f-stack/dpdk/drivers/common/idpf/idpf_common_rxtx_avx512.c

1629 lines
50 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2023 Intel Corporation
*/
#include <rte_vect.h>
#include "idpf_common_device.h"
#include "idpf_common_rxtx.h"
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
#define IDPF_DESCS_PER_LOOP_AVX 8
#define PKTLEN_SHIFT 10
static __rte_always_inline void
idpf_singleq_rearm_common(struct idpf_rx_queue *rxq)
{
struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
uint16_t rx_id;
int i;
rxdp += rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mp,
(void *)rxp,
IDPF_RXQ_REARM_THRESH) < 0) {
if (rxq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) {
rxp[i] = &rxq->fake_mbuf;
_mm_store_si128((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
__atomic_fetch_add(&rxq->rx_stats.mbuf_alloc_failed,
IDPF_RXQ_REARM_THRESH, __ATOMIC_RELAXED);
return;
}
struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
struct rte_mbuf *mb4, *mb5, *mb6, *mb7;
__m512i dma_addr0_3, dma_addr4_7;
__m512i hdr_room = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
/* Initialize the mbufs in vector, process 8 mbufs in one loop */
for (i = 0; i < IDPF_RXQ_REARM_THRESH;
i += 8, rxp += 8, rxdp += 8) {
__m128i vaddr0, vaddr1, vaddr2, vaddr3;
__m128i vaddr4, vaddr5, vaddr6, vaddr7;
__m256i vaddr0_1, vaddr2_3;
__m256i vaddr4_5, vaddr6_7;
__m512i vaddr0_3, vaddr4_7;
mb0 = rxp[0];
mb1 = rxp[1];
mb2 = rxp[2];
mb3 = rxp[3];
mb4 = rxp[4];
mb5 = rxp[5];
mb6 = rxp[6];
mb7 = rxp[7];
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
offsetof(struct rte_mbuf, buf_addr) + 8);
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr);
vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr);
vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr);
vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr);
/**
* merge 0 & 1, by casting 0 to 256-bit and inserting 1
* into the high lanes. Similarly for 2 & 3, and so on.
*/
vaddr0_1 =
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
vaddr1, 1);
vaddr2_3 =
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
vaddr3, 1);
vaddr4_5 =
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr4),
vaddr5, 1);
vaddr6_7 =
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr6),
vaddr7, 1);
vaddr0_3 =
_mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1),
vaddr2_3, 1);
vaddr4_7 =
_mm512_inserti64x4(_mm512_castsi256_si512(vaddr4_5),
vaddr6_7, 1);
/* convert pa to dma_addr hdr/data */
dma_addr0_3 = _mm512_unpackhi_epi64(vaddr0_3, vaddr0_3);
dma_addr4_7 = _mm512_unpackhi_epi64(vaddr4_7, vaddr4_7);
/* add headroom to pa values */
dma_addr0_3 = _mm512_add_epi64(dma_addr0_3, hdr_room);
dma_addr4_7 = _mm512_add_epi64(dma_addr4_7, hdr_room);
/* flush desc with pa dma_addr */
_mm512_store_si512((__m512i *)&rxdp->read, dma_addr0_3);
_mm512_store_si512((__m512i *)&(rxdp + 4)->read, dma_addr4_7);
}
rxq->rxrearm_start += IDPF_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
IDPF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}
static __rte_always_inline void
idpf_singleq_rearm(struct idpf_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
struct rte_mempool_cache *cache =
rte_mempool_default_cache(rxq->mp, rte_lcore_id());
struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
rxdp += rxq->rxrearm_start;
if (unlikely(cache == NULL))
return idpf_singleq_rearm_common(rxq);
/* We need to pull 'n' more MBUFs into the software ring from mempool
* We inline the mempool function here, so we can vectorize the copy
* from the cache into the shadow ring.
*/
/* Can this be satisfied from the cache? */
if (cache->len < IDPF_RXQ_REARM_THRESH) {
/* No. Backfill the cache first, and then fill from it */
uint32_t req = IDPF_RXQ_REARM_THRESH + (cache->size -
cache->len);
/* How many do we require i.e. number to fill the cache + the request */
int ret = rte_mempool_ops_dequeue_bulk
(rxq->mp, &cache->objs[cache->len], req);
if (ret == 0) {
cache->len += req;
} else {
if (rxq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) {
rxp[i] = &rxq->fake_mbuf;
_mm_storeu_si128((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
__atomic_fetch_add(&rxq->rx_stats.mbuf_alloc_failed,
IDPF_RXQ_REARM_THRESH, __ATOMIC_RELAXED);
return;
}
}
const __m512i iova_offsets = _mm512_set1_epi64(offsetof
(struct rte_mbuf, buf_iova));
const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
/* to shuffle the addresses to correct slots. Values 4-7 will contain
* zeros, so use 7 for a zero-value.
*/
const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
/* Initialize the mbufs in vector, process 8 mbufs in one loop, taking
* from mempool cache and populating both shadow and HW rings
*/
for (i = 0; i < IDPF_RXQ_REARM_THRESH / IDPF_DESCS_PER_LOOP_AVX; i++) {
const __m512i mbuf_ptrs = _mm512_loadu_si512
(&cache->objs[cache->len - IDPF_DESCS_PER_LOOP_AVX]);
_mm512_storeu_si512(rxp, mbuf_ptrs);
const __m512i iova_base_addrs = _mm512_i64gather_epi64
(_mm512_add_epi64(mbuf_ptrs, iova_offsets),
0, /* base */
1 /* scale */);
const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
headroom);
const __m512i iovas0 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 0));
const __m512i iovas1 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 1));
/* permute leaves desc 2-3 addresses in header address slots 0-1
* but these are ignored by driver since header split not
* enabled. Similarly for desc 6 & 7.
*/
const __m512i desc0_1 = _mm512_permutexvar_epi64
(permute_idx,
iovas0);
const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
const __m512i desc4_5 = _mm512_permutexvar_epi64
(permute_idx,
iovas1);
const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
_mm512_storeu_si512((void *)rxdp, desc0_1);
_mm512_storeu_si512((void *)(rxdp + 2), desc2_3);
_mm512_storeu_si512((void *)(rxdp + 4), desc4_5);
_mm512_storeu_si512((void *)(rxdp + 6), desc6_7);
rxp += IDPF_DESCS_PER_LOOP_AVX;
rxdp += IDPF_DESCS_PER_LOOP_AVX;
cache->len -= IDPF_DESCS_PER_LOOP_AVX;
}
rxq->rxrearm_start += IDPF_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
IDPF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}
#define IDPF_RX_LEN_MASK 0x80808080
static __rte_always_inline uint16_t
_idpf_singleq_recv_raw_pkts_avx512(struct idpf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
const uint32_t *type_table = rxq->adapter->ptype_tbl;
const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
rxq->mbuf_initializer);
struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
rxdp += rxq->rx_tail;
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to IDPF_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IDPF_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > IDPF_RXQ_REARM_THRESH)
idpf_singleq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if ((rxdp->flex_nic_wb.status_error0 &
rte_cpu_to_le_32(1 << VIRTCHNL2_RX_FLEX_DESC_STATUS0_DD_S)) == 0)
return 0;
/* 8 packets DD mask, LSB in each 32-bit value */
const __m256i dd_check = _mm256_set1_epi32(1);
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
const __m512i shuf_msk =
_mm512_set_epi32
(/* 1st descriptor */
0xFFFFFFFF, /* rss set as unknown */
0xFFFF0504, /* vlan_macip set as unknown */
/* octet 15~14, 16 bits data_len */
0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 2nd descriptor */
0xFFFFFFFF, /* rss set as unknown */
0xFFFF0504, /* vlan_macip set as unknown */
/* octet 15~14, 16 bits data_len */
0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 3rd descriptor */
0xFFFFFFFF, /* rss set as unknown */
0xFFFF0504, /* vlan_macip set as unknown */
/* octet 15~14, 16 bits data_len */
0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 4th descriptor */
0xFFFFFFFF, /* rss set as unknown */
0xFFFF0504, /* vlan_macip set as unknown */
/* octet 15~14, 16 bits data_len */
0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF /* pkt_type set as unknown */
);
/**
* compile-time check the shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += IDPF_DESCS_PER_LOOP_AVX,
rxdp += IDPF_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256
((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m512i raw_desc0_3, raw_desc4_7;
const __m128i raw_desc7 =
_mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 =
_mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 =
_mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 =
_mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 =
_mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 =
_mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 =
_mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 =
_mm_load_si128((void *)(rxdp + 0));
raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
/**
* convert descriptors 4-7 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m512i len4_7 = _mm512_slli_epi32(raw_desc4_7,
PKTLEN_SHIFT);
const __m512i desc4_7 = _mm512_mask_blend_epi16(IDPF_RX_LEN_MASK,
raw_desc4_7,
len4_7);
__m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
/**
* to get packet types, shift 64-bit values down 30 bits
* and so ptype is in lower 8-bits in each
*/
const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 16);
const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 16);
const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 0);
const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 16);
const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 0);
const __m512i ptype4_7 = _mm512_set_epi32
(0, 0, 0, type_table[ptype7],
0, 0, 0, type_table[ptype6],
0, 0, 0, type_table[ptype5],
0, 0, 0, type_table[ptype4]);
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
/**
* convert descriptors 0-3 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m512i len0_3 = _mm512_slli_epi32(raw_desc0_3,
PKTLEN_SHIFT);
const __m512i desc0_3 = _mm512_mask_blend_epi16(IDPF_RX_LEN_MASK,
raw_desc0_3,
len0_3);
__m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
/* get the packet types */
const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 16);
const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 16);
const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 0);
const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 16);
const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 0);
const __m512i ptype0_3 = _mm512_set_epi32
(0, 0, 0, type_table[ptype3],
0, 0, 0, type_table[ptype2],
0, 0, 0, type_table[ptype1],
0, 0, 0, type_table[ptype0]);
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
/**
* use permute/extract to get status content
* After the operations, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
/* merge the status bits into one register */
const __m512i status_permute_msk = _mm512_set_epi32
(0, 0, 0, 0,
0, 0, 0, 0,
22, 30, 6, 14,
18, 26, 2, 10);
const __m512i raw_status0_7 = _mm512_permutex2var_epi32
(raw_desc4_7, status_permute_msk, raw_desc0_3);
__m256i status0_7 = _mm512_extracti64x4_epi64
(raw_status0_7, 0);
/* now do flag manipulation */
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value.
* We want to extract these, and merge them with the mbuf init
* data so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend
* for each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
rearm6 = _mm256_permute2f128_si256(mbuf_init, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(mbuf_init, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(mbuf_init, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(mbuf_init, mb0_1, 0x20);
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
rearm0);
rearm7 = _mm256_blend_epi32(mbuf_init, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(mbuf_init, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(mbuf_init, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(mbuf_init, mb0_1, 0xF0);
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
rearm1);
/* perform dd_check */
status0_7 = _mm256_and_si256(status0_7, dd_check);
status0_7 = _mm256_packs_epi32(status0_7,
_mm256_setzero_si256());
uint64_t burst = rte_popcount64
(_mm_cvtsi128_si64
(_mm256_extracti128_si256
(status0_7, 1)));
burst += rte_popcount64
(_mm_cvtsi128_si64
(_mm256_castsi256_si128(status0_7)));
received += burst;
if (burst != IDPF_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
rxq->rx_tail--;
received--;
}
rxq->rxrearm_nb += received;
return received;
}
/**
* Notice:
* - nb_pkts < IDPF_DESCS_PER_LOOP, just return no packet
*/
uint16_t
idpf_dp_singleq_recv_pkts_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _idpf_singleq_recv_raw_pkts_avx512(rx_queue, rx_pkts, nb_pkts);
}
static __rte_always_inline void
idpf_splitq_rearm_common(struct idpf_rx_queue *rx_bufq)
{
struct rte_mbuf **rxp = &rx_bufq->sw_ring[rx_bufq->rxrearm_start];
volatile union virtchnl2_rx_buf_desc *rxdp = rx_bufq->rx_ring;
uint16_t rx_id;
int i;
rxdp += rx_bufq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rx_bufq->mp,
(void *)rxp,
IDPF_RXQ_REARM_THRESH) < 0) {
if (rx_bufq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >=
rx_bufq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) {
rxp[i] = &rx_bufq->fake_mbuf;
_mm_store_si128((__m128i *)&rxdp[i],
dma_addr0);
}
}
__atomic_fetch_add(&rx_bufq->rx_stats.mbuf_alloc_failed,
IDPF_RXQ_REARM_THRESH, __ATOMIC_RELAXED);
return;
}
/* Initialize the mbufs in vector, process 8 mbufs in one loop */
for (i = 0; i < IDPF_RXQ_REARM_THRESH;
i += 8, rxp += 8, rxdp += 8) {
rxdp[0].split_rd.pkt_addr = rxp[0]->buf_iova + RTE_PKTMBUF_HEADROOM;
rxdp[1].split_rd.pkt_addr = rxp[1]->buf_iova + RTE_PKTMBUF_HEADROOM;
rxdp[2].split_rd.pkt_addr = rxp[2]->buf_iova + RTE_PKTMBUF_HEADROOM;
rxdp[3].split_rd.pkt_addr = rxp[3]->buf_iova + RTE_PKTMBUF_HEADROOM;
rxdp[4].split_rd.pkt_addr = rxp[4]->buf_iova + RTE_PKTMBUF_HEADROOM;
rxdp[5].split_rd.pkt_addr = rxp[5]->buf_iova + RTE_PKTMBUF_HEADROOM;
rxdp[6].split_rd.pkt_addr = rxp[6]->buf_iova + RTE_PKTMBUF_HEADROOM;
rxdp[7].split_rd.pkt_addr = rxp[7]->buf_iova + RTE_PKTMBUF_HEADROOM;
}
rx_bufq->rxrearm_start += IDPF_RXQ_REARM_THRESH;
if (rx_bufq->rxrearm_start >= rx_bufq->nb_rx_desc)
rx_bufq->rxrearm_start = 0;
rx_bufq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rx_bufq->rxrearm_start == 0) ?
(rx_bufq->nb_rx_desc - 1) : (rx_bufq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
IDPF_PCI_REG_WRITE(rx_bufq->qrx_tail, rx_id);
}
static __rte_always_inline void
idpf_splitq_rearm(struct idpf_rx_queue *rx_bufq)
{
int i;
uint16_t rx_id;
volatile union virtchnl2_rx_buf_desc *rxdp = rx_bufq->rx_ring;
struct rte_mempool_cache *cache =
rte_mempool_default_cache(rx_bufq->mp, rte_lcore_id());
struct rte_mbuf **rxp = &rx_bufq->sw_ring[rx_bufq->rxrearm_start];
rxdp += rx_bufq->rxrearm_start;
if (unlikely(!cache))
return idpf_splitq_rearm_common(rx_bufq);
/* We need to pull 'n' more MBUFs into the software ring from mempool
* We inline the mempool function here, so we can vectorize the copy
* from the cache into the shadow ring.
*/
/* Can this be satisfied from the cache? */
if (cache->len < IDPF_RXQ_REARM_THRESH) {
/* No. Backfill the cache first, and then fill from it */
uint32_t req = IDPF_RXQ_REARM_THRESH + (cache->size -
cache->len);
/* How many do we require i.e. number to fill the cache + the request */
int ret = rte_mempool_ops_dequeue_bulk
(rx_bufq->mp, &cache->objs[cache->len], req);
if (ret == 0) {
cache->len += req;
} else {
if (rx_bufq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >=
rx_bufq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) {
rxp[i] = &rx_bufq->fake_mbuf;
_mm_storeu_si128((__m128i *)&rxdp[i],
dma_addr0);
}
}
__atomic_fetch_add(&rx_bufq->rx_stats.mbuf_alloc_failed,
IDPF_RXQ_REARM_THRESH, __ATOMIC_RELAXED);
return;
}
}
const __m512i iova_offsets = _mm512_set1_epi64(offsetof
(struct rte_mbuf, buf_iova));
const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
/* Initialize the mbufs in vector, process 8 mbufs in one loop, taking
* from mempool cache and populating both shadow and HW rings
*/
for (i = 0; i < IDPF_RXQ_REARM_THRESH / IDPF_DESCS_PER_LOOP_AVX; i++) {
const __m512i mbuf_ptrs = _mm512_loadu_si512
(&cache->objs[cache->len - IDPF_DESCS_PER_LOOP_AVX]);
_mm512_storeu_si512(rxp, mbuf_ptrs);
const __m512i iova_base_addrs = _mm512_i64gather_epi64
(_mm512_add_epi64(mbuf_ptrs, iova_offsets),
0, /* base */
1 /* scale */);
const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
headroom);
const __m512i iova_addrs_1 = _mm512_bsrli_epi128(iova_addrs, 8);
rxdp[0].split_rd.pkt_addr =
_mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs, 0));
rxdp[1].split_rd.pkt_addr =
_mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs_1, 0));
rxdp[2].split_rd.pkt_addr =
_mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs, 1));
rxdp[3].split_rd.pkt_addr =
_mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs_1, 1));
rxdp[4].split_rd.pkt_addr =
_mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs, 2));
rxdp[5].split_rd.pkt_addr =
_mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs_1, 2));
rxdp[6].split_rd.pkt_addr =
_mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs, 3));
rxdp[7].split_rd.pkt_addr =
_mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs_1, 3));
rxp += IDPF_DESCS_PER_LOOP_AVX;
rxdp += IDPF_DESCS_PER_LOOP_AVX;
cache->len -= IDPF_DESCS_PER_LOOP_AVX;
}
rx_bufq->rxrearm_start += IDPF_RXQ_REARM_THRESH;
if (rx_bufq->rxrearm_start >= rx_bufq->nb_rx_desc)
rx_bufq->rxrearm_start = 0;
rx_bufq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rx_bufq->rxrearm_start == 0) ?
(rx_bufq->nb_rx_desc - 1) : (rx_bufq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
IDPF_PCI_REG_WRITE(rx_bufq->qrx_tail, rx_id);
}
static __rte_always_inline uint16_t
_idpf_splitq_recv_raw_pkts_avx512(struct idpf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
const uint32_t *type_table = rxq->adapter->ptype_tbl;
const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
rxq->bufq2->mbuf_initializer);
/* only handle bufq2 here */
struct rte_mbuf **sw_ring = &rxq->bufq2->sw_ring[rxq->rx_tail];
volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
rxdp += rxq->rx_tail;
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to IDPF_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IDPF_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->bufq2->rxrearm_nb > IDPF_RXQ_REARM_THRESH)
idpf_splitq_rearm(rxq->bufq2);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (((rxdp->flex_adv_nic_3_wb.pktlen_gen_bufq_id &
VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_M) >>
VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_S) != rxq->expected_gen_id)
return 0;
const __m512i dd_check = _mm512_set1_epi64(1);
const __m512i gen_check = _mm512_set1_epi64((uint64_t)1<<46);
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
const __m512i shuf_msk =
_mm512_set_epi32
(/* 1st descriptor */
0xFFFFFFFF, /* octet 4~7, 32bits rss */
0xFFFF0504, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 2nd descriptor */
0xFFFFFFFF, /* octet 4~7, 32bits rss */
0xFFFF0504, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 3rd descriptor */
0xFFFFFFFF, /* octet 4~7, 32bits rss */
0xFFFF0504, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 4th descriptor */
0xFFFFFFFF, /* octet 4~7, 32bits rss */
0xFFFF0504, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF /* pkt_type set as unknown */
);
/**
* compile-time check the above crc and shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += IDPF_DESCS_PER_LOOP_AVX,
rxdp += IDPF_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256
((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m512i raw_desc0_3, raw_desc4_7;
const __m128i raw_desc7 =
_mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 =
_mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 =
_mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 =
_mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 =
_mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 =
_mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 =
_mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 =
_mm_load_si128((void *)(rxdp + 0));
raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
/**
* convert descriptors 4-7 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m512i len_mask = _mm512_set_epi32(0xffffffff, 0xffffffff,
0xffff3fff, 0xffffffff,
0xffffffff, 0xffffffff,
0xffff3fff, 0xffffffff,
0xffffffff, 0xffffffff,
0xffff3fff, 0xffffffff,
0xffffffff, 0xffffffff,
0xffff3fff, 0xffffffff);
const __m512i desc4_7 = _mm512_and_epi32(raw_desc4_7, len_mask);
__m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
/**
* to get packet types, shift 64-bit values down 30 bits
* and so ptype is in lower 8-bits in each
*/
const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 16);
const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 16);
const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 0);
const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 16);
const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 0);
const __m512i ptype4_7 = _mm512_set_epi32
(0, 0, 0, type_table[ptype7],
0, 0, 0, type_table[ptype6],
0, 0, 0, type_table[ptype5],
0, 0, 0, type_table[ptype4]);
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
/**
* convert descriptors 0-3 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m512i desc0_3 = _mm512_and_epi32(raw_desc0_3, len_mask);
__m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
/* get the packet types */
const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 16);
const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 16);
const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 0);
const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 16);
const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 0);
const __m512i ptype0_3 = _mm512_set_epi32
(0, 0, 0, type_table[ptype3],
0, 0, 0, type_table[ptype2],
0, 0, 0, type_table[ptype1],
0, 0, 0, type_table[ptype0]);
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
/**
* use permute/extract to get status and generation bit content
* After the operations, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
const __m512i dd_permute_msk = _mm512_set_epi64
(11, 15, 3, 7, 9, 13, 1, 5);
const __m512i status0_7 = _mm512_permutex2var_epi64
(raw_desc4_7, dd_permute_msk, raw_desc0_3);
const __m512i gen_permute_msk = _mm512_set_epi64
(10, 14, 2, 6, 8, 12, 0, 4);
const __m512i raw_gen0_7 = _mm512_permutex2var_epi64
(raw_desc4_7, gen_permute_msk, raw_desc0_3);
/* now do flag manipulation */
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init
* data so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend
* for each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
rearm6 = _mm256_permute2f128_si256(mbuf_init, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(mbuf_init, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(mbuf_init, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(mbuf_init, mb0_1, 0x20);
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
rearm0);
rearm7 = _mm256_blend_epi32(mbuf_init, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(mbuf_init, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(mbuf_init, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(mbuf_init, mb0_1, 0xF0);
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
rearm1);
const __mmask8 dd_mask = _mm512_cmpeq_epi64_mask(
_mm512_and_epi64(status0_7, dd_check), dd_check);
const __mmask8 gen_mask = _mm512_cmpeq_epi64_mask(
_mm512_and_epi64(raw_gen0_7, gen_check),
_mm512_set1_epi64((uint64_t)rxq->expected_gen_id << 46));
const __mmask8 recv_mask = _kand_mask8(dd_mask, gen_mask);
uint16_t burst = rte_popcount32(_cvtmask8_u32(recv_mask));
received += burst;
if (burst != IDPF_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->expected_gen_id ^= ((rxq->rx_tail & rxq->nb_rx_desc) != 0);
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
rxq->rx_tail--;
received--;
}
rxq->bufq2->rxrearm_nb += received;
return received;
}
/* only bufq2 can receive pkts */
uint16_t
idpf_dp_splitq_recv_pkts_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _idpf_splitq_recv_raw_pkts_avx512(rx_queue, rx_pkts,
nb_pkts);
}
static __rte_always_inline int
idpf_tx_singleq_free_bufs_avx512(struct idpf_tx_queue *txq)
{
struct idpf_tx_vec_entry *txep;
uint32_t n;
uint32_t i;
int nb_free = 0;
struct rte_mbuf *m, *free[txq->rs_thresh];
/* check DD bits on threshold descriptor */
if ((txq->tx_ring[txq->next_dd].qw1 &
rte_cpu_to_le_64(IDPF_TXD_QW1_DTYPE_M)) !=
rte_cpu_to_le_64(IDPF_TX_DESC_DTYPE_DESC_DONE))
return 0;
n = txq->rs_thresh;
/* first buffer to free from S/W ring is at index
* tx_next_dd - (tx_rs_thresh-1)
*/
txep = (void *)txq->sw_ring;
txep += txq->next_dd - (n - 1);
if (txq->offloads & IDPF_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
struct rte_mempool *mp = txep[0].mbuf->pool;
struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
rte_lcore_id());
void **cache_objs;
if (cache == NULL || cache->len == 0)
goto normal;
cache_objs = &cache->objs[cache->len];
if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
goto done;
}
/* The cache follows the following algorithm
* 1. Add the objects to the cache
* 2. Anything greater than the cache min value (if it crosses the
* cache flush threshold) is flushed to the ring.
*/
/* Add elements back into the cache */
uint32_t copied = 0;
/* n is multiple of 32 */
while (copied < n) {
#ifdef RTE_ARCH_64
const __m512i a = _mm512_loadu_si512(&txep[copied]);
const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
_mm512_storeu_si512(&cache_objs[copied], a);
_mm512_storeu_si512(&cache_objs[copied + 8], b);
_mm512_storeu_si512(&cache_objs[copied + 16], c);
_mm512_storeu_si512(&cache_objs[copied + 24], d);
#else
const __m512i a = _mm512_loadu_si512(&txep[copied]);
const __m512i b = _mm512_loadu_si512(&txep[copied + 16]);
_mm512_storeu_si512(&cache_objs[copied], a);
_mm512_storeu_si512(&cache_objs[copied + 16], b);
#endif
copied += 32;
}
cache->len += n;
if (cache->len >= cache->flushthresh) {
rte_mempool_ops_enqueue_bulk(mp,
&cache->objs[cache->size],
cache->len - cache->size);
cache->len = cache->size;
}
goto done;
}
normal:
m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
if (likely(m != NULL)) {
free[0] = m;
nb_free = 1;
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (likely(m != NULL)) {
if (likely(m->pool == free[0]->pool)) {
free[nb_free++] = m;
} else {
rte_mempool_put_bulk(free[0]->pool,
(void *)free,
nb_free);
free[0] = m;
nb_free = 1;
}
}
}
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
} else {
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (m != NULL)
rte_mempool_put(m->pool, m);
}
}
done:
/* buffers were freed, update counters */
txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
if (txq->next_dd >= txq->nb_tx_desc)
txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
return txq->rs_thresh;
}
static __rte_always_inline void
tx_backlog_entry_avx512(struct idpf_tx_vec_entry *txep,
struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
int i;
for (i = 0; i < (int)nb_pkts; ++i)
txep[i].mbuf = tx_pkts[i];
}
static __rte_always_inline void
idpf_singleq_vtx1(volatile struct idpf_base_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw =
(IDPF_TX_DESC_DTYPE_DATA |
((uint64_t)flags << IDPF_TXD_QW1_CMD_S) |
((uint64_t)pkt->data_len << IDPF_TXD_QW1_TX_BUF_SZ_S));
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_iova + pkt->data_off);
_mm_storeu_si128((__m128i *)txdp, descriptor);
}
#define IDPF_TX_LEN_MASK 0xAA
#define IDPF_TX_OFF_MASK 0x55
static __rte_always_inline void
idpf_singleq_vtx(volatile struct idpf_base_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
const uint64_t hi_qw_tmpl = (IDPF_TX_DESC_DTYPE_DATA |
((uint64_t)flags << IDPF_TXD_QW1_CMD_S));
/* if unaligned on 32-bit boundary, do one to align */
if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
idpf_singleq_vtx1(txdp, *pkt, flags);
nb_pkts--, txdp++, pkt++;
}
/* do 4 at a time while possible, in bursts */
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
uint64_t hi_qw3 =
hi_qw_tmpl |
((uint64_t)pkt[3]->data_len <<
IDPF_TXD_QW1_TX_BUF_SZ_S);
uint64_t hi_qw2 =
hi_qw_tmpl |
((uint64_t)pkt[2]->data_len <<
IDPF_TXD_QW1_TX_BUF_SZ_S);
uint64_t hi_qw1 =
hi_qw_tmpl |
((uint64_t)pkt[1]->data_len <<
IDPF_TXD_QW1_TX_BUF_SZ_S);
uint64_t hi_qw0 =
hi_qw_tmpl |
((uint64_t)pkt[0]->data_len <<
IDPF_TXD_QW1_TX_BUF_SZ_S);
__m512i desc0_3 =
_mm512_set_epi64
(hi_qw3,
pkt[3]->buf_iova + pkt[3]->data_off,
hi_qw2,
pkt[2]->buf_iova + pkt[2]->data_off,
hi_qw1,
pkt[1]->buf_iova + pkt[1]->data_off,
hi_qw0,
pkt[0]->buf_iova + pkt[0]->data_off);
_mm512_storeu_si512((void *)txdp, desc0_3);
}
/* do any last ones */
while (nb_pkts) {
idpf_singleq_vtx1(txdp, *pkt, flags);
txdp++, pkt++, nb_pkts--;
}
}
static __rte_always_inline uint16_t
idpf_singleq_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct idpf_tx_queue *txq = tx_queue;
volatile struct idpf_base_tx_desc *txdp;
struct idpf_tx_vec_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = IDPF_TX_DESC_CMD_EOP;
uint64_t rs = IDPF_TX_DESC_CMD_RS | flags;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
if (txq->nb_free < txq->free_thresh)
idpf_tx_singleq_free_bufs_avx512(txq);
nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
nb_commit = nb_pkts;
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = (void *)txq->sw_ring;
txep += tx_id;
txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry_avx512(txep, tx_pkts, n);
idpf_singleq_vtx(txdp, tx_pkts, n - 1, flags);
tx_pkts += (n - 1);
txdp += (n - 1);
idpf_singleq_vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = (void *)txq->sw_ring;
txep += tx_id;
}
tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
idpf_singleq_vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->next_rs) {
txq->tx_ring[txq->next_rs].qw1 |=
rte_cpu_to_le_64(((uint64_t)IDPF_TX_DESC_CMD_RS) <<
IDPF_TXD_QW1_CMD_S);
txq->next_rs =
(uint16_t)(txq->next_rs + txq->rs_thresh);
}
txq->tx_tail = tx_id;
IDPF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
static __rte_always_inline uint16_t
idpf_singleq_xmit_pkts_vec_avx512_cmn(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct idpf_tx_queue *txq = tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
ret = idpf_singleq_xmit_fixed_burst_vec_avx512(tx_queue, &tx_pkts[nb_tx],
num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
uint16_t
idpf_dp_singleq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
return idpf_singleq_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts);
}
static __rte_always_inline void
idpf_splitq_scan_cq_ring(struct idpf_tx_queue *cq)
{
struct idpf_splitq_tx_compl_desc *compl_ring;
struct idpf_tx_queue *txq;
uint16_t genid, txq_qid, cq_qid, i;
uint8_t ctype;
cq_qid = cq->tx_tail;
for (i = 0; i < IDPD_TXQ_SCAN_CQ_THRESH; i++) {
if (cq_qid == cq->nb_tx_desc) {
cq_qid = 0;
cq->expected_gen_id ^= 1;
}
compl_ring = &cq->compl_ring[cq_qid];
genid = (compl_ring->qid_comptype_gen &
rte_cpu_to_le_64(IDPF_TXD_COMPLQ_GEN_M)) >> IDPF_TXD_COMPLQ_GEN_S;
if (genid != cq->expected_gen_id)
break;
ctype = (rte_le_to_cpu_16(compl_ring->qid_comptype_gen) &
IDPF_TXD_COMPLQ_COMPL_TYPE_M) >> IDPF_TXD_COMPLQ_COMPL_TYPE_S;
txq_qid = (rte_le_to_cpu_16(compl_ring->qid_comptype_gen) &
IDPF_TXD_COMPLQ_QID_M) >> IDPF_TXD_COMPLQ_QID_S;
txq = cq->txqs[txq_qid - cq->tx_start_qid];
txq->ctype[ctype]++;
cq_qid++;
}
cq->tx_tail = cq_qid;
}
static __rte_always_inline int
idpf_tx_splitq_free_bufs_avx512(struct idpf_tx_queue *txq)
{
struct idpf_tx_vec_entry *txep;
uint32_t n;
uint32_t i;
int nb_free = 0;
struct rte_mbuf *m, *free[txq->rs_thresh];
n = txq->rs_thresh;
/* first buffer to free from S/W ring is at index
* tx_next_dd - (tx_rs_thresh-1)
*/
txep = (void *)txq->sw_ring;
txep += txq->next_dd - (n - 1);
if (txq->offloads & IDPF_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
struct rte_mempool *mp = txep[0].mbuf->pool;
struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
rte_lcore_id());
void **cache_objs;
if (!cache || cache->len == 0)
goto normal;
cache_objs = &cache->objs[cache->len];
if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
goto done;
}
/* The cache follows the following algorithm
* 1. Add the objects to the cache
* 2. Anything greater than the cache min value (if it crosses the
* cache flush threshold) is flushed to the ring.
*/
/* Add elements back into the cache */
uint32_t copied = 0;
/* n is multiple of 32 */
while (copied < n) {
const __m512i a = _mm512_loadu_si512(&txep[copied]);
const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
_mm512_storeu_si512(&cache_objs[copied], a);
_mm512_storeu_si512(&cache_objs[copied + 8], b);
_mm512_storeu_si512(&cache_objs[copied + 16], c);
_mm512_storeu_si512(&cache_objs[copied + 24], d);
copied += 32;
}
cache->len += n;
if (cache->len >= cache->flushthresh) {
rte_mempool_ops_enqueue_bulk(mp,
&cache->objs[cache->size],
cache->len - cache->size);
cache->len = cache->size;
}
goto done;
}
normal:
m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
if (likely(m)) {
free[0] = m;
nb_free = 1;
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (likely(m)) {
if (likely(m->pool == free[0]->pool)) {
free[nb_free++] = m;
} else {
rte_mempool_put_bulk(free[0]->pool,
(void *)free,
nb_free);
free[0] = m;
nb_free = 1;
}
}
}
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
} else {
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (m)
rte_mempool_put(m->pool, m);
}
}
done:
/* buffers were freed, update counters */
txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
if (txq->next_dd >= txq->nb_tx_desc)
txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
txq->ctype[IDPF_TXD_COMPLT_RS] -= txq->rs_thresh;
return txq->rs_thresh;
}
#define IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S 48
static __rte_always_inline void
idpf_splitq_vtx1(volatile struct idpf_flex_tx_sched_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw =
(IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE |
((uint64_t)flags) |
((uint64_t)pkt->data_len << IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S));
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_iova + pkt->data_off);
_mm_storeu_si128((__m128i *)txdp, descriptor);
}
static __rte_always_inline void
idpf_splitq_vtx(volatile struct idpf_flex_tx_sched_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
const uint64_t hi_qw_tmpl = (IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE |
((uint64_t)flags));
/* if unaligned on 32-bit boundary, do one to align */
if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
idpf_splitq_vtx1(txdp, *pkt, flags);
nb_pkts--, txdp++, pkt++;
}
/* do 4 at a time while possible, in bursts */
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
uint64_t hi_qw3 =
hi_qw_tmpl |
((uint64_t)pkt[3]->data_len <<
IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S);
uint64_t hi_qw2 =
hi_qw_tmpl |
((uint64_t)pkt[2]->data_len <<
IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S);
uint64_t hi_qw1 =
hi_qw_tmpl |
((uint64_t)pkt[1]->data_len <<
IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S);
uint64_t hi_qw0 =
hi_qw_tmpl |
((uint64_t)pkt[0]->data_len <<
IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S);
__m512i desc0_3 =
_mm512_set_epi64
(hi_qw3,
pkt[3]->buf_iova + pkt[3]->data_off,
hi_qw2,
pkt[2]->buf_iova + pkt[2]->data_off,
hi_qw1,
pkt[1]->buf_iova + pkt[1]->data_off,
hi_qw0,
pkt[0]->buf_iova + pkt[0]->data_off);
_mm512_storeu_si512((void *)txdp, desc0_3);
}
/* do any last ones */
while (nb_pkts) {
idpf_splitq_vtx1(txdp, *pkt, flags);
txdp++, pkt++, nb_pkts--;
}
}
static __rte_always_inline uint16_t
idpf_splitq_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct idpf_tx_queue *txq = (struct idpf_tx_queue *)tx_queue;
volatile struct idpf_flex_tx_sched_desc *txdp;
struct idpf_tx_vec_entry *txep;
uint16_t n, nb_commit, tx_id;
/* bit2 is reserved and must be set to 1 according to Spec */
uint64_t cmd_dtype = IDPF_TXD_FLEX_FLOW_CMD_EOP;
tx_id = txq->tx_tail;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->desc_ring[tx_id];
txep = (void *)txq->sw_ring;
txep += tx_id;
txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry_avx512(txep, tx_pkts, n);
idpf_splitq_vtx((void *)txdp, tx_pkts, n - 1, cmd_dtype);
tx_pkts += (n - 1);
txdp += (n - 1);
idpf_splitq_vtx1((void *)txdp, *tx_pkts++, cmd_dtype);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->desc_ring[tx_id];
txep = (void *)txq->sw_ring;
txep += tx_id;
}
tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
idpf_splitq_vtx((void *)txdp, tx_pkts, nb_commit, cmd_dtype);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->next_rs)
txq->next_rs =
(uint16_t)(txq->next_rs + txq->rs_thresh);
txq->tx_tail = tx_id;
IDPF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
static __rte_always_inline uint16_t
idpf_splitq_xmit_pkts_vec_avx512_cmn(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct idpf_tx_queue *txq = (struct idpf_tx_queue *)tx_queue;
uint16_t nb_tx = 0;
while (nb_pkts) {
uint16_t ret, num;
idpf_splitq_scan_cq_ring(txq->complq);
if (txq->ctype[IDPF_TXD_COMPLT_RS] > txq->free_thresh)
idpf_tx_splitq_free_bufs_avx512(txq);
num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
ret = idpf_splitq_xmit_fixed_burst_vec_avx512(tx_queue,
&tx_pkts[nb_tx],
num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
uint16_t
idpf_dp_splitq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
return idpf_splitq_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts);
}
static inline void
idpf_tx_release_mbufs_avx512(struct idpf_tx_queue *txq)
{
unsigned int i;
const uint16_t max_desc = (uint16_t)(txq->nb_tx_desc - 1);
struct idpf_tx_vec_entry *swr = (void *)txq->sw_ring;
if (txq->sw_ring == NULL || txq->nb_free == max_desc)
return;
i = txq->next_dd - txq->rs_thresh + 1;
if (txq->tx_tail < i) {
for (; i < txq->nb_tx_desc; i++) {
rte_pktmbuf_free_seg(swr[i].mbuf);
swr[i].mbuf = NULL;
}
i = 0;
}
for (; i < txq->tx_tail; i++) {
rte_pktmbuf_free_seg(swr[i].mbuf);
swr[i].mbuf = NULL;
}
}
static const struct idpf_txq_ops avx512_tx_vec_ops = {
.release_mbufs = idpf_tx_release_mbufs_avx512,
};
int __rte_cold
idpf_qc_tx_vec_avx512_setup(struct idpf_tx_queue *txq)
{
if (!txq)
return 0;
txq->ops = &avx512_tx_vec_ops;
return 0;
}