f-stack/dpdk/drivers/net/sfc/sfc_ef100_rx.c

1019 lines
27 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2021 Xilinx, Inc.
* Copyright(c) 2018-2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
/* EF100 native datapath implementation */
#include <stdbool.h>
#include <rte_byteorder.h>
#include <rte_mbuf_ptype.h>
#include <rte_mbuf.h>
#include <rte_io.h>
#include "efx_types.h"
#include "efx_regs_ef100.h"
#include "efx.h"
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_flow_tunnel.h"
#include "sfc_tweak.h"
#include "sfc_dp_rx.h"
#include "sfc_kvargs.h"
#include "sfc_ef100.h"
#include "sfc_nic_dma_dp.h"
#define sfc_ef100_rx_err(_rxq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, ERR, &(_rxq)->dp.dpq, __VA_ARGS__)
#define sfc_ef100_rx_debug(_rxq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, DEBUG, &(_rxq)->dp.dpq, \
__VA_ARGS__)
/**
* Maximum number of descriptors/buffers in the Rx ring.
* It should guarantee that corresponding event queue never overfill.
* EF10 native datapath uses event queue of the same size as Rx queue.
* Maximum number of events on datapath can be estimated as number of
* Rx queue entries (one event per Rx buffer in the worst case) plus
* Rx error and flush events.
*/
#define SFC_EF100_RXQ_LIMIT(_ndesc) \
((_ndesc) - 1 /* head must not step on tail */ - \
1 /* Rx error */ - 1 /* flush */)
/** Invalid user mark value when the mark should be treated as unset */
#define SFC_EF100_USER_MARK_INVALID 0
struct sfc_ef100_rx_sw_desc {
struct rte_mbuf *mbuf;
};
struct sfc_ef100_rxq {
/* Used on data path */
unsigned int flags;
#define SFC_EF100_RXQ_STARTED 0x1
#define SFC_EF100_RXQ_NOT_RUNNING 0x2
#define SFC_EF100_RXQ_EXCEPTION 0x4
#define SFC_EF100_RXQ_RSS_HASH 0x10
#define SFC_EF100_RXQ_USER_MARK 0x20
#define SFC_EF100_RXQ_FLAG_INTR_EN 0x40
#define SFC_EF100_RXQ_INGRESS_MPORT 0x80
#define SFC_EF100_RXQ_USER_FLAG 0x100
#define SFC_EF100_RXQ_NIC_DMA_MAP 0x200
unsigned int ptr_mask;
unsigned int evq_phase_bit_shift;
unsigned int ready_pkts;
unsigned int completed;
unsigned int evq_read_ptr;
unsigned int evq_read_ptr_primed;
volatile efx_qword_t *evq_hw_ring;
struct sfc_ef100_rx_sw_desc *sw_ring;
uint64_t rearm_data;
uint16_t buf_size;
uint16_t prefix_size;
uint32_t user_mark_mask;
unsigned int evq_hw_index;
volatile void *evq_prime;
/* Used on refill */
unsigned int added;
unsigned int max_fill_level;
unsigned int refill_threshold;
struct rte_mempool *refill_mb_pool;
efx_qword_t *rxq_hw_ring;
volatile void *doorbell;
/* Datapath receive queue anchor */
struct sfc_dp_rxq dp;
const struct sfc_nic_dma_info *nic_dma_info;
};
static inline struct sfc_ef100_rxq *
sfc_ef100_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
{
return container_of(dp_rxq, struct sfc_ef100_rxq, dp);
}
static void
sfc_ef100_rx_qprime(struct sfc_ef100_rxq *rxq)
{
sfc_ef100_evq_prime(rxq->evq_prime, rxq->evq_hw_index,
rxq->evq_read_ptr & rxq->ptr_mask);
rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
}
static inline void
sfc_ef100_rx_qpush(struct sfc_ef100_rxq *rxq, unsigned int added)
{
efx_dword_t dword;
EFX_POPULATE_DWORD_1(dword, ERF_GZ_RX_RING_PIDX, added & rxq->ptr_mask);
/* DMA sync to device is not required */
/*
* rte_write32() has rte_io_wmb() which guarantees that the STORE
* operations (i.e. Rx and event descriptor updates) that precede
* the rte_io_wmb() call are visible to NIC before the STORE
* operations that follow it (i.e. doorbell write).
*/
rte_write32(dword.ed_u32[0], rxq->doorbell);
rxq->dp.dpq.dbells++;
sfc_ef100_rx_debug(rxq, "RxQ pushed doorbell at pidx %u (added=%u)",
EFX_DWORD_FIELD(dword, ERF_GZ_RX_RING_PIDX),
added);
}
static void
sfc_ef100_rx_qrefill(struct sfc_ef100_rxq *rxq)
{
const unsigned int ptr_mask = rxq->ptr_mask;
unsigned int free_space;
unsigned int bulks;
void *objs[SFC_RX_REFILL_BULK];
unsigned int added = rxq->added;
free_space = rxq->max_fill_level - (added - rxq->completed);
if (free_space < rxq->refill_threshold)
return;
bulks = free_space / RTE_DIM(objs);
/* refill_threshold guarantees that bulks is positive */
SFC_ASSERT(bulks > 0);
do {
unsigned int i;
if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
RTE_DIM(objs)) < 0)) {
struct rte_eth_dev_data *dev_data =
rte_eth_devices[rxq->dp.dpq.port_id].data;
/*
* It is hardly a safe way to increment counter
* from different contexts, but all PMDs do it.
*/
dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
/* Return if we have posted nothing yet */
if (added == rxq->added)
return;
/* Push posted */
break;
}
for (i = 0; i < RTE_DIM(objs); ++i) {
struct rte_mbuf *m = objs[i];
struct sfc_ef100_rx_sw_desc *rxd;
rte_iova_t dma_addr;
__rte_mbuf_raw_sanity_check(m);
dma_addr = rte_mbuf_data_iova_default(m);
if (rxq->flags & SFC_EF100_RXQ_NIC_DMA_MAP) {
dma_addr = sfc_nic_dma_map(rxq->nic_dma_info,
dma_addr,
rte_pktmbuf_data_len(m));
if (unlikely(dma_addr == RTE_BAD_IOVA)) {
sfc_ef100_rx_err(rxq,
"failed to map DMA address on Rx");
/* Just skip buffer and try to continue */
rte_mempool_put(rxq->refill_mb_pool, m);
continue;
}
}
rxd = &rxq->sw_ring[added & ptr_mask];
rxd->mbuf = m;
/*
* Avoid writing to mbuf. It is cheaper to do it
* when we receive packet and fill in nearby
* structure members.
*/
EFX_POPULATE_QWORD_1(rxq->rxq_hw_ring[added & ptr_mask],
ESF_GZ_RX_BUF_ADDR, dma_addr);
added++;
}
} while (--bulks > 0);
SFC_ASSERT(rxq->added != added);
rxq->added = added;
sfc_ef100_rx_qpush(rxq, added);
}
static inline uint64_t
sfc_ef100_rx_nt_or_inner_l4_csum(const efx_word_t class)
{
return EFX_WORD_FIELD(class,
ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CSUM) ==
ESE_GZ_RH_HCLASS_L4_CSUM_GOOD ?
RTE_MBUF_F_RX_L4_CKSUM_GOOD : RTE_MBUF_F_RX_L4_CKSUM_BAD;
}
static inline uint64_t
sfc_ef100_rx_tun_outer_l4_csum(const efx_word_t class)
{
return EFX_WORD_FIELD(class,
ESF_GZ_RX_PREFIX_HCLASS_TUN_OUTER_L4_CSUM) ==
ESE_GZ_RH_HCLASS_L4_CSUM_GOOD ?
RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD : RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
}
static uint32_t
sfc_ef100_rx_class_decode(const efx_word_t class, uint64_t *ol_flags)
{
uint32_t ptype;
bool no_tunnel = false;
if (unlikely(EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_L2_CLASS) !=
ESE_GZ_RH_HCLASS_L2_CLASS_E2_0123VLAN))
return 0;
switch (EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_L2_N_VLAN)) {
case 0:
ptype = RTE_PTYPE_L2_ETHER;
break;
case 1:
ptype = RTE_PTYPE_L2_ETHER_VLAN;
break;
default:
ptype = RTE_PTYPE_L2_ETHER_QINQ;
break;
}
switch (EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_TUNNEL_CLASS)) {
case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_NONE:
no_tunnel = true;
break;
case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_VXLAN:
ptype |= RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP;
*ol_flags |= sfc_ef100_rx_tun_outer_l4_csum(class);
break;
case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_NVGRE:
ptype |= RTE_PTYPE_TUNNEL_NVGRE;
break;
case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_GENEVE:
ptype |= RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP;
*ol_flags |= sfc_ef100_rx_tun_outer_l4_csum(class);
break;
default:
/*
* Driver does not know the tunnel, but it is
* still a tunnel and NT_OR_INNER refer to inner
* frame.
*/
no_tunnel = false;
}
if (no_tunnel) {
bool l4_valid = true;
switch (EFX_WORD_FIELD(class,
ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L3_CLASS)) {
case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
*ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
break;
case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
*ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
break;
case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
break;
default:
l4_valid = false;
}
if (l4_valid) {
switch (EFX_WORD_FIELD(class,
ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CLASS)) {
case ESE_GZ_RH_HCLASS_L4_CLASS_TCP:
ptype |= RTE_PTYPE_L4_TCP;
*ol_flags |=
sfc_ef100_rx_nt_or_inner_l4_csum(class);
break;
case ESE_GZ_RH_HCLASS_L4_CLASS_UDP:
ptype |= RTE_PTYPE_L4_UDP;
*ol_flags |=
sfc_ef100_rx_nt_or_inner_l4_csum(class);
break;
case ESE_GZ_RH_HCLASS_L4_CLASS_FRAG:
ptype |= RTE_PTYPE_L4_FRAG;
break;
}
}
} else {
bool l4_valid = true;
switch (EFX_WORD_FIELD(class,
ESF_GZ_RX_PREFIX_HCLASS_TUN_OUTER_L3_CLASS)) {
case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
break;
case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
*ol_flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
break;
case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
break;
}
switch (EFX_WORD_FIELD(class,
ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L3_CLASS)) {
case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
ptype |= RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
*ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
break;
case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
ptype |= RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
*ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
break;
case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
ptype |= RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
break;
default:
l4_valid = false;
break;
}
if (l4_valid) {
switch (EFX_WORD_FIELD(class,
ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CLASS)) {
case ESE_GZ_RH_HCLASS_L4_CLASS_TCP:
ptype |= RTE_PTYPE_INNER_L4_TCP;
*ol_flags |=
sfc_ef100_rx_nt_or_inner_l4_csum(class);
break;
case ESE_GZ_RH_HCLASS_L4_CLASS_UDP:
ptype |= RTE_PTYPE_INNER_L4_UDP;
*ol_flags |=
sfc_ef100_rx_nt_or_inner_l4_csum(class);
break;
case ESE_GZ_RH_HCLASS_L4_CLASS_FRAG:
ptype |= RTE_PTYPE_INNER_L4_FRAG;
break;
}
}
}
return ptype;
}
/*
* Below function relies on the following fields in Rx prefix.
* Some fields are mandatory, some fields are optional.
* See sfc_ef100_rx_qstart() below.
*/
static const efx_rx_prefix_layout_t sfc_ef100_rx_prefix_layout = {
.erpl_fields = {
#define SFC_EF100_RX_PREFIX_FIELD(_name, _big_endian) \
EFX_RX_PREFIX_FIELD(_name, ESF_GZ_RX_PREFIX_ ## _name, _big_endian)
SFC_EF100_RX_PREFIX_FIELD(LENGTH, B_FALSE),
SFC_EF100_RX_PREFIX_FIELD(RSS_HASH_VALID, B_FALSE),
SFC_EF100_RX_PREFIX_FIELD(CLASS, B_FALSE),
EFX_RX_PREFIX_FIELD(INGRESS_MPORT,
ESF_GZ_RX_PREFIX_INGRESS_MPORT, B_FALSE),
SFC_EF100_RX_PREFIX_FIELD(RSS_HASH, B_FALSE),
SFC_EF100_RX_PREFIX_FIELD(USER_FLAG, B_FALSE),
SFC_EF100_RX_PREFIX_FIELD(USER_MARK, B_FALSE),
#undef SFC_EF100_RX_PREFIX_FIELD
}
};
static bool
sfc_ef100_rx_prefix_to_offloads(const struct sfc_ef100_rxq *rxq,
const efx_xword_t *rx_prefix,
struct rte_mbuf *m)
{
const efx_word_t *class;
uint64_t ol_flags = 0;
RTE_BUILD_BUG_ON(EFX_LOW_BIT(ESF_GZ_RX_PREFIX_CLASS) % CHAR_BIT != 0);
RTE_BUILD_BUG_ON(EFX_WIDTH(ESF_GZ_RX_PREFIX_CLASS) % CHAR_BIT != 0);
RTE_BUILD_BUG_ON(EFX_WIDTH(ESF_GZ_RX_PREFIX_CLASS) / CHAR_BIT !=
sizeof(*class));
class = (const efx_word_t *)((const uint8_t *)rx_prefix +
EFX_LOW_BIT(ESF_GZ_RX_PREFIX_CLASS) / CHAR_BIT);
if (unlikely(EFX_WORD_FIELD(*class,
ESF_GZ_RX_PREFIX_HCLASS_L2_STATUS) !=
ESE_GZ_RH_HCLASS_L2_STATUS_OK))
return false;
m->packet_type = sfc_ef100_rx_class_decode(*class, &ol_flags);
if ((rxq->flags & SFC_EF100_RXQ_RSS_HASH) &&
EFX_TEST_XWORD_BIT(rx_prefix[0],
ESF_GZ_RX_PREFIX_RSS_HASH_VALID_LBN)) {
ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
/* EFX_XWORD_FIELD converts little-endian to CPU */
m->hash.rss = EFX_XWORD_FIELD(rx_prefix[0],
ESF_GZ_RX_PREFIX_RSS_HASH);
}
if (rxq->flags & SFC_EF100_RXQ_USER_FLAG) {
uint32_t user_flag;
user_flag = EFX_XWORD_FIELD(rx_prefix[0],
ESF_GZ_RX_PREFIX_USER_FLAG);
if (user_flag != 0)
ol_flags |= RTE_MBUF_F_RX_FDIR;
}
if (rxq->flags & SFC_EF100_RXQ_USER_MARK) {
uint8_t tunnel_mark;
uint32_t user_mark;
uint32_t mark;
/* EFX_XWORD_FIELD converts little-endian to CPU */
mark = EFX_XWORD_FIELD(rx_prefix[0],
ESF_GZ_RX_PREFIX_USER_MARK);
user_mark = mark & rxq->user_mark_mask;
if (user_mark != SFC_EF100_USER_MARK_INVALID) {
ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
m->hash.fdir.hi = user_mark;
}
tunnel_mark = SFC_FT_GET_TUNNEL_MARK(mark);
if (tunnel_mark != SFC_FT_TUNNEL_MARK_INVALID) {
sfc_ft_id_t ft_id;
ft_id = SFC_FT_TUNNEL_MARK_TO_ID(tunnel_mark);
ol_flags |= sfc_dp_ft_id_valid;
*RTE_MBUF_DYNFIELD(m, sfc_dp_ft_id_offset,
sfc_ft_id_t *) = ft_id;
}
}
if (rxq->flags & SFC_EF100_RXQ_INGRESS_MPORT) {
ol_flags |= sfc_dp_mport_override;
*RTE_MBUF_DYNFIELD(m,
sfc_dp_mport_offset,
typeof(&((efx_mport_id_t *)0)->id)) =
EFX_XWORD_FIELD(rx_prefix[0],
ESF_GZ_RX_PREFIX_INGRESS_MPORT);
}
m->ol_flags = ol_flags;
return true;
}
static const uint8_t *
sfc_ef100_rx_pkt_prefix(const struct rte_mbuf *m)
{
return (const uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
}
static struct rte_mbuf *
sfc_ef100_rx_next_mbuf(struct sfc_ef100_rxq *rxq)
{
struct rte_mbuf *m;
unsigned int id;
/* mbuf associated with current Rx descriptor */
m = rxq->sw_ring[rxq->completed++ & rxq->ptr_mask].mbuf;
/* completed is already moved to the next one */
if (unlikely(rxq->completed == rxq->added))
goto done;
/*
* Prefetch Rx prefix of the next packet.
* Current packet is scattered and the next mbuf is its fragment
* it simply prefetches some data - no harm since packet rate
* should not be high if scatter is used.
*/
id = rxq->completed & rxq->ptr_mask;
rte_prefetch0(sfc_ef100_rx_pkt_prefix(rxq->sw_ring[id].mbuf));
if (unlikely(rxq->completed + 1 == rxq->added))
goto done;
/*
* Prefetch mbuf control structure of the next after next Rx
* descriptor.
*/
id = (id == rxq->ptr_mask) ? 0 : (id + 1);
rte_mbuf_prefetch_part1(rxq->sw_ring[id].mbuf);
/*
* If the next time we'll need SW Rx descriptor from the next
* cache line, try to make sure that we have it in cache.
*/
if ((id & 0x7) == 0x7)
rte_prefetch0(&rxq->sw_ring[(id + 1) & rxq->ptr_mask]);
done:
return m;
}
static struct rte_mbuf **
sfc_ef100_rx_process_ready_pkts(struct sfc_ef100_rxq *rxq,
struct rte_mbuf **rx_pkts,
struct rte_mbuf ** const rx_pkts_end)
{
while (rxq->ready_pkts > 0 && rx_pkts != rx_pkts_end) {
struct rte_mbuf *pkt;
struct rte_mbuf *lastseg;
const efx_xword_t *rx_prefix;
uint16_t pkt_len;
uint16_t seg_len;
bool deliver;
rxq->ready_pkts--;
pkt = sfc_ef100_rx_next_mbuf(rxq);
__rte_mbuf_raw_sanity_check(pkt);
RTE_BUILD_BUG_ON(sizeof(pkt->rearm_data[0]) !=
sizeof(rxq->rearm_data));
pkt->rearm_data[0] = rxq->rearm_data;
/* data_off already moved past Rx prefix */
rx_prefix = (const efx_xword_t *)sfc_ef100_rx_pkt_prefix(pkt);
pkt_len = EFX_XWORD_FIELD(rx_prefix[0],
ESF_GZ_RX_PREFIX_LENGTH);
SFC_ASSERT(pkt_len > 0);
rte_pktmbuf_pkt_len(pkt) = pkt_len;
seg_len = RTE_MIN(pkt_len, rxq->buf_size - rxq->prefix_size);
rte_pktmbuf_data_len(pkt) = seg_len;
deliver = sfc_ef100_rx_prefix_to_offloads(rxq, rx_prefix, pkt);
lastseg = pkt;
while ((pkt_len -= seg_len) > 0) {
struct rte_mbuf *seg;
seg = sfc_ef100_rx_next_mbuf(rxq);
__rte_mbuf_raw_sanity_check(seg);
seg->data_off = RTE_PKTMBUF_HEADROOM;
seg_len = RTE_MIN(pkt_len, rxq->buf_size);
rte_pktmbuf_data_len(seg) = seg_len;
rte_pktmbuf_pkt_len(seg) = seg_len;
pkt->nb_segs++;
lastseg->next = seg;
lastseg = seg;
}
if (likely(deliver)) {
*rx_pkts++ = pkt;
sfc_pkts_bytes_add(&rxq->dp.dpq.stats, 1,
rte_pktmbuf_pkt_len(pkt));
} else {
rte_pktmbuf_free(pkt);
}
}
return rx_pkts;
}
static bool
sfc_ef100_rx_get_event(struct sfc_ef100_rxq *rxq, efx_qword_t *ev)
{
*ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
if (!sfc_ef100_ev_present(ev,
(rxq->evq_read_ptr >> rxq->evq_phase_bit_shift) & 1))
return false;
if (unlikely(!sfc_ef100_ev_type_is(ev, ESE_GZ_EF100_EV_RX_PKTS))) {
/*
* Do not move read_ptr to keep the event for exception
* handling by the control path.
*/
rxq->flags |= SFC_EF100_RXQ_EXCEPTION;
sfc_ef100_rx_err(rxq,
"RxQ exception at EvQ ptr %u(%#x), event %08x:%08x",
rxq->evq_read_ptr, rxq->evq_read_ptr & rxq->ptr_mask,
EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
EFX_QWORD_FIELD(*ev, EFX_DWORD_0));
return false;
}
sfc_ef100_rx_debug(rxq, "RxQ got event %08x:%08x at %u (%#x)",
EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
EFX_QWORD_FIELD(*ev, EFX_DWORD_0),
rxq->evq_read_ptr,
rxq->evq_read_ptr & rxq->ptr_mask);
rxq->evq_read_ptr++;
return true;
}
static uint16_t
sfc_ef100_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(rx_queue);
struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
efx_qword_t rx_ev;
rx_pkts = sfc_ef100_rx_process_ready_pkts(rxq, rx_pkts, rx_pkts_end);
if (unlikely(rxq->flags &
(SFC_EF100_RXQ_NOT_RUNNING | SFC_EF100_RXQ_EXCEPTION)))
goto done;
while (rx_pkts != rx_pkts_end && sfc_ef100_rx_get_event(rxq, &rx_ev)) {
rxq->ready_pkts =
EFX_QWORD_FIELD(rx_ev, ESF_GZ_EV_RXPKTS_NUM_PKT);
rx_pkts = sfc_ef100_rx_process_ready_pkts(rxq, rx_pkts,
rx_pkts_end);
}
/* It is not a problem if we refill in the case of exception */
sfc_ef100_rx_qrefill(rxq);
if ((rxq->flags & SFC_EF100_RXQ_FLAG_INTR_EN) &&
rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
sfc_ef100_rx_qprime(rxq);
done:
return nb_pkts - (rx_pkts_end - rx_pkts);
}
static const uint32_t *
sfc_ef100_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
{
static const uint32_t ef100_native_ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L2_ETHER_QINQ,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_TUNNEL_VXLAN,
RTE_PTYPE_TUNNEL_NVGRE,
RTE_PTYPE_TUNNEL_GENEVE,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_INNER_L4_FRAG,
RTE_PTYPE_UNKNOWN
};
return ef100_native_ptypes;
}
static sfc_dp_rx_qdesc_npending_t sfc_ef100_rx_qdesc_npending;
static unsigned int
sfc_ef100_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
{
return 0;
}
static sfc_dp_rx_qdesc_status_t sfc_ef100_rx_qdesc_status;
static int
sfc_ef100_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
__rte_unused uint16_t offset)
{
return -ENOTSUP;
}
static sfc_dp_rx_get_dev_info_t sfc_ef100_rx_get_dev_info;
static void
sfc_ef100_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
{
/*
* Number of descriptors just defines maximum number of pushed
* descriptors (fill level).
*/
dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
}
static sfc_dp_rx_qsize_up_rings_t sfc_ef100_rx_qsize_up_rings;
static int
sfc_ef100_rx_qsize_up_rings(uint16_t nb_rx_desc,
struct sfc_dp_rx_hw_limits *limits,
__rte_unused struct rte_mempool *mb_pool,
unsigned int *rxq_entries,
unsigned int *evq_entries,
unsigned int *rxq_max_fill_level)
{
/*
* rte_ethdev API guarantees that the number meets min, max and
* alignment requirements.
*/
if (nb_rx_desc <= limits->rxq_min_entries)
*rxq_entries = limits->rxq_min_entries;
else
*rxq_entries = rte_align32pow2(nb_rx_desc);
*evq_entries = *rxq_entries;
*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
SFC_EF100_RXQ_LIMIT(*evq_entries));
return 0;
}
static uint64_t
sfc_ef100_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
{
struct rte_mbuf m;
memset(&m, 0, sizeof(m));
rte_mbuf_refcnt_set(&m, 1);
m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
m.nb_segs = 1;
m.port = port_id;
/* rearm_data covers structure members filled in above */
rte_compiler_barrier();
RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
return m.rearm_data[0];
}
static sfc_dp_rx_qcreate_t sfc_ef100_rx_qcreate;
static int
sfc_ef100_rx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr, int socket_id,
const struct sfc_dp_rx_qcreate_info *info,
struct sfc_dp_rxq **dp_rxqp)
{
struct sfc_ef100_rxq *rxq;
int rc;
rc = EINVAL;
if (info->rxq_entries != info->evq_entries)
goto fail_rxq_args;
rc = ENOMEM;
rxq = rte_zmalloc_socket("sfc-ef100-rxq", sizeof(*rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
goto fail_rxq_alloc;
sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
rxq->sw_ring = rte_calloc_socket("sfc-ef100-rxq-sw_ring",
info->rxq_entries,
sizeof(*rxq->sw_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_ring == NULL)
goto fail_desc_alloc;
rxq->flags |= SFC_EF100_RXQ_NOT_RUNNING;
rxq->ptr_mask = info->rxq_entries - 1;
rxq->evq_phase_bit_shift = rte_bsf32(info->evq_entries);
rxq->evq_hw_ring = info->evq_hw_ring;
rxq->max_fill_level = info->max_fill_level;
rxq->refill_threshold = info->refill_threshold;
rxq->prefix_size = info->prefix_size;
SFC_ASSERT(info->user_mark_mask != 0);
rxq->user_mark_mask = info->user_mark_mask;
rxq->buf_size = info->buf_size;
rxq->refill_mb_pool = info->refill_mb_pool;
rxq->rxq_hw_ring = info->rxq_hw_ring;
rxq->doorbell = (volatile uint8_t *)info->mem_bar +
ER_GZ_RX_RING_DOORBELL_OFST +
(info->hw_index << info->vi_window_shift);
rxq->evq_hw_index = info->evq_hw_index;
rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
info->fcw_offset +
ER_GZ_EVQ_INT_PRIME_OFST;
rxq->nic_dma_info = info->nic_dma_info;
if (rxq->nic_dma_info->nb_regions > 0)
rxq->flags |= SFC_EF100_RXQ_NIC_DMA_MAP;
sfc_ef100_rx_debug(rxq, "RxQ doorbell is %p", rxq->doorbell);
*dp_rxqp = &rxq->dp;
return 0;
fail_desc_alloc:
rte_free(rxq);
fail_rxq_alloc:
fail_rxq_args:
return rc;
}
static sfc_dp_rx_qdestroy_t sfc_ef100_rx_qdestroy;
static void
sfc_ef100_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
static sfc_dp_rx_qstart_t sfc_ef100_rx_qstart;
static int
sfc_ef100_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
const efx_rx_prefix_layout_t *pinfo)
{
struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
uint32_t unsup_rx_prefix_fields;
SFC_ASSERT(rxq->completed == 0);
SFC_ASSERT(rxq->added == 0);
/* Prefix must fit into reserved Rx buffer space */
if (pinfo->erpl_length > rxq->prefix_size)
return ENOTSUP;
unsup_rx_prefix_fields =
efx_rx_prefix_layout_check(pinfo, &sfc_ef100_rx_prefix_layout);
/* LENGTH and CLASS fields must always be present */
if ((unsup_rx_prefix_fields &
((1U << EFX_RX_PREFIX_FIELD_LENGTH) |
(1U << EFX_RX_PREFIX_FIELD_CLASS))) != 0)
return ENOTSUP;
if ((unsup_rx_prefix_fields &
((1U << EFX_RX_PREFIX_FIELD_RSS_HASH_VALID) |
(1U << EFX_RX_PREFIX_FIELD_RSS_HASH))) == 0)
rxq->flags |= SFC_EF100_RXQ_RSS_HASH;
else
rxq->flags &= ~SFC_EF100_RXQ_RSS_HASH;
if ((unsup_rx_prefix_fields &
(1U << EFX_RX_PREFIX_FIELD_USER_FLAG)) == 0)
rxq->flags |= SFC_EF100_RXQ_USER_FLAG;
else
rxq->flags &= ~SFC_EF100_RXQ_USER_FLAG;
if ((unsup_rx_prefix_fields &
(1U << EFX_RX_PREFIX_FIELD_USER_MARK)) == 0)
rxq->flags |= SFC_EF100_RXQ_USER_MARK;
else
rxq->flags &= ~SFC_EF100_RXQ_USER_MARK;
if ((unsup_rx_prefix_fields &
(1U << EFX_RX_PREFIX_FIELD_INGRESS_MPORT)) == 0)
rxq->flags |= SFC_EF100_RXQ_INGRESS_MPORT;
else
rxq->flags &= ~SFC_EF100_RXQ_INGRESS_MPORT;
rxq->prefix_size = pinfo->erpl_length;
rxq->rearm_data = sfc_ef100_mk_mbuf_rearm_data(rxq->dp.dpq.port_id,
rxq->prefix_size);
sfc_ef100_rx_qrefill(rxq);
rxq->evq_read_ptr = evq_read_ptr;
rxq->flags |= SFC_EF100_RXQ_STARTED;
rxq->flags &= ~(SFC_EF100_RXQ_NOT_RUNNING | SFC_EF100_RXQ_EXCEPTION);
if (rxq->flags & SFC_EF100_RXQ_FLAG_INTR_EN)
sfc_ef100_rx_qprime(rxq);
return 0;
}
static sfc_dp_rx_qstop_t sfc_ef100_rx_qstop;
static void
sfc_ef100_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
{
struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
rxq->flags |= SFC_EF100_RXQ_NOT_RUNNING;
*evq_read_ptr = rxq->evq_read_ptr;
}
static sfc_dp_rx_qrx_ev_t sfc_ef100_rx_qrx_ev;
static bool
sfc_ef100_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
{
__rte_unused struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
SFC_ASSERT(rxq->flags & SFC_EF100_RXQ_NOT_RUNNING);
/*
* It is safe to ignore Rx event since we free all mbufs on
* queue purge anyway.
*/
return false;
}
static sfc_dp_rx_qpurge_t sfc_ef100_rx_qpurge;
static void
sfc_ef100_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
unsigned int i;
struct sfc_ef100_rx_sw_desc *rxd;
for (i = rxq->completed; i != rxq->added; ++i) {
rxd = &rxq->sw_ring[i & rxq->ptr_mask];
rte_mbuf_raw_free(rxd->mbuf);
rxd->mbuf = NULL;
}
rxq->completed = rxq->added = 0;
rxq->ready_pkts = 0;
rxq->flags &= ~SFC_EF100_RXQ_STARTED;
}
static sfc_dp_rx_intr_enable_t sfc_ef100_rx_intr_enable;
static int
sfc_ef100_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
rxq->flags |= SFC_EF100_RXQ_FLAG_INTR_EN;
if (rxq->flags & SFC_EF100_RXQ_STARTED)
sfc_ef100_rx_qprime(rxq);
return 0;
}
static sfc_dp_rx_intr_disable_t sfc_ef100_rx_intr_disable;
static int
sfc_ef100_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
/* Cannot disarm, just disable rearm */
rxq->flags &= ~SFC_EF100_RXQ_FLAG_INTR_EN;
return 0;
}
static sfc_dp_rx_get_pushed_t sfc_ef100_rx_get_pushed;
static unsigned int
sfc_ef100_rx_get_pushed(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
/*
* The datapath keeps track only of added descriptors, since
* the number of pushed descriptors always equals the number
* of added descriptors due to enforced alignment.
*/
return rxq->added;
}
struct sfc_dp_rx sfc_ef100_rx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EF100,
.type = SFC_DP_RX,
.hw_fw_caps = SFC_DP_HW_FW_CAP_EF100,
},
.features = SFC_DP_RX_FEAT_MULTI_PROCESS |
SFC_DP_RX_FEAT_FLOW_FLAG |
SFC_DP_RX_FEAT_FLOW_MARK |
SFC_DP_RX_FEAT_INTR |
SFC_DP_RX_FEAT_STATS,
.dev_offload_capa = 0,
.queue_offload_capa = RTE_ETH_RX_OFFLOAD_CHECKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM |
RTE_ETH_RX_OFFLOAD_SCATTER |
RTE_ETH_RX_OFFLOAD_RSS_HASH,
.get_dev_info = sfc_ef100_rx_get_dev_info,
.qsize_up_rings = sfc_ef100_rx_qsize_up_rings,
.qcreate = sfc_ef100_rx_qcreate,
.qdestroy = sfc_ef100_rx_qdestroy,
.qstart = sfc_ef100_rx_qstart,
.qstop = sfc_ef100_rx_qstop,
.qrx_ev = sfc_ef100_rx_qrx_ev,
.qpurge = sfc_ef100_rx_qpurge,
.supported_ptypes_get = sfc_ef100_supported_ptypes_get,
.qdesc_npending = sfc_ef100_rx_qdesc_npending,
.qdesc_status = sfc_ef100_rx_qdesc_status,
.intr_enable = sfc_ef100_rx_intr_enable,
.intr_disable = sfc_ef100_rx_intr_disable,
.get_pushed = sfc_ef100_rx_get_pushed,
.pkt_burst = sfc_ef100_recv_pkts,
};