f-stack/freebsd/arm/arm/pmap-v4.c

4875 lines
123 KiB
C

/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
/*-
* Copyright 2004 Olivier Houchard.
* Copyright 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Steve C. Woodford for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2002-2003 Wasabi Systems, Inc.
* Copyright (c) 2001 Richard Earnshaw
* Copyright (c) 2001-2002 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
*
* RiscBSD kernel project
*
* pmap.c
*
* Machine dependent vm stuff
*
* Created : 20/09/94
*/
/*
* Special compilation symbols
* PMAP_DEBUG - Build in pmap_debug_level code
*
* Note that pmap_mapdev() and pmap_unmapdev() are implemented in arm/devmap.c
*/
/* Include header files */
#include "opt_vm.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/vmmeter.h>
#include <sys/mman.h>
#include <sys/rwlock.h>
#include <sys/smp.h>
#include <sys/sched.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/uma.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_phys.h>
#include <vm/vm_extern.h>
#include <machine/md_var.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/pcb.h>
#ifdef PMAP_DEBUG
#define PDEBUG(_lev_,_stat_) \
if (pmap_debug_level >= (_lev_)) \
((_stat_))
#define dprintf printf
int pmap_debug_level = 0;
#define PMAP_INLINE
#else /* PMAP_DEBUG */
#define PDEBUG(_lev_,_stat_) /* Nothing */
#define dprintf(x, arg...)
#define PMAP_INLINE __inline
#endif /* PMAP_DEBUG */
extern struct pv_addr systempage;
extern int last_fault_code;
/*
* Internal function prototypes
*/
static void pmap_free_pv_entry (pv_entry_t);
static pv_entry_t pmap_get_pv_entry(void);
static int pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t,
vm_prot_t, u_int);
static vm_paddr_t pmap_extract_locked(pmap_t pmap, vm_offset_t va);
static void pmap_fix_cache(struct vm_page *, pmap_t, vm_offset_t);
static void pmap_alloc_l1(pmap_t);
static void pmap_free_l1(pmap_t);
static int pmap_clearbit(struct vm_page *, u_int);
static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
static vm_offset_t kernel_pt_lookup(vm_paddr_t);
static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
vm_offset_t pmap_curmaxkvaddr;
vm_paddr_t kernel_l1pa;
vm_offset_t kernel_vm_end = 0;
vm_offset_t vm_max_kernel_address;
struct pmap kernel_pmap_store;
static pt_entry_t *csrc_pte, *cdst_pte;
static vm_offset_t csrcp, cdstp, qmap_addr;
static struct mtx cmtx, qmap_mtx;
static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
/*
* These routines are called when the CPU type is identified to set up
* the PTE prototypes, cache modes, etc.
*
* The variables are always here, just in case LKMs need to reference
* them (though, they shouldn't).
*/
pt_entry_t pte_l1_s_cache_mode;
pt_entry_t pte_l1_s_cache_mode_pt;
pt_entry_t pte_l1_s_cache_mask;
pt_entry_t pte_l2_l_cache_mode;
pt_entry_t pte_l2_l_cache_mode_pt;
pt_entry_t pte_l2_l_cache_mask;
pt_entry_t pte_l2_s_cache_mode;
pt_entry_t pte_l2_s_cache_mode_pt;
pt_entry_t pte_l2_s_cache_mask;
pt_entry_t pte_l2_s_prot_u;
pt_entry_t pte_l2_s_prot_w;
pt_entry_t pte_l2_s_prot_mask;
pt_entry_t pte_l1_s_proto;
pt_entry_t pte_l1_c_proto;
pt_entry_t pte_l2_s_proto;
void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs,
int cnt);
void (*pmap_zero_page_func)(vm_paddr_t, int, int);
struct msgbuf *msgbufp = NULL;
/*
* Crashdump maps.
*/
static caddr_t crashdumpmap;
extern void bcopy_page(vm_offset_t, vm_offset_t);
extern void bzero_page(vm_offset_t);
extern vm_offset_t alloc_firstaddr;
char *_tmppt;
/*
* Metadata for L1 translation tables.
*/
struct l1_ttable {
/* Entry on the L1 Table list */
SLIST_ENTRY(l1_ttable) l1_link;
/* Entry on the L1 Least Recently Used list */
TAILQ_ENTRY(l1_ttable) l1_lru;
/* Track how many domains are allocated from this L1 */
volatile u_int l1_domain_use_count;
/*
* A free-list of domain numbers for this L1.
* We avoid using ffs() and a bitmap to track domains since ffs()
* is slow on ARM.
*/
u_int8_t l1_domain_first;
u_int8_t l1_domain_free[PMAP_DOMAINS];
/* Physical address of this L1 page table */
vm_paddr_t l1_physaddr;
/* KVA of this L1 page table */
pd_entry_t *l1_kva;
};
/*
* Convert a virtual address into its L1 table index. That is, the
* index used to locate the L2 descriptor table pointer in an L1 table.
* This is basically used to index l1->l1_kva[].
*
* Each L2 descriptor table represents 1MB of VA space.
*/
#define L1_IDX(va) (((vm_offset_t)(va)) >> L1_S_SHIFT)
/*
* L1 Page Tables are tracked using a Least Recently Used list.
* - New L1s are allocated from the HEAD.
* - Freed L1s are added to the TAIl.
* - Recently accessed L1s (where an 'access' is some change to one of
* the userland pmaps which owns this L1) are moved to the TAIL.
*/
static TAILQ_HEAD(, l1_ttable) l1_lru_list;
/*
* A list of all L1 tables
*/
static SLIST_HEAD(, l1_ttable) l1_list;
static struct mtx l1_lru_lock;
/*
* The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
*
* This is normally 16MB worth L2 page descriptors for any given pmap.
* Reference counts are maintained for L2 descriptors so they can be
* freed when empty.
*/
struct l2_dtable {
/* The number of L2 page descriptors allocated to this l2_dtable */
u_int l2_occupancy;
/* List of L2 page descriptors */
struct l2_bucket {
pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
vm_paddr_t l2b_phys; /* Physical address of same */
u_short l2b_l1idx; /* This L2 table's L1 index */
u_short l2b_occupancy; /* How many active descriptors */
} l2_bucket[L2_BUCKET_SIZE];
};
/* pmap_kenter_internal flags */
#define KENTER_CACHE 0x1
#define KENTER_USER 0x2
/*
* Given an L1 table index, calculate the corresponding l2_dtable index
* and bucket index within the l2_dtable.
*/
#define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
(L2_SIZE - 1))
#define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
/*
* Given a virtual address, this macro returns the
* virtual address required to drop into the next L2 bucket.
*/
#define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
/*
* We try to map the page tables write-through, if possible. However, not
* all CPUs have a write-through cache mode, so on those we have to sync
* the cache when we frob page tables.
*
* We try to evaluate this at compile time, if possible. However, it's
* not always possible to do that, hence this run-time var.
*/
int pmap_needs_pte_sync;
/*
* Macro to determine if a mapping might be resident in the
* instruction cache and/or TLB
*/
#define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
/*
* Macro to determine if a mapping might be resident in the
* data cache and/or TLB
*/
#define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
#ifndef PMAP_SHPGPERPROC
#define PMAP_SHPGPERPROC 200
#endif
#define pmap_is_current(pm) ((pm) == kernel_pmap || \
curproc->p_vmspace->vm_map.pmap == (pm))
static uma_zone_t pvzone = NULL;
uma_zone_t l2zone;
static uma_zone_t l2table_zone;
static vm_offset_t pmap_kernel_l2dtable_kva;
static vm_offset_t pmap_kernel_l2ptp_kva;
static vm_paddr_t pmap_kernel_l2ptp_phys;
static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
static struct rwlock pvh_global_lock;
void pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
#if ARM_MMU_XSCALE == 1
void pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
#endif
/*
* This list exists for the benefit of pmap_map_chunk(). It keeps track
* of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
* find them as necessary.
*
* Note that the data on this list MUST remain valid after initarm() returns,
* as pmap_bootstrap() uses it to contruct L2 table metadata.
*/
SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
static void
pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
{
int i;
l1->l1_kva = l1pt;
l1->l1_domain_use_count = 0;
l1->l1_domain_first = 0;
for (i = 0; i < PMAP_DOMAINS; i++)
l1->l1_domain_free[i] = i + 1;
/*
* Copy the kernel's L1 entries to each new L1.
*/
if (l1pt != kernel_pmap->pm_l1->l1_kva)
memcpy(l1pt, kernel_pmap->pm_l1->l1_kva, L1_TABLE_SIZE);
if ((l1->l1_physaddr = pmap_extract(kernel_pmap, (vm_offset_t)l1pt)) == 0)
panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
}
static vm_offset_t
kernel_pt_lookup(vm_paddr_t pa)
{
struct pv_addr *pv;
SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
if (pv->pv_pa == pa)
return (pv->pv_va);
}
return (0);
}
#if ARM_MMU_GENERIC != 0
void
pmap_pte_init_generic(void)
{
pte_l1_s_cache_mode = L1_S_B|L1_S_C;
pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
pte_l2_l_cache_mode = L2_B|L2_C;
pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
pte_l2_s_cache_mode = L2_B|L2_C;
pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
/*
* If we have a write-through cache, set B and C. If
* we have a write-back cache, then we assume setting
* only C will make those pages write-through.
*/
if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
pte_l2_l_cache_mode_pt = L2_B|L2_C;
pte_l2_s_cache_mode_pt = L2_B|L2_C;
} else {
pte_l1_s_cache_mode_pt = L1_S_C;
pte_l2_l_cache_mode_pt = L2_C;
pte_l2_s_cache_mode_pt = L2_C;
}
pte_l2_s_prot_u = L2_S_PROT_U_generic;
pte_l2_s_prot_w = L2_S_PROT_W_generic;
pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
pte_l1_s_proto = L1_S_PROTO_generic;
pte_l1_c_proto = L1_C_PROTO_generic;
pte_l2_s_proto = L2_S_PROTO_generic;
pmap_copy_page_func = pmap_copy_page_generic;
pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
pmap_zero_page_func = pmap_zero_page_generic;
}
#endif /* ARM_MMU_GENERIC != 0 */
#if ARM_MMU_XSCALE == 1
#if (ARM_NMMUS > 1) || defined (CPU_XSCALE_CORE3)
static u_int xscale_use_minidata;
#endif
void
pmap_pte_init_xscale(void)
{
uint32_t auxctl;
int write_through = 0;
pte_l1_s_cache_mode = L1_S_B|L1_S_C|L1_S_XSCALE_P;
pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
pte_l2_l_cache_mode = L2_B|L2_C;
pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
pte_l2_s_cache_mode = L2_B|L2_C;
pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
pte_l1_s_cache_mode_pt = L1_S_C;
pte_l2_l_cache_mode_pt = L2_C;
pte_l2_s_cache_mode_pt = L2_C;
#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
/*
* The XScale core has an enhanced mode where writes that
* miss the cache cause a cache line to be allocated. This
* is significantly faster than the traditional, write-through
* behavior of this case.
*/
pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
#ifdef XSCALE_CACHE_WRITE_THROUGH
/*
* Some versions of the XScale core have various bugs in
* their cache units, the work-around for which is to run
* the cache in write-through mode. Unfortunately, this
* has a major (negative) impact on performance. So, we
* go ahead and run fast-and-loose, in the hopes that we
* don't line up the planets in a way that will trip the
* bugs.
*
* However, we give you the option to be slow-but-correct.
*/
write_through = 1;
#elif defined(XSCALE_CACHE_WRITE_BACK)
/* force write back cache mode */
write_through = 0;
#elif defined(CPU_XSCALE_PXA2X0)
/*
* Intel PXA2[15]0 processors are known to have a bug in
* write-back cache on revision 4 and earlier (stepping
* A[01] and B[012]). Fixed for C0 and later.
*/
{
uint32_t id, type;
id = cpu_ident();
type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
if ((id & CPU_ID_REVISION_MASK) < 5) {
/* write through for stepping A0-1 and B0-2 */
write_through = 1;
}
}
}
#endif /* XSCALE_CACHE_WRITE_THROUGH */
if (write_through) {
pte_l1_s_cache_mode = L1_S_C;
pte_l2_l_cache_mode = L2_C;
pte_l2_s_cache_mode = L2_C;
}
#if (ARM_NMMUS > 1)
xscale_use_minidata = 1;
#endif
pte_l2_s_prot_u = L2_S_PROT_U_xscale;
pte_l2_s_prot_w = L2_S_PROT_W_xscale;
pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
pte_l1_s_proto = L1_S_PROTO_xscale;
pte_l1_c_proto = L1_C_PROTO_xscale;
pte_l2_s_proto = L2_S_PROTO_xscale;
#ifdef CPU_XSCALE_CORE3
pmap_copy_page_func = pmap_copy_page_generic;
pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
pmap_zero_page_func = pmap_zero_page_generic;
xscale_use_minidata = 0;
/* Make sure it is L2-cachable */
pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_T);
pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode &~ L1_S_XSCALE_P;
pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_T) ;
pte_l2_l_cache_mode_pt = pte_l1_s_cache_mode;
pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_T);
pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
#else
pmap_copy_page_func = pmap_copy_page_xscale;
pmap_copy_page_offs_func = pmap_copy_page_offs_xscale;
pmap_zero_page_func = pmap_zero_page_xscale;
#endif
/*
* Disable ECC protection of page table access, for now.
*/
__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
auxctl &= ~XSCALE_AUXCTL_P;
__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
}
/*
* xscale_setup_minidata:
*
* Set up the mini-data cache clean area. We require the
* caller to allocate the right amount of physically and
* virtually contiguous space.
*/
extern vm_offset_t xscale_minidata_clean_addr;
extern vm_size_t xscale_minidata_clean_size; /* already initialized */
void
xscale_setup_minidata(vm_offset_t l1pt, vm_offset_t va, vm_paddr_t pa)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t *pte;
vm_size_t size;
uint32_t auxctl;
xscale_minidata_clean_addr = va;
/* Round it to page size. */
size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
for (; size != 0;
va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
pte = (pt_entry_t *) kernel_pt_lookup(
pde[L1_IDX(va)] & L1_C_ADDR_MASK);
if (pte == NULL)
panic("xscale_setup_minidata: can't find L2 table for "
"VA 0x%08x", (u_int32_t) va);
pte[l2pte_index(va)] =
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
}
/*
* Configure the mini-data cache for write-back with
* read/write-allocate.
*
* NOTE: In order to reconfigure the mini-data cache, we must
* make sure it contains no valid data! In order to do that,
* we must issue a global data cache invalidate command!
*
* WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
* THIS IS VERY IMPORTANT!
*/
/* Invalidate data and mini-data. */
__asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
}
#endif
/*
* Allocate an L1 translation table for the specified pmap.
* This is called at pmap creation time.
*/
static void
pmap_alloc_l1(pmap_t pm)
{
struct l1_ttable *l1;
u_int8_t domain;
/*
* Remove the L1 at the head of the LRU list
*/
mtx_lock(&l1_lru_lock);
l1 = TAILQ_FIRST(&l1_lru_list);
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
/*
* Pick the first available domain number, and update
* the link to the next number.
*/
domain = l1->l1_domain_first;
l1->l1_domain_first = l1->l1_domain_free[domain];
/*
* If there are still free domain numbers in this L1,
* put it back on the TAIL of the LRU list.
*/
if (++l1->l1_domain_use_count < PMAP_DOMAINS)
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
mtx_unlock(&l1_lru_lock);
/*
* Fix up the relevant bits in the pmap structure
*/
pm->pm_l1 = l1;
pm->pm_domain = domain + 1;
}
/*
* Free an L1 translation table.
* This is called at pmap destruction time.
*/
static void
pmap_free_l1(pmap_t pm)
{
struct l1_ttable *l1 = pm->pm_l1;
mtx_lock(&l1_lru_lock);
/*
* If this L1 is currently on the LRU list, remove it.
*/
if (l1->l1_domain_use_count < PMAP_DOMAINS)
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
/*
* Free up the domain number which was allocated to the pmap
*/
l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
l1->l1_domain_first = pm->pm_domain - 1;
l1->l1_domain_use_count--;
/*
* The L1 now must have at least 1 free domain, so add
* it back to the LRU list. If the use count is zero,
* put it at the head of the list, otherwise it goes
* to the tail.
*/
if (l1->l1_domain_use_count == 0) {
TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
} else
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
mtx_unlock(&l1_lru_lock);
}
/*
* Returns a pointer to the L2 bucket associated with the specified pmap
* and VA, or NULL if no L2 bucket exists for the address.
*/
static PMAP_INLINE struct l2_bucket *
pmap_get_l2_bucket(pmap_t pm, vm_offset_t va)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
u_short l1idx;
l1idx = L1_IDX(va);
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
(l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
return (NULL);
return (l2b);
}
/*
* Returns a pointer to the L2 bucket associated with the specified pmap
* and VA.
*
* If no L2 bucket exists, perform the necessary allocations to put an L2
* bucket/page table in place.
*
* Note that if a new L2 bucket/page was allocated, the caller *must*
* increment the bucket occupancy counter appropriately *before*
* releasing the pmap's lock to ensure no other thread or cpu deallocates
* the bucket/page in the meantime.
*/
static struct l2_bucket *
pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
u_short l1idx;
l1idx = L1_IDX(va);
PMAP_ASSERT_LOCKED(pm);
rw_assert(&pvh_global_lock, RA_WLOCKED);
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
/*
* No mapping at this address, as there is
* no entry in the L1 table.
* Need to allocate a new l2_dtable.
*/
PMAP_UNLOCK(pm);
rw_wunlock(&pvh_global_lock);
if ((l2 = uma_zalloc(l2table_zone, M_NOWAIT)) == NULL) {
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
return (NULL);
}
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
if (pm->pm_l2[L2_IDX(l1idx)] != NULL) {
/*
* Someone already allocated the l2_dtable while
* we were doing the same.
*/
uma_zfree(l2table_zone, l2);
l2 = pm->pm_l2[L2_IDX(l1idx)];
} else {
bzero(l2, sizeof(*l2));
/*
* Link it into the parent pmap
*/
pm->pm_l2[L2_IDX(l1idx)] = l2;
}
}
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
/*
* Fetch pointer to the L2 page table associated with the address.
*/
if (l2b->l2b_kva == NULL) {
pt_entry_t *ptep;
/*
* No L2 page table has been allocated. Chances are, this
* is because we just allocated the l2_dtable, above.
*/
l2->l2_occupancy++;
PMAP_UNLOCK(pm);
rw_wunlock(&pvh_global_lock);
ptep = uma_zalloc(l2zone, M_NOWAIT);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
if (l2b->l2b_kva != NULL) {
/* We lost the race. */
l2->l2_occupancy--;
uma_zfree(l2zone, ptep);
return (l2b);
}
l2b->l2b_phys = vtophys(ptep);
if (ptep == NULL) {
/*
* Oops, no more L2 page tables available at this
* time. We may need to deallocate the l2_dtable
* if we allocated a new one above.
*/
l2->l2_occupancy--;
if (l2->l2_occupancy == 0) {
pm->pm_l2[L2_IDX(l1idx)] = NULL;
uma_zfree(l2table_zone, l2);
}
return (NULL);
}
l2b->l2b_kva = ptep;
l2b->l2b_l1idx = l1idx;
}
return (l2b);
}
static PMAP_INLINE void
#ifndef PMAP_INCLUDE_PTE_SYNC
pmap_free_l2_ptp(pt_entry_t *l2)
#else
pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2)
#endif
{
#ifdef PMAP_INCLUDE_PTE_SYNC
/*
* Note: With a write-back cache, we may need to sync this
* L2 table before re-using it.
* This is because it may have belonged to a non-current
* pmap, in which case the cache syncs would have been
* skipped when the pages were being unmapped. If the
* L2 table were then to be immediately re-allocated to
* the *current* pmap, it may well contain stale mappings
* which have not yet been cleared by a cache write-back
* and so would still be visible to the mmu.
*/
if (need_sync)
PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
#endif
uma_zfree(l2zone, l2);
}
/*
* One or more mappings in the specified L2 descriptor table have just been
* invalidated.
*
* Garbage collect the metadata and descriptor table itself if necessary.
*
* The pmap lock must be acquired when this is called (not necessary
* for the kernel pmap).
*/
static void
pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
{
struct l2_dtable *l2;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep;
u_short l1idx;
/*
* Update the bucket's reference count according to how many
* PTEs the caller has just invalidated.
*/
l2b->l2b_occupancy -= count;
/*
* Note:
*
* Level 2 page tables allocated to the kernel pmap are never freed
* as that would require checking all Level 1 page tables and
* removing any references to the Level 2 page table. See also the
* comment elsewhere about never freeing bootstrap L2 descriptors.
*
* We make do with just invalidating the mapping in the L2 table.
*
* This isn't really a big deal in practice and, in fact, leads
* to a performance win over time as we don't need to continually
* alloc/free.
*/
if (l2b->l2b_occupancy > 0 || pm == kernel_pmap)
return;
/*
* There are no more valid mappings in this level 2 page table.
* Go ahead and NULL-out the pointer in the bucket, then
* free the page table.
*/
l1idx = l2b->l2b_l1idx;
ptep = l2b->l2b_kva;
l2b->l2b_kva = NULL;
pl1pd = &pm->pm_l1->l1_kva[l1idx];
/*
* If the L1 slot matches the pmap's domain
* number, then invalidate it.
*/
l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
*pl1pd = 0;
PTE_SYNC(pl1pd);
}
/*
* Release the L2 descriptor table back to the pool cache.
*/
#ifndef PMAP_INCLUDE_PTE_SYNC
pmap_free_l2_ptp(ptep);
#else
pmap_free_l2_ptp(!pmap_is_current(pm), ptep);
#endif
/*
* Update the reference count in the associated l2_dtable
*/
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (--l2->l2_occupancy > 0)
return;
/*
* There are no more valid mappings in any of the Level 1
* slots managed by this l2_dtable. Go ahead and NULL-out
* the pointer in the parent pmap and free the l2_dtable.
*/
pm->pm_l2[L2_IDX(l1idx)] = NULL;
uma_zfree(l2table_zone, l2);
}
/*
* Pool cache constructors for L2 descriptor tables, metadata and pmap
* structures.
*/
static int
pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
{
#ifndef PMAP_INCLUDE_PTE_SYNC
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
/*
* The mappings for these page tables were initially made using
* pmap_kenter() by the pool subsystem. Therefore, the cache-
* mode will not be right for page table mappings. To avoid
* polluting the pmap_kenter() code with a special case for
* page tables, we simply fix up the cache-mode here if it's not
* correct.
*/
l2b = pmap_get_l2_bucket(kernel_pmap, va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
/*
* Page tables must have the cache-mode set to
* Write-Thru.
*/
*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
PTE_SYNC(ptep);
cpu_tlb_flushD_SE(va);
cpu_cpwait();
}
#endif
memset(mem, 0, L2_TABLE_SIZE_REAL);
PTE_SYNC_RANGE(mem, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
return (0);
}
/*
* A bunch of routines to conditionally flush the caches/TLB depending
* on whether the specified pmap actually needs to be flushed at any
* given time.
*/
static PMAP_INLINE void
pmap_tlb_flushID_SE(pmap_t pm, vm_offset_t va)
{
if (pmap_is_current(pm))
cpu_tlb_flushID_SE(va);
}
static PMAP_INLINE void
pmap_tlb_flushD_SE(pmap_t pm, vm_offset_t va)
{
if (pmap_is_current(pm))
cpu_tlb_flushD_SE(va);
}
static PMAP_INLINE void
pmap_tlb_flushID(pmap_t pm)
{
if (pmap_is_current(pm))
cpu_tlb_flushID();
}
static PMAP_INLINE void
pmap_tlb_flushD(pmap_t pm)
{
if (pmap_is_current(pm))
cpu_tlb_flushD();
}
static int
pmap_has_valid_mapping(pmap_t pm, vm_offset_t va)
{
pd_entry_t *pde;
pt_entry_t *ptep;
if (pmap_get_pde_pte(pm, va, &pde, &ptep) &&
ptep && ((*ptep & L2_TYPE_MASK) != L2_TYPE_INV))
return (1);
return (0);
}
static PMAP_INLINE void
pmap_idcache_wbinv_range(pmap_t pm, vm_offset_t va, vm_size_t len)
{
vm_size_t rest;
CTR4(KTR_PMAP, "pmap_dcache_wbinv_range: pmap %p is_kernel %d va 0x%08x"
" len 0x%x ", pm, pm == kernel_pmap, va, len);
if (pmap_is_current(pm) || pm == kernel_pmap) {
rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
while (len > 0) {
if (pmap_has_valid_mapping(pm, va)) {
cpu_idcache_wbinv_range(va, rest);
cpu_l2cache_wbinv_range(va, rest);
}
len -= rest;
va += rest;
rest = MIN(PAGE_SIZE, len);
}
}
}
static PMAP_INLINE void
pmap_dcache_wb_range(pmap_t pm, vm_offset_t va, vm_size_t len, boolean_t do_inv,
boolean_t rd_only)
{
vm_size_t rest;
CTR4(KTR_PMAP, "pmap_dcache_wb_range: pmap %p is_kernel %d va 0x%08x "
"len 0x%x ", pm, pm == kernel_pmap, va, len);
CTR2(KTR_PMAP, " do_inv %d rd_only %d", do_inv, rd_only);
if (pmap_is_current(pm)) {
rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
while (len > 0) {
if (pmap_has_valid_mapping(pm, va)) {
if (do_inv && rd_only) {
cpu_dcache_inv_range(va, rest);
cpu_l2cache_inv_range(va, rest);
} else if (do_inv) {
cpu_dcache_wbinv_range(va, rest);
cpu_l2cache_wbinv_range(va, rest);
} else if (!rd_only) {
cpu_dcache_wb_range(va, rest);
cpu_l2cache_wb_range(va, rest);
}
}
len -= rest;
va += rest;
rest = MIN(PAGE_SIZE, len);
}
}
}
static PMAP_INLINE void
pmap_idcache_wbinv_all(pmap_t pm)
{
if (pmap_is_current(pm)) {
cpu_idcache_wbinv_all();
cpu_l2cache_wbinv_all();
}
}
#ifdef notyet
static PMAP_INLINE void
pmap_dcache_wbinv_all(pmap_t pm)
{
if (pmap_is_current(pm)) {
cpu_dcache_wbinv_all();
cpu_l2cache_wbinv_all();
}
}
#endif
/*
* PTE_SYNC_CURRENT:
*
* Make sure the pte is written out to RAM.
* We need to do this for one of two cases:
* - We're dealing with the kernel pmap
* - There is no pmap active in the cache/tlb.
* - The specified pmap is 'active' in the cache/tlb.
*/
#ifdef PMAP_INCLUDE_PTE_SYNC
#define PTE_SYNC_CURRENT(pm, ptep) \
do { \
if (PMAP_NEEDS_PTE_SYNC && \
pmap_is_current(pm)) \
PTE_SYNC(ptep); \
} while (/*CONSTCOND*/0)
#else
#define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
#endif
/*
* cacheable == -1 means we must make the entry uncacheable, 1 means
* cacheable;
*/
static __inline void
pmap_set_cache_entry(pv_entry_t pv, pmap_t pm, vm_offset_t va, int cacheable)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
if (cacheable == 1) {
pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
if (l2pte_valid(pte)) {
if (PV_BEEN_EXECD(pv->pv_flags)) {
pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
} else if (PV_BEEN_REFD(pv->pv_flags)) {
pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
}
}
} else {
pte = *ptep &~ L2_S_CACHE_MASK;
if ((va != pv->pv_va || pm != pv->pv_pmap) &&
l2pte_valid(pte)) {
if (PV_BEEN_EXECD(pv->pv_flags)) {
pmap_idcache_wbinv_range(pv->pv_pmap,
pv->pv_va, PAGE_SIZE);
pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
} else if (PV_BEEN_REFD(pv->pv_flags)) {
pmap_dcache_wb_range(pv->pv_pmap,
pv->pv_va, PAGE_SIZE, TRUE,
(pv->pv_flags & PVF_WRITE) == 0);
pmap_tlb_flushD_SE(pv->pv_pmap,
pv->pv_va);
}
}
}
*ptep = pte;
PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
}
static void
pmap_fix_cache(struct vm_page *pg, pmap_t pm, vm_offset_t va)
{
int pmwc = 0;
int writable = 0, kwritable = 0, uwritable = 0;
int entries = 0, kentries = 0, uentries = 0;
struct pv_entry *pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
/* the cache gets written back/invalidated on context switch.
* therefore, if a user page shares an entry in the same page or
* with the kernel map and at least one is writable, then the
* cache entry must be set write-through.
*/
TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
/* generate a count of the pv_entry uses */
if (pv->pv_flags & PVF_WRITE) {
if (pv->pv_pmap == kernel_pmap)
kwritable++;
else if (pv->pv_pmap == pm)
uwritable++;
writable++;
}
if (pv->pv_pmap == kernel_pmap)
kentries++;
else {
if (pv->pv_pmap == pm)
uentries++;
entries++;
}
}
/*
* check if the user duplicate mapping has
* been removed.
*/
if ((pm != kernel_pmap) && (((uentries > 1) && uwritable) ||
(uwritable > 1)))
pmwc = 1;
TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
/* check for user uncachable conditions - order is important */
if (pm != kernel_pmap &&
(pv->pv_pmap == pm || pv->pv_pmap == kernel_pmap)) {
if ((uentries > 1 && uwritable) || uwritable > 1) {
/* user duplicate mapping */
if (pv->pv_pmap != kernel_pmap)
pv->pv_flags |= PVF_MWC;
if (!(pv->pv_flags & PVF_NC)) {
pv->pv_flags |= PVF_NC;
pmap_set_cache_entry(pv, pm, va, -1);
}
continue;
} else /* no longer a duplicate user */
pv->pv_flags &= ~PVF_MWC;
}
/*
* check for kernel uncachable conditions
* kernel writable or kernel readable with writable user entry
*/
if ((kwritable && (entries || kentries > 1)) ||
(kwritable > 1) ||
((kwritable != writable) && kentries &&
(pv->pv_pmap == kernel_pmap ||
(pv->pv_flags & PVF_WRITE) ||
(pv->pv_flags & PVF_MWC)))) {
if (!(pv->pv_flags & PVF_NC)) {
pv->pv_flags |= PVF_NC;
pmap_set_cache_entry(pv, pm, va, -1);
}
continue;
}
/* kernel and user are cachable */
if ((pm == kernel_pmap) && !(pv->pv_flags & PVF_MWC) &&
(pv->pv_flags & PVF_NC)) {
pv->pv_flags &= ~PVF_NC;
if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
pmap_set_cache_entry(pv, pm, va, 1);
continue;
}
/* user is no longer sharable and writable */
if (pm != kernel_pmap &&
(pv->pv_pmap == pm || pv->pv_pmap == kernel_pmap) &&
!pmwc && (pv->pv_flags & PVF_NC)) {
pv->pv_flags &= ~(PVF_NC | PVF_MWC);
if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
pmap_set_cache_entry(pv, pm, va, 1);
}
}
if ((kwritable == 0) && (writable == 0)) {
pg->md.pvh_attrs &= ~PVF_MOD;
vm_page_aflag_clear(pg, PGA_WRITEABLE);
return;
}
}
/*
* Modify pte bits for all ptes corresponding to the given physical address.
* We use `maskbits' rather than `clearbits' because we're always passing
* constants and the latter would require an extra inversion at run-time.
*/
static int
pmap_clearbit(struct vm_page *pg, u_int maskbits)
{
struct l2_bucket *l2b;
struct pv_entry *pv;
pt_entry_t *ptep, npte, opte;
pmap_t pm;
vm_offset_t va;
u_int oflags;
int count = 0;
rw_wlock(&pvh_global_lock);
if (maskbits & PVF_WRITE)
maskbits |= PVF_MOD;
/*
* Clear saved attributes (modify, reference)
*/
pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
if (TAILQ_EMPTY(&pg->md.pv_list)) {
rw_wunlock(&pvh_global_lock);
return (0);
}
/*
* Loop over all current mappings setting/clearing as appropos
*/
TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
va = pv->pv_va;
pm = pv->pv_pmap;
oflags = pv->pv_flags;
if (!(oflags & maskbits)) {
if ((maskbits & PVF_WRITE) && (pv->pv_flags & PVF_NC)) {
if (pg->md.pv_memattr !=
VM_MEMATTR_UNCACHEABLE) {
PMAP_LOCK(pm);
l2b = pmap_get_l2_bucket(pm, va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
*ptep |= pte_l2_s_cache_mode;
PTE_SYNC(ptep);
PMAP_UNLOCK(pm);
}
pv->pv_flags &= ~(PVF_NC | PVF_MWC);
}
continue;
}
pv->pv_flags &= ~maskbits;
PMAP_LOCK(pm);
l2b = pmap_get_l2_bucket(pm, va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
npte = opte = *ptep;
if (maskbits & (PVF_WRITE|PVF_MOD)) {
if ((pv->pv_flags & PVF_NC)) {
/*
* Entry is not cacheable:
*
* Don't turn caching on again if this is a
* modified emulation. This would be
* inconsistent with the settings created by
* pmap_fix_cache(). Otherwise, it's safe
* to re-enable caching.
*
* There's no need to call pmap_fix_cache()
* here: all pages are losing their write
* permission.
*/
if (maskbits & PVF_WRITE) {
if (pg->md.pv_memattr !=
VM_MEMATTR_UNCACHEABLE)
npte |= pte_l2_s_cache_mode;
pv->pv_flags &= ~(PVF_NC | PVF_MWC);
}
} else
if (opte & L2_S_PROT_W) {
vm_page_dirty(pg);
/*
* Entry is writable/cacheable: check if pmap
* is current if it is flush it, otherwise it
* won't be in the cache
*/
if (PV_BEEN_EXECD(oflags))
pmap_idcache_wbinv_range(pm, pv->pv_va,
PAGE_SIZE);
else
if (PV_BEEN_REFD(oflags))
pmap_dcache_wb_range(pm, pv->pv_va,
PAGE_SIZE,
(maskbits & PVF_REF) ? TRUE : FALSE,
FALSE);
}
/* make the pte read only */
npte &= ~L2_S_PROT_W;
}
if (maskbits & PVF_REF) {
if ((pv->pv_flags & PVF_NC) == 0 &&
(maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
/*
* Check npte here; we may have already
* done the wbinv above, and the validity
* of the PTE is the same for opte and
* npte.
*/
if (npte & L2_S_PROT_W) {
if (PV_BEEN_EXECD(oflags))
pmap_idcache_wbinv_range(pm,
pv->pv_va, PAGE_SIZE);
else
if (PV_BEEN_REFD(oflags))
pmap_dcache_wb_range(pm,
pv->pv_va, PAGE_SIZE,
TRUE, FALSE);
} else
if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
/* XXXJRT need idcache_inv_range */
if (PV_BEEN_EXECD(oflags))
pmap_idcache_wbinv_range(pm,
pv->pv_va, PAGE_SIZE);
else
if (PV_BEEN_REFD(oflags))
pmap_dcache_wb_range(pm,
pv->pv_va, PAGE_SIZE,
TRUE, TRUE);
}
}
/*
* Make the PTE invalid so that we will take a
* page fault the next time the mapping is
* referenced.
*/
npte &= ~L2_TYPE_MASK;
npte |= L2_TYPE_INV;
}
if (npte != opte) {
count++;
*ptep = npte;
PTE_SYNC(ptep);
/* Flush the TLB entry if a current pmap. */
if (PV_BEEN_EXECD(oflags))
pmap_tlb_flushID_SE(pm, pv->pv_va);
else
if (PV_BEEN_REFD(oflags))
pmap_tlb_flushD_SE(pm, pv->pv_va);
}
PMAP_UNLOCK(pm);
}
if (maskbits & PVF_WRITE)
vm_page_aflag_clear(pg, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
return (count);
}
/*
* main pv_entry manipulation functions:
* pmap_enter_pv: enter a mapping onto a vm_page list
* pmap_remove_pv: remove a mappiing from a vm_page list
*
* NOTE: pmap_enter_pv expects to lock the pvh itself
* pmap_remove_pv expects the caller to lock the pvh before calling
*/
/*
* pmap_enter_pv: enter a mapping onto a vm_page's PV list
*
* => caller should hold the proper lock on pvh_global_lock
* => caller should have pmap locked
* => we will (someday) gain the lock on the vm_page's PV list
* => caller should adjust ptp's wire_count before calling
* => caller should not adjust pmap's wire_count
*/
static void
pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
vm_offset_t va, u_int flags)
{
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_ASSERT_LOCKED(pm);
if (pg->md.pv_kva != 0) {
pve->pv_pmap = kernel_pmap;
pve->pv_va = pg->md.pv_kva;
pve->pv_flags = PVF_WRITE | PVF_UNMAN;
if (pm != kernel_pmap)
PMAP_LOCK(kernel_pmap);
TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
TAILQ_INSERT_HEAD(&kernel_pmap->pm_pvlist, pve, pv_plist);
if (pm != kernel_pmap)
PMAP_UNLOCK(kernel_pmap);
pg->md.pv_kva = 0;
if ((pve = pmap_get_pv_entry()) == NULL)
panic("pmap_kenter_pv: no pv entries");
}
pve->pv_pmap = pm;
pve->pv_va = va;
pve->pv_flags = flags;
TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist);
pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
if (pve->pv_flags & PVF_WIRED)
++pm->pm_stats.wired_count;
vm_page_aflag_set(pg, PGA_REFERENCED);
}
/*
*
* pmap_find_pv: Find a pv entry
*
* => caller should hold lock on vm_page
*/
static PMAP_INLINE struct pv_entry *
pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
{
struct pv_entry *pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list)
if (pm == pv->pv_pmap && va == pv->pv_va)
break;
return (pv);
}
/*
* vector_page_setprot:
*
* Manipulate the protection of the vector page.
*/
void
vector_page_setprot(int prot)
{
struct l2_bucket *l2b;
pt_entry_t *ptep;
l2b = pmap_get_l2_bucket(kernel_pmap, vector_page);
ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
PTE_SYNC(ptep);
cpu_tlb_flushD_SE(vector_page);
cpu_cpwait();
}
/*
* pmap_remove_pv: try to remove a mapping from a pv_list
*
* => caller should hold proper lock on pmap_main_lock
* => pmap should be locked
* => caller should hold lock on vm_page [so that attrs can be adjusted]
* => caller should adjust ptp's wire_count and free PTP if needed
* => caller should NOT adjust pmap's wire_count
* => we return the removed pve
*/
static void
pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve)
{
struct pv_entry *pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_ASSERT_LOCKED(pm);
TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list);
TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist);
if (pve->pv_flags & PVF_WIRED)
--pm->pm_stats.wired_count;
if (pg->md.pvh_attrs & PVF_MOD)
vm_page_dirty(pg);
if (TAILQ_FIRST(&pg->md.pv_list) == NULL)
pg->md.pvh_attrs &= ~PVF_REF;
else
vm_page_aflag_set(pg, PGA_REFERENCED);
if ((pve->pv_flags & PVF_NC) && ((pm == kernel_pmap) ||
(pve->pv_flags & PVF_WRITE) || !(pve->pv_flags & PVF_MWC)))
pmap_fix_cache(pg, pm, 0);
else if (pve->pv_flags & PVF_WRITE) {
TAILQ_FOREACH(pve, &pg->md.pv_list, pv_list)
if (pve->pv_flags & PVF_WRITE)
break;
if (!pve) {
pg->md.pvh_attrs &= ~PVF_MOD;
vm_page_aflag_clear(pg, PGA_WRITEABLE);
}
}
pv = TAILQ_FIRST(&pg->md.pv_list);
if (pv != NULL && (pv->pv_flags & PVF_UNMAN) &&
TAILQ_NEXT(pv, pv_list) == NULL) {
pm = kernel_pmap;
pg->md.pv_kva = pv->pv_va;
/* a recursive pmap_nuke_pv */
TAILQ_REMOVE(&pg->md.pv_list, pv, pv_list);
TAILQ_REMOVE(&pm->pm_pvlist, pv, pv_plist);
if (pv->pv_flags & PVF_WIRED)
--pm->pm_stats.wired_count;
pg->md.pvh_attrs &= ~PVF_REF;
pg->md.pvh_attrs &= ~PVF_MOD;
vm_page_aflag_clear(pg, PGA_WRITEABLE);
pmap_free_pv_entry(pv);
}
}
static struct pv_entry *
pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
{
struct pv_entry *pve;
rw_assert(&pvh_global_lock, RA_WLOCKED);
pve = TAILQ_FIRST(&pg->md.pv_list);
while (pve) {
if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
pmap_nuke_pv(pg, pm, pve);
break;
}
pve = TAILQ_NEXT(pve, pv_list);
}
if (pve == NULL && pg->md.pv_kva == va)
pg->md.pv_kva = 0;
return(pve); /* return removed pve */
}
/*
*
* pmap_modify_pv: Update pv flags
*
* => caller should hold lock on vm_page [so that attrs can be adjusted]
* => caller should NOT adjust pmap's wire_count
* => we return the old flags
*
* Modify a physical-virtual mapping in the pv table
*/
static u_int
pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va,
u_int clr_mask, u_int set_mask)
{
struct pv_entry *npv;
u_int flags, oflags;
PMAP_ASSERT_LOCKED(pm);
rw_assert(&pvh_global_lock, RA_WLOCKED);
if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
return (0);
/*
* There is at least one VA mapping this page.
*/
if (clr_mask & (PVF_REF | PVF_MOD))
pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
oflags = npv->pv_flags;
npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
if ((flags ^ oflags) & PVF_WIRED) {
if (flags & PVF_WIRED)
++pm->pm_stats.wired_count;
else
--pm->pm_stats.wired_count;
}
if ((flags ^ oflags) & PVF_WRITE)
pmap_fix_cache(pg, pm, 0);
return (oflags);
}
/* Function to set the debug level of the pmap code */
#ifdef PMAP_DEBUG
void
pmap_debug(int level)
{
pmap_debug_level = level;
dprintf("pmap_debug: level=%d\n", pmap_debug_level);
}
#endif /* PMAP_DEBUG */
void
pmap_pinit0(struct pmap *pmap)
{
PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
bcopy(kernel_pmap, pmap, sizeof(*pmap));
bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx));
PMAP_LOCK_INIT(pmap);
}
/*
* Initialize a vm_page's machine-dependent fields.
*/
void
pmap_page_init(vm_page_t m)
{
TAILQ_INIT(&m->md.pv_list);
m->md.pv_memattr = VM_MEMATTR_DEFAULT;
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
*/
void
pmap_init(void)
{
int shpgperproc = PMAP_SHPGPERPROC;
l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable), NULL,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
/*
* Initialize the PV entry allocator.
*/
pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
uma_zone_reserve_kva(pvzone, pv_entry_max);
pv_entry_high_water = 9 * (pv_entry_max / 10);
/*
* Now it is safe to enable pv_table recording.
*/
PDEBUG(1, printf("pmap_init: done!\n"));
}
int
pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep, pte;
vm_paddr_t pa;
u_int l1idx;
int rv = 0;
l1idx = L1_IDX(va);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
/*
* If there is no l2_dtable for this address, then the process
* has no business accessing it.
*
* Note: This will catch userland processes trying to access
* kernel addresses.
*/
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL)
goto out;
/*
* Likewise if there is no L2 descriptor table
*/
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
if (l2b->l2b_kva == NULL)
goto out;
/*
* Check the PTE itself.
*/
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
if (pte == 0)
goto out;
/*
* Catch a userland access to the vector page mapped at 0x0
*/
if (user && (pte & L2_S_PROT_U) == 0)
goto out;
if (va == vector_page)
goto out;
pa = l2pte_pa(pte);
if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
/*
* This looks like a good candidate for "page modified"
* emulation...
*/
struct pv_entry *pv;
struct vm_page *pg;
/* Extract the physical address of the page */
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
goto out;
}
/* Get the current flags for this page. */
pv = pmap_find_pv(pg, pm, va);
if (pv == NULL) {
goto out;
}
/*
* Do the flags say this page is writable? If not then it
* is a genuine write fault. If yes then the write fault is
* our fault as we did not reflect the write access in the
* PTE. Now we know a write has occurred we can correct this
* and also set the modified bit
*/
if ((pv->pv_flags & PVF_WRITE) == 0) {
goto out;
}
pg->md.pvh_attrs |= PVF_REF | PVF_MOD;
vm_page_dirty(pg);
pv->pv_flags |= PVF_REF | PVF_MOD;
/*
* Re-enable write permissions for the page. No need to call
* pmap_fix_cache(), since this is just a
* modified-emulation fault, and the PVF_WRITE bit isn't
* changing. We've already set the cacheable bits based on
* the assumption that we can write to this page.
*/
*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
PTE_SYNC(ptep);
rv = 1;
} else
if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
/*
* This looks like a good candidate for "page referenced"
* emulation.
*/
struct pv_entry *pv;
struct vm_page *pg;
/* Extract the physical address of the page */
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
goto out;
/* Get the current flags for this page. */
pv = pmap_find_pv(pg, pm, va);
if (pv == NULL)
goto out;
pg->md.pvh_attrs |= PVF_REF;
pv->pv_flags |= PVF_REF;
*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
PTE_SYNC(ptep);
rv = 1;
}
/*
* We know there is a valid mapping here, so simply
* fix up the L1 if necessary.
*/
pl1pd = &pm->pm_l1->l1_kva[l1idx];
l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
if (*pl1pd != l1pd) {
*pl1pd = l1pd;
PTE_SYNC(pl1pd);
rv = 1;
}
#ifdef DEBUG
/*
* If 'rv == 0' at this point, it generally indicates that there is a
* stale TLB entry for the faulting address. This happens when two or
* more processes are sharing an L1. Since we don't flush the TLB on
* a context switch between such processes, we can take domain faults
* for mappings which exist at the same VA in both processes. EVEN IF
* WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
* example.
*
* This is extremely likely to happen if pmap_enter() updated the L1
* entry for a recently entered mapping. In this case, the TLB is
* flushed for the new mapping, but there may still be TLB entries for
* other mappings belonging to other processes in the 1MB range
* covered by the L1 entry.
*
* Since 'rv == 0', we know that the L1 already contains the correct
* value, so the fault must be due to a stale TLB entry.
*
* Since we always need to flush the TLB anyway in the case where we
* fixed up the L1, or frobbed the L2 PTE, we effectively deal with
* stale TLB entries dynamically.
*
* However, the above condition can ONLY happen if the current L1 is
* being shared. If it happens when the L1 is unshared, it indicates
* that other parts of the pmap are not doing their job WRT managing
* the TLB.
*/
if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
pm, (u_long)va, ftype);
printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
l2, l2b, ptep, pl1pd);
printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
pte, l1pd, last_fault_code);
#ifdef DDB
Debugger();
#endif
}
#endif
cpu_tlb_flushID_SE(va);
cpu_cpwait();
rv = 1;
out:
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pm);
return (rv);
}
void
pmap_postinit(void)
{
struct l2_bucket *l2b;
struct l1_ttable *l1;
pd_entry_t *pl1pt;
pt_entry_t *ptep, pte;
vm_offset_t va, eva;
u_int loop, needed;
needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
needed -= 1;
l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
for (loop = 0; loop < needed; loop++, l1++) {
/* Allocate a L1 page table */
va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
0xffffffff, L1_TABLE_SIZE, 0);
if (va == 0)
panic("Cannot allocate L1 KVM");
eva = va + L1_TABLE_SIZE;
pl1pt = (pd_entry_t *)va;
while (va < eva) {
l2b = pmap_get_l2_bucket(kernel_pmap, va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
*ptep = pte;
PTE_SYNC(ptep);
cpu_tlb_flushD_SE(va);
va += PAGE_SIZE;
}
pmap_init_l1(l1, pl1pt);
}
#ifdef DEBUG
printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
needed);
#endif
}
/*
* This is used to stuff certain critical values into the PCB where they
* can be accessed quickly from cpu_switch() et al.
*/
void
pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
{
struct l2_bucket *l2b;
pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
(DOMAIN_CLIENT << (pm->pm_domain * 2));
if (vector_page < KERNBASE) {
pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
l2b = pmap_get_l2_bucket(pm, vector_page);
pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
} else
pcb->pcb_pl1vec = NULL;
}
void
pmap_activate(struct thread *td)
{
pmap_t pm;
struct pcb *pcb;
pm = vmspace_pmap(td->td_proc->p_vmspace);
pcb = td->td_pcb;
critical_enter();
pmap_set_pcb_pagedir(pm, pcb);
if (td == curthread) {
u_int cur_dacr, cur_ttb;
__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
cur_ttb &= ~(L1_TABLE_SIZE - 1);
if (cur_ttb == (u_int)pcb->pcb_pagedir &&
cur_dacr == pcb->pcb_dacr) {
/*
* No need to switch address spaces.
*/
critical_exit();
return;
}
/*
* We MUST, I repeat, MUST fix up the L1 entry corresponding
* to 'vector_page' in the incoming L1 table before switching
* to it otherwise subsequent interrupts/exceptions (including
* domain faults!) will jump into hyperspace.
*/
if (pcb->pcb_pl1vec) {
*pcb->pcb_pl1vec = pcb->pcb_l1vec;
/*
* Don't need to PTE_SYNC() at this point since
* cpu_setttb() is about to flush both the cache
* and the TLB.
*/
}
cpu_domains(pcb->pcb_dacr);
cpu_setttb(pcb->pcb_pagedir);
}
critical_exit();
}
static int
pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
{
pd_entry_t *pdep, pde;
pt_entry_t *ptep, pte;
vm_offset_t pa;
int rv = 0;
/*
* Make sure the descriptor itself has the correct cache mode
*/
pdep = &kl1[L1_IDX(va)];
pde = *pdep;
if (l1pte_section_p(pde)) {
if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
*pdep = (pde & ~L1_S_CACHE_MASK) |
pte_l1_s_cache_mode_pt;
PTE_SYNC(pdep);
cpu_dcache_wbinv_range((vm_offset_t)pdep,
sizeof(*pdep));
cpu_l2cache_wbinv_range((vm_offset_t)pdep,
sizeof(*pdep));
rv = 1;
}
} else {
pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
ptep = (pt_entry_t *)kernel_pt_lookup(pa);
if (ptep == NULL)
panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
ptep = &ptep[l2pte_index(va)];
pte = *ptep;
if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
*ptep = (pte & ~L2_S_CACHE_MASK) |
pte_l2_s_cache_mode_pt;
PTE_SYNC(ptep);
cpu_dcache_wbinv_range((vm_offset_t)ptep,
sizeof(*ptep));
cpu_l2cache_wbinv_range((vm_offset_t)ptep,
sizeof(*ptep));
rv = 1;
}
}
return (rv);
}
static void
pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap,
pt_entry_t **ptep)
{
vm_offset_t va = *availp;
struct l2_bucket *l2b;
if (ptep) {
l2b = pmap_get_l2_bucket(kernel_pmap, va);
if (l2b == NULL)
panic("pmap_alloc_specials: no l2b for 0x%x", va);
*ptep = &l2b->l2b_kva[l2pte_index(va)];
}
*vap = va;
*availp = va + (PAGE_SIZE * pages);
}
/*
* Bootstrap the system enough to run with virtual memory.
*
* On the arm this is called after mapping has already been enabled
* and just syncs the pmap module with what has already been done.
* [We can't call it easily with mapping off since the kernel is not
* mapped with PA == VA, hence we would have to relocate every address
* from the linked base (virtual) address "KERNBASE" to the actual
* (physical) address starting relative to 0]
*/
#define PMAP_STATIC_L2_SIZE 16
void
pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt)
{
static struct l1_ttable static_l1;
static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
struct l1_ttable *l1 = &static_l1;
struct l2_dtable *l2;
struct l2_bucket *l2b;
pd_entry_t pde;
pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
pt_entry_t *ptep;
pt_entry_t *qmap_pte;
vm_paddr_t pa;
vm_offset_t va;
vm_size_t size;
int l1idx, l2idx, l2next = 0;
PDEBUG(1, printf("firstaddr = %08x, lastaddr = %08x\n",
firstaddr, vm_max_kernel_address));
virtual_avail = firstaddr;
kernel_pmap->pm_l1 = l1;
kernel_l1pa = l1pt->pv_pa;
/*
* Scan the L1 translation table created by initarm() and create
* the required metadata for all valid mappings found in it.
*/
for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
pde = kernel_l1pt[l1idx];
/*
* We're only interested in Coarse mappings.
* pmap_extract() can deal with section mappings without
* recourse to checking L2 metadata.
*/
if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
continue;
/*
* Lookup the KVA of this L2 descriptor table
*/
pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
ptep = (pt_entry_t *)kernel_pt_lookup(pa);
if (ptep == NULL) {
panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
(u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
}
/*
* Fetch the associated L2 metadata structure.
* Allocate a new one if necessary.
*/
if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
if (l2next == PMAP_STATIC_L2_SIZE)
panic("pmap_bootstrap: out of static L2s");
kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 =
&static_l2[l2next++];
}
/*
* One more L1 slot tracked...
*/
l2->l2_occupancy++;
/*
* Fill in the details of the L2 descriptor in the
* appropriate bucket.
*/
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
l2b->l2b_kva = ptep;
l2b->l2b_phys = pa;
l2b->l2b_l1idx = l1idx;
/*
* Establish an initial occupancy count for this descriptor
*/
for (l2idx = 0;
l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
l2idx++) {
if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
l2b->l2b_occupancy++;
}
}
/*
* Make sure the descriptor itself has the correct cache mode.
* If not, fix it, but whine about the problem. Port-meisters
* should consider this a clue to fix up their initarm()
* function. :)
*/
if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
printf("pmap_bootstrap: WARNING! wrong cache mode for "
"L2 pte @ %p\n", ptep);
}
}
/*
* Ensure the primary (kernel) L1 has the correct cache mode for
* a page table. Bitch if it is not correctly set.
*/
for (va = (vm_offset_t)kernel_l1pt;
va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
if (pmap_set_pt_cache_mode(kernel_l1pt, va))
printf("pmap_bootstrap: WARNING! wrong cache mode for "
"primary L1 @ 0x%x\n", va);
}
cpu_dcache_wbinv_all();
cpu_l2cache_wbinv_all();
cpu_tlb_flushID();
cpu_cpwait();
PMAP_LOCK_INIT(kernel_pmap);
CPU_FILL(&kernel_pmap->pm_active);
kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
TAILQ_INIT(&kernel_pmap->pm_pvlist);
/*
* Initialize the global pv list lock.
*/
rw_init_flags(&pvh_global_lock, "pmap pv global", RW_RECURSE);
/*
* Reserve some special page table entries/VA space for temporary
* mapping of pages.
*/
pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
pmap_alloc_specials(&virtual_avail, 1, &qmap_addr, &qmap_pte);
pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)qmap_pte);
size = ((vm_max_kernel_address - pmap_curmaxkvaddr) + L1_S_OFFSET) /
L1_S_SIZE;
pmap_alloc_specials(&virtual_avail,
round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
&pmap_kernel_l2ptp_kva, NULL);
size = howmany(size, L2_BUCKET_SIZE);
pmap_alloc_specials(&virtual_avail,
round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
&pmap_kernel_l2dtable_kva, NULL);
pmap_alloc_specials(&virtual_avail,
1, (vm_offset_t*)&_tmppt, NULL);
pmap_alloc_specials(&virtual_avail,
MAXDUMPPGS, (vm_offset_t *)&crashdumpmap, NULL);
SLIST_INIT(&l1_list);
TAILQ_INIT(&l1_lru_list);
mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
pmap_init_l1(l1, kernel_l1pt);
cpu_dcache_wbinv_all();
cpu_l2cache_wbinv_all();
virtual_avail = round_page(virtual_avail);
virtual_end = vm_max_kernel_address;
kernel_vm_end = pmap_curmaxkvaddr;
mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF);
mtx_init(&qmap_mtx, "quick mapping mtx", NULL, MTX_DEF);
pmap_set_pcb_pagedir(kernel_pmap, thread0.td_pcb);
}
/***************************************************
* Pmap allocation/deallocation routines.
***************************************************/
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pmap)
{
struct pcb *pcb;
pmap_idcache_wbinv_all(pmap);
cpu_l2cache_wbinv_all();
pmap_tlb_flushID(pmap);
cpu_cpwait();
if (vector_page < KERNBASE) {
struct pcb *curpcb = PCPU_GET(curpcb);
pcb = thread0.td_pcb;
if (pmap_is_current(pmap)) {
/*
* Frob the L1 entry corresponding to the vector
* page so that it contains the kernel pmap's domain
* number. This will ensure pmap_remove() does not
* pull the current vector page out from under us.
*/
critical_enter();
*pcb->pcb_pl1vec = pcb->pcb_l1vec;
cpu_domains(pcb->pcb_dacr);
cpu_setttb(pcb->pcb_pagedir);
critical_exit();
}
pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
/*
* Make sure cpu_switch(), et al, DTRT. This is safe to do
* since this process has no remaining mappings of its own.
*/
curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
curpcb->pcb_l1vec = pcb->pcb_l1vec;
curpcb->pcb_dacr = pcb->pcb_dacr;
curpcb->pcb_pagedir = pcb->pcb_pagedir;
}
pmap_free_l1(pmap);
dprintf("pmap_release()\n");
}
/*
* Helper function for pmap_grow_l2_bucket()
*/
static __inline int
pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
{
struct l2_bucket *l2b;
pt_entry_t *ptep;
vm_paddr_t pa;
struct vm_page *pg;
pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
if (pg == NULL)
return (1);
pa = VM_PAGE_TO_PHYS(pg);
if (pap)
*pap = pa;
l2b = pmap_get_l2_bucket(kernel_pmap, va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
*ptep = L2_S_PROTO | pa | cache_mode |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
PTE_SYNC(ptep);
return (0);
}
/*
* This is the same as pmap_alloc_l2_bucket(), except that it is only
* used by pmap_growkernel().
*/
static __inline struct l2_bucket *
pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
struct l1_ttable *l1;
pd_entry_t *pl1pd;
u_short l1idx;
vm_offset_t nva;
l1idx = L1_IDX(va);
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
/*
* No mapping at this address, as there is
* no entry in the L1 table.
* Need to allocate a new l2_dtable.
*/
nva = pmap_kernel_l2dtable_kva;
if ((nva & PAGE_MASK) == 0) {
/*
* Need to allocate a backing page
*/
if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
return (NULL);
}
l2 = (struct l2_dtable *)nva;
nva += sizeof(struct l2_dtable);
if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva &
PAGE_MASK)) {
/*
* The new l2_dtable straddles a page boundary.
* Map in another page to cover it.
*/
if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
return (NULL);
}
pmap_kernel_l2dtable_kva = nva;
/*
* Link it into the parent pmap
*/
pm->pm_l2[L2_IDX(l1idx)] = l2;
memset(l2, 0, sizeof(*l2));
}
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
/*
* Fetch pointer to the L2 page table associated with the address.
*/
if (l2b->l2b_kva == NULL) {
pt_entry_t *ptep;
/*
* No L2 page table has been allocated. Chances are, this
* is because we just allocated the l2_dtable, above.
*/
nva = pmap_kernel_l2ptp_kva;
ptep = (pt_entry_t *)nva;
if ((nva & PAGE_MASK) == 0) {
/*
* Need to allocate a backing page
*/
if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
&pmap_kernel_l2ptp_phys))
return (NULL);
PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
}
memset(ptep, 0, L2_TABLE_SIZE_REAL);
l2->l2_occupancy++;
l2b->l2b_kva = ptep;
l2b->l2b_l1idx = l1idx;
l2b->l2b_phys = pmap_kernel_l2ptp_phys;
pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
}
/* Distribute new L1 entry to all other L1s */
SLIST_FOREACH(l1, &l1_list, l1_link) {
pl1pd = &l1->l1_kva[L1_IDX(va)];
*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
L1_C_PROTO;
PTE_SYNC(pl1pd);
}
return (l2b);
}
/*
* grow the number of kernel page table entries, if needed
*/
void
pmap_growkernel(vm_offset_t addr)
{
pmap_t kpm = kernel_pmap;
if (addr <= pmap_curmaxkvaddr)
return; /* we are OK */
/*
* whoops! we need to add kernel PTPs
*/
/* Map 1MB at a time */
for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
/*
* flush out the cache, expensive but growkernel will happen so
* rarely
*/
cpu_dcache_wbinv_all();
cpu_l2cache_wbinv_all();
cpu_tlb_flushD();
cpu_cpwait();
kernel_vm_end = pmap_curmaxkvaddr;
}
/*
* Remove all pages from specified address space
* this aids process exit speeds. Also, this code
* is special cased for current process only, but
* can have the more generic (and slightly slower)
* mode enabled. This is much faster than pmap_remove
* in the case of running down an entire address space.
*/
void
pmap_remove_pages(pmap_t pmap)
{
struct pv_entry *pv, *npv;
struct l2_bucket *l2b = NULL;
vm_page_t m;
pt_entry_t *pt;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
cpu_idcache_wbinv_all();
cpu_l2cache_wbinv_all();
for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
if (pv->pv_flags & PVF_WIRED || pv->pv_flags & PVF_UNMAN) {
/* Cannot remove wired or unmanaged pages now. */
npv = TAILQ_NEXT(pv, pv_plist);
continue;
}
pmap->pm_stats.resident_count--;
l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages"));
pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
m = PHYS_TO_VM_PAGE(*pt & L2_S_FRAME);
KASSERT((vm_offset_t)m >= KERNBASE, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt));
*pt = 0;
PTE_SYNC(pt);
npv = TAILQ_NEXT(pv, pv_plist);
pmap_nuke_pv(m, pmap, pv);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
pmap_free_pv_entry(pv);
pmap_free_l2_bucket(pmap, l2b, 1);
}
rw_wunlock(&pvh_global_lock);
cpu_tlb_flushID();
cpu_cpwait();
PMAP_UNLOCK(pmap);
}
/***************************************************
* Low level mapping routines.....
***************************************************/
#ifdef ARM_HAVE_SUPERSECTIONS
/* Map a super section into the KVA. */
void
pmap_kenter_supersection(vm_offset_t va, uint64_t pa, int flags)
{
pd_entry_t pd = L1_S_PROTO | L1_S_SUPERSEC | (pa & L1_SUP_FRAME) |
(((pa >> 32) & 0xf) << 20) | L1_S_PROT(PTE_KERNEL,
VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
struct l1_ttable *l1;
vm_offset_t va0, va_end;
KASSERT(((va | pa) & L1_SUP_OFFSET) == 0,
("Not a valid super section mapping"));
if (flags & SECTION_CACHE)
pd |= pte_l1_s_cache_mode;
else if (flags & SECTION_PT)
pd |= pte_l1_s_cache_mode_pt;
va0 = va & L1_SUP_FRAME;
va_end = va + L1_SUP_SIZE;
SLIST_FOREACH(l1, &l1_list, l1_link) {
va = va0;
for (; va < va_end; va += L1_S_SIZE) {
l1->l1_kva[L1_IDX(va)] = pd;
PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
}
}
}
#endif
/* Map a section into the KVA. */
void
pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags)
{
pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL,
VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
struct l1_ttable *l1;
KASSERT(((va | pa) & L1_S_OFFSET) == 0,
("Not a valid section mapping"));
if (flags & SECTION_CACHE)
pd |= pte_l1_s_cache_mode;
else if (flags & SECTION_PT)
pd |= pte_l1_s_cache_mode_pt;
SLIST_FOREACH(l1, &l1_list, l1_link) {
l1->l1_kva[L1_IDX(va)] = pd;
PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
}
}
/*
* Make a temporary mapping for a physical address. This is only intended
* to be used for panic dumps.
*/
void *
pmap_kenter_temporary(vm_paddr_t pa, int i)
{
vm_offset_t va;
va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
pmap_kenter(va, pa);
return ((void *)crashdumpmap);
}
/*
* add a wired page to the kva
* note that in order for the mapping to take effect -- you
* should do a invltlb after doing the pmap_kenter...
*/
static PMAP_INLINE void
pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
{
struct l2_bucket *l2b;
pt_entry_t *pte;
pt_entry_t opte;
struct pv_entry *pve;
vm_page_t m;
PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
(uint32_t) va, (uint32_t) pa));
l2b = pmap_get_l2_bucket(kernel_pmap, va);
if (l2b == NULL)
l2b = pmap_grow_l2_bucket(kernel_pmap, va);
KASSERT(l2b != NULL, ("No L2 Bucket"));
pte = &l2b->l2b_kva[l2pte_index(va)];
opte = *pte;
PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
(uint32_t) pte, opte, *pte));
if (l2pte_valid(opte)) {
pmap_kremove(va);
} else {
if (opte == 0)
l2b->l2b_occupancy++;
}
*pte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL,
VM_PROT_READ | VM_PROT_WRITE);
if (flags & KENTER_CACHE)
*pte |= pte_l2_s_cache_mode;
if (flags & KENTER_USER)
*pte |= L2_S_PROT_U;
PTE_SYNC(pte);
/*
* A kernel mapping may not be the page's only mapping, so create a PV
* entry to ensure proper caching.
*
* The existence test for the pvzone is used to delay the recording of
* kernel mappings until the VM system is fully initialized.
*
* This expects the physical memory to have a vm_page_array entry.
*/
if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) != NULL) {
rw_wlock(&pvh_global_lock);
if (!TAILQ_EMPTY(&m->md.pv_list) || m->md.pv_kva != 0) {
if ((pve = pmap_get_pv_entry()) == NULL)
panic("pmap_kenter_internal: no pv entries");
PMAP_LOCK(kernel_pmap);
pmap_enter_pv(m, pve, kernel_pmap, va,
PVF_WRITE | PVF_UNMAN);
pmap_fix_cache(m, kernel_pmap, va);
PMAP_UNLOCK(kernel_pmap);
} else {
m->md.pv_kva = va;
}
rw_wunlock(&pvh_global_lock);
}
}
void
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
{
pmap_kenter_internal(va, pa, KENTER_CACHE);
}
void
pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa)
{
pmap_kenter_internal(va, pa, 0);
}
void
pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
{
vm_offset_t sva;
KASSERT((size & PAGE_MASK) == 0,
("%s: device mapping not page-sized", __func__));
sva = va;
while (size != 0) {
pmap_kenter_internal(va, pa, 0);
va += PAGE_SIZE;
pa += PAGE_SIZE;
size -= PAGE_SIZE;
}
}
void
pmap_kremove_device(vm_offset_t va, vm_size_t size)
{
vm_offset_t sva;
KASSERT((size & PAGE_MASK) == 0,
("%s: device mapping not page-sized", __func__));
sva = va;
while (size != 0) {
pmap_kremove(va);
va += PAGE_SIZE;
size -= PAGE_SIZE;
}
}
void
pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
{
pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
/*
* Call pmap_fault_fixup now, to make sure we'll have no exception
* at the first use of the new address, or bad things will happen,
* as we use one of these addresses in the exception handlers.
*/
pmap_fault_fixup(kernel_pmap, va, VM_PROT_READ|VM_PROT_WRITE, 1);
}
vm_paddr_t
pmap_kextract(vm_offset_t va)
{
return (pmap_extract_locked(kernel_pmap, va));
}
/*
* remove a page from the kernel pagetables
*/
void
pmap_kremove(vm_offset_t va)
{
struct l2_bucket *l2b;
pt_entry_t *pte, opte;
struct pv_entry *pve;
vm_page_t m;
vm_offset_t pa;
l2b = pmap_get_l2_bucket(kernel_pmap, va);
if (!l2b)
return;
KASSERT(l2b != NULL, ("No L2 Bucket"));
pte = &l2b->l2b_kva[l2pte_index(va)];
opte = *pte;
if (l2pte_valid(opte)) {
/* pa = vtophs(va) taken from pmap_extract() */
if ((opte & L2_TYPE_MASK) == L2_TYPE_L)
pa = (opte & L2_L_FRAME) | (va & L2_L_OFFSET);
else
pa = (opte & L2_S_FRAME) | (va & L2_S_OFFSET);
/* note: should never have to remove an allocation
* before the pvzone is initialized.
*/
rw_wlock(&pvh_global_lock);
PMAP_LOCK(kernel_pmap);
if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) &&
(pve = pmap_remove_pv(m, kernel_pmap, va)))
pmap_free_pv_entry(pve);
PMAP_UNLOCK(kernel_pmap);
rw_wunlock(&pvh_global_lock);
va = va & ~PAGE_MASK;
cpu_dcache_wbinv_range(va, PAGE_SIZE);
cpu_l2cache_wbinv_range(va, PAGE_SIZE);
cpu_tlb_flushD_SE(va);
cpu_cpwait();
*pte = 0;
}
}
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* The value passed in '*virt' is a suggested virtual address for
* the mapping. Architectures which can support a direct-mapped
* physical to virtual region can return the appropriate address
* within that region, leaving '*virt' unchanged. Other
* architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped
* region.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
{
vm_offset_t sva = *virt;
vm_offset_t va = sva;
PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
"prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
prot));
while (start < end) {
pmap_kenter(va, start);
va += PAGE_SIZE;
start += PAGE_SIZE;
}
*virt = va;
return (sva);
}
static void
pmap_wb_page(vm_page_t m)
{
struct pv_entry *pv;
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, FALSE,
(pv->pv_flags & PVF_WRITE) == 0);
}
static void
pmap_inv_page(vm_page_t m)
{
struct pv_entry *pv;
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, TRUE, TRUE);
}
/*
* Add a list of wired pages to the kva
* this routine is only used for temporary
* kernel mappings that do not need to have
* page modification or references recorded.
* Note that old mappings are simply written
* over. The page *must* be wired.
*/
void
pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
{
int i;
for (i = 0; i < count; i++) {
pmap_wb_page(m[i]);
pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]),
KENTER_CACHE);
va += PAGE_SIZE;
}
}
/*
* this routine jerks page mappings from the
* kernel -- it is meant only for temporary mappings.
*/
void
pmap_qremove(vm_offset_t va, int count)
{
vm_paddr_t pa;
int i;
for (i = 0; i < count; i++) {
pa = vtophys(va);
if (pa) {
pmap_inv_page(PHYS_TO_VM_PAGE(pa));
pmap_kremove(va);
}
va += PAGE_SIZE;
}
}
/*
* pmap_object_init_pt preloads the ptes for a given object
* into the specified pmap. This eliminates the blast of soft
* faults on process startup and immediately after an mmap.
*/
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
vm_pindex_t pindex, vm_size_t size)
{
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("pmap_object_init_pt: non-device object"));
}
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is elgible
* for prefault.
*/
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
pd_entry_t *pde;
pt_entry_t *pte;
if (!pmap_get_pde_pte(pmap, addr, &pde, &pte))
return (FALSE);
KASSERT(pte != NULL, ("Valid mapping but no pte ?"));
if (*pte == 0)
return (TRUE);
return (FALSE);
}
/*
* Fetch pointers to the PDE/PTE for the given pmap/VA pair.
* Returns TRUE if the mapping exists, else FALSE.
*
* NOTE: This function is only used by a couple of arm-specific modules.
* It is not safe to take any pmap locks here, since we could be right
* in the middle of debugging the pmap anyway...
*
* It is possible for this routine to return FALSE even though a valid
* mapping does exist. This is because we don't lock, so the metadata
* state may be inconsistent.
*
* NOTE: We can return a NULL *ptp in the case where the L1 pde is
* a "section" mapping.
*/
boolean_t
pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp)
{
struct l2_dtable *l2;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep;
u_short l1idx;
if (pm->pm_l1 == NULL)
return (FALSE);
l1idx = L1_IDX(va);
*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
l1pd = *pl1pd;
if (l1pte_section_p(l1pd)) {
*ptp = NULL;
return (TRUE);
}
if (pm->pm_l2 == NULL)
return (FALSE);
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL ||
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
return (FALSE);
}
*ptp = &ptep[l2pte_index(va)];
return (TRUE);
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*
* Notes:
* Original versions of this routine were very
* inefficient because they iteratively called
* pmap_remove (slow...)
*/
void
pmap_remove_all(vm_page_t m)
{
pv_entry_t pv;
pt_entry_t *ptep;
struct l2_bucket *l2b;
boolean_t flush = FALSE;
pmap_t curpm;
int flags = 0;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_all: page %p is not managed", m));
if (TAILQ_EMPTY(&m->md.pv_list))
return;
rw_wlock(&pvh_global_lock);
/*
* XXX This call shouldn't exist. Iterating over the PV list twice,
* once in pmap_clearbit() and again below, is both unnecessary and
* inefficient. The below code should itself write back the cache
* entry before it destroys the mapping.
*/
pmap_clearbit(m, PVF_WRITE);
curpm = vmspace_pmap(curproc->p_vmspace);
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
if (flush == FALSE && (pv->pv_pmap == curpm ||
pv->pv_pmap == kernel_pmap))
flush = TRUE;
PMAP_LOCK(pv->pv_pmap);
/*
* Cached contents were written-back in pmap_clearbit(),
* but we still have to invalidate the cache entry to make
* sure stale data are not retrieved when another page will be
* mapped under this virtual address.
*/
if (pmap_is_current(pv->pv_pmap)) {
cpu_dcache_inv_range(pv->pv_va, PAGE_SIZE);
if (pmap_has_valid_mapping(pv->pv_pmap, pv->pv_va))
cpu_l2cache_inv_range(pv->pv_va, PAGE_SIZE);
}
if (pv->pv_flags & PVF_UNMAN) {
/* remove the pv entry, but do not remove the mapping
* and remember this is a kernel mapped page
*/
m->md.pv_kva = pv->pv_va;
} else {
/* remove the mapping and pv entry */
l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
KASSERT(l2b != NULL, ("No l2 bucket"));
ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
*ptep = 0;
PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
pmap_free_l2_bucket(pv->pv_pmap, l2b, 1);
pv->pv_pmap->pm_stats.resident_count--;
flags |= pv->pv_flags;
}
pmap_nuke_pv(m, pv->pv_pmap, pv);
PMAP_UNLOCK(pv->pv_pmap);
pmap_free_pv_entry(pv);
}
if (flush) {
if (PV_BEEN_EXECD(flags))
pmap_tlb_flushID(curpm);
else
pmap_tlb_flushD(curpm);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vm_offset_t next_bucket;
u_int flags;
int flush;
CTR4(KTR_PMAP, "pmap_protect: pmap %p sva 0x%08x eva 0x%08x prot %x",
pm, sva, eva, prot);
if ((prot & VM_PROT_READ) == 0) {
pmap_remove(pm, sva, eva);
return;
}
if (prot & VM_PROT_WRITE) {
/*
* If this is a read->write transition, just ignore it and let
* vm_fault() take care of it later.
*/
return;
}
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
/*
* OK, at this point, we know we're doing write-protect operation.
* If the pmap is active, write-back the range.
*/
pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
flags = 0;
while (sva < eva) {
next_bucket = L2_NEXT_BUCKET(sva);
if (next_bucket > eva)
next_bucket = eva;
l2b = pmap_get_l2_bucket(pm, sva);
if (l2b == NULL) {
sva = next_bucket;
continue;
}
ptep = &l2b->l2b_kva[l2pte_index(sva)];
while (sva < next_bucket) {
if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
struct vm_page *pg;
u_int f;
pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
pte &= ~L2_S_PROT_W;
*ptep = pte;
PTE_SYNC(ptep);
if (!(pg->oflags & VPO_UNMANAGED)) {
f = pmap_modify_pv(pg, pm, sva,
PVF_WRITE, 0);
if (f & PVF_WRITE)
vm_page_dirty(pg);
} else
f = 0;
if (flush >= 0) {
flush++;
flags |= f;
} else
if (PV_BEEN_EXECD(f))
pmap_tlb_flushID_SE(pm, sva);
else
if (PV_BEEN_REFD(f))
pmap_tlb_flushD_SE(pm, sva);
}
sva += PAGE_SIZE;
ptep++;
}
}
if (flush) {
if (PV_BEEN_EXECD(flags))
pmap_tlb_flushID(pm);
else
if (PV_BEEN_REFD(flags))
pmap_tlb_flushD(pm);
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pm);
}
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
int
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags, int8_t psind __unused)
{
int rv;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
rv = pmap_enter_locked(pmap, va, m, prot, flags);
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* The pvh global and pmap locks must be held.
*/
static int
pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags)
{
struct l2_bucket *l2b = NULL;
struct vm_page *opg;
struct pv_entry *pve = NULL;
pt_entry_t *ptep, npte, opte;
u_int nflags;
u_int oflags;
vm_paddr_t pa;
PMAP_ASSERT_LOCKED(pmap);
rw_assert(&pvh_global_lock, RA_WLOCKED);
if (va == vector_page) {
pa = systempage.pv_pa;
m = NULL;
} else {
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
VM_OBJECT_ASSERT_LOCKED(m->object);
pa = VM_PAGE_TO_PHYS(m);
}
nflags = 0;
if (prot & VM_PROT_WRITE)
nflags |= PVF_WRITE;
if (prot & VM_PROT_EXECUTE)
nflags |= PVF_EXEC;
if ((flags & PMAP_ENTER_WIRED) != 0)
nflags |= PVF_WIRED;
PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, "
"flags = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, flags));
if (pmap == kernel_pmap) {
l2b = pmap_get_l2_bucket(pmap, va);
if (l2b == NULL)
l2b = pmap_grow_l2_bucket(pmap, va);
} else {
do_l2b_alloc:
l2b = pmap_alloc_l2_bucket(pmap, va);
if (l2b == NULL) {
if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
VM_WAIT;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
goto do_l2b_alloc;
}
return (KERN_RESOURCE_SHORTAGE);
}
}
ptep = &l2b->l2b_kva[l2pte_index(va)];
opte = *ptep;
npte = pa;
oflags = 0;
if (opte) {
/*
* There is already a mapping at this address.
* If the physical address is different, lookup the
* vm_page.
*/
if (l2pte_pa(opte) != pa)
opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
else
opg = m;
} else
opg = NULL;
if ((prot & (VM_PROT_ALL)) ||
(!m || m->md.pvh_attrs & PVF_REF)) {
/*
* - The access type indicates that we don't need
* to do referenced emulation.
* OR
* - The physical page has already been referenced
* so no need to re-do referenced emulation here.
*/
npte |= L2_S_PROTO;
nflags |= PVF_REF;
if (m && ((prot & VM_PROT_WRITE) != 0 ||
(m->md.pvh_attrs & PVF_MOD))) {
/*
* This is a writable mapping, and the
* page's mod state indicates it has
* already been modified. Make it
* writable from the outset.
*/
nflags |= PVF_MOD;
if (!(m->md.pvh_attrs & PVF_MOD))
vm_page_dirty(m);
}
if (m && opte)
vm_page_aflag_set(m, PGA_REFERENCED);
} else {
/*
* Need to do page referenced emulation.
*/
npte |= L2_TYPE_INV;
}
if (prot & VM_PROT_WRITE) {
npte |= L2_S_PROT_W;
if (m != NULL &&
(m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
}
if (m->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
npte |= pte_l2_s_cache_mode;
if (m && m == opg) {
/*
* We're changing the attrs of an existing mapping.
*/
oflags = pmap_modify_pv(m, pmap, va,
PVF_WRITE | PVF_EXEC | PVF_WIRED |
PVF_MOD | PVF_REF, nflags);
/*
* We may need to flush the cache if we're
* doing rw-ro...
*/
if (pmap_is_current(pmap) &&
(oflags & PVF_NC) == 0 &&
(opte & L2_S_PROT_W) != 0 &&
(prot & VM_PROT_WRITE) == 0 &&
(opte & L2_TYPE_MASK) != L2_TYPE_INV) {
cpu_dcache_wb_range(va, PAGE_SIZE);
cpu_l2cache_wb_range(va, PAGE_SIZE);
}
} else {
/*
* New mapping, or changing the backing page
* of an existing mapping.
*/
if (opg) {
/*
* Replacing an existing mapping with a new one.
* It is part of our managed memory so we
* must remove it from the PV list
*/
if ((pve = pmap_remove_pv(opg, pmap, va))) {
/* note for patch: the oflags/invalidation was moved
* because PG_FICTITIOUS pages could free the pve
*/
oflags = pve->pv_flags;
/*
* If the old mapping was valid (ref/mod
* emulation creates 'invalid' mappings
* initially) then make sure to frob
* the cache.
*/
if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
if (PV_BEEN_EXECD(oflags)) {
pmap_idcache_wbinv_range(pmap, va,
PAGE_SIZE);
} else
if (PV_BEEN_REFD(oflags)) {
pmap_dcache_wb_range(pmap, va,
PAGE_SIZE, TRUE,
(oflags & PVF_WRITE) == 0);
}
}
/* free/allocate a pv_entry for UNMANAGED pages if
* this physical page is not/is already mapped.
*/
if (m && (m->oflags & VPO_UNMANAGED) &&
!m->md.pv_kva &&
TAILQ_EMPTY(&m->md.pv_list)) {
pmap_free_pv_entry(pve);
pve = NULL;
}
} else if (m &&
(!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
!TAILQ_EMPTY(&m->md.pv_list)))
pve = pmap_get_pv_entry();
} else if (m &&
(!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
!TAILQ_EMPTY(&m->md.pv_list)))
pve = pmap_get_pv_entry();
if (m) {
if ((m->oflags & VPO_UNMANAGED)) {
if (!TAILQ_EMPTY(&m->md.pv_list) ||
m->md.pv_kva) {
KASSERT(pve != NULL, ("No pv"));
nflags |= PVF_UNMAN;
pmap_enter_pv(m, pve, pmap, va, nflags);
} else
m->md.pv_kva = va;
} else {
KASSERT(va < kmi.clean_sva ||
va >= kmi.clean_eva,
("pmap_enter: managed mapping within the clean submap"));
KASSERT(pve != NULL, ("No pv"));
pmap_enter_pv(m, pve, pmap, va, nflags);
}
}
}
/*
* Make sure userland mappings get the right permissions
*/
if (pmap != kernel_pmap && va != vector_page) {
npte |= L2_S_PROT_U;
}
/*
* Keep the stats up to date
*/
if (opte == 0) {
l2b->l2b_occupancy++;
pmap->pm_stats.resident_count++;
}
/*
* If this is just a wiring change, the two PTEs will be
* identical, so there's no need to update the page table.
*/
if (npte != opte) {
boolean_t is_cached = pmap_is_current(pmap);
*ptep = npte;
if (is_cached) {
/*
* We only need to frob the cache/tlb if this pmap
* is current
*/
PTE_SYNC(ptep);
if (L1_IDX(va) != L1_IDX(vector_page) &&
l2pte_valid(npte)) {
/*
* This mapping is likely to be accessed as
* soon as we return to userland. Fix up the
* L1 entry to avoid taking another
* page/domain fault.
*/
pd_entry_t *pl1pd, l1pd;
pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) |
L1_C_PROTO;
if (*pl1pd != l1pd) {
*pl1pd = l1pd;
PTE_SYNC(pl1pd);
}
}
}
if (PV_BEEN_EXECD(oflags))
pmap_tlb_flushID_SE(pmap, va);
else if (PV_BEEN_REFD(oflags))
pmap_tlb_flushD_SE(pmap, va);
if (m)
pmap_fix_cache(m, pmap, va);
}
return (KERN_SUCCESS);
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m;
vm_pindex_t diff, psize;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
m = m_start;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
pmap_enter_locked(pmap, start + ptoa(diff), m, prot &
(VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP);
m = TAILQ_NEXT(m, listq);
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* this code makes some *MAJOR* assumptions:
* 1. Current pmap & pmap exists.
* 2. Not wired.
* 3. Read access.
* 4. No page table pages.
* but is *MUCH* faster than pmap_enter...
*/
void
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
pmap_enter_locked(pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
PMAP_ENTER_NOSLEEP);
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* Clear the wired attribute from the mappings for the specified range of
* addresses in the given pmap. Every valid mapping within that range
* must have the wired attribute set. In contrast, invalid mappings
* cannot have the wired attribute set, so they are ignored.
*
* XXX Wired mappings of unmanaged pages cannot be counted by this pmap
* implementation.
*/
void
pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
pv_entry_t pv;
vm_offset_t next_bucket;
vm_page_t m;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
while (sva < eva) {
next_bucket = L2_NEXT_BUCKET(sva);
if (next_bucket > eva)
next_bucket = eva;
l2b = pmap_get_l2_bucket(pmap, sva);
if (l2b == NULL) {
sva = next_bucket;
continue;
}
for (ptep = &l2b->l2b_kva[l2pte_index(sva)]; sva < next_bucket;
sva += PAGE_SIZE, ptep++) {
if ((pte = *ptep) == 0 ||
(m = PHYS_TO_VM_PAGE(l2pte_pa(pte))) == NULL ||
(m->oflags & VPO_UNMANAGED) != 0)
continue;
pv = pmap_find_pv(m, pmap, sva);
if ((pv->pv_flags & PVF_WIRED) == 0)
panic("pmap_unwire: pv %p isn't wired", pv);
pv->pv_flags &= ~PVF_WIRED;
pmap->pm_stats.wired_count--;
}
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
vm_size_t len, vm_offset_t src_addr)
{
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
vm_paddr_t pa;
PMAP_LOCK(pmap);
pa = pmap_extract_locked(pmap, va);
PMAP_UNLOCK(pmap);
return (pa);
}
static vm_paddr_t
pmap_extract_locked(pmap_t pmap, vm_offset_t va)
{
struct l2_dtable *l2;
pd_entry_t l1pd;
pt_entry_t *ptep, pte;
vm_paddr_t pa;
u_int l1idx;
if (pmap != kernel_pmap)
PMAP_ASSERT_LOCKED(pmap);
l1idx = L1_IDX(va);
l1pd = pmap->pm_l1->l1_kva[l1idx];
if (l1pte_section_p(l1pd)) {
/*
* These should only happen for the kernel pmap.
*/
KASSERT(pmap == kernel_pmap, ("unexpected section"));
/* XXX: what to do about the bits > 32 ? */
if (l1pd & L1_S_SUPERSEC)
pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
else
pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
} else {
/*
* Note that we can't rely on the validity of the L1
* descriptor as an indication that a mapping exists.
* We have to look it up in the L2 dtable.
*/
l2 = pmap->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL ||
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL)
return (0);
pte = ptep[l2pte_index(va)];
if (pte == 0)
return (0);
if ((pte & L2_TYPE_MASK) == L2_TYPE_L)
pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
else
pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
}
return (pa);
}
/*
* Atomically extract and hold the physical page with the given
* pmap and virtual address pair if that mapping permits the given
* protection.
*
*/
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
struct l2_dtable *l2;
pd_entry_t l1pd;
pt_entry_t *ptep, pte;
vm_paddr_t pa, paddr;
vm_page_t m = NULL;
u_int l1idx;
l1idx = L1_IDX(va);
paddr = 0;
PMAP_LOCK(pmap);
retry:
l1pd = pmap->pm_l1->l1_kva[l1idx];
if (l1pte_section_p(l1pd)) {
/*
* These should only happen for kernel_pmap
*/
KASSERT(pmap == kernel_pmap, ("huh"));
/* XXX: what to do about the bits > 32 ? */
if (l1pd & L1_S_SUPERSEC)
pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
else
pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
goto retry;
if (l1pd & L1_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
m = PHYS_TO_VM_PAGE(pa);
vm_page_hold(m);
}
} else {
/*
* Note that we can't rely on the validity of the L1
* descriptor as an indication that a mapping exists.
* We have to look it up in the L2 dtable.
*/
l2 = pmap->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL ||
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
PMAP_UNLOCK(pmap);
return (NULL);
}
ptep = &ptep[l2pte_index(va)];
pte = *ptep;
if (pte == 0) {
PMAP_UNLOCK(pmap);
return (NULL);
}
if (pte & L2_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
if ((pte & L2_TYPE_MASK) == L2_TYPE_L)
pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
else
pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
goto retry;
m = PHYS_TO_VM_PAGE(pa);
vm_page_hold(m);
}
}
PMAP_UNLOCK(pmap);
PA_UNLOCK_COND(paddr);
return (m);
}
vm_paddr_t
pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
{
struct l2_dtable *l2;
pd_entry_t l1pd;
pt_entry_t *ptep, pte;
vm_paddr_t pa;
u_int l1idx;
l1idx = L1_IDX(va);
l1pd = kernel_pmap->pm_l1->l1_kva[l1idx];
if (l1pte_section_p(l1pd)) {
if (l1pd & L1_S_SUPERSEC)
pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
else
pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
pte = L2_S_PROTO | pa |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
} else {
l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL ||
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
pte = 0;
pa = 0;
goto out;
}
pte = ptep[l2pte_index(va)];
if (pte == 0) {
pa = 0;
goto out;
}
if ((pte & L2_TYPE_MASK) == L2_TYPE_L)
pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
else
pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
}
out:
if (pte2p != NULL)
*pte2p = pte;
return (pa);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
int
pmap_pinit(pmap_t pmap)
{
PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
pmap_alloc_l1(pmap);
bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
CPU_ZERO(&pmap->pm_active);
TAILQ_INIT(&pmap->pm_pvlist);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
pmap->pm_stats.resident_count = 1;
if (vector_page < KERNBASE) {
pmap_enter(pmap, vector_page, PHYS_TO_VM_PAGE(systempage.pv_pa),
VM_PROT_READ, PMAP_ENTER_WIRED | VM_PROT_READ, 0);
}
return (1);
}
/***************************************************
* page management routines.
***************************************************/
static void
pmap_free_pv_entry(pv_entry_t pv)
{
pv_entry_count--;
uma_zfree(pvzone, pv);
}
/*
* get a new pv_entry, allocating a block from the system
* when needed.
* the memory allocation is performed bypassing the malloc code
* because of the possibility of allocations at interrupt time.
*/
static pv_entry_t
pmap_get_pv_entry(void)
{
pv_entry_t ret_value;
pv_entry_count++;
if (pv_entry_count > pv_entry_high_water)
pagedaemon_wakeup();
ret_value = uma_zalloc(pvzone, M_NOWAIT);
return ret_value;
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
#define PMAP_REMOVE_CLEAN_LIST_SIZE 3
void
pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct l2_bucket *l2b;
vm_offset_t next_bucket;
pt_entry_t *ptep;
u_int total;
u_int mappings, is_exec, is_refd;
int flushall = 0;
/*
* we lock in the pmap => pv_head direction
*/
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
total = 0;
while (sva < eva) {
/*
* Do one L2 bucket's worth at a time.
*/
next_bucket = L2_NEXT_BUCKET(sva);
if (next_bucket > eva)
next_bucket = eva;
l2b = pmap_get_l2_bucket(pm, sva);
if (l2b == NULL) {
sva = next_bucket;
continue;
}
ptep = &l2b->l2b_kva[l2pte_index(sva)];
mappings = 0;
while (sva < next_bucket) {
struct vm_page *pg;
pt_entry_t pte;
vm_paddr_t pa;
pte = *ptep;
if (pte == 0) {
/*
* Nothing here, move along
*/
sva += PAGE_SIZE;
ptep++;
continue;
}
pm->pm_stats.resident_count--;
pa = l2pte_pa(pte);
is_exec = 0;
is_refd = 1;
/*
* Update flags. In a number of circumstances,
* we could cluster a lot of these and do a
* number of sequential pages in one go.
*/
if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
struct pv_entry *pve;
pve = pmap_remove_pv(pg, pm, sva);
if (pve) {
is_exec = PV_BEEN_EXECD(pve->pv_flags);
is_refd = PV_BEEN_REFD(pve->pv_flags);
pmap_free_pv_entry(pve);
}
}
if (l2pte_valid(pte) && pmap_is_current(pm)) {
if (total < PMAP_REMOVE_CLEAN_LIST_SIZE) {
total++;
if (is_exec) {
cpu_idcache_wbinv_range(sva,
PAGE_SIZE);
cpu_l2cache_wbinv_range(sva,
PAGE_SIZE);
cpu_tlb_flushID_SE(sva);
} else if (is_refd) {
cpu_dcache_wbinv_range(sva,
PAGE_SIZE);
cpu_l2cache_wbinv_range(sva,
PAGE_SIZE);
cpu_tlb_flushD_SE(sva);
}
} else if (total == PMAP_REMOVE_CLEAN_LIST_SIZE) {
/* flushall will also only get set for
* for a current pmap
*/
cpu_idcache_wbinv_all();
cpu_l2cache_wbinv_all();
flushall = 1;
total++;
}
}
*ptep = 0;
PTE_SYNC(ptep);
sva += PAGE_SIZE;
ptep++;
mappings++;
}
pmap_free_l2_bucket(pm, l2b, mappings);
}
rw_wunlock(&pvh_global_lock);
if (flushall)
cpu_tlb_flushID();
PMAP_UNLOCK(pm);
}
/*
* pmap_zero_page()
*
* Zero a given physical page by mapping it at a page hook point.
* In doing the zero page op, the page we zero is mapped cachable, as with
* StrongARM accesses to non-cached pages are non-burst making writing
* _any_ bulk data very slow.
*/
#if ARM_MMU_GENERIC != 0 || defined(CPU_XSCALE_CORE3)
void
pmap_zero_page_generic(vm_paddr_t phys, int off, int size)
{
if (_arm_bzero && size >= _min_bzero_size &&
_arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
return;
mtx_lock(&cmtx);
/*
* Hook in the page, zero it, invalidate the TLB as needed.
*
* Note the temporary zero-page mapping must be a non-cached page in
* order to work without corruption when write-allocate is enabled.
*/
*cdst_pte = L2_S_PROTO | phys | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
if (off || size != PAGE_SIZE)
bzero((void *)(cdstp + off), size);
else
bzero_page(cdstp);
mtx_unlock(&cmtx);
}
#endif /* ARM_MMU_GENERIC != 0 */
#if ARM_MMU_XSCALE == 1
void
pmap_zero_page_xscale(vm_paddr_t phys, int off, int size)
{
if (_arm_bzero && size >= _min_bzero_size &&
_arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
return;
mtx_lock(&cmtx);
/*
* Hook in the page, zero it, and purge the cache for that
* zeroed page. Invalidate the TLB as needed.
*/
*cdst_pte = L2_S_PROTO | phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
if (off || size != PAGE_SIZE)
bzero((void *)(cdstp + off), size);
else
bzero_page(cdstp);
mtx_unlock(&cmtx);
xscale_cache_clean_minidata();
}
/*
* Change the PTEs for the specified kernel mappings such that they
* will use the mini data cache instead of the main data cache.
*/
void
pmap_use_minicache(vm_offset_t va, vm_size_t size)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, *sptep, pte;
vm_offset_t next_bucket, eva;
#if (ARM_NMMUS > 1) || defined(CPU_XSCALE_CORE3)
if (xscale_use_minidata == 0)
return;
#endif
eva = va + size;
while (va < eva) {
next_bucket = L2_NEXT_BUCKET(va);
if (next_bucket > eva)
next_bucket = eva;
l2b = pmap_get_l2_bucket(kernel_pmap, va);
sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
while (va < next_bucket) {
pte = *ptep;
if (!l2pte_minidata(pte)) {
cpu_dcache_wbinv_range(va, PAGE_SIZE);
cpu_tlb_flushD_SE(va);
*ptep = pte & ~L2_B;
}
ptep++;
va += PAGE_SIZE;
}
PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
}
cpu_cpwait();
}
#endif /* ARM_MMU_XSCALE == 1 */
/*
* pmap_zero_page zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*/
void
pmap_zero_page(vm_page_t m)
{
pmap_zero_page_func(VM_PAGE_TO_PHYS(m), 0, PAGE_SIZE);
}
/*
* pmap_zero_page_area zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*
* off and size may not cover an area beyond a single hardware page.
*/
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
pmap_zero_page_func(VM_PAGE_TO_PHYS(m), off, size);
}
/*
* pmap_zero_page_idle zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents. This
* is intended to be called from the vm_pagezero process only and
* outside of Giant.
*/
void
pmap_zero_page_idle(vm_page_t m)
{
pmap_zero_page(m);
}
#if 0
/*
* pmap_clean_page()
*
* This is a local function used to work out the best strategy to clean
* a single page referenced by its entry in the PV table. It should be used by
* pmap_copy_page, pmap_zero page and maybe some others later on.
*
* Its policy is effectively:
* o If there are no mappings, we don't bother doing anything with the cache.
* o If there is one mapping, we clean just that page.
* o If there are multiple mappings, we clean the entire cache.
*
* So that some functions can be further optimised, it returns 0 if it didn't
* clean the entire cache, or 1 if it did.
*
* XXX One bug in this routine is that if the pv_entry has a single page
* mapped at 0x00000000 a whole cache clean will be performed rather than
* just the 1 page. Since this should not occur in everyday use and if it does
* it will just result in not the most efficient clean for the page.
*
* We don't yet use this function but may want to.
*/
static int
pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
{
pmap_t pm, pm_to_clean = NULL;
struct pv_entry *npv;
u_int cache_needs_cleaning = 0;
u_int flags = 0;
vm_offset_t page_to_clean = 0;
if (pv == NULL) {
/* nothing mapped in so nothing to flush */
return (0);
}
/*
* Since we flush the cache each time we change to a different
* user vmspace, we only need to flush the page if it is in the
* current pmap.
*/
if (curthread)
pm = vmspace_pmap(curproc->p_vmspace);
else
pm = kernel_pmap;
for (npv = pv; npv; npv = TAILQ_NEXT(npv, pv_list)) {
if (npv->pv_pmap == kernel_pmap || npv->pv_pmap == pm) {
flags |= npv->pv_flags;
/*
* The page is mapped non-cacheable in
* this map. No need to flush the cache.
*/
if (npv->pv_flags & PVF_NC) {
#ifdef DIAGNOSTIC
if (cache_needs_cleaning)
panic("pmap_clean_page: "
"cache inconsistency");
#endif
break;
} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
continue;
if (cache_needs_cleaning) {
page_to_clean = 0;
break;
} else {
page_to_clean = npv->pv_va;
pm_to_clean = npv->pv_pmap;
}
cache_needs_cleaning = 1;
}
}
if (page_to_clean) {
if (PV_BEEN_EXECD(flags))
pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
PAGE_SIZE);
else
pmap_dcache_wb_range(pm_to_clean, page_to_clean,
PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
} else if (cache_needs_cleaning) {
if (PV_BEEN_EXECD(flags))
pmap_idcache_wbinv_all(pm);
else
pmap_dcache_wbinv_all(pm);
return (1);
}
return (0);
}
#endif
/*
* pmap_copy_page copies the specified (machine independent)
* page by mapping the page into virtual memory and using
* bcopy to copy the page, one machine dependent page at a
* time.
*/
/*
* pmap_copy_page()
*
* Copy one physical page into another, by mapping the pages into
* hook points. The same comment regarding cachability as in
* pmap_zero_page also applies here.
*/
#if ARM_MMU_GENERIC != 0 || defined (CPU_XSCALE_CORE3)
void
pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
{
#if 0
struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
#endif
/*
* Clean the source page. Hold the source page's lock for
* the duration of the copy so that no other mappings can
* be created while we have a potentially aliased mapping.
*/
#if 0
/*
* XXX: Not needed while we call cpu_dcache_wbinv_all() in
* pmap_copy_page().
*/
(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
#endif
/*
* Map the pages into the page hook points, copy them, and purge
* the cache for the appropriate page. Invalidate the TLB
* as required.
*/
mtx_lock(&cmtx);
*csrc_pte = L2_S_PROTO | src |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
PTE_SYNC(csrc_pte);
*cdst_pte = L2_S_PROTO | dst |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(csrcp);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bcopy_page(csrcp, cdstp);
mtx_unlock(&cmtx);
cpu_dcache_inv_range(csrcp, PAGE_SIZE);
cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
cpu_l2cache_inv_range(csrcp, PAGE_SIZE);
cpu_l2cache_wbinv_range(cdstp, PAGE_SIZE);
}
void
pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
{
mtx_lock(&cmtx);
*csrc_pte = L2_S_PROTO | a_phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
PTE_SYNC(csrc_pte);
*cdst_pte = L2_S_PROTO | b_phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(csrcp);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
mtx_unlock(&cmtx);
cpu_dcache_inv_range(csrcp + a_offs, cnt);
cpu_dcache_wbinv_range(cdstp + b_offs, cnt);
cpu_l2cache_inv_range(csrcp + a_offs, cnt);
cpu_l2cache_wbinv_range(cdstp + b_offs, cnt);
}
#endif /* ARM_MMU_GENERIC != 0 */
#if ARM_MMU_XSCALE == 1
void
pmap_copy_page_xscale(vm_paddr_t src, vm_paddr_t dst)
{
#if 0
/* XXX: Only needed for pmap_clean_page(), which is commented out. */
struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
#endif
/*
* Clean the source page. Hold the source page's lock for
* the duration of the copy so that no other mappings can
* be created while we have a potentially aliased mapping.
*/
#if 0
/*
* XXX: Not needed while we call cpu_dcache_wbinv_all() in
* pmap_copy_page().
*/
(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
#endif
/*
* Map the pages into the page hook points, copy them, and purge
* the cache for the appropriate page. Invalidate the TLB
* as required.
*/
mtx_lock(&cmtx);
*csrc_pte = L2_S_PROTO | src |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
PTE_SYNC(csrc_pte);
*cdst_pte = L2_S_PROTO | dst |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(csrcp);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bcopy_page(csrcp, cdstp);
mtx_unlock(&cmtx);
xscale_cache_clean_minidata();
}
void
pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
{
mtx_lock(&cmtx);
*csrc_pte = L2_S_PROTO | a_phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
PTE_SYNC(csrc_pte);
*cdst_pte = L2_S_PROTO | b_phys |
L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(csrcp);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
mtx_unlock(&cmtx);
xscale_cache_clean_minidata();
}
#endif /* ARM_MMU_XSCALE == 1 */
void
pmap_copy_page(vm_page_t src, vm_page_t dst)
{
cpu_dcache_wbinv_all();
cpu_l2cache_wbinv_all();
if (_arm_memcpy && PAGE_SIZE >= _min_memcpy_size &&
_arm_memcpy((void *)VM_PAGE_TO_PHYS(dst),
(void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0)
return;
pmap_copy_page_func(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
}
/*
* We have code to do unmapped I/O. However, it isn't quite right and
* causes un-page-aligned I/O to devices to fail (most notably newfs
* or fsck). We give up a little performance to not allow unmapped I/O
* to gain stability.
*/
int unmapped_buf_allowed = 0;
void
pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
vm_offset_t b_offset, int xfersize)
{
vm_page_t a_pg, b_pg;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
cpu_dcache_wbinv_all();
cpu_l2cache_wbinv_all();
while (xfersize > 0) {
a_pg = ma[a_offset >> PAGE_SHIFT];
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
b_pg = mb[b_offset >> PAGE_SHIFT];
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
pmap_copy_page_offs_func(VM_PAGE_TO_PHYS(a_pg), a_pg_offset,
VM_PAGE_TO_PHYS(b_pg), b_pg_offset, cnt);
xfersize -= cnt;
a_offset += cnt;
b_offset += cnt;
}
}
vm_offset_t
pmap_quick_enter_page(vm_page_t m)
{
/*
* Don't bother with a PCPU pageframe, since we don't support
* SMP for anything pre-armv7. Use pmap_kenter() to ensure
* caching is handled correctly for multiple mappings of the
* same physical page.
*/
mtx_assert(&qmap_mtx, MA_NOTOWNED);
mtx_lock(&qmap_mtx);
pmap_kenter(qmap_addr, VM_PAGE_TO_PHYS(m));
return (qmap_addr);
}
void
pmap_quick_remove_page(vm_offset_t addr)
{
KASSERT(addr == qmap_addr,
("pmap_quick_remove_page: invalid address"));
mtx_assert(&qmap_mtx, MA_OWNED);
pmap_kremove(addr);
mtx_unlock(&qmap_mtx);
}
/*
* this routine returns true if a physical page resides
* in the given pmap.
*/
boolean_t
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
pv_entry_t pv;
int loops = 0;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_page_exists_quick: page %p is not managed", m));
rv = FALSE;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
if (pv->pv_pmap == pmap) {
rv = TRUE;
break;
}
loops++;
if (loops >= 16)
break;
}
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* pmap_page_wired_mappings:
*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
pmap_page_wired_mappings(vm_page_t m)
{
pv_entry_t pv;
int count;
count = 0;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (count);
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
if ((pv->pv_flags & PVF_WIRED) != 0)
count++;
rw_wunlock(&pvh_global_lock);
return (count);
}
/*
* This function is advisory.
*/
void
pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
{
}
/*
* pmap_ts_referenced:
*
* Return the count of reference bits for a page, clearing all of them.
*/
int
pmap_ts_referenced(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_ts_referenced: page %p is not managed", m));
return (pmap_clearbit(m, PVF_REF));
}
boolean_t
pmap_is_modified(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_modified: page %p is not managed", m));
if (m->md.pvh_attrs & PVF_MOD)
return (TRUE);
return(FALSE);
}
/*
* Clear the modify bits on the specified physical page.
*/
void
pmap_clear_modify(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_clear_modify: page %p is not managed", m));
VM_OBJECT_ASSERT_WLOCKED(m->object);
KASSERT(!vm_page_xbusied(m),
("pmap_clear_modify: page %p is exclusive busied", m));
/*
* If the page is not PGA_WRITEABLE, then no mappings can be modified.
* If the object containing the page is locked and the page is not
* exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
*/
if ((m->aflags & PGA_WRITEABLE) == 0)
return;
if (m->md.pvh_attrs & PVF_MOD)
pmap_clearbit(m, PVF_MOD);
}
/*
* pmap_is_referenced:
*
* Return whether or not the specified physical page was referenced
* in any physical maps.
*/
boolean_t
pmap_is_referenced(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_referenced: page %p is not managed", m));
return ((m->md.pvh_attrs & PVF_REF) != 0);
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
pmap_remove_write(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_write: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* set by another thread while the object is locked. Thus,
* if PGA_WRITEABLE is clear, no page table entries need updating.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (vm_page_xbusied(m) || (m->aflags & PGA_WRITEABLE) != 0)
pmap_clearbit(m, PVF_WRITE);
}
/*
* perform the pmap work for mincore
*/
int
pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vm_paddr_t pa;
vm_page_t m;
int val;
boolean_t managed;
PMAP_LOCK(pmap);
retry:
l2b = pmap_get_l2_bucket(pmap, addr);
if (l2b == NULL) {
val = 0;
goto out;
}
ptep = &l2b->l2b_kva[l2pte_index(addr)];
pte = *ptep;
if (!l2pte_valid(pte)) {
val = 0;
goto out;
}
val = MINCORE_INCORE;
if (pte & L2_S_PROT_W)
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
managed = false;
pa = l2pte_pa(pte);
m = PHYS_TO_VM_PAGE(pa);
if (m != NULL && !(m->oflags & VPO_UNMANAGED))
managed = true;
if (managed) {
/*
* The ARM pmap tries to maintain a per-mapping
* reference bit. The trouble is that it's kept in
* the PV entry, not the PTE, so it's costly to access
* here. You would need to acquire the pvh global
* lock, call pmap_find_pv(), and introduce a custom
* version of vm_page_pa_tryrelock() that releases and
* reacquires the pvh global lock. In the end, I
* doubt it's worthwhile. This may falsely report
* the given address as referenced.
*/
if ((m->md.pvh_attrs & PVF_REF) != 0)
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
}
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
goto retry;
} else
out:
PA_UNLOCK_COND(*locked_pa);
PMAP_UNLOCK(pmap);
return (val);
}
void
pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
{
}
/*
* Increase the starting virtual address of the given mapping if a
* different alignment might result in more superpage mappings.
*/
void
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
vm_offset_t *addr, vm_size_t size)
{
}
#define BOOTSTRAP_DEBUG
/*
* pmap_map_section:
*
* Create a single section mapping.
*/
void
pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
int prot, int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pd_entry_t fl;
KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2"));
switch (cache) {
case PTE_NOCACHE:
default:
fl = 0;
break;
case PTE_CACHE:
fl = pte_l1_s_cache_mode;
break;
case PTE_PAGETABLE:
fl = pte_l1_s_cache_mode_pt;
break;
}
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
PTE_SYNC(&pde[va >> L1_S_SHIFT]);
}
/*
* pmap_link_l2pt:
*
* Link the L2 page table specified by l2pv.pv_pa into the L1
* page table at the slot for "va".
*/
void
pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
{
pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
u_int slot = va >> L1_S_SHIFT;
proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
#ifdef VERBOSE_INIT_ARM
printf("pmap_link_l2pt: pa=0x%x va=0x%x\n", l2pv->pv_pa, l2pv->pv_va);
#endif
pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
PTE_SYNC(&pde[slot]);
SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
}
/*
* pmap_map_entry
*
* Create a single page mapping.
*/
void
pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t fl;
pt_entry_t *pte;
KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
switch (cache) {
case PTE_NOCACHE:
default:
fl = 0;
break;
case PTE_CACHE:
fl = pte_l2_s_cache_mode;
break;
case PTE_PAGETABLE:
fl = pte_l2_s_cache_mode_pt;
break;
}
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
if (pte == NULL)
panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
pte[l2pte_index(va)] =
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
PTE_SYNC(&pte[l2pte_index(va)]);
}
/*
* pmap_map_chunk:
*
* Map a chunk of memory using the most efficient mappings
* possible (section. large page, small page) into the
* provided L1 and L2 tables at the specified virtual address.
*/
vm_size_t
pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
vm_size_t size, int prot, int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t *pte, f1, f2s, f2l;
vm_size_t resid;
int i;
resid = roundup2(size, PAGE_SIZE);
if (l1pt == 0)
panic("pmap_map_chunk: no L1 table provided");
#ifdef VERBOSE_INIT_ARM
printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x "
"prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
#endif
switch (cache) {
case PTE_NOCACHE:
default:
f1 = 0;
f2l = 0;
f2s = 0;
break;
case PTE_CACHE:
f1 = pte_l1_s_cache_mode;
f2l = pte_l2_l_cache_mode;
f2s = pte_l2_s_cache_mode;
break;
case PTE_PAGETABLE:
f1 = pte_l1_s_cache_mode_pt;
f2l = pte_l2_l_cache_mode_pt;
f2s = pte_l2_s_cache_mode_pt;
break;
}
size = resid;
while (resid > 0) {
/* See if we can use a section mapping. */
if (L1_S_MAPPABLE_P(va, pa, resid)) {
#ifdef VERBOSE_INIT_ARM
printf("S");
#endif
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
L1_S_PROT(PTE_KERNEL, prot) | f1 |
L1_S_DOM(PMAP_DOMAIN_KERNEL);
PTE_SYNC(&pde[va >> L1_S_SHIFT]);
va += L1_S_SIZE;
pa += L1_S_SIZE;
resid -= L1_S_SIZE;
continue;
}
/*
* Ok, we're going to use an L2 table. Make sure
* one is actually in the corresponding L1 slot
* for the current VA.
*/
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
pte = (pt_entry_t *) kernel_pt_lookup(
pde[L1_IDX(va)] & L1_C_ADDR_MASK);
if (pte == NULL)
panic("pmap_map_chunk: can't find L2 table for VA"
"0x%08x", va);
/* See if we can use a L2 large page mapping. */
if (L2_L_MAPPABLE_P(va, pa, resid)) {
#ifdef VERBOSE_INIT_ARM
printf("L");
#endif
for (i = 0; i < 16; i++) {
pte[l2pte_index(va) + i] =
L2_L_PROTO | pa |
L2_L_PROT(PTE_KERNEL, prot) | f2l;
PTE_SYNC(&pte[l2pte_index(va) + i]);
}
va += L2_L_SIZE;
pa += L2_L_SIZE;
resid -= L2_L_SIZE;
continue;
}
/* Use a small page mapping. */
#ifdef VERBOSE_INIT_ARM
printf("P");
#endif
pte[l2pte_index(va)] =
L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
PTE_SYNC(&pte[l2pte_index(va)]);
va += PAGE_SIZE;
pa += PAGE_SIZE;
resid -= PAGE_SIZE;
}
#ifdef VERBOSE_INIT_ARM
printf("\n");
#endif
return (size);
}
void
pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
{
/*
* Remember the memattr in a field that gets used to set the appropriate
* bits in the PTEs as mappings are established.
*/
m->md.pv_memattr = ma;
/*
* It appears that this function can only be called before any mappings
* for the page are established on ARM. If this ever changes, this code
* will need to walk the pv_list and make each of the existing mappings
* uncacheable, being careful to sync caches and PTEs (and maybe
* invalidate TLB?) for any current mapping it modifies.
*/
if (m->md.pv_kva != 0 || TAILQ_FIRST(&m->md.pv_list) != NULL)
panic("Can't change memattr on page with existing mappings");
}