f-stack/dpdk/drivers/net/sfc/sfc_mae.h

415 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2021 Xilinx, Inc.
* Copyright(c) 2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#ifndef _SFC_MAE_H
#define _SFC_MAE_H
#include <stdbool.h>
#include <rte_spinlock.h>
#include "efx.h"
#include "sfc_stats.h"
#ifdef __cplusplus
extern "C" {
#endif
/** FW-allocatable resource context */
struct sfc_mae_fw_rsrc {
unsigned int refcnt;
RTE_STD_C11
union {
efx_mae_aset_id_t aset_id;
efx_mae_rule_id_t rule_id;
efx_mae_mac_id_t mac_id;
efx_mae_eh_id_t eh_id;
};
};
/** Outer rule registry entry */
struct sfc_mae_outer_rule {
TAILQ_ENTRY(sfc_mae_outer_rule) entries;
unsigned int refcnt;
efx_mae_match_spec_t *match_spec;
efx_tunnel_protocol_t encap_type;
struct sfc_mae_fw_rsrc fw_rsrc;
};
TAILQ_HEAD(sfc_mae_outer_rules, sfc_mae_outer_rule);
/** MAC address registry entry */
struct sfc_mae_mac_addr {
TAILQ_ENTRY(sfc_mae_mac_addr) entries;
unsigned int refcnt;
uint8_t addr_bytes[EFX_MAC_ADDR_LEN];
struct sfc_mae_fw_rsrc fw_rsrc;
};
TAILQ_HEAD(sfc_mae_mac_addrs, sfc_mae_mac_addr);
/** Encap. header registry entry */
struct sfc_mae_encap_header {
TAILQ_ENTRY(sfc_mae_encap_header) entries;
unsigned int refcnt;
uint8_t *buf;
size_t size;
efx_tunnel_protocol_t type;
struct sfc_mae_fw_rsrc fw_rsrc;
};
TAILQ_HEAD(sfc_mae_encap_headers, sfc_mae_encap_header);
/* Counter ID */
struct sfc_mae_counter_id {
/* ID of a counter in MAE */
efx_counter_t mae_id;
/* ID of a counter in RTE */
uint32_t rte_id;
/* RTE counter ID validity status */
bool rte_id_valid;
/* Flow Tunnel (FT) GROUP hit counter (or NULL) */
uint64_t *ft_group_hit_counter;
/* Flow Tunnel (FT) context (for JUMP rules; otherwise, NULL) */
struct sfc_flow_tunnel *ft;
};
/** Action set registry entry */
struct sfc_mae_action_set {
TAILQ_ENTRY(sfc_mae_action_set) entries;
unsigned int refcnt;
struct sfc_mae_counter_id *counters;
uint32_t n_counters;
efx_mae_actions_t *spec;
struct sfc_mae_encap_header *encap_header;
struct sfc_mae_mac_addr *dst_mac_addr;
struct sfc_mae_mac_addr *src_mac_addr;
struct sfc_mae_fw_rsrc fw_rsrc;
};
TAILQ_HEAD(sfc_mae_action_sets, sfc_mae_action_set);
/** Options for MAE support status */
enum sfc_mae_status {
SFC_MAE_STATUS_UNKNOWN = 0,
SFC_MAE_STATUS_UNSUPPORTED,
SFC_MAE_STATUS_SUPPORTED,
SFC_MAE_STATUS_ADMIN,
};
/*
* Encap. header bounce buffer. It is used to store header data
* when parsing the header definition in the action VXLAN_ENCAP.
*/
struct sfc_mae_bounce_eh {
uint8_t *buf;
size_t buf_size;
size_t size;
efx_tunnel_protocol_t type;
};
/** Counter collection entry */
struct sfc_mae_counter {
bool inuse;
uint32_t generation_count;
union sfc_pkts_bytes value;
union sfc_pkts_bytes reset;
uint64_t *ft_group_hit_counter;
};
struct sfc_mae_counters_xstats {
uint64_t not_inuse_update;
uint64_t realloc_update;
};
struct sfc_mae_counters {
/** An array of all MAE counters */
struct sfc_mae_counter *mae_counters;
/** Extra statistics for counters */
struct sfc_mae_counters_xstats xstats;
/** Count of all MAE counters */
unsigned int n_mae_counters;
};
/** Options for MAE counter polling mode */
enum sfc_mae_counter_polling_mode {
SFC_MAE_COUNTER_POLLING_OFF = 0,
SFC_MAE_COUNTER_POLLING_SERVICE,
SFC_MAE_COUNTER_POLLING_THREAD,
};
struct sfc_mae_counter_registry {
/* Common counter information */
/** Counters collection */
struct sfc_mae_counters counters;
/* Information used by counter update service */
/** Callback to get packets from RxQ */
eth_rx_burst_t rx_pkt_burst;
/** Data for the callback to get packets */
struct sfc_dp_rxq *rx_dp;
/** Number of buffers pushed to the RxQ */
unsigned int pushed_n_buffers;
/** Are credits used by counter stream */
bool use_credits;
/* Information used by configuration routines */
enum sfc_mae_counter_polling_mode polling_mode;
union {
struct {
/** Counter service core ID */
uint32_t core_id;
/** Counter service ID */
uint32_t id;
} service;
struct {
/** Counter thread ID */
pthread_t id;
/** The thread should keep running */
bool run;
} thread;
} polling;
};
/**
* MAE rules used to capture traffic generated by VFs and direct it to
* representors (one for each VF).
*/
#define SFC_MAE_NB_REPR_RULES_MAX (64)
/** Rules to forward traffic from PHY port to PF and from PF to PHY port */
#define SFC_MAE_NB_SWITCHDEV_RULES (2)
/** Maximum required internal MAE rules */
#define SFC_MAE_NB_RULES_MAX (SFC_MAE_NB_SWITCHDEV_RULES + \
SFC_MAE_NB_REPR_RULES_MAX)
struct sfc_mae_rule {
efx_mae_match_spec_t *spec;
efx_mae_actions_t *actions;
efx_mae_aset_id_t action_set;
efx_mae_rule_id_t rule_id;
};
struct sfc_mae_internal_rules {
/*
* Rules required to sustain switchdev mode or to provide
* port representor functionality.
*/
struct sfc_mae_rule rules[SFC_MAE_NB_RULES_MAX];
};
struct sfc_mae {
/** Assigned switch domain identifier */
uint16_t switch_domain_id;
/** Assigned switch port identifier */
uint16_t switch_port_id;
/** NIC support for MAE status */
enum sfc_mae_status status;
/** Priority level limit for MAE outer rules */
unsigned int nb_outer_rule_prios_max;
/** Priority level limit for MAE action rules */
unsigned int nb_action_rule_prios_max;
/** Encapsulation support status */
uint32_t encap_types_supported;
/** Outer rule registry */
struct sfc_mae_outer_rules outer_rules;
/** Encap. header registry */
struct sfc_mae_encap_headers encap_headers;
/** MAC address registry */
struct sfc_mae_mac_addrs mac_addrs;
/** Action set registry */
struct sfc_mae_action_sets action_sets;
/** Encap. header bounce buffer */
struct sfc_mae_bounce_eh bounce_eh;
/** Flag indicating whether counter-only RxQ is running */
bool counter_rxq_running;
/** Counter registry */
struct sfc_mae_counter_registry counter_registry;
/** Driver-internal flow rules */
struct sfc_mae_internal_rules internal_rules;
/**
* Switchdev default rules. They forward traffic from PHY port
* to PF and vice versa.
*/
struct sfc_mae_rule *switchdev_rule_pf_to_ext;
struct sfc_mae_rule *switchdev_rule_ext_to_pf;
};
struct sfc_adapter;
struct sfc_flow_spec;
/** This implementation supports double-tagging */
#define SFC_MAE_MATCH_VLAN_MAX_NTAGS (2)
/** It is possible to keep track of one item ETH and two items VLAN */
#define SFC_MAE_L2_MAX_NITEMS (SFC_MAE_MATCH_VLAN_MAX_NTAGS + 1)
/** Auxiliary entry format to keep track of L2 "type" ("inner_type") */
struct sfc_mae_ethertype {
rte_be16_t value;
rte_be16_t mask;
};
struct sfc_mae_pattern_data {
/**
* Keeps track of "type" ("inner_type") mask and value for each
* parsed L2 item in a pattern. These values/masks get filled
* in MAE match specification at the end of parsing. Also, this
* information is used to conduct consistency checks:
*
* - If an item ETH is followed by a single item VLAN,
* the former must have "type" set to one of supported
* TPID values (0x8100, 0x88a8, 0x9100, 0x9200, 0x9300),
* or 0x0000/0x0000.
*
* - If an item ETH is followed by two items VLAN, the
* item ETH must have "type" set to one of supported TPID
* values (0x88a8, 0x9100, 0x9200, 0x9300), or 0x0000/0x0000,
* and the outermost VLAN item must have "inner_type" set
* to TPID value 0x8100, or 0x0000/0x0000
*
* - If a L2 item is followed by a L3 one, the former must
* indicate "type" ("inner_type") which corresponds to
* the protocol used in the L3 item, or 0x0000/0x0000.
*
* In turn, mapping between RTE convention (above requirements) and
* MAE fields is non-trivial. The following scheme indicates
* which item EtherTypes go to which MAE fields in the case
* of single tag:
*
* ETH (0x8100) --> VLAN0_PROTO_BE
* VLAN (L3 EtherType) --> ETHER_TYPE_BE
*
* Similarly, in the case of double tagging:
*
* ETH (0x88a8) --> VLAN0_PROTO_BE
* VLAN (0x8100) --> VLAN1_PROTO_BE
* VLAN (L3 EtherType) --> ETHER_TYPE_BE
*/
struct sfc_mae_ethertype ethertypes[SFC_MAE_L2_MAX_NITEMS];
rte_be16_t tci_masks[SFC_MAE_MATCH_VLAN_MAX_NTAGS];
unsigned int nb_vlan_tags;
/**
* L3 requirement for the innermost L2 item's "type" ("inner_type").
* This contains one of:
* - 0x0800/0xffff: IPV4
* - 0x86dd/0xffff: IPV6
* - 0x0000/0x0000: no L3 item
*/
struct sfc_mae_ethertype innermost_ethertype_restriction;
/**
* The following two fields keep track of L3 "proto" mask and value.
* The corresponding fields get filled in MAE match specification
* at the end of parsing. Also, the information is used by a
* post-check to enforce consistency requirements:
*
* - If a L3 item is followed by an item TCP, the former has
* its "proto" set to either 0x06/0xff or 0x00/0x00.
*
* - If a L3 item is followed by an item UDP, the former has
* its "proto" set to either 0x11/0xff or 0x00/0x00.
*/
uint8_t l3_next_proto_value;
uint8_t l3_next_proto_mask;
/*
* L4 requirement for L3 item's "proto".
* This contains one of:
* - 0x06/0xff: TCP
* - 0x11/0xff: UDP
* - 0x00/0x00: no L4 item
*/
uint8_t l3_next_proto_restriction_value;
uint8_t l3_next_proto_restriction_mask;
/* Projected state of EFX_MAE_FIELD_HAS_OVLAN match bit */
bool has_ovlan_value;
bool has_ovlan_mask;
/* Projected state of EFX_MAE_FIELD_HAS_IVLAN match bit */
bool has_ivlan_value;
bool has_ivlan_mask;
};
struct sfc_mae_parse_ctx {
struct sfc_adapter *sa;
efx_mae_match_spec_t *match_spec_action;
efx_mae_match_spec_t *match_spec_outer;
/*
* This points to either of the above two specifications depending
* on which part of the pattern is being parsed (outer / inner).
*/
efx_mae_match_spec_t *match_spec;
/*
* This points to either "field_ids_remap_to_encap"
* or "field_ids_no_remap" (see sfc_mae.c) depending on
* which part of the pattern is being parsed.
*/
const efx_mae_field_id_t *field_ids_remap;
/* These two fields correspond to the tunnel-specific default mask. */
size_t tunnel_def_mask_size;
const void *tunnel_def_mask;
bool match_mport_set;
enum sfc_flow_tunnel_rule_type ft_rule_type;
struct sfc_mae_pattern_data pattern_data;
efx_tunnel_protocol_t encap_type;
const struct rte_flow_item *pattern;
unsigned int priority;
struct sfc_flow_tunnel *ft;
};
int sfc_mae_attach(struct sfc_adapter *sa);
void sfc_mae_detach(struct sfc_adapter *sa);
sfc_flow_cleanup_cb_t sfc_mae_flow_cleanup;
int sfc_mae_rule_parse_pattern(struct sfc_adapter *sa,
const struct rte_flow_item pattern[],
struct sfc_flow_spec_mae *spec,
struct rte_flow_error *error);
int sfc_mae_rule_parse_actions(struct sfc_adapter *sa,
const struct rte_flow_action actions[],
struct sfc_flow_spec_mae *spec_mae,
struct rte_flow_error *error);
sfc_flow_verify_cb_t sfc_mae_flow_verify;
sfc_flow_insert_cb_t sfc_mae_flow_insert;
sfc_flow_remove_cb_t sfc_mae_flow_remove;
sfc_flow_query_cb_t sfc_mae_flow_query;
/**
* The value used to represent the lowest priority.
* Used in MAE rule API.
*/
#define SFC_MAE_RULE_PRIO_LOWEST (-1)
/**
* Insert a driver-internal flow rule that matches traffic originating from
* some m-port selector and redirects it to another one
* (eg. PF --> PHY, PHY --> PF).
*
* If requested priority is negative, use the lowest priority.
*/
int sfc_mae_rule_add_mport_match_deliver(struct sfc_adapter *sa,
const efx_mport_sel_t *mport_match,
const efx_mport_sel_t *mport_deliver,
int prio, struct sfc_mae_rule **rulep);
void sfc_mae_rule_del(struct sfc_adapter *sa, struct sfc_mae_rule *rule);
int sfc_mae_switchdev_init(struct sfc_adapter *sa);
void sfc_mae_switchdev_fini(struct sfc_adapter *sa);
#ifdef __cplusplus
}
#endif
#endif /* _SFC_MAE_H */