f-stack/dpdk/drivers/net/igc/igc_txrx.c

2265 lines
64 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <rte_config.h>
#include <rte_flow.h>
#include <rte_malloc.h>
#include <ethdev_driver.h>
#include <rte_net.h>
#include "igc_logs.h"
#include "igc_txrx.h"
#ifdef RTE_PMD_USE_PREFETCH
#define rte_igc_prefetch(p) rte_prefetch0(p)
#else
#define rte_igc_prefetch(p) do {} while (0)
#endif
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while (0)
#endif
/* Multicast / Unicast table offset mask. */
#define IGC_RCTL_MO_MSK (3u << IGC_RCTL_MO_SHIFT)
/* Loopback mode. */
#define IGC_RCTL_LBM_SHIFT 6
#define IGC_RCTL_LBM_MSK (3u << IGC_RCTL_LBM_SHIFT)
/* Hash select for MTA */
#define IGC_RCTL_HSEL_SHIFT 8
#define IGC_RCTL_HSEL_MSK (3u << IGC_RCTL_HSEL_SHIFT)
#define IGC_RCTL_PSP (1u << 21)
/* Receive buffer size for header buffer */
#define IGC_SRRCTL_BSIZEHEADER_SHIFT 8
/* RX descriptor status and error flags */
#define IGC_RXD_STAT_L4CS (1u << 5)
#define IGC_RXD_STAT_VEXT (1u << 9)
#define IGC_RXD_STAT_LLINT (1u << 11)
#define IGC_RXD_STAT_SCRC (1u << 12)
#define IGC_RXD_STAT_SMDT_MASK (3u << 13)
#define IGC_RXD_STAT_MC (1u << 19)
#define IGC_RXD_EXT_ERR_L4E (1u << 29)
#define IGC_RXD_EXT_ERR_IPE (1u << 30)
#define IGC_RXD_EXT_ERR_RXE (1u << 31)
#define IGC_RXD_RSS_TYPE_MASK 0xfu
#define IGC_RXD_PCTYPE_MASK (0x7fu << 4)
#define IGC_RXD_ETQF_SHIFT 12
#define IGC_RXD_ETQF_MSK (0xfu << IGC_RXD_ETQF_SHIFT)
#define IGC_RXD_VPKT (1u << 16)
/* TXD control bits */
#define IGC_TXDCTL_PTHRESH_SHIFT 0
#define IGC_TXDCTL_HTHRESH_SHIFT 8
#define IGC_TXDCTL_WTHRESH_SHIFT 16
#define IGC_TXDCTL_PTHRESH_MSK (0x1fu << IGC_TXDCTL_PTHRESH_SHIFT)
#define IGC_TXDCTL_HTHRESH_MSK (0x1fu << IGC_TXDCTL_HTHRESH_SHIFT)
#define IGC_TXDCTL_WTHRESH_MSK (0x1fu << IGC_TXDCTL_WTHRESH_SHIFT)
/* RXD control bits */
#define IGC_RXDCTL_PTHRESH_SHIFT 0
#define IGC_RXDCTL_HTHRESH_SHIFT 8
#define IGC_RXDCTL_WTHRESH_SHIFT 16
#define IGC_RXDCTL_PTHRESH_MSK (0x1fu << IGC_RXDCTL_PTHRESH_SHIFT)
#define IGC_RXDCTL_HTHRESH_MSK (0x1fu << IGC_RXDCTL_HTHRESH_SHIFT)
#define IGC_RXDCTL_WTHRESH_MSK (0x1fu << IGC_RXDCTL_WTHRESH_SHIFT)
#define IGC_TSO_MAX_HDRLEN 512
#define IGC_TSO_MAX_MSS 9216
/* Bit Mask to indicate what bits required for building TX context */
#define IGC_TX_OFFLOAD_MASK (RTE_MBUF_F_TX_OUTER_IPV4 | \
RTE_MBUF_F_TX_IPV6 | \
RTE_MBUF_F_TX_IPV4 | \
RTE_MBUF_F_TX_VLAN | \
RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_L4_MASK | \
RTE_MBUF_F_TX_TCP_SEG | \
RTE_MBUF_F_TX_UDP_SEG)
#define IGC_TX_OFFLOAD_SEG (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)
#define IGC_ADVTXD_POPTS_TXSM 0x00000200 /* L4 Checksum offload request */
#define IGC_ADVTXD_POPTS_IXSM 0x00000100 /* IP Checksum offload request */
/* L4 Packet TYPE of Reserved */
#define IGC_ADVTXD_TUCMD_L4T_RSV 0x00001800
#define IGC_TX_OFFLOAD_NOTSUP_MASK (RTE_MBUF_F_TX_OFFLOAD_MASK ^ IGC_TX_OFFLOAD_MASK)
/**
* Structure associated with each descriptor of the RX ring of a RX queue.
*/
struct igc_rx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
};
/**
* Structure associated with each RX queue.
*/
struct igc_rx_queue {
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
volatile union igc_adv_rx_desc *rx_ring;
/**< RX ring virtual address. */
uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
struct igc_rx_entry *sw_ring; /**< address of RX software ring. */
struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
uint16_t nb_rx_desc; /**< number of RX descriptors. */
uint16_t rx_tail; /**< current value of RDT register. */
uint16_t nb_rx_hold; /**< number of held free RX desc. */
uint16_t rx_free_thresh; /**< max free RX desc to hold. */
uint16_t queue_id; /**< RX queue index. */
uint16_t reg_idx; /**< RX queue register index. */
uint16_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */
uint32_t flags; /**< RX flags. */
uint64_t offloads; /**< offloads of RTE_ETH_RX_OFFLOAD_* */
};
/** Offload features */
union igc_tx_offload {
uint64_t data;
struct {
uint64_t l3_len:9; /**< L3 (IP) Header Length. */
uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
uint64_t vlan_tci:16;
/**< VLAN Tag Control Identifier(CPU order). */
uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
uint64_t tso_segsz:16; /**< TCP TSO segment size. */
/* uint64_t unused:8; */
};
};
/*
* Compare mask for igc_tx_offload.data,
* should be in sync with igc_tx_offload layout.
*/
#define TX_MACIP_LEN_CMP_MASK 0x000000000000FFFFULL /**< L2L3 header mask. */
#define TX_VLAN_CMP_MASK 0x00000000FFFF0000ULL /**< Vlan mask. */
#define TX_TCP_LEN_CMP_MASK 0x000000FF00000000ULL /**< TCP header mask. */
#define TX_TSO_MSS_CMP_MASK 0x00FFFF0000000000ULL /**< TSO segsz mask. */
/** Mac + IP + TCP + Mss mask. */
#define TX_TSO_CMP_MASK \
(TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
/**
* Structure to check if new context need be built
*/
struct igc_advctx_info {
uint64_t flags; /**< ol_flags related to context build. */
/** tx offload: vlan, tso, l2-l3-l4 lengths. */
union igc_tx_offload tx_offload;
/** compare mask for tx offload. */
union igc_tx_offload tx_offload_mask;
};
/**
* Hardware context number
*/
enum {
IGC_CTX_0 = 0, /**< CTX0 */
IGC_CTX_1 = 1, /**< CTX1 */
IGC_CTX_NUM = 2, /**< CTX_NUM */
};
/**
* Structure associated with each descriptor of the TX ring of a TX queue.
*/
struct igc_tx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
uint16_t next_id; /**< Index of next descriptor in ring. */
uint16_t last_id; /**< Index of last scattered descriptor. */
};
/**
* Structure associated with each TX queue.
*/
struct igc_tx_queue {
volatile union igc_adv_tx_desc *tx_ring; /**< TX ring address */
uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
struct igc_tx_entry *sw_ring; /**< virtual address of SW ring. */
volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
uint32_t txd_type; /**< Device-specific TXD type */
uint16_t nb_tx_desc; /**< number of TX descriptors. */
uint16_t tx_tail; /**< Current value of TDT register. */
uint16_t tx_head;
/**< Index of first used TX descriptor. */
uint16_t queue_id; /**< TX queue index. */
uint16_t reg_idx; /**< TX queue register index. */
uint16_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
uint8_t ctx_curr;
/**< Start context position for transmit queue. */
struct igc_advctx_info ctx_cache[IGC_CTX_NUM];
/**< Hardware context history.*/
uint64_t offloads; /**< offloads of RTE_ETH_TX_OFFLOAD_* */
};
static inline uint64_t
rx_desc_statuserr_to_pkt_flags(uint32_t statuserr)
{
static uint64_t l4_chksum_flags[] = {0, 0,
RTE_MBUF_F_RX_L4_CKSUM_GOOD,
RTE_MBUF_F_RX_L4_CKSUM_BAD};
static uint64_t l3_chksum_flags[] = {0, 0,
RTE_MBUF_F_RX_IP_CKSUM_GOOD,
RTE_MBUF_F_RX_IP_CKSUM_BAD};
uint64_t pkt_flags = 0;
uint32_t tmp;
if (statuserr & IGC_RXD_STAT_VP)
pkt_flags |= RTE_MBUF_F_RX_VLAN_STRIPPED;
tmp = !!(statuserr & (IGC_RXD_STAT_L4CS | IGC_RXD_STAT_UDPCS));
tmp = (tmp << 1) | (uint32_t)!!(statuserr & IGC_RXD_EXT_ERR_L4E);
pkt_flags |= l4_chksum_flags[tmp];
tmp = !!(statuserr & IGC_RXD_STAT_IPCS);
tmp = (tmp << 1) | (uint32_t)!!(statuserr & IGC_RXD_EXT_ERR_IPE);
pkt_flags |= l3_chksum_flags[tmp];
return pkt_flags;
}
#define IGC_PACKET_TYPE_IPV4 0X01
#define IGC_PACKET_TYPE_IPV4_TCP 0X11
#define IGC_PACKET_TYPE_IPV4_UDP 0X21
#define IGC_PACKET_TYPE_IPV4_SCTP 0X41
#define IGC_PACKET_TYPE_IPV4_EXT 0X03
#define IGC_PACKET_TYPE_IPV4_EXT_SCTP 0X43
#define IGC_PACKET_TYPE_IPV6 0X04
#define IGC_PACKET_TYPE_IPV6_TCP 0X14
#define IGC_PACKET_TYPE_IPV6_UDP 0X24
#define IGC_PACKET_TYPE_IPV6_EXT 0X0C
#define IGC_PACKET_TYPE_IPV6_EXT_TCP 0X1C
#define IGC_PACKET_TYPE_IPV6_EXT_UDP 0X2C
#define IGC_PACKET_TYPE_IPV4_IPV6 0X05
#define IGC_PACKET_TYPE_IPV4_IPV6_TCP 0X15
#define IGC_PACKET_TYPE_IPV4_IPV6_UDP 0X25
#define IGC_PACKET_TYPE_IPV4_IPV6_EXT 0X0D
#define IGC_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
#define IGC_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
#define IGC_PACKET_TYPE_MAX 0X80
#define IGC_PACKET_TYPE_MASK 0X7F
#define IGC_PACKET_TYPE_SHIFT 0X04
static inline uint32_t
rx_desc_pkt_info_to_pkt_type(uint32_t pkt_info)
{
static const uint32_t
ptype_table[IGC_PACKET_TYPE_MAX] __rte_cache_aligned = {
[IGC_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4,
[IGC_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT,
[IGC_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6,
[IGC_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6,
[IGC_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT,
[IGC_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT,
[IGC_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
[IGC_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
[IGC_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
[IGC_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
[IGC_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
[IGC_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
[IGC_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
[IGC_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
[IGC_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
[IGC_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
[IGC_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
[IGC_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
};
if (unlikely(pkt_info & IGC_RXDADV_PKTTYPE_ETQF))
return RTE_PTYPE_UNKNOWN;
pkt_info = (pkt_info >> IGC_PACKET_TYPE_SHIFT) & IGC_PACKET_TYPE_MASK;
return ptype_table[pkt_info];
}
static inline void
rx_desc_get_pkt_info(struct igc_rx_queue *rxq, struct rte_mbuf *rxm,
union igc_adv_rx_desc *rxd, uint32_t staterr)
{
uint64_t pkt_flags;
uint32_t hlen_type_rss;
uint16_t pkt_info;
/* Prefetch data of first segment, if configured to do so. */
rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
rxm->port = rxq->port_id;
hlen_type_rss = rte_le_to_cpu_32(rxd->wb.lower.lo_dword.data);
rxm->hash.rss = rte_le_to_cpu_32(rxd->wb.lower.hi_dword.rss);
rxm->vlan_tci = rte_le_to_cpu_16(rxd->wb.upper.vlan);
pkt_flags = (hlen_type_rss & IGC_RXD_RSS_TYPE_MASK) ?
RTE_MBUF_F_RX_RSS_HASH : 0;
if (hlen_type_rss & IGC_RXD_VPKT)
pkt_flags |= RTE_MBUF_F_RX_VLAN;
pkt_flags |= rx_desc_statuserr_to_pkt_flags(staterr);
rxm->ol_flags = pkt_flags;
pkt_info = rte_le_to_cpu_16(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
rxm->packet_type = rx_desc_pkt_info_to_pkt_type(pkt_info);
}
uint16_t
igc_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct igc_rx_queue * const rxq = rx_queue;
volatile union igc_adv_rx_desc * const rx_ring = rxq->rx_ring;
struct igc_rx_entry * const sw_ring = rxq->sw_ring;
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0;
uint16_t nb_hold = 0;
while (nb_rx < nb_pkts) {
volatile union igc_adv_rx_desc *rxdp;
struct igc_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union igc_adv_rx_desc rxd;
uint32_t staterr;
uint16_t data_len;
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rte_cpu_to_le_32(rxdp->wb.upper.status_error);
if (!(staterr & IGC_RXD_STAT_DD))
break;
rxd = *rxdp;
/*
* End of packet.
*
* If the IGC_RXD_STAT_EOP flag is not set, the RX packet is
* likely to be invalid and to be dropped by the various
* validation checks performed by the network stack.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy does not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG,
"port_id=%u queue_id=%u rx_id=%u staterr=0x%x data_len=%u",
rxq->port_id, rxq->queue_id, rx_id, staterr,
rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (nmb == NULL) {
unsigned int id;
PMD_RX_LOG(DEBUG,
"RX mbuf alloc failed, port_id=%u queue_id=%u",
rxq->port_id, rxq->queue_id);
id = rxq->port_id;
rte_eth_devices[id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id >= rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_igc_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_igc_prefetch(&rx_ring[rx_id]);
rte_igc_prefetch(&sw_ring[rx_id]);
}
/*
* Update RX descriptor with the physical address of the new
* data buffer of the new allocated mbuf.
*/
rxm = rxe->mbuf;
rxe->mbuf = nmb;
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxm->next = NULL;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
data_len = rte_le_to_cpu_16(rxd.wb.upper.length) - rxq->crc_len;
rxm->data_len = data_len;
rxm->pkt_len = data_len;
rxm->nb_segs = 1;
rx_desc_get_pkt_info(rxq, rxm, &rxd, staterr);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situation from the
* hardware point of view...
*/
nb_hold = nb_hold + rxq->nb_rx_hold;
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG,
"port_id=%u queue_id=%u rx_tail=%u nb_hold=%u nb_rx=%u",
rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
rx_id = (rx_id == 0) ? (rxq->nb_rx_desc - 1) : (rx_id - 1);
IGC_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
uint16_t
igc_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igc_rx_queue * const rxq = rx_queue;
volatile union igc_adv_rx_desc * const rx_ring = rxq->rx_ring;
struct igc_rx_entry * const sw_ring = rxq->sw_ring;
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0;
uint16_t nb_hold = 0;
while (nb_rx < nb_pkts) {
volatile union igc_adv_rx_desc *rxdp;
struct igc_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union igc_adv_rx_desc rxd;
uint32_t staterr;
uint16_t data_len;
next_desc:
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rte_cpu_to_le_32(rxdp->wb.upper.status_error);
if (!(staterr & IGC_RXD_STAT_DD))
break;
rxd = *rxdp;
/*
* Descriptor done.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy does not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG,
"port_id=%u queue_id=%u rx_id=%u staterr=0x%x data_len=%u",
rxq->port_id, rxq->queue_id, rx_id, staterr,
rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (nmb == NULL) {
unsigned int id;
PMD_RX_LOG(DEBUG,
"RX mbuf alloc failed, port_id=%u queue_id=%u",
rxq->port_id, rxq->queue_id);
id = rxq->port_id;
rte_eth_devices[id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id >= rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_igc_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_igc_prefetch(&rx_ring[rx_id]);
rte_igc_prefetch(&sw_ring[rx_id]);
}
/*
* Update RX descriptor with the physical address of the new
* data buffer of the new allocated mbuf.
*/
rxm = rxe->mbuf;
rxe->mbuf = nmb;
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxm->next = NULL;
/*
* Set data length & data buffer address of mbuf.
*/
rxm->data_off = RTE_PKTMBUF_HEADROOM;
data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
rxm->data_len = data_len;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet and
* initialize its context.
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (first_seg == NULL) {
first_seg = rxm;
first_seg->pkt_len = data_len;
first_seg->nb_segs = 1;
} else {
first_seg->pkt_len += data_len;
first_seg->nb_segs++;
last_seg->next = rxm;
}
/*
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (!(staterr & IGC_RXD_STAT_EOP)) {
last_seg = rxm;
goto next_desc;
}
/*
* This is the last buffer of the received packet.
* If the CRC is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer.
* If part of the CRC is also contained in the previous
* mbuf, subtract the length of that CRC part from the
* data length of the previous mbuf.
*/
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
if (data_len <= RTE_ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len = last_seg->data_len -
(RTE_ETHER_CRC_LEN - data_len);
last_seg->next = NULL;
} else {
rxm->data_len = (uint16_t)
(data_len - RTE_ETHER_CRC_LEN);
}
}
rx_desc_get_pkt_info(rxq, first_seg, &rxd, staterr);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = first_seg;
/* Setup receipt context for a new packet. */
first_seg = NULL;
}
rxq->rx_tail = rx_id;
/*
* Save receive context.
*/
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situation from the
* hardware point of view...
*/
nb_hold = nb_hold + rxq->nb_rx_hold;
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG,
"port_id=%u queue_id=%u rx_tail=%u nb_hold=%u nb_rx=%u",
rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
rx_id = (rx_id == 0) ? (rxq->nb_rx_desc - 1) : (rx_id - 1);
IGC_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
static void
igc_rx_queue_release_mbufs(struct igc_rx_queue *rxq)
{
unsigned int i;
if (rxq->sw_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
igc_rx_queue_release(struct igc_rx_queue *rxq)
{
igc_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
void eth_igc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
if (dev->data->rx_queues[qid])
igc_rx_queue_release(dev->data->rx_queues[qid]);
}
uint32_t eth_igc_rx_queue_count(void *rx_queue)
{
/**
* Check the DD bit of a rx descriptor of each 4 in a group,
* to avoid checking too frequently and downgrading performance
* too much.
*/
#define IGC_RXQ_SCAN_INTERVAL 4
volatile union igc_adv_rx_desc *rxdp;
struct igc_rx_queue *rxq;
uint16_t desc = 0;
rxq = rx_queue;
rxdp = &rxq->rx_ring[rxq->rx_tail];
while (desc < rxq->nb_rx_desc - rxq->rx_tail) {
if (unlikely(!(rxdp->wb.upper.status_error &
IGC_RXD_STAT_DD)))
return desc;
desc += IGC_RXQ_SCAN_INTERVAL;
rxdp += IGC_RXQ_SCAN_INTERVAL;
}
rxdp = &rxq->rx_ring[rxq->rx_tail + desc - rxq->nb_rx_desc];
while (desc < rxq->nb_rx_desc &&
(rxdp->wb.upper.status_error & IGC_RXD_STAT_DD)) {
desc += IGC_RXQ_SCAN_INTERVAL;
rxdp += IGC_RXQ_SCAN_INTERVAL;
}
return desc;
}
int eth_igc_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct igc_rx_queue *rxq = rx_queue;
volatile uint32_t *status;
uint32_t desc;
if (unlikely(!rxq || offset >= rxq->nb_rx_desc))
return -EINVAL;
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
status = &rxq->rx_ring[desc].wb.upper.status_error;
if (*status & rte_cpu_to_le_32(IGC_RXD_STAT_DD))
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
static int
igc_alloc_rx_queue_mbufs(struct igc_rx_queue *rxq)
{
struct igc_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
unsigned int i;
/* Initialize software ring entries. */
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union igc_adv_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
if (mbuf == NULL) {
PMD_DRV_LOG(ERR, "RX mbuf alloc failed, queue_id=%hu",
rxq->queue_id);
return -ENOMEM;
}
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.hdr_addr = 0;
rxd->read.pkt_addr = dma_addr;
rxe[i].mbuf = mbuf;
}
return 0;
}
/*
* RSS random key supplied in section 7.1.2.9.3 of the Intel I225 datasheet.
* Used as the default key.
*/
static uint8_t default_rss_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
void
igc_rss_disable(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t mrqc;
mrqc = IGC_READ_REG(hw, IGC_MRQC);
mrqc &= ~IGC_MRQC_ENABLE_MASK;
IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
}
void
igc_hw_rss_hash_set(struct igc_hw *hw, struct rte_eth_rss_conf *rss_conf)
{
uint32_t *hash_key = (uint32_t *)rss_conf->rss_key;
uint32_t mrqc;
uint64_t rss_hf;
if (hash_key != NULL) {
uint8_t i;
/* Fill in RSS hash key */
for (i = 0; i < IGC_HKEY_MAX_INDEX; i++)
IGC_WRITE_REG_LE_VALUE(hw, IGC_RSSRK(i), hash_key[i]);
}
/* Set configured hashing protocols in MRQC register */
rss_hf = rss_conf->rss_hf;
mrqc = IGC_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
if (rss_hf & RTE_ETH_RSS_IPV4)
mrqc |= IGC_MRQC_RSS_FIELD_IPV4;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
mrqc |= IGC_MRQC_RSS_FIELD_IPV4_TCP;
if (rss_hf & RTE_ETH_RSS_IPV6)
mrqc |= IGC_MRQC_RSS_FIELD_IPV6;
if (rss_hf & RTE_ETH_RSS_IPV6_EX)
mrqc |= IGC_MRQC_RSS_FIELD_IPV6_EX;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP)
mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP;
if (rss_hf & RTE_ETH_RSS_IPV6_TCP_EX)
mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_UDP)
mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
if (rss_hf & RTE_ETH_RSS_IPV6_UDP_EX)
mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP_EX;
IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
}
static void
igc_rss_configure(struct rte_eth_dev *dev)
{
struct rte_eth_rss_conf rss_conf;
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint16_t i;
/* Fill in redirection table. */
for (i = 0; i < IGC_RSS_RDT_SIZD; i++) {
union igc_rss_reta_reg reta;
uint16_t q_idx, reta_idx;
q_idx = (uint8_t)((dev->data->nb_rx_queues > 1) ?
i % dev->data->nb_rx_queues : 0);
reta_idx = i % sizeof(reta);
reta.bytes[reta_idx] = q_idx;
if (reta_idx == sizeof(reta) - 1)
IGC_WRITE_REG_LE_VALUE(hw,
IGC_RETA(i / sizeof(reta)), reta.dword);
}
/*
* Configure the RSS key and the RSS protocols used to compute
* the RSS hash of input packets.
*/
rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
if (rss_conf.rss_key == NULL)
rss_conf.rss_key = default_rss_key;
igc_hw_rss_hash_set(hw, &rss_conf);
}
int
igc_del_rss_filter(struct rte_eth_dev *dev)
{
struct igc_rss_filter *rss_filter = IGC_DEV_PRIVATE_RSS_FILTER(dev);
if (rss_filter->enable) {
/* recover default RSS configuration */
igc_rss_configure(dev);
/* disable RSS logic and clear filter data */
igc_rss_disable(dev);
memset(rss_filter, 0, sizeof(*rss_filter));
return 0;
}
PMD_DRV_LOG(ERR, "filter not exist!");
return -ENOENT;
}
/* Initiate the filter structure by the structure of rte_flow_action_rss */
void
igc_rss_conf_set(struct igc_rss_filter *out,
const struct rte_flow_action_rss *rss)
{
out->conf.func = rss->func;
out->conf.level = rss->level;
out->conf.types = rss->types;
if (rss->key_len == sizeof(out->key)) {
memcpy(out->key, rss->key, rss->key_len);
out->conf.key = out->key;
out->conf.key_len = rss->key_len;
} else {
out->conf.key = NULL;
out->conf.key_len = 0;
}
if (rss->queue_num <= IGC_RSS_RDT_SIZD) {
memcpy(out->queue, rss->queue,
sizeof(*out->queue) * rss->queue_num);
out->conf.queue = out->queue;
out->conf.queue_num = rss->queue_num;
} else {
out->conf.queue = NULL;
out->conf.queue_num = 0;
}
}
int
igc_add_rss_filter(struct rte_eth_dev *dev, struct igc_rss_filter *rss)
{
struct rte_eth_rss_conf rss_conf = {
.rss_key = rss->conf.key_len ?
(void *)(uintptr_t)rss->conf.key : NULL,
.rss_key_len = rss->conf.key_len,
.rss_hf = rss->conf.types,
};
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_rss_filter *rss_filter = IGC_DEV_PRIVATE_RSS_FILTER(dev);
uint32_t i, j;
/* check RSS type is valid */
if ((rss_conf.rss_hf & IGC_RSS_OFFLOAD_ALL) == 0) {
PMD_DRV_LOG(ERR,
"RSS type(0x%" PRIx64 ") error!, only 0x%" PRIx64
" been supported", rss_conf.rss_hf,
(uint64_t)IGC_RSS_OFFLOAD_ALL);
return -EINVAL;
}
/* check queue count is not zero */
if (!rss->conf.queue_num) {
PMD_DRV_LOG(ERR, "Queue number should not be 0!");
return -EINVAL;
}
/* check queue id is valid */
for (i = 0; i < rss->conf.queue_num; i++)
if (rss->conf.queue[i] >= dev->data->nb_rx_queues) {
PMD_DRV_LOG(ERR, "Queue id %u is invalid!",
rss->conf.queue[i]);
return -EINVAL;
}
/* only support one filter */
if (rss_filter->enable) {
PMD_DRV_LOG(ERR, "Only support one RSS filter!");
return -ENOTSUP;
}
rss_filter->enable = 1;
igc_rss_conf_set(rss_filter, &rss->conf);
/* Fill in redirection table. */
for (i = 0, j = 0; i < IGC_RSS_RDT_SIZD; i++, j++) {
union igc_rss_reta_reg reta;
uint16_t q_idx, reta_idx;
if (j == rss->conf.queue_num)
j = 0;
q_idx = rss->conf.queue[j];
reta_idx = i % sizeof(reta);
reta.bytes[reta_idx] = q_idx;
if (reta_idx == sizeof(reta) - 1)
IGC_WRITE_REG_LE_VALUE(hw,
IGC_RETA(i / sizeof(reta)), reta.dword);
}
if (rss_conf.rss_key == NULL)
rss_conf.rss_key = default_rss_key;
igc_hw_rss_hash_set(hw, &rss_conf);
return 0;
}
void
igc_clear_rss_filter(struct rte_eth_dev *dev)
{
struct igc_rss_filter *rss_filter = IGC_DEV_PRIVATE_RSS_FILTER(dev);
if (!rss_filter->enable)
return;
/* recover default RSS configuration */
igc_rss_configure(dev);
/* disable RSS logic and clear filter data */
igc_rss_disable(dev);
memset(rss_filter, 0, sizeof(*rss_filter));
}
static int
igc_dev_mq_rx_configure(struct rte_eth_dev *dev)
{
if (RTE_ETH_DEV_SRIOV(dev).active) {
PMD_DRV_LOG(ERR, "SRIOV unsupported!");
return -EINVAL;
}
switch (dev->data->dev_conf.rxmode.mq_mode) {
case RTE_ETH_MQ_RX_RSS:
igc_rss_configure(dev);
break;
case RTE_ETH_MQ_RX_NONE:
/*
* configure RSS register for following,
* then disable the RSS logic
*/
igc_rss_configure(dev);
igc_rss_disable(dev);
break;
default:
PMD_DRV_LOG(ERR, "rx mode(%d) not supported!",
dev->data->dev_conf.rxmode.mq_mode);
return -EINVAL;
}
return 0;
}
int
igc_rx_init(struct rte_eth_dev *dev)
{
struct igc_rx_queue *rxq;
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
uint32_t max_rx_pktlen;
uint32_t rctl;
uint32_t rxcsum;
uint16_t buf_size;
uint16_t rctl_bsize;
uint16_t i;
int ret;
dev->rx_pkt_burst = igc_recv_pkts;
/*
* Make sure receives are disabled while setting
* up the descriptor ring.
*/
rctl = IGC_READ_REG(hw, IGC_RCTL);
IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
/* Configure support of jumbo frames, if any. */
if (dev->data->mtu > RTE_ETHER_MTU)
rctl |= IGC_RCTL_LPE;
else
rctl &= ~IGC_RCTL_LPE;
max_rx_pktlen = dev->data->mtu + IGC_ETH_OVERHEAD;
/*
* Set maximum packet length by default, and might be updated
* together with enabling/disabling dual VLAN.
*/
IGC_WRITE_REG(hw, IGC_RLPML, max_rx_pktlen);
/* Configure and enable each RX queue. */
rctl_bsize = 0;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint64_t bus_addr;
uint32_t rxdctl;
uint32_t srrctl;
rxq = dev->data->rx_queues[i];
rxq->flags = 0;
/* Allocate buffers for descriptor rings and set up queue */
ret = igc_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
/*
* Reset crc_len in case it was changed after queue setup by a
* call to configure
*/
rxq->crc_len = (offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) ?
RTE_ETHER_CRC_LEN : 0;
bus_addr = rxq->rx_ring_phys_addr;
IGC_WRITE_REG(hw, IGC_RDLEN(rxq->reg_idx),
rxq->nb_rx_desc *
sizeof(union igc_adv_rx_desc));
IGC_WRITE_REG(hw, IGC_RDBAH(rxq->reg_idx),
(uint32_t)(bus_addr >> 32));
IGC_WRITE_REG(hw, IGC_RDBAL(rxq->reg_idx),
(uint32_t)bus_addr);
/* set descriptor configuration */
srrctl = IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
srrctl |= (uint32_t)(RTE_PKTMBUF_HEADROOM / 64) <<
IGC_SRRCTL_BSIZEHEADER_SHIFT;
/*
* Configure RX buffer size.
*/
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
RTE_PKTMBUF_HEADROOM);
if (buf_size >= 1024) {
/*
* Configure the BSIZEPACKET field of the SRRCTL
* register of the queue.
* Value is in 1 KB resolution, from 1 KB to 16 KB.
* If this field is equal to 0b, then RCTL.BSIZE
* determines the RX packet buffer size.
*/
srrctl |= ((buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT) &
IGC_SRRCTL_BSIZEPKT_MASK);
buf_size = (uint16_t)((srrctl &
IGC_SRRCTL_BSIZEPKT_MASK) <<
IGC_SRRCTL_BSIZEPKT_SHIFT);
/* It adds dual VLAN length for supporting dual VLAN */
if (max_rx_pktlen > buf_size)
dev->data->scattered_rx = 1;
} else {
/*
* Use BSIZE field of the device RCTL register.
*/
if (rctl_bsize == 0 || rctl_bsize > buf_size)
rctl_bsize = buf_size;
dev->data->scattered_rx = 1;
}
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= IGC_SRRCTL_DROP_EN;
IGC_WRITE_REG(hw, IGC_SRRCTL(rxq->reg_idx), srrctl);
/* Enable this RX queue. */
rxdctl = IGC_RXDCTL_QUEUE_ENABLE;
rxdctl |= ((uint32_t)rxq->pthresh << IGC_RXDCTL_PTHRESH_SHIFT) &
IGC_RXDCTL_PTHRESH_MSK;
rxdctl |= ((uint32_t)rxq->hthresh << IGC_RXDCTL_HTHRESH_SHIFT) &
IGC_RXDCTL_HTHRESH_MSK;
rxdctl |= ((uint32_t)rxq->wthresh << IGC_RXDCTL_WTHRESH_SHIFT) &
IGC_RXDCTL_WTHRESH_MSK;
IGC_WRITE_REG(hw, IGC_RXDCTL(rxq->reg_idx), rxdctl);
}
if (offloads & RTE_ETH_RX_OFFLOAD_SCATTER)
dev->data->scattered_rx = 1;
if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG, "forcing scatter mode");
dev->rx_pkt_burst = igc_recv_scattered_pkts;
}
/*
* Setup BSIZE field of RCTL register, if needed.
* Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
* register, since the code above configures the SRRCTL register of
* the RX queue in such a case.
* All configurable sizes are:
* 16384: rctl |= (IGC_RCTL_SZ_16384 | IGC_RCTL_BSEX);
* 8192: rctl |= (IGC_RCTL_SZ_8192 | IGC_RCTL_BSEX);
* 4096: rctl |= (IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX);
* 2048: rctl |= IGC_RCTL_SZ_2048;
* 1024: rctl |= IGC_RCTL_SZ_1024;
* 512: rctl |= IGC_RCTL_SZ_512;
* 256: rctl |= IGC_RCTL_SZ_256;
*/
if (rctl_bsize > 0) {
if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
rctl |= IGC_RCTL_SZ_512;
else /* 256 <= buf_size < 512 - use 256 */
rctl |= IGC_RCTL_SZ_256;
}
/*
* Configure RSS if device configured with multiple RX queues.
*/
igc_dev_mq_rx_configure(dev);
/* Update the rctl since igc_dev_mq_rx_configure may change its value */
rctl |= IGC_READ_REG(hw, IGC_RCTL);
/*
* Setup the Checksum Register.
* Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
*/
rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
rxcsum |= IGC_RXCSUM_PCSD;
/* Enable both L3/L4 rx checksum offload */
if (offloads & RTE_ETH_RX_OFFLOAD_IPV4_CKSUM)
rxcsum |= IGC_RXCSUM_IPOFL;
else
rxcsum &= ~IGC_RXCSUM_IPOFL;
if (offloads &
(RTE_ETH_RX_OFFLOAD_TCP_CKSUM | RTE_ETH_RX_OFFLOAD_UDP_CKSUM)) {
rxcsum |= IGC_RXCSUM_TUOFL;
offloads |= RTE_ETH_RX_OFFLOAD_SCTP_CKSUM;
} else {
rxcsum &= ~IGC_RXCSUM_TUOFL;
}
if (offloads & RTE_ETH_RX_OFFLOAD_SCTP_CKSUM)
rxcsum |= IGC_RXCSUM_CRCOFL;
else
rxcsum &= ~IGC_RXCSUM_CRCOFL;
IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
/* Setup the Receive Control Register. */
if (offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
rctl &= ~IGC_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
else
rctl |= IGC_RCTL_SECRC; /* Strip Ethernet CRC. */
rctl &= ~IGC_RCTL_MO_MSK;
rctl &= ~IGC_RCTL_LBM_MSK;
rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
IGC_RCTL_DPF |
(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
if (dev->data->dev_conf.lpbk_mode == 1)
rctl |= IGC_RCTL_LBM_MAC;
rctl &= ~(IGC_RCTL_HSEL_MSK | IGC_RCTL_CFIEN | IGC_RCTL_CFI |
IGC_RCTL_PSP | IGC_RCTL_PMCF);
/* Make sure VLAN Filters are off. */
rctl &= ~IGC_RCTL_VFE;
/* Don't store bad packets. */
rctl &= ~IGC_RCTL_SBP;
/* Enable Receives. */
IGC_WRITE_REG(hw, IGC_RCTL, rctl);
/*
* Setup the HW Rx Head and Tail Descriptor Pointers.
* This needs to be done after enable.
*/
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint32_t dvmolr;
rxq = dev->data->rx_queues[i];
IGC_WRITE_REG(hw, IGC_RDH(rxq->reg_idx), 0);
IGC_WRITE_REG(hw, IGC_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
dvmolr = IGC_READ_REG(hw, IGC_DVMOLR(rxq->reg_idx));
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
dvmolr |= IGC_DVMOLR_STRVLAN;
else
dvmolr &= ~IGC_DVMOLR_STRVLAN;
if (offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
dvmolr &= ~IGC_DVMOLR_STRCRC;
else
dvmolr |= IGC_DVMOLR_STRCRC;
IGC_WRITE_REG(hw, IGC_DVMOLR(rxq->reg_idx), dvmolr);
}
return 0;
}
static void
igc_reset_rx_queue(struct igc_rx_queue *rxq)
{
static const union igc_adv_rx_desc zeroed_desc = { {0} };
unsigned int i;
/* Zero out HW ring memory */
for (i = 0; i < rxq->nb_rx_desc; i++)
rxq->rx_ring[i] = zeroed_desc;
rxq->rx_tail = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
int
eth_igc_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
const struct rte_memzone *rz;
struct igc_rx_queue *rxq;
unsigned int size;
/*
* Validate number of receive descriptors.
* It must not exceed hardware maximum, and must be multiple
* of IGC_RX_DESCRIPTOR_MULTIPLE.
*/
if (nb_desc % IGC_RX_DESCRIPTOR_MULTIPLE != 0 ||
nb_desc > IGC_MAX_RXD || nb_desc < IGC_MIN_RXD) {
PMD_DRV_LOG(ERR,
"RX descriptor must be multiple of %u(cur: %u) and between %u and %u",
IGC_RX_DESCRIPTOR_MULTIPLE, nb_desc,
IGC_MIN_RXD, IGC_MAX_RXD);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed */
if (dev->data->rx_queues[queue_idx] != NULL) {
igc_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* First allocate the RX queue data structure. */
rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igc_rx_queue),
RTE_CACHE_LINE_SIZE);
if (rxq == NULL)
return -ENOMEM;
rxq->offloads = rx_conf->offloads;
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->pthresh = rx_conf->rx_thresh.pthresh;
rxq->hthresh = rx_conf->rx_thresh.hthresh;
rxq->wthresh = rx_conf->rx_thresh.wthresh;
rxq->drop_en = rx_conf->rx_drop_en;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->reg_idx = queue_idx;
rxq->port_id = dev->data->port_id;
/*
* Allocate RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
size = sizeof(union igc_adv_rx_desc) * IGC_MAX_RXD;
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
IGC_ALIGN, socket_id);
if (rz == NULL) {
igc_rx_queue_release(rxq);
return -ENOMEM;
}
rxq->rdt_reg_addr = IGC_PCI_REG_ADDR(hw, IGC_RDT(rxq->reg_idx));
rxq->rdh_reg_addr = IGC_PCI_REG_ADDR(hw, IGC_RDH(rxq->reg_idx));
rxq->rx_ring_phys_addr = rz->iova;
rxq->rx_ring = (union igc_adv_rx_desc *)rz->addr;
/* Allocate software ring. */
rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
sizeof(struct igc_rx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE);
if (rxq->sw_ring == NULL) {
igc_rx_queue_release(rxq);
return -ENOMEM;
}
PMD_DRV_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
dev->data->rx_queues[queue_idx] = rxq;
igc_reset_rx_queue(rxq);
return 0;
}
/* prepare packets for transmit */
uint16_t
eth_igc_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int i, ret;
struct rte_mbuf *m;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
/* Check some limitations for TSO in hardware */
if (m->ol_flags & IGC_TX_OFFLOAD_SEG)
if (m->tso_segsz > IGC_TSO_MAX_MSS ||
m->l2_len + m->l3_len + m->l4_len >
IGC_TSO_MAX_HDRLEN) {
rte_errno = EINVAL;
return i;
}
if (m->ol_flags & IGC_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = ENOTSUP;
return i;
}
#ifdef RTE_ETHDEV_DEBUG_TX
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
}
return i;
}
/*
*There're some limitations in hardware for TCP segmentation offload. We
*should check whether the parameters are valid.
*/
static inline uint64_t
check_tso_para(uint64_t ol_req, union igc_tx_offload ol_para)
{
if (!(ol_req & IGC_TX_OFFLOAD_SEG))
return ol_req;
if (ol_para.tso_segsz > IGC_TSO_MAX_MSS || ol_para.l2_len +
ol_para.l3_len + ol_para.l4_len > IGC_TSO_MAX_HDRLEN) {
ol_req &= ~IGC_TX_OFFLOAD_SEG;
ol_req |= RTE_MBUF_F_TX_TCP_CKSUM;
}
return ol_req;
}
/*
* Check which hardware context can be used. Use the existing match
* or create a new context descriptor.
*/
static inline uint32_t
what_advctx_update(struct igc_tx_queue *txq, uint64_t flags,
union igc_tx_offload tx_offload)
{
uint32_t curr = txq->ctx_curr;
/* If match with the current context */
if (likely(txq->ctx_cache[curr].flags == flags &&
txq->ctx_cache[curr].tx_offload.data ==
(txq->ctx_cache[curr].tx_offload_mask.data &
tx_offload.data))) {
return curr;
}
/* Total two context, if match with the second context */
curr ^= 1;
if (likely(txq->ctx_cache[curr].flags == flags &&
txq->ctx_cache[curr].tx_offload.data ==
(txq->ctx_cache[curr].tx_offload_mask.data &
tx_offload.data))) {
txq->ctx_curr = curr;
return curr;
}
/* Mismatch, create new one */
return IGC_CTX_NUM;
}
/*
* This is a separate function, looking for optimization opportunity here
* Rework required to go with the pre-defined values.
*/
static inline void
igc_set_xmit_ctx(struct igc_tx_queue *txq,
volatile struct igc_adv_tx_context_desc *ctx_txd,
uint64_t ol_flags, union igc_tx_offload tx_offload)
{
uint32_t type_tucmd_mlhl;
uint32_t mss_l4len_idx;
uint32_t ctx_curr;
uint32_t vlan_macip_lens;
union igc_tx_offload tx_offload_mask;
/* Use the previous context */
txq->ctx_curr ^= 1;
ctx_curr = txq->ctx_curr;
tx_offload_mask.data = 0;
type_tucmd_mlhl = 0;
/* Specify which HW CTX to upload. */
mss_l4len_idx = (ctx_curr << IGC_ADVTXD_IDX_SHIFT);
if (ol_flags & RTE_MBUF_F_TX_VLAN)
tx_offload_mask.vlan_tci = 0xffff;
/* check if TCP segmentation required for this packet */
if (ol_flags & IGC_TX_OFFLOAD_SEG) {
/* implies IP cksum in IPv4 */
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM)
type_tucmd_mlhl = IGC_ADVTXD_TUCMD_IPV4 |
IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
else
type_tucmd_mlhl = IGC_ADVTXD_TUCMD_IPV6 |
IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
else
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
tx_offload_mask.data |= TX_TSO_CMP_MASK;
mss_l4len_idx |= (uint32_t)tx_offload.tso_segsz <<
IGC_ADVTXD_MSS_SHIFT;
mss_l4len_idx |= (uint32_t)tx_offload.l4_len <<
IGC_ADVTXD_L4LEN_SHIFT;
} else { /* no TSO, check if hardware checksum is needed */
if (ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK))
tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM)
type_tucmd_mlhl = IGC_ADVTXD_TUCMD_IPV4;
switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
case RTE_MBUF_F_TX_TCP_CKSUM:
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP |
IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= (uint32_t)sizeof(struct rte_tcp_hdr)
<< IGC_ADVTXD_L4LEN_SHIFT;
break;
case RTE_MBUF_F_TX_UDP_CKSUM:
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP |
IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= (uint32_t)sizeof(struct rte_udp_hdr)
<< IGC_ADVTXD_L4LEN_SHIFT;
break;
case RTE_MBUF_F_TX_SCTP_CKSUM:
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_SCTP |
IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= (uint32_t)sizeof(struct rte_sctp_hdr)
<< IGC_ADVTXD_L4LEN_SHIFT;
break;
default:
type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_RSV |
IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
break;
}
}
txq->ctx_cache[ctx_curr].flags = ol_flags;
txq->ctx_cache[ctx_curr].tx_offload.data =
tx_offload_mask.data & tx_offload.data;
txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
vlan_macip_lens = (uint32_t)tx_offload.data;
ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
ctx_txd->u.launch_time = 0;
}
static inline uint32_t
tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
{
uint32_t cmdtype;
static uint32_t vlan_cmd[2] = {0, IGC_ADVTXD_DCMD_VLE};
static uint32_t tso_cmd[2] = {0, IGC_ADVTXD_DCMD_TSE};
cmdtype = vlan_cmd[(ol_flags & RTE_MBUF_F_TX_VLAN) != 0];
cmdtype |= tso_cmd[(ol_flags & IGC_TX_OFFLOAD_SEG) != 0];
return cmdtype;
}
static inline uint32_t
tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
{
static const uint32_t l4_olinfo[2] = {0, IGC_ADVTXD_POPTS_TXSM};
static const uint32_t l3_olinfo[2] = {0, IGC_ADVTXD_POPTS_IXSM};
uint32_t tmp;
tmp = l4_olinfo[(ol_flags & RTE_MBUF_F_TX_L4_MASK) != RTE_MBUF_F_TX_L4_NO_CKSUM];
tmp |= l3_olinfo[(ol_flags & RTE_MBUF_F_TX_IP_CKSUM) != 0];
tmp |= l4_olinfo[(ol_flags & IGC_TX_OFFLOAD_SEG) != 0];
return tmp;
}
uint16_t
igc_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct igc_tx_queue * const txq = tx_queue;
struct igc_tx_entry * const sw_ring = txq->sw_ring;
struct igc_tx_entry *txe, *txn;
volatile union igc_adv_tx_desc * const txr = txq->tx_ring;
volatile union igc_adv_tx_desc *txd;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint64_t buf_dma_addr;
uint32_t olinfo_status;
uint32_t cmd_type_len;
uint32_t pkt_len;
uint16_t slen;
uint64_t ol_flags;
uint16_t tx_end;
uint16_t tx_id;
uint16_t tx_last;
uint16_t nb_tx;
uint64_t tx_ol_req;
uint32_t new_ctx = 0;
union igc_tx_offload tx_offload = {0};
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
tx_pkt = *tx_pkts++;
pkt_len = tx_pkt->pkt_len;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
/*
* The number of descriptors that must be allocated for a
* packet is the number of segments of that packet, plus 1
* Context Descriptor for the VLAN Tag Identifier, if any.
* Determine the last TX descriptor to allocate in the TX ring
* for the packet, starting from the current position (tx_id)
* in the ring.
*/
tx_last = (uint16_t)(tx_id + tx_pkt->nb_segs - 1);
ol_flags = tx_pkt->ol_flags;
tx_ol_req = ol_flags & IGC_TX_OFFLOAD_MASK;
/* If a Context Descriptor need be built . */
if (tx_ol_req) {
tx_offload.l2_len = tx_pkt->l2_len;
tx_offload.l3_len = tx_pkt->l3_len;
tx_offload.l4_len = tx_pkt->l4_len;
tx_offload.vlan_tci = tx_pkt->vlan_tci;
tx_offload.tso_segsz = tx_pkt->tso_segsz;
tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
new_ctx = what_advctx_update(txq, tx_ol_req,
tx_offload);
/* Only allocate context descriptor if required*/
new_ctx = (new_ctx >= IGC_CTX_NUM);
tx_last = (uint16_t)(tx_last + new_ctx);
}
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG,
"port_id=%u queue_id=%u pktlen=%u tx_first=%u tx_last=%u",
txq->port_id, txq->queue_id, pkt_len, tx_id, tx_last);
/*
* Check if there are enough free descriptors in the TX ring
* to transmit the next packet.
* This operation is based on the two following rules:
*
* 1- Only check that the last needed TX descriptor can be
* allocated (by construction, if that descriptor is free,
* all intermediate ones are also free).
*
* For this purpose, the index of the last TX descriptor
* used for a packet (the "last descriptor" of a packet)
* is recorded in the TX entries (the last one included)
* that are associated with all TX descriptors allocated
* for that packet.
*
* 2- Avoid to allocate the last free TX descriptor of the
* ring, in order to never set the TDT register with the
* same value stored in parallel by the NIC in the TDH
* register, which makes the TX engine of the NIC enter
* in a deadlock situation.
*
* By extension, avoid to allocate a free descriptor that
* belongs to the last set of free descriptors allocated
* to the same packet previously transmitted.
*/
/*
* The "last descriptor" of the previously sent packet, if any,
* which used the last descriptor to allocate.
*/
tx_end = sw_ring[tx_last].last_id;
/*
* The next descriptor following that "last descriptor" in the
* ring.
*/
tx_end = sw_ring[tx_end].next_id;
/*
* The "last descriptor" associated with that next descriptor.
*/
tx_end = sw_ring[tx_end].last_id;
/*
* Check that this descriptor is free.
*/
if (!(txr[tx_end].wb.status & IGC_TXD_STAT_DD)) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
/*
* Set common flags of all TX Data Descriptors.
*
* The following bits must be set in all Data Descriptors:
* - IGC_ADVTXD_DTYP_DATA
* - IGC_ADVTXD_DCMD_DEXT
*
* The following bits must be set in the first Data Descriptor
* and are ignored in the other ones:
* - IGC_ADVTXD_DCMD_IFCS
* - IGC_ADVTXD_MAC_1588
* - IGC_ADVTXD_DCMD_VLE
*
* The following bits must only be set in the last Data
* Descriptor:
* - IGC_TXD_CMD_EOP
*
* The following bits can be set in any Data Descriptor, but
* are only set in the last Data Descriptor:
* - IGC_TXD_CMD_RS
*/
cmd_type_len = txq->txd_type |
IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DCMD_DEXT;
if (tx_ol_req & IGC_TX_OFFLOAD_SEG)
pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len +
tx_pkt->l4_len);
olinfo_status = (pkt_len << IGC_ADVTXD_PAYLEN_SHIFT);
/*
* Timer 0 should be used to for packet timestamping,
* sample the packet timestamp to reg 0
*/
if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
cmd_type_len |= IGC_ADVTXD_MAC_TSTAMP;
if (tx_ol_req) {
/* Setup TX Advanced context descriptor if required */
if (new_ctx) {
volatile struct igc_adv_tx_context_desc *
ctx_txd = (volatile struct
igc_adv_tx_context_desc *)&txr[tx_id];
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
igc_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
tx_offload);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
/* Setup the TX Advanced Data Descriptor */
cmd_type_len |=
tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
olinfo_status |=
tx_desc_cksum_flags_to_olinfo(tx_ol_req);
olinfo_status |= (uint32_t)txq->ctx_curr <<
IGC_ADVTXD_IDX_SHIFT;
}
m_seg = tx_pkt;
do {
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
txd = &txr[tx_id];
if (txe->mbuf != NULL)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/* Set up transmit descriptor */
slen = (uint16_t)m_seg->data_len;
buf_dma_addr = rte_mbuf_data_iova(m_seg);
txd->read.buffer_addr =
rte_cpu_to_le_64(buf_dma_addr);
txd->read.cmd_type_len =
rte_cpu_to_le_32(cmd_type_len | slen);
txd->read.olinfo_status =
rte_cpu_to_le_32(olinfo_status);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg != NULL);
/*
* The last packet data descriptor needs End Of Packet (EOP)
* and Report Status (RS).
*/
txd->read.cmd_type_len |=
rte_cpu_to_le_32(IGC_TXD_CMD_EOP | IGC_TXD_CMD_RS);
}
end_of_tx:
rte_wmb();
/*
* Set the Transmit Descriptor Tail (TDT).
*/
IGC_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
txq->port_id, txq->queue_id, tx_id, nb_tx);
txq->tx_tail = tx_id;
return nb_tx;
}
int eth_igc_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct igc_tx_queue *txq = tx_queue;
volatile uint32_t *status;
uint32_t desc;
if (unlikely(!txq || offset >= txq->nb_tx_desc))
return -EINVAL;
desc = txq->tx_tail + offset;
if (desc >= txq->nb_tx_desc)
desc -= txq->nb_tx_desc;
status = &txq->tx_ring[desc].wb.status;
if (*status & rte_cpu_to_le_32(IGC_TXD_STAT_DD))
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
static void
igc_tx_queue_release_mbufs(struct igc_tx_queue *txq)
{
unsigned int i;
if (txq->sw_ring != NULL) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
igc_tx_queue_release(struct igc_tx_queue *txq)
{
igc_tx_queue_release_mbufs(txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
void eth_igc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
if (dev->data->tx_queues[qid])
igc_tx_queue_release(dev->data->tx_queues[qid]);
}
static void
igc_reset_tx_queue_stat(struct igc_tx_queue *txq)
{
txq->tx_head = 0;
txq->tx_tail = 0;
txq->ctx_curr = 0;
memset((void *)&txq->ctx_cache, 0,
IGC_CTX_NUM * sizeof(struct igc_advctx_info));
}
static void
igc_reset_tx_queue(struct igc_tx_queue *txq)
{
struct igc_tx_entry *txe = txq->sw_ring;
uint16_t i, prev;
/* Initialize ring entries */
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
volatile union igc_adv_tx_desc *txd = &txq->tx_ring[i];
txd->wb.status = IGC_TXD_STAT_DD;
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->txd_type = IGC_ADVTXD_DTYP_DATA;
igc_reset_tx_queue_stat(txq);
}
/*
* clear all rx/tx queue
*/
void
igc_dev_clear_queues(struct rte_eth_dev *dev)
{
uint16_t i;
struct igc_tx_queue *txq;
struct igc_rx_queue *rxq;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq != NULL) {
igc_tx_queue_release_mbufs(txq);
igc_reset_tx_queue(txq);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
igc_rx_queue_release_mbufs(rxq);
igc_reset_rx_queue(rxq);
}
}
}
int eth_igc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct igc_tx_queue *txq;
struct igc_hw *hw;
uint32_t size;
if (nb_desc % IGC_TX_DESCRIPTOR_MULTIPLE != 0 ||
nb_desc > IGC_MAX_TXD || nb_desc < IGC_MIN_TXD) {
PMD_DRV_LOG(ERR,
"TX-descriptor must be a multiple of %u and between %u and %u, cur: %u",
IGC_TX_DESCRIPTOR_MULTIPLE,
IGC_MAX_TXD, IGC_MIN_TXD, nb_desc);
return -EINVAL;
}
hw = IGC_DEV_PRIVATE_HW(dev);
/*
* The tx_free_thresh and tx_rs_thresh values are not used in the 2.5G
* driver.
*/
if (tx_conf->tx_free_thresh != 0)
PMD_DRV_LOG(INFO,
"The tx_free_thresh parameter is not used for the 2.5G driver");
if (tx_conf->tx_rs_thresh != 0)
PMD_DRV_LOG(INFO,
"The tx_rs_thresh parameter is not used for the 2.5G driver");
if (tx_conf->tx_thresh.wthresh == 0)
PMD_DRV_LOG(INFO,
"To improve 2.5G driver performance, consider setting the TX WTHRESH value to 4, 8, or 16.");
/* Free memory prior to re-allocation if needed */
if (dev->data->tx_queues[queue_idx] != NULL) {
igc_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* First allocate the tx queue data structure */
txq = rte_zmalloc("ethdev TX queue", sizeof(struct igc_tx_queue),
RTE_CACHE_LINE_SIZE);
if (txq == NULL)
return -ENOMEM;
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
size = sizeof(union igc_adv_tx_desc) * IGC_MAX_TXD;
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
IGC_ALIGN, socket_id);
if (tz == NULL) {
igc_tx_queue_release(txq);
return -ENOMEM;
}
txq->nb_tx_desc = nb_desc;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
txq->queue_id = queue_idx;
txq->reg_idx = queue_idx;
txq->port_id = dev->data->port_id;
txq->tdt_reg_addr = IGC_PCI_REG_ADDR(hw, IGC_TDT(txq->reg_idx));
txq->tx_ring_phys_addr = tz->iova;
txq->tx_ring = (union igc_adv_tx_desc *)tz->addr;
/* Allocate software ring */
txq->sw_ring = rte_zmalloc("txq->sw_ring",
sizeof(struct igc_tx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE);
if (txq->sw_ring == NULL) {
igc_tx_queue_release(txq);
return -ENOMEM;
}
PMD_DRV_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
igc_reset_tx_queue(txq);
dev->tx_pkt_burst = igc_xmit_pkts;
dev->tx_pkt_prepare = &eth_igc_prep_pkts;
dev->data->tx_queues[queue_idx] = txq;
txq->offloads = tx_conf->offloads;
return 0;
}
int
eth_igc_tx_done_cleanup(void *txqueue, uint32_t free_cnt)
{
struct igc_tx_queue *txq = txqueue;
struct igc_tx_entry *sw_ring;
volatile union igc_adv_tx_desc *txr;
uint16_t tx_first; /* First segment analyzed. */
uint16_t tx_id; /* Current segment being processed. */
uint16_t tx_last; /* Last segment in the current packet. */
uint16_t tx_next; /* First segment of the next packet. */
uint32_t count;
if (txq == NULL)
return -ENODEV;
count = 0;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
/*
* tx_tail is the last sent packet on the sw_ring. Goto the end
* of that packet (the last segment in the packet chain) and
* then the next segment will be the start of the oldest segment
* in the sw_ring. This is the first packet that will be
* attempted to be freed.
*/
/* Get last segment in most recently added packet. */
tx_first = sw_ring[txq->tx_tail].last_id;
/* Get the next segment, which is the oldest segment in ring. */
tx_first = sw_ring[tx_first].next_id;
/* Set the current index to the first. */
tx_id = tx_first;
/*
* Loop through each packet. For each packet, verify that an
* mbuf exists and that the last segment is free. If so, free
* it and move on.
*/
while (1) {
tx_last = sw_ring[tx_id].last_id;
if (sw_ring[tx_last].mbuf) {
if (!(txr[tx_last].wb.status &
rte_cpu_to_le_32(IGC_TXD_STAT_DD)))
break;
/* Get the start of the next packet. */
tx_next = sw_ring[tx_last].next_id;
/*
* Loop through all segments in a
* packet.
*/
do {
rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
sw_ring[tx_id].mbuf = NULL;
sw_ring[tx_id].last_id = tx_id;
/* Move to next segment. */
tx_id = sw_ring[tx_id].next_id;
} while (tx_id != tx_next);
/*
* Increment the number of packets
* freed.
*/
count++;
if (unlikely(count == free_cnt))
break;
} else {
/*
* There are multiple reasons to be here:
* 1) All the packets on the ring have been
* freed - tx_id is equal to tx_first
* and some packets have been freed.
* - Done, exit
* 2) Interfaces has not sent a rings worth of
* packets yet, so the segment after tail is
* still empty. Or a previous call to this
* function freed some of the segments but
* not all so there is a hole in the list.
* Hopefully this is a rare case.
* - Walk the list and find the next mbuf. If
* there isn't one, then done.
*/
if (likely(tx_id == tx_first && count != 0))
break;
/*
* Walk the list and find the next mbuf, if any.
*/
do {
/* Move to next segment. */
tx_id = sw_ring[tx_id].next_id;
if (sw_ring[tx_id].mbuf)
break;
} while (tx_id != tx_first);
/*
* Determine why previous loop bailed. If there
* is not an mbuf, done.
*/
if (sw_ring[tx_id].mbuf == NULL)
break;
}
}
return count;
}
void
igc_tx_init(struct rte_eth_dev *dev)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
uint32_t tctl;
uint32_t txdctl;
uint16_t i;
/* Setup the Base and Length of the Tx Descriptor Rings. */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct igc_tx_queue *txq = dev->data->tx_queues[i];
uint64_t bus_addr = txq->tx_ring_phys_addr;
IGC_WRITE_REG(hw, IGC_TDLEN(txq->reg_idx),
txq->nb_tx_desc *
sizeof(union igc_adv_tx_desc));
IGC_WRITE_REG(hw, IGC_TDBAH(txq->reg_idx),
(uint32_t)(bus_addr >> 32));
IGC_WRITE_REG(hw, IGC_TDBAL(txq->reg_idx),
(uint32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers. */
IGC_WRITE_REG(hw, IGC_TDT(txq->reg_idx), 0);
IGC_WRITE_REG(hw, IGC_TDH(txq->reg_idx), 0);
/* Setup Transmit threshold registers. */
txdctl = ((uint32_t)txq->pthresh << IGC_TXDCTL_PTHRESH_SHIFT) &
IGC_TXDCTL_PTHRESH_MSK;
txdctl |= ((uint32_t)txq->hthresh << IGC_TXDCTL_HTHRESH_SHIFT) &
IGC_TXDCTL_HTHRESH_MSK;
txdctl |= ((uint32_t)txq->wthresh << IGC_TXDCTL_WTHRESH_SHIFT) &
IGC_TXDCTL_WTHRESH_MSK;
txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
IGC_WRITE_REG(hw, IGC_TXDCTL(txq->reg_idx), txdctl);
}
igc_config_collision_dist(hw);
/* Program the Transmit Control Register. */
tctl = IGC_READ_REG(hw, IGC_TCTL);
tctl &= ~IGC_TCTL_CT;
tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
((uint32_t)IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
/* This write will effectively turn on the transmit unit. */
IGC_WRITE_REG(hw, IGC_TCTL, tctl);
}
void
eth_igc_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct igc_rx_queue *rxq;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mb_pool;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = rxq->drop_en;
qinfo->conf.offloads = rxq->offloads;
qinfo->conf.rx_thresh.hthresh = rxq->hthresh;
qinfo->conf.rx_thresh.pthresh = rxq->pthresh;
qinfo->conf.rx_thresh.wthresh = rxq->wthresh;
}
void
eth_igc_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct igc_tx_queue *txq;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
qinfo->conf.offloads = txq->offloads;
}
void
eth_igc_vlan_strip_queue_set(struct rte_eth_dev *dev,
uint16_t rx_queue_id, int on)
{
struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
struct igc_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
uint32_t reg_val;
if (rx_queue_id >= IGC_QUEUE_PAIRS_NUM) {
PMD_DRV_LOG(ERR, "Queue index(%u) illegal, max is %u",
rx_queue_id, IGC_QUEUE_PAIRS_NUM - 1);
return;
}
reg_val = IGC_READ_REG(hw, IGC_DVMOLR(rx_queue_id));
if (on) {
reg_val |= IGC_DVMOLR_STRVLAN;
rxq->offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
} else {
reg_val &= ~(IGC_DVMOLR_STRVLAN | IGC_DVMOLR_HIDVLAN);
rxq->offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
}
IGC_WRITE_REG(hw, IGC_DVMOLR(rx_queue_id), reg_val);
}