to_enq,
enqueued,
bufs->inputs,
bufs->hard_outputs,
bufs->soft_outputs,
ref_op);
enqueued += rte_bbdev_enqueue_dec_ops(tp->dev_id,
queue_id, ops_enq, num_to_enq);
}
do_dequeue:
deq = rte_bbdev_dequeue_dec_ops(tp->dev_id, queue_id, ops_deq,
burst_sz);
dequeued += deq;
rte_bbdev_dec_op_free_bulk(ops_enq, deq);
}
total_time = rte_rdtsc_precise() - start_time;
if (allocs_failed > 0)
printf("WARNING: op allocations failed: %u times\n",
allocs_failed);
TEST_ASSERT(enqueued == dequeued, "enqueued (%u) != dequeued (%u)",
enqueued, dequeued);
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_dec_buffers(ref_op, bufs, num_to_process);
TEST_ASSERT_SUCCESS(ret, "Buffers validation failed");
}
in_len = ref_op->turbo_dec.input.length;
tp->mops = ((double)num_to_process / 1000000.0) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps = ((double)num_to_process * in_len * 8 / 1000000.0) /
((double)total_time / (double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
static int
throughput_pmd_lcore_enc(void *arg)
{
struct thread_params *tp = arg;
unsigned int enqueued, dequeued;
struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t total_time, start_time;
const uint16_t queue_id = tp->queue_id;
const uint16_t burst_sz = tp->op_params->burst_sz;
const uint16_t num_to_process = tp->op_params->num_to_process;
struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
struct test_buffers *bufs = NULL;
unsigned int allocs_failed = 0;
int ret;
struct rte_bbdev_info info;
/* Input length in bytes, million operations per second, million bits
* per second.
*/
double in_len;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(tp->dev_id, &info);
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
rte_pause();
start_time = rte_rdtsc_precise();
for (enqueued = 0, dequeued = 0; dequeued < num_to_process;) {
uint16_t deq;
if (likely(enqueued < num_to_process)) {
uint16_t num_to_enq = burst_sz;
if (unlikely(num_to_process - enqueued < num_to_enq))
num_to_enq = num_to_process - enqueued;
ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp,
ops_enq, num_to_enq);
if (ret != 0) {
allocs_failed++;
goto do_dequeue;
}
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_enc_op(ops_enq, num_to_enq,
enqueued,
bufs->inputs,
bufs->hard_outputs,
ref_op);
enqueued += rte_bbdev_enqueue_enc_ops(tp->dev_id,
queue_id, ops_enq, num_to_enq);
}
do_dequeue:
deq = rte_bbdev_dequeue_enc_ops(tp->dev_id, queue_id, ops_deq,
burst_sz);
dequeued += deq;
rte_bbdev_enc_op_free_bulk(ops_enq, deq);
}
total_time = rte_rdtsc_precise() - start_time;
if (allocs_failed > 0)
printf("WARNING: op allocations failed: %u times\n",
allocs_failed);
TEST_ASSERT(enqueued == dequeued, "enqueued (%u) != dequeued (%u)",
enqueued, dequeued);
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_enc_buffers(bufs, num_to_process);
TEST_ASSERT_SUCCESS(ret, "Buffers validation failed");
}
in_len = ref_op->turbo_enc.input.length;
tp->mops = ((double)num_to_process / 1000000.0) /
((double)total_time / (double)rte_get_tsc_hz());
tp->mbps = ((double)num_to_process * in_len * 8 / 1000000.0) /
((double)total_time / (double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
static void
print_throughput(struct thread_params *t_params, unsigned int used_cores)
{
unsigned int lcore_id, iter = 0;
double total_mops = 0, total_mbps = 0;
RTE_LCORE_FOREACH(lcore_id) {
if (iter++ >= used_cores)
break;
printf("\tlcore_id: %u, throughput: %.8lg MOPS, %.8lg Mbps\n",
lcore_id, t_params[lcore_id].mops, t_params[lcore_id].mbps);
total_mops += t_params[lcore_id].mops;
total_mbps += t_params[lcore_id].mbps;
}
printf(
"\n\tTotal stats for %u cores: throughput: %.8lg MOPS, %.8lg Mbps\n",
used_cores, total_mops, total_mbps);
}
/*
* Test function that determines how long an enqueue + dequeue of a burst
* takes on available lcores.
*/
static int
throughput_test(struct active_device *ad,
struct test_op_params *op_params)
{
int ret;
unsigned int lcore_id, used_cores = 0;
struct thread_params t_params[MAX_QUEUES];
struct rte_bbdev_info info;
lcore_function_t *throughput_function;
struct thread_params *tp;
uint16_t num_lcores;
const char *op_type_str;
rte_bbdev_info_get(ad->dev_id, &info);
op_type_str = rte_bbdev_op_type_str(test_vector.op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u",
test_vector.op_type);
printf(
"Throughput test: dev: %s, nb_queues: %u, burst size: %u, num ops: %u, num_lcores: %u, op type: %s, int mode: %s, GHz: %lg\n",
info.dev_name, ad->nb_queues, op_params->burst_sz,
op_params->num_to_process, op_params->num_lcores,
op_type_str,
intr_enabled ? "Interrupt mode" : "PMD mode",
(double)rte_get_tsc_hz() / 1000000000.0);
/* Set number of lcores */
num_lcores = (ad->nb_queues < (op_params->num_lcores))
? ad->nb_queues
: op_params->num_lcores;
if (intr_enabled) {
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
throughput_function = throughput_intr_lcore_dec;
else
throughput_function = throughput_intr_lcore_enc;
/* Dequeue interrupt callback registration */
ret = rte_bbdev_callback_register(ad->dev_id,
RTE_BBDEV_EVENT_DEQUEUE, dequeue_event_callback,
&t_params);
if (ret < 0)
return ret;
} else {
if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
throughput_function = throughput_pmd_lcore_dec;
else
throughput_function = throughput_pmd_lcore_enc;
}
rte_atomic16_set(&op_params->sync, SYNC_WAIT);
t_params[rte_lcore_id()].dev_id = ad->dev_id;
t_params[rte_lcore_id()].op_params = op_params;
t_params[rte_lcore_id()].queue_id =
ad->queue_ids[used_cores++];
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (used_cores >= num_lcores)
break;
t_params[lcore_id].dev_id = ad->dev_id;
t_params[lcore_id].op_params = op_params;
t_params[lcore_id].queue_id = ad->queue_ids[used_cores++];
rte_eal_remote_launch(throughput_function, &t_params[lcore_id],
lcore_id);
}
rte_atomic16_set(&op_params->sync, SYNC_START);
ret = throughput_function(&t_params[rte_lcore_id()]);
/* Master core is always used */
used_cores = 1;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (used_cores++ >= num_lcores)
break;
ret |= rte_eal_wait_lcore(lcore_id);
}
/* Return if test failed */
if (ret)
return ret;
/* Print throughput if interrupts are disabled and test passed */
if (!intr_enabled) {
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
print_throughput(t_params, num_lcores);
return ret;
}
/* In interrupt TC we need to wait for the interrupt callback to deqeue
* all pending operations. Skip waiting for queues which reported an
* error using processing_status variable.
* Wait for master lcore operations.
*/
tp = &t_params[rte_lcore_id()];
while ((rte_atomic16_read(&tp->nb_dequeued) <
op_params->num_to_process) &&
(rte_atomic16_read(&tp->processing_status) !=
TEST_FAILED))
rte_pause();
ret |= rte_atomic16_read(&tp->processing_status);
/* Wait for slave lcores operations */
used_cores = 1;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
tp = &t_params[lcore_id];
if (used_cores++ >= num_lcores)
break;
while ((rte_atomic16_read(&tp->nb_dequeued) <
op_params->num_to_process) &&
(rte_atomic16_read(&tp->processing_status) !=
TEST_FAILED))
rte_pause();
ret |= rte_atomic16_read(&tp->processing_status);
}
/* Print throughput if test passed */
if (!ret && test_vector.op_type != RTE_BBDEV_OP_NONE)
print_throughput(t_params, num_lcores);
return ret;
}
static int
latency_test_dec(struct rte_mempool *mempool,
struct test_buffers *bufs, struct rte_bbdev_dec_op *ref_op,
int vector_mask, uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
{
int ret = TEST_SUCCESS;
uint16_t i, j, dequeued;
struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t start_time = 0, last_time = 0;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
bool first_time = true;
last_time = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_dec_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_dec_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
bufs->soft_outputs,
ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < burst_sz; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
start_time = rte_rdtsc_precise();
enq = rte_bbdev_enqueue_dec_ops(dev_id, queue_id, &ops_enq[enq],
burst_sz);
TEST_ASSERT(enq == burst_sz,
"Error enqueueing burst, expected %u, got %u",
burst_sz, enq);
/* Dequeue */
do {
deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
if (likely(first_time && (deq > 0))) {
last_time = rte_rdtsc_precise() - start_time;
first_time = false;
}
} while (unlikely(burst_sz != deq));
*max_time = RTE_MAX(*max_time, last_time);
*min_time = RTE_MIN(*min_time, last_time);
*total_time += last_time;
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_dec_op(ops_deq, burst_sz, ref_op,
vector_mask);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_dec_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
static int
latency_test_enc(struct rte_mempool *mempool,
struct test_buffers *bufs, struct rte_bbdev_enc_op *ref_op,
uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
{
int ret = TEST_SUCCESS;
uint16_t i, j, dequeued;
struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t start_time = 0, last_time = 0;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
bool first_time = true;
last_time = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret,
"rte_bbdev_enc_op_alloc_bulk() failed");
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_enc_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
ref_op);
/* Set counter to validate the ordering */
for (j = 0; j < burst_sz; ++j)
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
start_time = rte_rdtsc_precise();
enq = rte_bbdev_enqueue_enc_ops(dev_id, queue_id, &ops_enq[enq],
burst_sz);
TEST_ASSERT(enq == burst_sz,
"Error enqueueing burst, expected %u, got %u",
burst_sz, enq);
/* Dequeue */
do {
deq += rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
if (likely(first_time && (deq > 0))) {
last_time += rte_rdtsc_precise() - start_time;
first_time = false;
}
} while (unlikely(burst_sz != deq));
*max_time = RTE_MAX(*max_time, last_time);
*min_time = RTE_MIN(*min_time, last_time);
*total_time += last_time;
if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
ret = validate_enc_op(ops_deq, burst_sz, ref_op);
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
}
rte_bbdev_enc_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
static int
latency_test(struct active_device *ad,
struct test_op_params *op_params)
{
int iter;
uint16_t burst_sz = op_params->burst_sz;
const uint16_t num_to_process = op_params->num_to_process;
const enum rte_bbdev_op_type op_type = test_vector.op_type;
const uint16_t queue_id = ad->queue_ids[0];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
uint64_t total_time, min_time, max_time;
const char *op_type_str;
total_time = max_time = 0;
min_time = UINT64_MAX;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(ad->dev_id, &info);
bufs = &op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
op_type_str = rte_bbdev_op_type_str(op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
printf(
"Validation/Latency test: dev: %s, burst size: %u, num ops: %u, op type: %s\n",
info.dev_name, burst_sz, num_to_process, op_type_str);
if (op_type == RTE_BBDEV_OP_TURBO_DEC)
iter = latency_test_dec(op_params->mp, bufs,
op_params->ref_dec_op, op_params->vector_mask,
ad->dev_id, queue_id, num_to_process,
burst_sz, &total_time, &min_time, &max_time);
else
iter = latency_test_enc(op_params->mp, bufs,
op_params->ref_enc_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &total_time,
&min_time, &max_time);
if (iter <= 0)
return TEST_FAILED;
printf("\toperation latency:\n"
"\t\tavg latency: %lg cycles, %lg us\n"
"\t\tmin latency: %lg cycles, %lg us\n"
"\t\tmax latency: %lg cycles, %lg us\n",
(double)total_time / (double)iter,
(double)(total_time * 1000000) / (double)iter /
(double)rte_get_tsc_hz(), (double)min_time,
(double)(min_time * 1000000) / (double)rte_get_tsc_hz(),
(double)max_time, (double)(max_time * 1000000) /
(double)rte_get_tsc_hz());
return TEST_SUCCESS;
}
#ifdef RTE_BBDEV_OFFLOAD_COST
static int
get_bbdev_queue_stats(uint16_t dev_id, uint16_t queue_id,
struct rte_bbdev_stats *stats)
{
struct rte_bbdev *dev = &rte_bbdev_devices[dev_id];
struct rte_bbdev_stats *q_stats;
if (queue_id >= dev->data->num_queues)
return -1;
q_stats = &dev->data->queues[queue_id].queue_stats;
stats->enqueued_count = q_stats->enqueued_count;
stats->dequeued_count = q_stats->dequeued_count;
stats->enqueue_err_count = q_stats->enqueue_err_count;
stats->dequeue_err_count = q_stats->dequeue_err_count;
stats->offload_time = q_stats->offload_time;
return 0;
}
static int
offload_latency_test_dec(struct rte_mempool *mempool, struct test_buffers *bufs,
struct rte_bbdev_dec_op *ref_op, uint16_t dev_id,
uint16_t queue_id, const uint16_t num_to_process,
uint16_t burst_sz, struct test_time_stats *time_st)
{
int i, dequeued, ret;
struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t enq_start_time, deq_start_time;
uint64_t enq_sw_last_time, deq_last_time;
struct rte_bbdev_stats stats;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
burst_sz);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_dec_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
bufs->soft_outputs,
ref_op);
/* Start time meas for enqueue function offload latency */
enq_start_time = rte_rdtsc_precise();
do {
enq += rte_bbdev_enqueue_dec_ops(dev_id, queue_id,
&ops_enq[enq], burst_sz - enq);
} while (unlikely(burst_sz != enq));
ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
TEST_ASSERT_SUCCESS(ret,
"Failed to get stats for queue (%u) of device (%u)",
queue_id, dev_id);
enq_sw_last_time = rte_rdtsc_precise() - enq_start_time -
stats.offload_time;
time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
enq_sw_last_time);
time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
enq_sw_last_time);
time_st->enq_sw_tot_time += enq_sw_last_time;
time_st->enq_tur_max_time = RTE_MAX(time_st->enq_tur_max_time,
stats.offload_time);
time_st->enq_tur_min_time = RTE_MIN(time_st->enq_tur_min_time,
stats.offload_time);
time_st->enq_tur_tot_time += stats.offload_time;
/* ensure enqueue has been completed */
rte_delay_ms(10);
/* Start time meas for dequeue function offload latency */
deq_start_time = rte_rdtsc_precise();
/* Dequeue one operation */
do {
deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
&ops_deq[deq], 1);
} while (unlikely(deq != 1));
deq_last_time = rte_rdtsc_precise() - deq_start_time;
time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
deq_last_time);
time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
deq_last_time);
time_st->deq_tot_time += deq_last_time;
/* Dequeue remaining operations if needed*/
while (burst_sz != deq)
deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
rte_bbdev_dec_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
static int
offload_latency_test_enc(struct rte_mempool *mempool, struct test_buffers *bufs,
struct rte_bbdev_enc_op *ref_op, uint16_t dev_id,
uint16_t queue_id, const uint16_t num_to_process,
uint16_t burst_sz, struct test_time_stats *time_st)
{
int i, dequeued, ret;
struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
uint64_t enq_start_time, deq_start_time;
uint64_t enq_sw_last_time, deq_last_time;
struct rte_bbdev_stats stats;
for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
uint16_t enq = 0, deq = 0;
if (unlikely(num_to_process - dequeued < burst_sz))
burst_sz = num_to_process - dequeued;
ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
burst_sz);
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
copy_reference_enc_op(ops_enq, burst_sz, dequeued,
bufs->inputs,
bufs->hard_outputs,
ref_op);
/* Start time meas for enqueue function offload latency */
enq_start_time = rte_rdtsc_precise();
do {
enq += rte_bbdev_enqueue_enc_ops(dev_id, queue_id,
&ops_enq[enq], burst_sz - enq);
} while (unlikely(burst_sz != enq));
ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
TEST_ASSERT_SUCCESS(ret,
"Failed to get stats for queue (%u) of device (%u)",
queue_id, dev_id);
enq_sw_last_time = rte_rdtsc_precise() - enq_start_time -
stats.offload_time;
time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
enq_sw_last_time);
time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
enq_sw_last_time);
time_st->enq_sw_tot_time += enq_sw_last_time;
time_st->enq_tur_max_time = RTE_MAX(time_st->enq_tur_max_time,
stats.offload_time);
time_st->enq_tur_min_time = RTE_MIN(time_st->enq_tur_min_time,
stats.offload_time);
time_st->enq_tur_tot_time += stats.offload_time;
/* ensure enqueue has been completed */
rte_delay_ms(10);
/* Start time meas for dequeue function offload latency */
deq_start_time = rte_rdtsc_precise();
/* Dequeue one operation */
do {
deq += rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
&ops_deq[deq], 1);
} while (unlikely(deq != 1));
deq_last_time = rte_rdtsc_precise() - deq_start_time;
time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
deq_last_time);
time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
deq_last_time);
time_st->deq_tot_time += deq_last_time;
while (burst_sz != deq)
deq += rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
&ops_deq[deq], burst_sz - deq);
rte_bbdev_enc_op_free_bulk(ops_enq, deq);
dequeued += deq;
}
return i;
}
#endif
static int
offload_cost_test(struct active_device *ad,
struct test_op_params *op_params)
{
#ifndef RTE_BBDEV_OFFLOAD_COST
RTE_SET_USED(ad);
RTE_SET_USED(op_params);
printf("Offload latency test is disabled.\n");
printf("Set RTE_BBDEV_OFFLOAD_COST to 'y' to turn the test on.\n");
return TEST_SKIPPED;
#else
int iter;
uint16_t burst_sz = op_params->burst_sz;
const uint16_t num_to_process = op_params->num_to_process;
const enum rte_bbdev_op_type op_type = test_vector.op_type;
const uint16_t queue_id = ad->queue_ids[0];
struct test_buffers *bufs = NULL;
struct rte_bbdev_info info;
const char *op_type_str;
struct test_time_stats time_st;
memset(&time_st, 0, sizeof(struct test_time_stats));
time_st.enq_sw_min_time = UINT64_MAX;
time_st.enq_tur_min_time = UINT64_MAX;
time_st.deq_min_time = UINT64_MAX;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(ad->dev_id, &info);
bufs = &op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
op_type_str = rte_bbdev_op_type_str(op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
printf(
"Offload latency test: dev: %s, burst size: %u, num ops: %u, op type: %s\n",
info.dev_name, burst_sz, num_to_process, op_type_str);
if (op_type == RTE_BBDEV_OP_TURBO_DEC)
iter = offload_latency_test_dec(op_params->mp, bufs,
op_params->ref_dec_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &time_st);
else
iter = offload_latency_test_enc(op_params->mp, bufs,
op_params->ref_enc_op, ad->dev_id, queue_id,
num_to_process, burst_sz, &time_st);
if (iter <= 0)
return TEST_FAILED;
printf("\tenq offload cost latency:\n"
"\t\tsoftware avg %lg cycles, %lg us\n"
"\t\tsoftware min %lg cycles, %lg us\n"
"\t\tsoftware max %lg cycles, %lg us\n"
"\t\tturbo avg %lg cycles, %lg us\n"
"\t\tturbo min %lg cycles, %lg us\n"
"\t\tturbo max %lg cycles, %lg us\n",
(double)time_st.enq_sw_tot_time / (double)iter,
(double)(time_st.enq_sw_tot_time * 1000000) /
(double)iter / (double)rte_get_tsc_hz(),
(double)time_st.enq_sw_min_time,
(double)(time_st.enq_sw_min_time * 1000000) /
rte_get_tsc_hz(), (double)time_st.enq_sw_max_time,
(double)(time_st.enq_sw_max_time * 1000000) /
rte_get_tsc_hz(), (double)time_st.enq_tur_tot_time /
(double)iter,
(double)(time_st.enq_tur_tot_time * 1000000) /
(double)iter / (double)rte_get_tsc_hz(),
(double)time_st.enq_tur_min_time,
(double)(time_st.enq_tur_min_time * 1000000) /
rte_get_tsc_hz(), (double)time_st.enq_tur_max_time,
(double)(time_st.enq_tur_max_time * 1000000) /
rte_get_tsc_hz());
printf("\tdeq offload cost latency - one op:\n"
"\t\tavg %lg cycles, %lg us\n"
"\t\tmin %lg cycles, %lg us\n"
"\t\tmax %lg cycles, %lg us\n",
(double)time_st.deq_tot_time / (double)iter,
(double)(time_st.deq_tot_time * 1000000) /
(double)iter / (double)rte_get_tsc_hz(),
(double)time_st.deq_min_time,
(double)(time_st.deq_min_time * 1000000) /
rte_get_tsc_hz(), (double)time_st.deq_max_time,
(double)(time_st.deq_max_time * 1000000) /
rte_get_tsc_hz());
return TEST_SUCCESS;
#endif
}
#ifdef RTE_BBDEV_OFFLOAD_COST
static int
offload_latency_empty_q_test_dec(uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *deq_tot_time, uint64_t *deq_min_time,
uint64_t *deq_max_time)
{
int i, deq_total;
struct rte_bbdev_dec_op *ops[MAX_BURST];
uint64_t deq_start_time, deq_last_time;
/* Test deq offload latency from an empty queue */
for (i = 0, deq_total = 0; deq_total < num_to_process;
++i, deq_total += burst_sz) {
deq_start_time = rte_rdtsc_precise();
if (unlikely(num_to_process - deq_total < burst_sz))
burst_sz = num_to_process - deq_total;
rte_bbdev_dequeue_dec_ops(dev_id, queue_id, ops, burst_sz);
deq_last_time = rte_rdtsc_precise() - deq_start_time;
*deq_max_time = RTE_MAX(*deq_max_time, deq_last_time);
*deq_min_time = RTE_MIN(*deq_min_time, deq_last_time);
*deq_tot_time += deq_last_time;
}
return i;
}
static int
offload_latency_empty_q_test_enc(uint16_t dev_id, uint16_t queue_id,
const uint16_t num_to_process, uint16_t burst_sz,
uint64_t *deq_tot_time, uint64_t *deq_min_time,
uint64_t *deq_max_time)
{
int i, deq_total;
struct rte_bbdev_enc_op *ops[MAX_BURST];
uint64_t deq_start_time, deq_last_time;
/* Test deq offload latency from an empty queue */
for (i = 0, deq_total = 0; deq_total < num_to_process;
++i, deq_total += burst_sz) {
deq_start_time = rte_rdtsc_precise();
if (unlikely(num_to_process - deq_total < burst_sz))
burst_sz = num_to_process - deq_total;
rte_bbdev_dequeue_enc_ops(dev_id, queue_id, ops, burst_sz);
deq_last_time = rte_rdtsc_precise() - deq_start_time;
*deq_max_time = RTE_MAX(*deq_max_time, deq_last_time);
*deq_min_time = RTE_MIN(*deq_min_time, deq_last_time);
*deq_tot_time += deq_last_time;
}
return i;
}
#endif
static int
offload_latency_empty_q_test(struct active_device *ad,
struct test_op_params *op_params)
{
#ifndef RTE_BBDEV_OFFLOAD_COST
RTE_SET_USED(ad);
RTE_SET_USED(op_params);
printf("Offload latency empty dequeue test is disabled.\n");
printf("Set RTE_BBDEV_OFFLOAD_COST to 'y' to turn the test on.\n");
return TEST_SKIPPED;
#else
int iter;
uint64_t deq_tot_time, deq_min_time, deq_max_time;
uint16_t burst_sz = op_params->burst_sz;
const uint16_t num_to_process = op_params->num_to_process;
const enum rte_bbdev_op_type op_type = test_vector.op_type;
const uint16_t queue_id = ad->queue_ids[0];
struct rte_bbdev_info info;
const char *op_type_str;
deq_tot_time = deq_max_time = 0;
deq_min_time = UINT64_MAX;
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
"BURST_SIZE should be <= %u", MAX_BURST);
rte_bbdev_info_get(ad->dev_id, &info);
op_type_str = rte_bbdev_op_type_str(op_type);
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
printf(
"Offload latency empty dequeue test: dev: %s, burst size: %u, num ops: %u, op type: %s\n",
info.dev_name, burst_sz, num_to_process, op_type_str);
if (op_type == RTE_BBDEV_OP_TURBO_DEC)
iter = offload_latency_empty_q_test_dec(ad->dev_id, queue_id,
num_to_process, burst_sz, &deq_tot_time,
&deq_min_time, &deq_max_time);
else
iter = offload_latency_empty_q_test_enc(ad->dev_id, queue_id,
num_to_process, burst_sz, &deq_tot_time,
&deq_min_time, &deq_max_time);
if (iter <= 0)
return TEST_FAILED;
printf("\tempty deq offload\n"
"\t\tavg. latency: %lg cycles, %lg us\n"
"\t\tmin. latency: %lg cycles, %lg us\n"
"\t\tmax. latency: %lg cycles, %lg us\n",
(double)deq_tot_time / (double)iter,
(double)(deq_tot_time * 1000000) / (double)iter /
(double)rte_get_tsc_hz(), (double)deq_min_time,
(double)(deq_min_time * 1000000) / rte_get_tsc_hz(),
(double)deq_max_time, (double)(deq_max_time * 1000000) /
rte_get_tsc_hz());
return TEST_SUCCESS;
#endif
}
static int
throughput_tc(void)
{
return run_test_case(throughput_test);
}
static int
offload_cost_tc(void)
{
return run_test_case(offload_cost_test);
}
static int
offload_latency_empty_q_tc(void)
{
return run_test_case(offload_latency_empty_q_test);
}
static int
latency_tc(void)
{
return run_test_case(latency_test);
}
static int
interrupt_tc(void)
{
return run_test_case(throughput_test);
}
static struct unit_test_suite bbdev_throughput_testsuite = {
.suite_name = "BBdev Throughput Tests",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, throughput_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static struct unit_test_suite bbdev_validation_testsuite = {
.suite_name = "BBdev Validation Tests",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, latency_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static struct unit_test_suite bbdev_latency_testsuite = {
.suite_name = "BBdev Latency Tests",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, latency_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static struct unit_test_suite bbdev_offload_cost_testsuite = {
.suite_name = "BBdev Offload Cost Tests",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, offload_cost_tc),
TEST_CASE_ST(ut_setup, ut_teardown, offload_latency_empty_q_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static struct unit_test_suite bbdev_interrupt_testsuite = {
.suite_name = "BBdev Interrupt Tests",
.setup = interrupt_testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, interrupt_tc),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
REGISTER_TEST_COMMAND(throughput, bbdev_throughput_testsuite);
REGISTER_TEST_COMMAND(validation, bbdev_validation_testsuite);
REGISTER_TEST_COMMAND(latency, bbdev_latency_testsuite);
REGISTER_TEST_COMMAND(offload, bbdev_offload_cost_testsuite);
REGISTER_TEST_COMMAND(interrupt, bbdev_interrupt_testsuite);