f-stack/freebsd/amd64/vmm/io/vhpet.c

760 lines
19 KiB
C

/*-
* Copyright (c) 2013 Tycho Nightingale <tycho.nightingale@pluribusnetworks.com>
* Copyright (c) 2013 Neel Natu <neel@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <dev/acpica/acpi_hpet.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include "vmm_lapic.h"
#include "vatpic.h"
#include "vioapic.h"
#include "vhpet.h"
#include "vmm_ktr.h"
static MALLOC_DEFINE(M_VHPET, "vhpet", "bhyve virtual hpet");
#define HPET_FREQ 10000000 /* 10.0 Mhz */
#define FS_PER_S 1000000000000000ul
/* Timer N Configuration and Capabilities Register */
#define HPET_TCAP_RO_MASK (HPET_TCAP_INT_ROUTE | \
HPET_TCAP_FSB_INT_DEL | \
HPET_TCAP_SIZE | \
HPET_TCAP_PER_INT)
/*
* HPET requires at least 3 timers and up to 32 timers per block.
*/
#define VHPET_NUM_TIMERS 8
CTASSERT(VHPET_NUM_TIMERS >= 3 && VHPET_NUM_TIMERS <= 32);
struct vhpet_callout_arg {
struct vhpet *vhpet;
int timer_num;
};
struct vhpet {
struct vm *vm;
struct mtx mtx;
sbintime_t freq_sbt;
uint64_t config; /* Configuration */
uint64_t isr; /* Interrupt Status */
uint32_t countbase; /* HPET counter base value */
sbintime_t countbase_sbt; /* uptime corresponding to base value */
struct {
uint64_t cap_config; /* Configuration */
uint64_t msireg; /* FSB interrupt routing */
uint32_t compval; /* Comparator */
uint32_t comprate;
struct callout callout;
sbintime_t callout_sbt; /* time when counter==compval */
struct vhpet_callout_arg arg;
} timer[VHPET_NUM_TIMERS];
};
#define VHPET_LOCK(vhp) mtx_lock(&((vhp)->mtx))
#define VHPET_UNLOCK(vhp) mtx_unlock(&((vhp)->mtx))
static void vhpet_start_timer(struct vhpet *vhpet, int n, uint32_t counter,
sbintime_t now);
static uint64_t
vhpet_capabilities(void)
{
uint64_t cap = 0;
cap |= 0x8086 << 16; /* vendor id */
cap |= (VHPET_NUM_TIMERS - 1) << 8; /* number of timers */
cap |= 1; /* revision */
cap &= ~HPET_CAP_COUNT_SIZE; /* 32-bit timer */
cap &= 0xffffffff;
cap |= (FS_PER_S / HPET_FREQ) << 32; /* tick period in fs */
return (cap);
}
static __inline bool
vhpet_counter_enabled(struct vhpet *vhpet)
{
return ((vhpet->config & HPET_CNF_ENABLE) ? true : false);
}
static __inline bool
vhpet_timer_msi_enabled(struct vhpet *vhpet, int n)
{
const uint64_t msi_enable = HPET_TCAP_FSB_INT_DEL | HPET_TCNF_FSB_EN;
if ((vhpet->timer[n].cap_config & msi_enable) == msi_enable)
return (true);
else
return (false);
}
static __inline int
vhpet_timer_ioapic_pin(struct vhpet *vhpet, int n)
{
/*
* If the timer is configured to use MSI then treat it as if the
* timer is not connected to the ioapic.
*/
if (vhpet_timer_msi_enabled(vhpet, n))
return (0);
return ((vhpet->timer[n].cap_config & HPET_TCNF_INT_ROUTE) >> 9);
}
static uint32_t
vhpet_counter(struct vhpet *vhpet, sbintime_t *nowptr)
{
uint32_t val;
sbintime_t now, delta;
val = vhpet->countbase;
if (vhpet_counter_enabled(vhpet)) {
now = sbinuptime();
delta = now - vhpet->countbase_sbt;
KASSERT(delta >= 0, ("vhpet_counter: uptime went backwards: "
"%#lx to %#lx", vhpet->countbase_sbt, now));
val += delta / vhpet->freq_sbt;
if (nowptr != NULL)
*nowptr = now;
} else {
/*
* The sbinuptime corresponding to the 'countbase' is
* meaningless when the counter is disabled. Make sure
* that the caller doesn't want to use it.
*/
KASSERT(nowptr == NULL, ("vhpet_counter: nowptr must be NULL"));
}
return (val);
}
static void
vhpet_timer_clear_isr(struct vhpet *vhpet, int n)
{
int pin;
if (vhpet->isr & (1 << n)) {
pin = vhpet_timer_ioapic_pin(vhpet, n);
KASSERT(pin != 0, ("vhpet timer %d irq incorrectly routed", n));
vioapic_deassert_irq(vhpet->vm, pin);
vhpet->isr &= ~(1 << n);
}
}
static __inline bool
vhpet_periodic_timer(struct vhpet *vhpet, int n)
{
return ((vhpet->timer[n].cap_config & HPET_TCNF_TYPE) != 0);
}
static __inline bool
vhpet_timer_interrupt_enabled(struct vhpet *vhpet, int n)
{
return ((vhpet->timer[n].cap_config & HPET_TCNF_INT_ENB) != 0);
}
static __inline bool
vhpet_timer_edge_trig(struct vhpet *vhpet, int n)
{
KASSERT(!vhpet_timer_msi_enabled(vhpet, n), ("vhpet_timer_edge_trig: "
"timer %d is using MSI", n));
if ((vhpet->timer[n].cap_config & HPET_TCNF_INT_TYPE) == 0)
return (true);
else
return (false);
}
static void
vhpet_timer_interrupt(struct vhpet *vhpet, int n)
{
int pin;
/* If interrupts are not enabled for this timer then just return. */
if (!vhpet_timer_interrupt_enabled(vhpet, n))
return;
/*
* If a level triggered interrupt is already asserted then just return.
*/
if ((vhpet->isr & (1 << n)) != 0) {
VM_CTR1(vhpet->vm, "hpet t%d intr is already asserted", n);
return;
}
if (vhpet_timer_msi_enabled(vhpet, n)) {
lapic_intr_msi(vhpet->vm, vhpet->timer[n].msireg >> 32,
vhpet->timer[n].msireg & 0xffffffff);
return;
}
pin = vhpet_timer_ioapic_pin(vhpet, n);
if (pin == 0) {
VM_CTR1(vhpet->vm, "hpet t%d intr is not routed to ioapic", n);
return;
}
if (vhpet_timer_edge_trig(vhpet, n)) {
vioapic_pulse_irq(vhpet->vm, pin);
} else {
vhpet->isr |= 1 << n;
vioapic_assert_irq(vhpet->vm, pin);
}
}
static void
vhpet_adjust_compval(struct vhpet *vhpet, int n, uint32_t counter)
{
uint32_t compval, comprate, compnext;
KASSERT(vhpet->timer[n].comprate != 0, ("hpet t%d is not periodic", n));
compval = vhpet->timer[n].compval;
comprate = vhpet->timer[n].comprate;
/*
* Calculate the comparator value to be used for the next periodic
* interrupt.
*
* This function is commonly called from the callout handler.
* In this scenario the 'counter' is ahead of 'compval'. To find
* the next value to program into the accumulator we divide the
* number space between 'compval' and 'counter' into 'comprate'
* sized units. The 'compval' is rounded up such that is "ahead"
* of 'counter'.
*/
compnext = compval + ((counter - compval) / comprate + 1) * comprate;
vhpet->timer[n].compval = compnext;
}
static void
vhpet_handler(void *a)
{
int n;
uint32_t counter;
sbintime_t now;
struct vhpet *vhpet;
struct callout *callout;
struct vhpet_callout_arg *arg;
arg = a;
vhpet = arg->vhpet;
n = arg->timer_num;
callout = &vhpet->timer[n].callout;
VM_CTR1(vhpet->vm, "hpet t%d fired", n);
VHPET_LOCK(vhpet);
if (callout_pending(callout)) /* callout was reset */
goto done;
if (!callout_active(callout)) /* callout was stopped */
goto done;
callout_deactivate(callout);
if (!vhpet_counter_enabled(vhpet))
panic("vhpet(%p) callout with counter disabled", vhpet);
counter = vhpet_counter(vhpet, &now);
vhpet_start_timer(vhpet, n, counter, now);
vhpet_timer_interrupt(vhpet, n);
done:
VHPET_UNLOCK(vhpet);
return;
}
static void
vhpet_stop_timer(struct vhpet *vhpet, int n, sbintime_t now)
{
VM_CTR1(vhpet->vm, "hpet t%d stopped", n);
callout_stop(&vhpet->timer[n].callout);
/*
* If the callout was scheduled to expire in the past but hasn't
* had a chance to execute yet then trigger the timer interrupt
* here. Failing to do so will result in a missed timer interrupt
* in the guest. This is especially bad in one-shot mode because
* the next interrupt has to wait for the counter to wrap around.
*/
if (vhpet->timer[n].callout_sbt < now) {
VM_CTR1(vhpet->vm, "hpet t%d interrupt triggered after "
"stopping timer", n);
vhpet_timer_interrupt(vhpet, n);
}
}
static void
vhpet_start_timer(struct vhpet *vhpet, int n, uint32_t counter, sbintime_t now)
{
sbintime_t delta, precision;
if (vhpet->timer[n].comprate != 0)
vhpet_adjust_compval(vhpet, n, counter);
else {
/*
* In one-shot mode it is the guest's responsibility to make
* sure that the comparator value is not in the "past". The
* hardware doesn't have any belt-and-suspenders to deal with
* this so we don't either.
*/
}
delta = (vhpet->timer[n].compval - counter) * vhpet->freq_sbt;
precision = delta >> tc_precexp;
vhpet->timer[n].callout_sbt = now + delta;
callout_reset_sbt(&vhpet->timer[n].callout, vhpet->timer[n].callout_sbt,
precision, vhpet_handler, &vhpet->timer[n].arg, C_ABSOLUTE);
}
static void
vhpet_start_counting(struct vhpet *vhpet)
{
int i;
vhpet->countbase_sbt = sbinuptime();
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
/*
* Restart the timers based on the value of the main counter
* when it stopped counting.
*/
vhpet_start_timer(vhpet, i, vhpet->countbase,
vhpet->countbase_sbt);
}
}
static void
vhpet_stop_counting(struct vhpet *vhpet, uint32_t counter, sbintime_t now)
{
int i;
vhpet->countbase = counter;
for (i = 0; i < VHPET_NUM_TIMERS; i++)
vhpet_stop_timer(vhpet, i, now);
}
static __inline void
update_register(uint64_t *regptr, uint64_t data, uint64_t mask)
{
*regptr &= ~mask;
*regptr |= (data & mask);
}
static void
vhpet_timer_update_config(struct vhpet *vhpet, int n, uint64_t data,
uint64_t mask)
{
bool clear_isr;
int old_pin, new_pin;
uint32_t allowed_irqs;
uint64_t oldval, newval;
if (vhpet_timer_msi_enabled(vhpet, n) ||
vhpet_timer_edge_trig(vhpet, n)) {
if (vhpet->isr & (1 << n))
panic("vhpet timer %d isr should not be asserted", n);
}
old_pin = vhpet_timer_ioapic_pin(vhpet, n);
oldval = vhpet->timer[n].cap_config;
newval = oldval;
update_register(&newval, data, mask);
newval &= ~(HPET_TCAP_RO_MASK | HPET_TCNF_32MODE);
newval |= oldval & HPET_TCAP_RO_MASK;
if (newval == oldval)
return;
vhpet->timer[n].cap_config = newval;
VM_CTR2(vhpet->vm, "hpet t%d cap_config set to 0x%016x", n, newval);
/*
* Validate the interrupt routing in the HPET_TCNF_INT_ROUTE field.
* If it does not match the bits set in HPET_TCAP_INT_ROUTE then set
* it to the default value of 0.
*/
allowed_irqs = vhpet->timer[n].cap_config >> 32;
new_pin = vhpet_timer_ioapic_pin(vhpet, n);
if (new_pin != 0 && (allowed_irqs & (1 << new_pin)) == 0) {
VM_CTR3(vhpet->vm, "hpet t%d configured invalid irq %d, "
"allowed_irqs 0x%08x", n, new_pin, allowed_irqs);
new_pin = 0;
vhpet->timer[n].cap_config &= ~HPET_TCNF_INT_ROUTE;
}
if (!vhpet_periodic_timer(vhpet, n))
vhpet->timer[n].comprate = 0;
/*
* If the timer's ISR bit is set then clear it in the following cases:
* - interrupt is disabled
* - interrupt type is changed from level to edge or fsb.
* - interrupt routing is changed
*
* This is to ensure that this timer's level triggered interrupt does
* not remain asserted forever.
*/
if (vhpet->isr & (1 << n)) {
KASSERT(old_pin != 0, ("timer %d isr asserted to ioapic pin %d",
n, old_pin));
if (!vhpet_timer_interrupt_enabled(vhpet, n))
clear_isr = true;
else if (vhpet_timer_msi_enabled(vhpet, n))
clear_isr = true;
else if (vhpet_timer_edge_trig(vhpet, n))
clear_isr = true;
else if (vhpet_timer_ioapic_pin(vhpet, n) != old_pin)
clear_isr = true;
else
clear_isr = false;
if (clear_isr) {
VM_CTR1(vhpet->vm, "hpet t%d isr cleared due to "
"configuration change", n);
vioapic_deassert_irq(vhpet->vm, old_pin);
vhpet->isr &= ~(1 << n);
}
}
}
int
vhpet_mmio_write(void *vm, int vcpuid, uint64_t gpa, uint64_t val, int size,
void *arg)
{
struct vhpet *vhpet;
uint64_t data, mask, oldval, val64;
uint32_t isr_clear_mask, old_compval, old_comprate, counter;
sbintime_t now, *nowptr;
int i, offset;
vhpet = vm_hpet(vm);
offset = gpa - VHPET_BASE;
VHPET_LOCK(vhpet);
/* Accesses to the HPET should be 4 or 8 bytes wide */
switch (size) {
case 8:
mask = 0xffffffffffffffff;
data = val;
break;
case 4:
mask = 0xffffffff;
data = val;
if ((offset & 0x4) != 0) {
mask <<= 32;
data <<= 32;
}
break;
default:
VM_CTR2(vhpet->vm, "hpet invalid mmio write: "
"offset 0x%08x, size %d", offset, size);
goto done;
}
/* Access to the HPET should be naturally aligned to its width */
if (offset & (size - 1)) {
VM_CTR2(vhpet->vm, "hpet invalid mmio write: "
"offset 0x%08x, size %d", offset, size);
goto done;
}
if (offset == HPET_CONFIG || offset == HPET_CONFIG + 4) {
/*
* Get the most recent value of the counter before updating
* the 'config' register. If the HPET is going to be disabled
* then we need to update 'countbase' with the value right
* before it is disabled.
*/
nowptr = vhpet_counter_enabled(vhpet) ? &now : NULL;
counter = vhpet_counter(vhpet, nowptr);
oldval = vhpet->config;
update_register(&vhpet->config, data, mask);
/*
* LegacyReplacement Routing is not supported so clear the
* bit explicitly.
*/
vhpet->config &= ~HPET_CNF_LEG_RT;
if ((oldval ^ vhpet->config) & HPET_CNF_ENABLE) {
if (vhpet_counter_enabled(vhpet)) {
vhpet_start_counting(vhpet);
VM_CTR0(vhpet->vm, "hpet enabled");
} else {
vhpet_stop_counting(vhpet, counter, now);
VM_CTR0(vhpet->vm, "hpet disabled");
}
}
goto done;
}
if (offset == HPET_ISR || offset == HPET_ISR + 4) {
isr_clear_mask = vhpet->isr & data;
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
if ((isr_clear_mask & (1 << i)) != 0) {
VM_CTR1(vhpet->vm, "hpet t%d isr cleared", i);
vhpet_timer_clear_isr(vhpet, i);
}
}
goto done;
}
if (offset == HPET_MAIN_COUNTER || offset == HPET_MAIN_COUNTER + 4) {
/* Zero-extend the counter to 64-bits before updating it */
val64 = vhpet_counter(vhpet, NULL);
update_register(&val64, data, mask);
vhpet->countbase = val64;
if (vhpet_counter_enabled(vhpet))
vhpet_start_counting(vhpet);
goto done;
}
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
if (offset == HPET_TIMER_CAP_CNF(i) ||
offset == HPET_TIMER_CAP_CNF(i) + 4) {
vhpet_timer_update_config(vhpet, i, data, mask);
break;
}
if (offset == HPET_TIMER_COMPARATOR(i) ||
offset == HPET_TIMER_COMPARATOR(i) + 4) {
old_compval = vhpet->timer[i].compval;
old_comprate = vhpet->timer[i].comprate;
if (vhpet_periodic_timer(vhpet, i)) {
/*
* In periodic mode writes to the comparator
* change the 'compval' register only if the
* HPET_TCNF_VAL_SET bit is set in the config
* register.
*/
val64 = vhpet->timer[i].comprate;
update_register(&val64, data, mask);
vhpet->timer[i].comprate = val64;
if ((vhpet->timer[i].cap_config &
HPET_TCNF_VAL_SET) != 0) {
vhpet->timer[i].compval = val64;
}
} else {
KASSERT(vhpet->timer[i].comprate == 0,
("vhpet one-shot timer %d has invalid "
"rate %u", i, vhpet->timer[i].comprate));
val64 = vhpet->timer[i].compval;
update_register(&val64, data, mask);
vhpet->timer[i].compval = val64;
}
vhpet->timer[i].cap_config &= ~HPET_TCNF_VAL_SET;
if (vhpet->timer[i].compval != old_compval ||
vhpet->timer[i].comprate != old_comprate) {
if (vhpet_counter_enabled(vhpet)) {
counter = vhpet_counter(vhpet, &now);
vhpet_start_timer(vhpet, i, counter,
now);
}
}
break;
}
if (offset == HPET_TIMER_FSB_VAL(i) ||
offset == HPET_TIMER_FSB_ADDR(i)) {
update_register(&vhpet->timer[i].msireg, data, mask);
break;
}
}
done:
VHPET_UNLOCK(vhpet);
return (0);
}
int
vhpet_mmio_read(void *vm, int vcpuid, uint64_t gpa, uint64_t *rval, int size,
void *arg)
{
int i, offset;
struct vhpet *vhpet;
uint64_t data;
vhpet = vm_hpet(vm);
offset = gpa - VHPET_BASE;
VHPET_LOCK(vhpet);
/* Accesses to the HPET should be 4 or 8 bytes wide */
if (size != 4 && size != 8) {
VM_CTR2(vhpet->vm, "hpet invalid mmio read: "
"offset 0x%08x, size %d", offset, size);
data = 0;
goto done;
}
/* Access to the HPET should be naturally aligned to its width */
if (offset & (size - 1)) {
VM_CTR2(vhpet->vm, "hpet invalid mmio read: "
"offset 0x%08x, size %d", offset, size);
data = 0;
goto done;
}
if (offset == HPET_CAPABILITIES || offset == HPET_CAPABILITIES + 4) {
data = vhpet_capabilities();
goto done;
}
if (offset == HPET_CONFIG || offset == HPET_CONFIG + 4) {
data = vhpet->config;
goto done;
}
if (offset == HPET_ISR || offset == HPET_ISR + 4) {
data = vhpet->isr;
goto done;
}
if (offset == HPET_MAIN_COUNTER || offset == HPET_MAIN_COUNTER + 4) {
data = vhpet_counter(vhpet, NULL);
goto done;
}
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
if (offset == HPET_TIMER_CAP_CNF(i) ||
offset == HPET_TIMER_CAP_CNF(i) + 4) {
data = vhpet->timer[i].cap_config;
break;
}
if (offset == HPET_TIMER_COMPARATOR(i) ||
offset == HPET_TIMER_COMPARATOR(i) + 4) {
data = vhpet->timer[i].compval;
break;
}
if (offset == HPET_TIMER_FSB_VAL(i) ||
offset == HPET_TIMER_FSB_ADDR(i)) {
data = vhpet->timer[i].msireg;
break;
}
}
if (i >= VHPET_NUM_TIMERS)
data = 0;
done:
VHPET_UNLOCK(vhpet);
if (size == 4) {
if (offset & 0x4)
data >>= 32;
}
*rval = data;
return (0);
}
struct vhpet *
vhpet_init(struct vm *vm)
{
int i, pincount;
struct vhpet *vhpet;
uint64_t allowed_irqs;
struct vhpet_callout_arg *arg;
struct bintime bt;
vhpet = malloc(sizeof(struct vhpet), M_VHPET, M_WAITOK | M_ZERO);
vhpet->vm = vm;
mtx_init(&vhpet->mtx, "vhpet lock", NULL, MTX_DEF);
FREQ2BT(HPET_FREQ, &bt);
vhpet->freq_sbt = bttosbt(bt);
pincount = vioapic_pincount(vm);
if (pincount >= 24)
allowed_irqs = 0x00f00000; /* irqs 20, 21, 22 and 23 */
else
allowed_irqs = 0;
/*
* Initialize HPET timer hardware state.
*/
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
vhpet->timer[i].cap_config = allowed_irqs << 32;
vhpet->timer[i].cap_config |= HPET_TCAP_PER_INT;
vhpet->timer[i].cap_config |= HPET_TCAP_FSB_INT_DEL;
vhpet->timer[i].compval = 0xffffffff;
callout_init(&vhpet->timer[i].callout, 1);
arg = &vhpet->timer[i].arg;
arg->vhpet = vhpet;
arg->timer_num = i;
}
return (vhpet);
}
void
vhpet_cleanup(struct vhpet *vhpet)
{
int i;
for (i = 0; i < VHPET_NUM_TIMERS; i++)
callout_drain(&vhpet->timer[i].callout);
free(vhpet, M_VHPET);
}
int
vhpet_getcap(struct vm_hpet_cap *cap)
{
cap->capabilities = vhpet_capabilities();
return (0);
}