f-stack/dpdk/lib/sched/rte_pie.h

397 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#ifndef __RTE_PIE_H_INCLUDED__
#define __RTE_PIE_H_INCLUDED__
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file
* Proportional Integral controller Enhanced (PIE)
**/
#include <stdint.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#define RTE_DQ_THRESHOLD 16384 /**< Queue length threshold (2^14)
* to start measurement cycle (bytes)
*/
#define RTE_DQ_WEIGHT 0.25 /**< Weight (RTE_DQ_THRESHOLD/2^16) to compute dequeue rate */
#define RTE_ALPHA 0.125 /**< Weights in drop probability calculations */
#define RTE_BETA 1.25 /**< Weights in drop probability calculations */
#define RTE_RAND_MAX ~0LLU /**< Max value of the random number */
/**
* PIE configuration parameters passed by user
*
*/
struct rte_pie_params {
uint16_t qdelay_ref; /**< Latency Target (milliseconds) */
uint16_t dp_update_interval; /**< Update interval for drop probability (milliseconds) */
uint16_t max_burst; /**< Max Burst Allowance (milliseconds) */
uint16_t tailq_th; /**< Tailq drop threshold (packet counts) */
};
/**
* PIE configuration parameters
*
*/
struct rte_pie_config {
uint64_t qdelay_ref; /**< Latency Target (in CPU cycles.) */
uint64_t dp_update_interval; /**< Update interval for drop probability (in CPU cycles) */
uint64_t max_burst; /**< Max Burst Allowance (in CPU cycles.) */
uint16_t tailq_th; /**< Tailq drop threshold (packet counts) */
};
/**
* PIE run-time data
*/
struct rte_pie {
uint16_t active; /**< Flag for activating/deactivating pie */
uint16_t in_measurement; /**< Flag for activation of measurement cycle */
uint32_t departed_bytes_count; /**< Number of bytes departed in current measurement cycle */
uint64_t start_measurement; /**< Time to start to measurement cycle (in cpu cycles) */
uint64_t last_measurement; /**< Time of last measurement (in cpu cycles) */
uint64_t qlen; /**< Queue length (packets count) */
uint64_t qlen_bytes; /**< Queue length (bytes count) */
uint64_t avg_dq_time; /**< Time averaged dequeue rate (in cpu cycles) */
uint32_t burst_allowance; /**< Current burst allowance (bytes) */
uint64_t qdelay_old; /**< Old queue delay (bytes) */
double drop_prob; /**< Current packet drop probability */
double accu_prob; /**< Accumulated packet drop probability */
};
/**
* @brief Initialises run-time data
*
* @param pie [in,out] data pointer to PIE runtime data
*
* @return Operation status
* @retval 0 success
* @retval !0 error
*/
int
__rte_experimental
rte_pie_rt_data_init(struct rte_pie *pie);
/**
* @brief Configures a single PIE configuration parameter structure.
*
* @param pie_cfg [in,out] config pointer to a PIE configuration parameter structure
* @param qdelay_ref [in] latency target(milliseconds)
* @param dp_update_interval [in] update interval for drop probability (milliseconds)
* @param max_burst [in] maximum burst allowance (milliseconds)
* @param tailq_th [in] tail drop threshold for the queue (number of packets)
*
* @return Operation status
* @retval 0 success
* @retval !0 error
*/
int
__rte_experimental
rte_pie_config_init(struct rte_pie_config *pie_cfg,
const uint16_t qdelay_ref,
const uint16_t dp_update_interval,
const uint16_t max_burst,
const uint16_t tailq_th);
/**
* @brief Decides packet enqueue when queue is empty
*
* Note: packet is never dropped in this particular case.
*
* @param pie_cfg [in] config pointer to a PIE configuration parameter structure
* @param pie [in, out] data pointer to PIE runtime data
* @param pkt_len [in] packet length in bytes
*
* @return Operation status
* @retval 0 enqueue the packet
* @retval !0 drop the packet
*/
static int
__rte_experimental
rte_pie_enqueue_empty(const struct rte_pie_config *pie_cfg,
struct rte_pie *pie,
uint32_t pkt_len)
{
RTE_ASSERT(pkt_len != 0);
/* Update the PIE qlen parameter */
pie->qlen++;
pie->qlen_bytes += pkt_len;
/**
* If the queue has been idle for a while, turn off PIE and Reset counters
*/
if ((pie->active == 1) &&
(pie->qlen < (pie_cfg->tailq_th * 0.1))) {
pie->active = 0;
pie->in_measurement = 0;
}
return 0;
}
/**
* @brief make a decision to drop or enqueue a packet based on probability
* criteria
*
* @param pie_cfg [in] config pointer to a PIE configuration parameter structure
* @param pie [in, out] data pointer to PIE runtime data
* @param time [in] current time (measured in cpu cycles)
*/
static void
__rte_experimental
_calc_drop_probability(const struct rte_pie_config *pie_cfg,
struct rte_pie *pie, uint64_t time)
{
uint64_t qdelay_ref = pie_cfg->qdelay_ref;
/* Note: can be implemented using integer multiply.
* DQ_THRESHOLD is power of 2 value.
*/
uint64_t current_qdelay = pie->qlen * (pie->avg_dq_time >> 14);
double p = RTE_ALPHA * (current_qdelay - qdelay_ref) +
RTE_BETA * (current_qdelay - pie->qdelay_old);
if (pie->drop_prob < 0.000001)
p = p * 0.00048828125; /* (1/2048) = 0.00048828125 */
else if (pie->drop_prob < 0.00001)
p = p * 0.001953125; /* (1/512) = 0.001953125 */
else if (pie->drop_prob < 0.0001)
p = p * 0.0078125; /* (1/128) = 0.0078125 */
else if (pie->drop_prob < 0.001)
p = p * 0.03125; /* (1/32) = 0.03125 */
else if (pie->drop_prob < 0.01)
p = p * 0.125; /* (1/8) = 0.125 */
else if (pie->drop_prob < 0.1)
p = p * 0.5; /* (1/2) = 0.5 */
if (pie->drop_prob >= 0.1 && p > 0.02)
p = 0.02;
pie->drop_prob += p;
double qdelay = qdelay_ref * 0.5;
/* Exponentially decay drop prob when congestion goes away */
if ((double)current_qdelay < qdelay && pie->qdelay_old < qdelay)
pie->drop_prob *= 0.98; /* 1 - 1/64 is sufficient */
/* Bound drop probability */
if (pie->drop_prob < 0)
pie->drop_prob = 0;
if (pie->drop_prob > 1)
pie->drop_prob = 1;
pie->qdelay_old = current_qdelay;
pie->last_measurement = time;
uint64_t burst_allowance = pie->burst_allowance - pie_cfg->dp_update_interval;
pie->burst_allowance = (burst_allowance > 0) ? burst_allowance : 0;
}
/**
* @brief make a decision to drop or enqueue a packet based on probability
* criteria
*
* @param pie_cfg [in] config pointer to a PIE configuration parameter structure
* @param pie [in, out] data pointer to PIE runtime data
*
* @return operation status
* @retval 0 enqueue the packet
* @retval 1 drop the packet
*/
static inline int
__rte_experimental
_rte_pie_drop(const struct rte_pie_config *pie_cfg,
struct rte_pie *pie)
{
uint64_t rand_value;
uint64_t qdelay = pie_cfg->qdelay_ref / 2;
/* PIE is active but the queue is not congested: return 0 */
if (((pie->qdelay_old < qdelay) && (pie->drop_prob < 0.2)) ||
(pie->qlen <= (pie_cfg->tailq_th * 0.1)))
return 0;
if (pie->drop_prob == 0)
pie->accu_prob = 0;
/* For practical reasons, drop probability can be further scaled according
* to packet size, but one needs to set a bound to avoid unnecessary bias
* Random drop
*/
pie->accu_prob += pie->drop_prob;
if (pie->accu_prob < 0.85)
return 0;
if (pie->accu_prob >= 8.5)
return 1;
rand_value = rte_rand()/RTE_RAND_MAX;
if ((double)rand_value < pie->drop_prob) {
pie->accu_prob = 0;
return 1;
}
/* No drop */
return 0;
}
/**
* @brief Decides if new packet should be enqueued or dropped for non-empty queue
*
* @param pie_cfg [in] config pointer to a PIE configuration parameter structure
* @param pie [in,out] data pointer to PIE runtime data
* @param pkt_len [in] packet length in bytes
* @param time [in] current time (measured in cpu cycles)
*
* @return Operation status
* @retval 0 enqueue the packet
* @retval 1 drop the packet based on max threshold criterion
* @retval 2 drop the packet based on mark probability criterion
*/
static inline int
__rte_experimental
rte_pie_enqueue_nonempty(const struct rte_pie_config *pie_cfg,
struct rte_pie *pie,
uint32_t pkt_len,
const uint64_t time)
{
/* Check queue space against the tail drop threshold */
if (pie->qlen >= pie_cfg->tailq_th) {
pie->accu_prob = 0;
return 1;
}
if (pie->active) {
/* Update drop probability after certain interval */
if ((time - pie->last_measurement) >= pie_cfg->dp_update_interval)
_calc_drop_probability(pie_cfg, pie, time);
/* Decide whether packet to be dropped or enqueued */
if (_rte_pie_drop(pie_cfg, pie) && pie->burst_allowance == 0)
return 2;
}
/* When queue occupancy is over a certain threshold, turn on PIE */
if ((pie->active == 0) &&
(pie->qlen >= (pie_cfg->tailq_th * 0.1))) {
pie->active = 1;
pie->qdelay_old = 0;
pie->drop_prob = 0;
pie->in_measurement = 1;
pie->departed_bytes_count = 0;
pie->avg_dq_time = 0;
pie->last_measurement = time;
pie->burst_allowance = pie_cfg->max_burst;
pie->accu_prob = 0;
pie->start_measurement = time;
}
/* when queue has been idle for a while, turn off PIE and Reset counters */
if (pie->active == 1 &&
pie->qlen < (pie_cfg->tailq_th * 0.1)) {
pie->active = 0;
pie->in_measurement = 0;
}
/* Update PIE qlen parameter */
pie->qlen++;
pie->qlen_bytes += pkt_len;
/* No drop */
return 0;
}
/**
* @brief Decides if new packet should be enqueued or dropped
* Updates run time data and gives verdict whether to enqueue or drop the packet.
*
* @param pie_cfg [in] config pointer to a PIE configuration parameter structure
* @param pie [in,out] data pointer to PIE runtime data
* @param qlen [in] queue length
* @param pkt_len [in] packet length in bytes
* @param time [in] current time stamp (measured in cpu cycles)
*
* @return Operation status
* @retval 0 enqueue the packet
* @retval 1 drop the packet based on drop probability criteria
*/
static inline int
__rte_experimental
rte_pie_enqueue(const struct rte_pie_config *pie_cfg,
struct rte_pie *pie,
const unsigned int qlen,
uint32_t pkt_len,
const uint64_t time)
{
RTE_ASSERT(pie_cfg != NULL);
RTE_ASSERT(pie != NULL);
if (qlen != 0)
return rte_pie_enqueue_nonempty(pie_cfg, pie, pkt_len, time);
else
return rte_pie_enqueue_empty(pie_cfg, pie, pkt_len);
}
/**
* @brief PIE rate estimation method
* Called on each packet departure.
*
* @param pie [in] data pointer to PIE runtime data
* @param pkt_len [in] packet length in bytes
* @param time [in] current time stamp in cpu cycles
*/
static inline void
__rte_experimental
rte_pie_dequeue(struct rte_pie *pie,
uint32_t pkt_len,
uint64_t time)
{
/* Dequeue rate estimation */
if (pie->in_measurement) {
pie->departed_bytes_count += pkt_len;
/* Start a new measurement cycle when enough packets */
if (pie->departed_bytes_count >= RTE_DQ_THRESHOLD) {
uint64_t dq_time = time - pie->start_measurement;
if (pie->avg_dq_time == 0)
pie->avg_dq_time = dq_time;
else
pie->avg_dq_time = dq_time * RTE_DQ_WEIGHT + pie->avg_dq_time
* (1 - RTE_DQ_WEIGHT);
pie->in_measurement = 0;
}
}
/* Start measurement cycle when enough data in the queue */
if ((pie->qlen_bytes >= RTE_DQ_THRESHOLD) && (pie->in_measurement == 0)) {
pie->in_measurement = 1;
pie->start_measurement = time;
pie->departed_bytes_count = 0;
}
}
#ifdef __cplusplus
}
#endif
#endif /* __RTE_PIE_H_INCLUDED__ */