mirror of https://github.com/F-Stack/f-stack.git
3837 lines
110 KiB
C
3837 lines
110 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Intel Corporation
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_string_fns.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_ether.h>
|
|
#include <ethdev_driver.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_net.h>
|
|
#include <rte_vect.h>
|
|
|
|
#include "iavf.h"
|
|
#include "iavf_rxtx.h"
|
|
#include "iavf_ipsec_crypto.h"
|
|
#include "rte_pmd_iavf.h"
|
|
|
|
/* Offset of mbuf dynamic field for protocol extraction's metadata */
|
|
int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
|
|
|
|
/* Mask of mbuf dynamic flags for protocol extraction's type */
|
|
uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
|
|
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
|
|
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
|
|
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
|
|
uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
|
|
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
|
|
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
|
|
|
|
uint8_t
|
|
iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
|
|
{
|
|
static uint8_t rxdid_map[] = {
|
|
[IAVF_PROTO_XTR_NONE] = IAVF_RXDID_COMMS_OVS_1,
|
|
[IAVF_PROTO_XTR_VLAN] = IAVF_RXDID_COMMS_AUX_VLAN,
|
|
[IAVF_PROTO_XTR_IPV4] = IAVF_RXDID_COMMS_AUX_IPV4,
|
|
[IAVF_PROTO_XTR_IPV6] = IAVF_RXDID_COMMS_AUX_IPV6,
|
|
[IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
|
|
[IAVF_PROTO_XTR_TCP] = IAVF_RXDID_COMMS_AUX_TCP,
|
|
[IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
|
|
[IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] =
|
|
IAVF_RXDID_COMMS_IPSEC_CRYPTO,
|
|
};
|
|
|
|
return flex_type < RTE_DIM(rxdid_map) ?
|
|
rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
|
|
}
|
|
|
|
static int
|
|
iavf_monitor_callback(const uint64_t value,
|
|
const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
|
|
{
|
|
const uint64_t m = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
|
|
/*
|
|
* we expect the DD bit to be set to 1 if this descriptor was already
|
|
* written to.
|
|
*/
|
|
return (value & m) == m ? -1 : 0;
|
|
}
|
|
|
|
int
|
|
iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
|
|
{
|
|
struct iavf_rx_queue *rxq = rx_queue;
|
|
volatile union iavf_rx_desc *rxdp;
|
|
uint16_t desc;
|
|
|
|
desc = rxq->rx_tail;
|
|
rxdp = &rxq->rx_ring[desc];
|
|
/* watch for changes in status bit */
|
|
pmc->addr = &rxdp->wb.qword1.status_error_len;
|
|
|
|
/* comparison callback */
|
|
pmc->fn = iavf_monitor_callback;
|
|
|
|
/* registers are 64-bit */
|
|
pmc->size = sizeof(uint64_t);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
|
|
{
|
|
/* The following constraints must be satisfied:
|
|
* thresh < rxq->nb_rx_desc
|
|
*/
|
|
if (thresh >= nb_desc) {
|
|
PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
|
|
thresh, nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
|
|
uint16_t tx_free_thresh)
|
|
{
|
|
/* TX descriptors will have their RS bit set after tx_rs_thresh
|
|
* descriptors have been used. The TX descriptor ring will be cleaned
|
|
* after tx_free_thresh descriptors are used or if the number of
|
|
* descriptors required to transmit a packet is greater than the
|
|
* number of free TX descriptors.
|
|
*
|
|
* The following constraints must be satisfied:
|
|
* - tx_rs_thresh must be less than the size of the ring minus 2.
|
|
* - tx_free_thresh must be less than the size of the ring minus 3.
|
|
* - tx_rs_thresh must be less than or equal to tx_free_thresh.
|
|
* - tx_rs_thresh must be a divisor of the ring size.
|
|
*
|
|
* One descriptor in the TX ring is used as a sentinel to avoid a H/W
|
|
* race condition, hence the maximum threshold constraints. When set
|
|
* to zero use default values.
|
|
*/
|
|
if (tx_rs_thresh >= (nb_desc - 2)) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
|
|
"number of TX descriptors (%u) minus 2",
|
|
tx_rs_thresh, nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
if (tx_free_thresh >= (nb_desc - 3)) {
|
|
PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
|
|
"number of TX descriptors (%u) minus 3.",
|
|
tx_free_thresh, nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
if (tx_rs_thresh > tx_free_thresh) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
|
|
"equal to tx_free_thresh (%u).",
|
|
tx_rs_thresh, tx_free_thresh);
|
|
return -EINVAL;
|
|
}
|
|
if ((nb_desc % tx_rs_thresh) != 0) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
|
|
"number of TX descriptors (%u).",
|
|
tx_rs_thresh, nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool
|
|
check_rx_vec_allow(struct iavf_rx_queue *rxq)
|
|
{
|
|
if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
|
|
rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
|
|
PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
|
|
return true;
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
check_tx_vec_allow(struct iavf_tx_queue *txq)
|
|
{
|
|
if (!(txq->offloads & IAVF_TX_NO_VECTOR_FLAGS) &&
|
|
txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
|
|
txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
|
|
PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
|
|
return true;
|
|
}
|
|
PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
check_rx_bulk_allow(struct iavf_rx_queue *rxq)
|
|
{
|
|
int ret = true;
|
|
|
|
if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->rx_free_thresh=%d, "
|
|
"IAVF_RX_MAX_BURST=%d",
|
|
rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
|
|
ret = false;
|
|
} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->nb_rx_desc=%d, "
|
|
"rxq->rx_free_thresh=%d",
|
|
rxq->nb_rx_desc, rxq->rx_free_thresh);
|
|
ret = false;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void
|
|
reset_rx_queue(struct iavf_rx_queue *rxq)
|
|
{
|
|
uint16_t len;
|
|
uint32_t i;
|
|
|
|
if (!rxq)
|
|
return;
|
|
|
|
len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
|
|
|
|
for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
|
|
((volatile char *)rxq->rx_ring)[i] = 0;
|
|
|
|
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
|
|
|
|
for (i = 0; i < IAVF_RX_MAX_BURST; i++)
|
|
rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
|
|
|
|
/* for rx bulk */
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
|
|
|
rxq->rx_tail = 0;
|
|
rxq->nb_rx_hold = 0;
|
|
|
|
if (rxq->pkt_first_seg != NULL)
|
|
rte_pktmbuf_free(rxq->pkt_first_seg);
|
|
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
rxq->rxrearm_nb = 0;
|
|
rxq->rxrearm_start = 0;
|
|
}
|
|
|
|
static inline void
|
|
reset_tx_queue(struct iavf_tx_queue *txq)
|
|
{
|
|
struct iavf_tx_entry *txe;
|
|
uint32_t i, size;
|
|
uint16_t prev;
|
|
|
|
if (!txq) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
|
|
return;
|
|
}
|
|
|
|
txe = txq->sw_ring;
|
|
size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
|
|
for (i = 0; i < size; i++)
|
|
((volatile char *)txq->tx_ring)[i] = 0;
|
|
|
|
prev = (uint16_t)(txq->nb_tx_desc - 1);
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
txq->tx_ring[i].cmd_type_offset_bsz =
|
|
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
|
|
txe[i].mbuf = NULL;
|
|
txe[i].last_id = i;
|
|
txe[prev].next_id = i;
|
|
prev = i;
|
|
}
|
|
|
|
txq->tx_tail = 0;
|
|
txq->nb_used = 0;
|
|
|
|
txq->last_desc_cleaned = txq->nb_tx_desc - 1;
|
|
txq->nb_free = txq->nb_tx_desc - 1;
|
|
|
|
txq->next_dd = txq->rs_thresh - 1;
|
|
txq->next_rs = txq->rs_thresh - 1;
|
|
}
|
|
|
|
static int
|
|
alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
|
|
{
|
|
volatile union iavf_rx_desc *rxd;
|
|
struct rte_mbuf *mbuf = NULL;
|
|
uint64_t dma_addr;
|
|
uint16_t i, j;
|
|
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
mbuf = rte_mbuf_raw_alloc(rxq->mp);
|
|
if (unlikely(!mbuf)) {
|
|
for (j = 0; j < i; j++) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[j]);
|
|
rxq->sw_ring[j] = NULL;
|
|
}
|
|
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rte_mbuf_refcnt_set(mbuf, 1);
|
|
mbuf->next = NULL;
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mbuf->nb_segs = 1;
|
|
mbuf->port = rxq->port_id;
|
|
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
|
|
rxd = &rxq->rx_ring[i];
|
|
rxd->read.pkt_addr = dma_addr;
|
|
rxd->read.hdr_addr = 0;
|
|
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
|
|
rxd->read.rsvd1 = 0;
|
|
rxd->read.rsvd2 = 0;
|
|
#endif
|
|
|
|
rxq->sw_ring[i] = mbuf;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
release_rxq_mbufs(struct iavf_rx_queue *rxq)
|
|
{
|
|
uint16_t i;
|
|
|
|
if (!rxq->sw_ring)
|
|
return;
|
|
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_ring[i]) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i]);
|
|
rxq->sw_ring[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* for rx bulk */
|
|
if (rxq->rx_nb_avail == 0)
|
|
return;
|
|
for (i = 0; i < rxq->rx_nb_avail; i++) {
|
|
struct rte_mbuf *mbuf;
|
|
|
|
mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
|
|
rte_pktmbuf_free_seg(mbuf);
|
|
}
|
|
rxq->rx_nb_avail = 0;
|
|
}
|
|
|
|
static inline void
|
|
release_txq_mbufs(struct iavf_tx_queue *txq)
|
|
{
|
|
uint16_t i;
|
|
|
|
if (!txq || !txq->sw_ring) {
|
|
PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
if (txq->sw_ring[i].mbuf) {
|
|
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const
|
|
struct iavf_rxq_ops iavf_rxq_release_mbufs_ops[] = {
|
|
[IAVF_REL_MBUFS_DEFAULT].release_mbufs = release_rxq_mbufs,
|
|
#ifdef RTE_ARCH_X86
|
|
[IAVF_REL_MBUFS_SSE_VEC].release_mbufs = iavf_rx_queue_release_mbufs_sse,
|
|
#endif
|
|
};
|
|
|
|
static const
|
|
struct iavf_txq_ops iavf_txq_release_mbufs_ops[] = {
|
|
[IAVF_REL_MBUFS_DEFAULT].release_mbufs = release_txq_mbufs,
|
|
#ifdef RTE_ARCH_X86
|
|
[IAVF_REL_MBUFS_SSE_VEC].release_mbufs = iavf_tx_queue_release_mbufs_sse,
|
|
#ifdef CC_AVX512_SUPPORT
|
|
[IAVF_REL_MBUFS_AVX512_VEC].release_mbufs = iavf_tx_queue_release_mbufs_avx512,
|
|
#endif
|
|
#endif
|
|
|
|
};
|
|
|
|
static inline void
|
|
iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
|
|
struct rte_mbuf *mb,
|
|
volatile union iavf_rx_flex_desc *rxdp)
|
|
{
|
|
volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
|
|
(volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
|
|
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
|
|
uint16_t stat_err;
|
|
#endif
|
|
|
|
if (desc->flow_id != 0xFFFFFFFF) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
|
|
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
|
|
stat_err = rte_le_to_cpu_16(desc->status_error0);
|
|
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
|
|
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
|
|
struct rte_mbuf *mb,
|
|
volatile union iavf_rx_flex_desc *rxdp)
|
|
{
|
|
volatile struct iavf_32b_rx_flex_desc_comms *desc =
|
|
(volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
|
|
uint16_t stat_err;
|
|
|
|
stat_err = rte_le_to_cpu_16(desc->status_error0);
|
|
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
|
|
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
|
|
if (desc->flow_id != 0xFFFFFFFF) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
|
|
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
|
|
}
|
|
|
|
if (rxq->xtr_ol_flag) {
|
|
uint32_t metadata = 0;
|
|
|
|
stat_err = rte_le_to_cpu_16(desc->status_error1);
|
|
|
|
if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
|
|
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
|
|
|
|
if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
|
|
metadata |=
|
|
rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
|
|
|
|
if (metadata) {
|
|
mb->ol_flags |= rxq->xtr_ol_flag;
|
|
|
|
*RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
|
|
struct rte_mbuf *mb,
|
|
volatile union iavf_rx_flex_desc *rxdp)
|
|
{
|
|
volatile struct iavf_32b_rx_flex_desc_comms *desc =
|
|
(volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
|
|
uint16_t stat_err;
|
|
|
|
stat_err = rte_le_to_cpu_16(desc->status_error0);
|
|
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
|
|
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
|
|
if (desc->flow_id != 0xFFFFFFFF) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
|
|
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
|
|
}
|
|
|
|
if (rxq->xtr_ol_flag) {
|
|
uint32_t metadata = 0;
|
|
|
|
if (desc->flex_ts.flex.aux0 != 0xFFFF)
|
|
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
|
|
else if (desc->flex_ts.flex.aux1 != 0xFFFF)
|
|
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
|
|
|
|
if (metadata) {
|
|
mb->ol_flags |= rxq->xtr_ol_flag;
|
|
|
|
*RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static const
|
|
iavf_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[IAVF_RXDID_LAST + 1] = {
|
|
[IAVF_RXDID_COMMS_AUX_VLAN] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
|
|
[IAVF_RXDID_COMMS_AUX_IPV4] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
|
|
[IAVF_RXDID_COMMS_AUX_IPV6] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
|
|
[IAVF_RXDID_COMMS_AUX_IPV6_FLOW] =
|
|
iavf_rxd_to_pkt_fields_by_comms_aux_v1,
|
|
[IAVF_RXDID_COMMS_AUX_TCP] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
|
|
[IAVF_RXDID_COMMS_AUX_IP_OFFSET] =
|
|
iavf_rxd_to_pkt_fields_by_comms_aux_v2,
|
|
[IAVF_RXDID_COMMS_IPSEC_CRYPTO] =
|
|
iavf_rxd_to_pkt_fields_by_comms_aux_v2,
|
|
[IAVF_RXDID_COMMS_OVS_1] = iavf_rxd_to_pkt_fields_by_comms_ovs,
|
|
};
|
|
|
|
static void
|
|
iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
|
|
{
|
|
rxq->rxdid = rxdid;
|
|
|
|
switch (rxdid) {
|
|
case IAVF_RXDID_COMMS_AUX_VLAN:
|
|
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
|
|
break;
|
|
case IAVF_RXDID_COMMS_AUX_IPV4:
|
|
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
|
|
break;
|
|
case IAVF_RXDID_COMMS_AUX_IPV6:
|
|
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
|
|
break;
|
|
case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
|
|
rxq->xtr_ol_flag =
|
|
rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
|
|
break;
|
|
case IAVF_RXDID_COMMS_AUX_TCP:
|
|
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
|
|
break;
|
|
case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
|
|
rxq->xtr_ol_flag =
|
|
rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
|
|
break;
|
|
case IAVF_RXDID_COMMS_IPSEC_CRYPTO:
|
|
rxq->xtr_ol_flag =
|
|
rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
|
|
break;
|
|
case IAVF_RXDID_COMMS_OVS_1:
|
|
break;
|
|
default:
|
|
/* update this according to the RXDID for FLEX_DESC_NONE */
|
|
rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
|
|
break;
|
|
}
|
|
|
|
if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
|
|
rxq->xtr_ol_flag = 0;
|
|
}
|
|
|
|
int
|
|
iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
|
|
uint16_t nb_desc, unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct iavf_adapter *ad =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
struct iavf_info *vf =
|
|
IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
struct iavf_vsi *vsi = &vf->vsi;
|
|
struct iavf_rx_queue *rxq;
|
|
const struct rte_memzone *mz;
|
|
uint32_t ring_size;
|
|
uint8_t proto_xtr;
|
|
uint16_t len;
|
|
uint16_t rx_free_thresh;
|
|
uint64_t offloads;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (ad->closed)
|
|
return -EIO;
|
|
|
|
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
|
|
|
|
if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
|
|
nb_desc > IAVF_MAX_RING_DESC ||
|
|
nb_desc < IAVF_MIN_RING_DESC) {
|
|
PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
|
|
"invalid", nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check free threshold */
|
|
rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
|
|
IAVF_DEFAULT_RX_FREE_THRESH :
|
|
rx_conf->rx_free_thresh;
|
|
if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
|
|
return -EINVAL;
|
|
|
|
/* Free memory if needed */
|
|
if (dev->data->rx_queues[queue_idx]) {
|
|
iavf_dev_rx_queue_release(dev, queue_idx);
|
|
dev->data->rx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* Allocate the rx queue data structure */
|
|
rxq = rte_zmalloc_socket("iavf rxq",
|
|
sizeof(struct iavf_rx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!rxq) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
|
|
"rx queue data structure");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
|
|
proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
|
|
IAVF_PROTO_XTR_NONE;
|
|
rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
|
|
rxq->proto_xtr = proto_xtr;
|
|
} else {
|
|
rxq->rxdid = IAVF_RXDID_LEGACY_1;
|
|
rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
|
|
}
|
|
|
|
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
|
|
struct virtchnl_vlan_supported_caps *stripping_support =
|
|
&vf->vlan_v2_caps.offloads.stripping_support;
|
|
uint32_t stripping_cap;
|
|
|
|
if (stripping_support->outer)
|
|
stripping_cap = stripping_support->outer;
|
|
else
|
|
stripping_cap = stripping_support->inner;
|
|
|
|
if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
|
|
rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
|
|
else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
|
|
rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
|
|
} else {
|
|
rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
|
|
}
|
|
|
|
iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
|
|
|
|
rxq->mp = mp;
|
|
rxq->nb_rx_desc = nb_desc;
|
|
rxq->rx_free_thresh = rx_free_thresh;
|
|
rxq->queue_id = queue_idx;
|
|
rxq->port_id = dev->data->port_id;
|
|
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
|
|
rxq->rx_hdr_len = 0;
|
|
rxq->vsi = vsi;
|
|
rxq->offloads = offloads;
|
|
|
|
if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
|
|
rxq->crc_len = RTE_ETHER_CRC_LEN;
|
|
else
|
|
rxq->crc_len = 0;
|
|
|
|
len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
|
|
rxq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
|
|
|
|
/* Allocate the software ring. */
|
|
len = nb_desc + IAVF_RX_MAX_BURST;
|
|
rxq->sw_ring =
|
|
rte_zmalloc_socket("iavf rx sw ring",
|
|
sizeof(struct rte_mbuf *) * len,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!rxq->sw_ring) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
|
|
rte_free(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Allocate the maximum number of RX ring hardware descriptor with
|
|
* a little more to support bulk allocate.
|
|
*/
|
|
len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
|
|
ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
|
|
IAVF_DMA_MEM_ALIGN);
|
|
mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
|
|
ring_size, IAVF_RING_BASE_ALIGN,
|
|
socket_id);
|
|
if (!mz) {
|
|
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
|
|
rte_free(rxq->sw_ring);
|
|
rte_free(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
/* Zero all the descriptors in the ring. */
|
|
memset(mz->addr, 0, ring_size);
|
|
rxq->rx_ring_phys_addr = mz->iova;
|
|
rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
|
|
|
|
rxq->mz = mz;
|
|
reset_rx_queue(rxq);
|
|
rxq->q_set = true;
|
|
dev->data->rx_queues[queue_idx] = rxq;
|
|
rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
|
|
rxq->rel_mbufs_type = IAVF_REL_MBUFS_DEFAULT;
|
|
|
|
if (check_rx_bulk_allow(rxq) == true) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
|
|
"satisfied. Rx Burst Bulk Alloc function will be "
|
|
"used on port=%d, queue=%d.",
|
|
rxq->port_id, rxq->queue_id);
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
|
|
"not satisfied, Scattered Rx is requested "
|
|
"on port=%d, queue=%d.",
|
|
rxq->port_id, rxq->queue_id);
|
|
ad->rx_bulk_alloc_allowed = false;
|
|
}
|
|
|
|
if (check_rx_vec_allow(rxq) == false)
|
|
ad->rx_vec_allowed = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct iavf_adapter *adapter =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
struct iavf_info *vf =
|
|
IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
struct iavf_tx_queue *txq;
|
|
const struct rte_memzone *mz;
|
|
uint32_t ring_size;
|
|
uint16_t tx_rs_thresh, tx_free_thresh;
|
|
uint64_t offloads;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (adapter->closed)
|
|
return -EIO;
|
|
|
|
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
|
|
|
|
if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
|
|
nb_desc > IAVF_MAX_RING_DESC ||
|
|
nb_desc < IAVF_MIN_RING_DESC) {
|
|
PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
|
|
"invalid", nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
|
|
tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
|
|
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
|
|
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
|
|
if (check_tx_thresh(nb_desc, tx_rs_thresh, tx_free_thresh) != 0)
|
|
return -EINVAL;
|
|
|
|
/* Free memory if needed. */
|
|
if (dev->data->tx_queues[queue_idx]) {
|
|
iavf_dev_tx_queue_release(dev, queue_idx);
|
|
dev->data->tx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* Allocate the TX queue data structure. */
|
|
txq = rte_zmalloc_socket("iavf txq",
|
|
sizeof(struct iavf_tx_queue),
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!txq) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
|
|
"tx queue structure");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (adapter->vf.vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
|
|
struct virtchnl_vlan_supported_caps *insertion_support =
|
|
&adapter->vf.vlan_v2_caps.offloads.insertion_support;
|
|
uint32_t insertion_cap;
|
|
|
|
if (insertion_support->outer)
|
|
insertion_cap = insertion_support->outer;
|
|
else
|
|
insertion_cap = insertion_support->inner;
|
|
|
|
if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
|
|
txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
|
|
else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
|
|
txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
|
|
} else {
|
|
txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
|
|
}
|
|
|
|
txq->nb_tx_desc = nb_desc;
|
|
txq->rs_thresh = tx_rs_thresh;
|
|
txq->free_thresh = tx_free_thresh;
|
|
txq->queue_id = queue_idx;
|
|
txq->port_id = dev->data->port_id;
|
|
txq->offloads = offloads;
|
|
txq->tx_deferred_start = tx_conf->tx_deferred_start;
|
|
|
|
if (iavf_ipsec_crypto_supported(adapter))
|
|
txq->ipsec_crypto_pkt_md_offset =
|
|
iavf_security_get_pkt_md_offset(adapter);
|
|
|
|
/* Allocate software ring */
|
|
txq->sw_ring =
|
|
rte_zmalloc_socket("iavf tx sw ring",
|
|
sizeof(struct iavf_tx_entry) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (!txq->sw_ring) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
|
|
rte_free(txq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Allocate TX hardware ring descriptors. */
|
|
ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
|
|
ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
|
|
mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
|
|
ring_size, IAVF_RING_BASE_ALIGN,
|
|
socket_id);
|
|
if (!mz) {
|
|
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
|
|
rte_free(txq->sw_ring);
|
|
rte_free(txq);
|
|
return -ENOMEM;
|
|
}
|
|
txq->tx_ring_phys_addr = mz->iova;
|
|
txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
|
|
|
|
txq->mz = mz;
|
|
reset_tx_queue(txq);
|
|
txq->q_set = true;
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
|
|
txq->rel_mbufs_type = IAVF_REL_MBUFS_DEFAULT;
|
|
|
|
if (check_tx_vec_allow(txq) == false) {
|
|
struct iavf_adapter *ad =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
ad->tx_vec_allowed = false;
|
|
}
|
|
|
|
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
|
|
vf->tm_conf.committed) {
|
|
int tc;
|
|
for (tc = 0; tc < vf->qos_cap->num_elem; tc++) {
|
|
if (txq->queue_id >= vf->qtc_map[tc].start_queue_id &&
|
|
txq->queue_id < (vf->qtc_map[tc].start_queue_id +
|
|
vf->qtc_map[tc].queue_count))
|
|
break;
|
|
}
|
|
if (tc >= vf->qos_cap->num_elem) {
|
|
PMD_INIT_LOG(ERR, "Queue TC mapping is not correct");
|
|
return -EINVAL;
|
|
}
|
|
txq->tc = tc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct iavf_adapter *adapter =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct iavf_rx_queue *rxq;
|
|
int err = 0;
|
|
|
|
PMD_DRV_FUNC_TRACE();
|
|
|
|
if (rx_queue_id >= dev->data->nb_rx_queues)
|
|
return -EINVAL;
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
err = alloc_rxq_mbufs(rxq);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
|
|
return err;
|
|
}
|
|
|
|
rte_wmb();
|
|
|
|
/* Init the RX tail register. */
|
|
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
|
|
IAVF_WRITE_FLUSH(hw);
|
|
|
|
/* Ready to switch the queue on */
|
|
if (!vf->lv_enabled)
|
|
err = iavf_switch_queue(adapter, rx_queue_id, true, true);
|
|
else
|
|
err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
|
|
|
|
if (err) {
|
|
release_rxq_mbufs(rxq);
|
|
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
|
|
rx_queue_id);
|
|
} else {
|
|
dev->data->rx_queue_state[rx_queue_id] =
|
|
RTE_ETH_QUEUE_STATE_STARTED;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct iavf_adapter *adapter =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct iavf_tx_queue *txq;
|
|
int err = 0;
|
|
|
|
PMD_DRV_FUNC_TRACE();
|
|
|
|
if (tx_queue_id >= dev->data->nb_tx_queues)
|
|
return -EINVAL;
|
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
|
|
/* Init the RX tail register. */
|
|
IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
|
|
IAVF_WRITE_FLUSH(hw);
|
|
|
|
/* Ready to switch the queue on */
|
|
if (!vf->lv_enabled)
|
|
err = iavf_switch_queue(adapter, tx_queue_id, false, true);
|
|
else
|
|
err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
|
|
|
|
if (err)
|
|
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
|
|
tx_queue_id);
|
|
else
|
|
dev->data->tx_queue_state[tx_queue_id] =
|
|
RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct iavf_adapter *adapter =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
struct iavf_rx_queue *rxq;
|
|
int err;
|
|
|
|
PMD_DRV_FUNC_TRACE();
|
|
|
|
if (rx_queue_id >= dev->data->nb_rx_queues)
|
|
return -EINVAL;
|
|
|
|
err = iavf_switch_queue(adapter, rx_queue_id, true, false);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
|
|
rx_queue_id);
|
|
return err;
|
|
}
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
iavf_rxq_release_mbufs_ops[rxq->rel_mbufs_type].release_mbufs(rxq);
|
|
reset_rx_queue(rxq);
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct iavf_adapter *adapter =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
struct iavf_tx_queue *txq;
|
|
int err;
|
|
|
|
PMD_DRV_FUNC_TRACE();
|
|
|
|
if (tx_queue_id >= dev->data->nb_tx_queues)
|
|
return -EINVAL;
|
|
|
|
err = iavf_switch_queue(adapter, tx_queue_id, false, false);
|
|
if (err) {
|
|
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
|
|
tx_queue_id);
|
|
return err;
|
|
}
|
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
iavf_txq_release_mbufs_ops[txq->rel_mbufs_type].release_mbufs(txq);
|
|
reset_tx_queue(txq);
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iavf_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
|
|
{
|
|
struct iavf_rx_queue *q = dev->data->rx_queues[qid];
|
|
|
|
if (!q)
|
|
return;
|
|
|
|
iavf_rxq_release_mbufs_ops[q->rel_mbufs_type].release_mbufs(q);
|
|
rte_free(q->sw_ring);
|
|
rte_memzone_free(q->mz);
|
|
rte_free(q);
|
|
}
|
|
|
|
void
|
|
iavf_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
|
|
{
|
|
struct iavf_tx_queue *q = dev->data->tx_queues[qid];
|
|
|
|
if (!q)
|
|
return;
|
|
|
|
iavf_txq_release_mbufs_ops[q->rel_mbufs_type].release_mbufs(q);
|
|
rte_free(q->sw_ring);
|
|
rte_memzone_free(q->mz);
|
|
rte_free(q);
|
|
}
|
|
|
|
void
|
|
iavf_stop_queues(struct rte_eth_dev *dev)
|
|
{
|
|
struct iavf_adapter *adapter =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
struct iavf_rx_queue *rxq;
|
|
struct iavf_tx_queue *txq;
|
|
int ret, i;
|
|
|
|
/* Stop All queues */
|
|
if (!vf->lv_enabled) {
|
|
ret = iavf_disable_queues(adapter);
|
|
if (ret)
|
|
PMD_DRV_LOG(WARNING, "Fail to stop queues");
|
|
} else {
|
|
ret = iavf_disable_queues_lv(adapter);
|
|
if (ret)
|
|
PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
|
|
}
|
|
|
|
if (ret)
|
|
PMD_DRV_LOG(WARNING, "Fail to stop queues");
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
if (!txq)
|
|
continue;
|
|
iavf_txq_release_mbufs_ops[txq->rel_mbufs_type].release_mbufs(txq);
|
|
reset_tx_queue(txq);
|
|
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
}
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
if (!rxq)
|
|
continue;
|
|
iavf_rxq_release_mbufs_ops[rxq->rel_mbufs_type].release_mbufs(rxq);
|
|
reset_rx_queue(rxq);
|
|
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
}
|
|
}
|
|
|
|
#define IAVF_RX_FLEX_ERR0_BITS \
|
|
((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
|
|
|
|
static inline void
|
|
iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
|
|
{
|
|
if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
|
|
(1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
|
|
mb->vlan_tci =
|
|
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
|
|
} else {
|
|
mb->vlan_tci = 0;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
|
|
volatile union iavf_rx_flex_desc *rxdp)
|
|
{
|
|
if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_VLAN |
|
|
RTE_MBUF_F_RX_VLAN_STRIPPED;
|
|
mb->vlan_tci =
|
|
rte_le_to_cpu_16(rxdp->wb.l2tag1);
|
|
} else {
|
|
mb->vlan_tci = 0;
|
|
}
|
|
|
|
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
|
|
if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED |
|
|
RTE_MBUF_F_RX_QINQ |
|
|
RTE_MBUF_F_RX_VLAN_STRIPPED |
|
|
RTE_MBUF_F_RX_VLAN;
|
|
mb->vlan_tci_outer = mb->vlan_tci;
|
|
mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
|
|
PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
|
|
rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
|
|
rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
|
|
} else {
|
|
mb->vlan_tci_outer = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
iavf_flex_rxd_to_ipsec_crypto_said_get(struct rte_mbuf *mb,
|
|
volatile union iavf_rx_flex_desc *rxdp)
|
|
{
|
|
volatile struct iavf_32b_rx_flex_desc_comms_ipsec *desc =
|
|
(volatile struct iavf_32b_rx_flex_desc_comms_ipsec *)rxdp;
|
|
|
|
mb->dynfield1[0] = desc->ipsec_said &
|
|
IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_SAID_MASK;
|
|
}
|
|
|
|
static inline void
|
|
iavf_flex_rxd_to_ipsec_crypto_status(struct rte_mbuf *mb,
|
|
volatile union iavf_rx_flex_desc *rxdp,
|
|
struct iavf_ipsec_crypto_stats *stats)
|
|
{
|
|
uint16_t status1 = rte_le_to_cpu_64(rxdp->wb.status_error1);
|
|
|
|
if (status1 & BIT(IAVF_RX_FLEX_DESC_STATUS1_IPSEC_CRYPTO_PROCESSED)) {
|
|
uint16_t ipsec_status;
|
|
|
|
mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
|
|
|
|
ipsec_status = status1 &
|
|
IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_STATUS_MASK;
|
|
|
|
|
|
if (unlikely(ipsec_status !=
|
|
IAVF_IPSEC_CRYPTO_STATUS_SUCCESS)) {
|
|
mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
|
|
|
|
switch (ipsec_status) {
|
|
case IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS:
|
|
stats->ierrors.sad_miss++;
|
|
break;
|
|
case IAVF_IPSEC_CRYPTO_STATUS_NOT_PROCESSED:
|
|
stats->ierrors.not_processed++;
|
|
break;
|
|
case IAVF_IPSEC_CRYPTO_STATUS_ICV_CHECK_FAIL:
|
|
stats->ierrors.icv_check++;
|
|
break;
|
|
case IAVF_IPSEC_CRYPTO_STATUS_LENGTH_ERR:
|
|
stats->ierrors.ipsec_length++;
|
|
break;
|
|
case IAVF_IPSEC_CRYPTO_STATUS_MISC_ERR:
|
|
stats->ierrors.misc++;
|
|
break;
|
|
}
|
|
|
|
stats->ierrors.count++;
|
|
return;
|
|
}
|
|
|
|
stats->icount++;
|
|
stats->ibytes += rxdp->wb.pkt_len & 0x3FFF;
|
|
|
|
if (rxdp->wb.rxdid == IAVF_RXDID_COMMS_IPSEC_CRYPTO &&
|
|
ipsec_status !=
|
|
IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS)
|
|
iavf_flex_rxd_to_ipsec_crypto_said_get(mb, rxdp);
|
|
}
|
|
}
|
|
|
|
|
|
/* Translate the rx descriptor status and error fields to pkt flags */
|
|
static inline uint64_t
|
|
iavf_rxd_to_pkt_flags(uint64_t qword)
|
|
{
|
|
uint64_t flags;
|
|
uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
|
|
|
|
#define IAVF_RX_ERR_BITS 0x3f
|
|
|
|
/* Check if RSS_HASH */
|
|
flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
|
|
IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
|
|
IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? RTE_MBUF_F_RX_RSS_HASH : 0;
|
|
|
|
/* Check if FDIR Match */
|
|
flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
|
|
RTE_MBUF_F_RX_FDIR : 0);
|
|
|
|
if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
|
|
flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
|
|
return flags;
|
|
}
|
|
|
|
if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
|
|
flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
|
|
else
|
|
flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
|
|
|
|
if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
|
|
flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
else
|
|
flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
|
|
|
|
/* TODO: Oversize error bit is not processed here */
|
|
|
|
return flags;
|
|
}
|
|
|
|
static inline uint64_t
|
|
iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
|
|
{
|
|
uint64_t flags = 0;
|
|
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
|
|
uint16_t flexbh;
|
|
|
|
flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
|
|
IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
|
|
IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
|
|
|
|
if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
|
|
mb->hash.fdir.hi =
|
|
rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
|
|
flags |= RTE_MBUF_F_RX_FDIR_ID;
|
|
}
|
|
#else
|
|
mb->hash.fdir.hi =
|
|
rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
|
|
flags |= RTE_MBUF_F_RX_FDIR_ID;
|
|
#endif
|
|
return flags;
|
|
}
|
|
|
|
#define IAVF_RX_FLEX_ERR0_BITS \
|
|
((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
|
|
(1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
|
|
|
|
/* Rx L3/L4 checksum */
|
|
static inline uint64_t
|
|
iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
|
|
{
|
|
uint64_t flags = 0;
|
|
|
|
/* check if HW has decoded the packet and checksum */
|
|
if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
|
|
return 0;
|
|
|
|
if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
|
|
flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
|
|
return flags;
|
|
}
|
|
|
|
if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
|
|
flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
|
|
else
|
|
flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
|
|
|
|
if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
|
|
flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
|
|
else
|
|
flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
|
|
|
|
if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
|
|
flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
|
|
|
|
return flags;
|
|
}
|
|
|
|
/* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register. Update the RDT with the value of the last processed RX
|
|
* descriptor minus 1, to guarantee that the RDT register is never
|
|
* equal to the RDH register, which creates a "full" ring situation
|
|
* from the hardware point of view.
|
|
*/
|
|
static inline void
|
|
iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
|
|
{
|
|
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
|
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG,
|
|
"port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
|
|
rxq->port_id, rxq->queue_id, rx_id, nb_hold);
|
|
rx_id = (uint16_t)((rx_id == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
}
|
|
|
|
/* implement recv_pkts */
|
|
uint16_t
|
|
iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
volatile union iavf_rx_desc *rx_ring;
|
|
volatile union iavf_rx_desc *rxdp;
|
|
struct iavf_rx_queue *rxq;
|
|
union iavf_rx_desc rxd;
|
|
struct rte_mbuf *rxe;
|
|
struct rte_eth_dev *dev;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
uint16_t nb_rx;
|
|
uint32_t rx_status;
|
|
uint64_t qword1;
|
|
uint16_t rx_packet_len;
|
|
uint16_t rx_id, nb_hold;
|
|
uint64_t dma_addr;
|
|
uint64_t pkt_flags;
|
|
const uint32_t *ptype_tbl;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rxq = rx_queue;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = &rx_ring[rx_id];
|
|
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
|
rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
|
|
IAVF_RXD_QW1_STATUS_SHIFT;
|
|
|
|
/* Check the DD bit first */
|
|
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
|
|
break;
|
|
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mp);
|
|
if (unlikely(!nmb)) {
|
|
dev = &rte_eth_devices[rxq->port_id];
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", rxq->port_id, rxq->queue_id);
|
|
break;
|
|
}
|
|
|
|
rxd = *rxdp;
|
|
nb_hold++;
|
|
rxe = rxq->sw_ring[rx_id];
|
|
rxq->sw_ring[rx_id] = nmb;
|
|
rx_id++;
|
|
if (unlikely(rx_id == rxq->nb_rx_desc))
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
|
|
/* When next RX descriptor is on a cache line boundary,
|
|
* prefetch the next 4 RX descriptors and next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
}
|
|
rxm = rxe;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
|
|
rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
|
|
rxm->nb_segs = 1;
|
|
rxm->next = NULL;
|
|
rxm->pkt_len = rx_packet_len;
|
|
rxm->data_len = rx_packet_len;
|
|
rxm->port = rxq->port_id;
|
|
rxm->ol_flags = 0;
|
|
iavf_rxd_to_vlan_tci(rxm, &rxd);
|
|
pkt_flags = iavf_rxd_to_pkt_flags(qword1);
|
|
rxm->packet_type =
|
|
ptype_tbl[(uint8_t)((qword1 &
|
|
IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
|
|
|
|
if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
|
|
rxm->hash.rss =
|
|
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
|
|
|
|
if (pkt_flags & RTE_MBUF_F_RX_FDIR)
|
|
pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
|
|
|
|
rxm->ol_flags |= pkt_flags;
|
|
|
|
rx_pkts[nb_rx++] = rxm;
|
|
}
|
|
rxq->rx_tail = rx_id;
|
|
|
|
iavf_update_rx_tail(rxq, nb_hold, rx_id);
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
/* implement recv_pkts for flexible Rx descriptor */
|
|
uint16_t
|
|
iavf_recv_pkts_flex_rxd(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
volatile union iavf_rx_desc *rx_ring;
|
|
volatile union iavf_rx_flex_desc *rxdp;
|
|
struct iavf_rx_queue *rxq;
|
|
union iavf_rx_flex_desc rxd;
|
|
struct rte_mbuf *rxe;
|
|
struct rte_eth_dev *dev;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
uint16_t nb_rx;
|
|
uint16_t rx_stat_err0;
|
|
uint16_t rx_packet_len;
|
|
uint16_t rx_id, nb_hold;
|
|
uint64_t dma_addr;
|
|
uint64_t pkt_flags;
|
|
const uint32_t *ptype_tbl;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rxq = rx_queue;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
|
|
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
|
|
|
|
/* Check the DD bit first */
|
|
if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
|
|
break;
|
|
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mp);
|
|
if (unlikely(!nmb)) {
|
|
dev = &rte_eth_devices[rxq->port_id];
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", rxq->port_id, rxq->queue_id);
|
|
break;
|
|
}
|
|
|
|
rxd = *rxdp;
|
|
nb_hold++;
|
|
rxe = rxq->sw_ring[rx_id];
|
|
rxq->sw_ring[rx_id] = nmb;
|
|
rx_id++;
|
|
if (unlikely(rx_id == rxq->nb_rx_desc))
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
|
|
/* When next RX descriptor is on a cache line boundary,
|
|
* prefetch the next 4 RX descriptors and next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
}
|
|
rxm = rxe;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
|
|
rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
|
|
IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
|
|
rxm->nb_segs = 1;
|
|
rxm->next = NULL;
|
|
rxm->pkt_len = rx_packet_len;
|
|
rxm->data_len = rx_packet_len;
|
|
rxm->port = rxq->port_id;
|
|
rxm->ol_flags = 0;
|
|
rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
|
|
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
|
|
iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
|
|
iavf_flex_rxd_to_ipsec_crypto_status(rxm, &rxd,
|
|
&rxq->stats.ipsec_crypto);
|
|
rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
|
|
pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
|
|
rxm->ol_flags |= pkt_flags;
|
|
|
|
rx_pkts[nb_rx++] = rxm;
|
|
}
|
|
rxq->rx_tail = rx_id;
|
|
|
|
iavf_update_rx_tail(rxq, nb_hold, rx_id);
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
/* implement recv_scattered_pkts for flexible Rx descriptor */
|
|
uint16_t
|
|
iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct iavf_rx_queue *rxq = rx_queue;
|
|
union iavf_rx_flex_desc rxd;
|
|
struct rte_mbuf *rxe;
|
|
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
|
|
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
|
|
struct rte_mbuf *nmb, *rxm;
|
|
uint16_t rx_id = rxq->rx_tail;
|
|
uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
|
|
struct rte_eth_dev *dev;
|
|
uint16_t rx_stat_err0;
|
|
uint64_t dma_addr;
|
|
uint64_t pkt_flags;
|
|
|
|
volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
|
|
volatile union iavf_rx_flex_desc *rxdp;
|
|
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
|
|
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
|
|
|
|
/* Check the DD bit */
|
|
if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
|
|
break;
|
|
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mp);
|
|
if (unlikely(!nmb)) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", rxq->port_id, rxq->queue_id);
|
|
dev = &rte_eth_devices[rxq->port_id];
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
rxd = *rxdp;
|
|
nb_hold++;
|
|
rxe = rxq->sw_ring[rx_id];
|
|
rxq->sw_ring[rx_id] = nmb;
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
|
|
/* When next RX descriptor is on a cache line boundary,
|
|
* prefetch the next 4 RX descriptors and next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
|
|
/* Set data buffer address and data length of the mbuf */
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
|
|
IAVF_RX_FLX_DESC_PKT_LEN_M;
|
|
rxm->data_len = rx_packet_len;
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
/* If this is the first buffer of the received packet, set the
|
|
* pointer to the first mbuf of the packet and initialize its
|
|
* context. Otherwise, update the total length and the number
|
|
* of segments of the current scattered packet, and update the
|
|
* pointer to the last mbuf of the current packet.
|
|
*/
|
|
if (!first_seg) {
|
|
first_seg = rxm;
|
|
first_seg->nb_segs = 1;
|
|
first_seg->pkt_len = rx_packet_len;
|
|
} else {
|
|
first_seg->pkt_len =
|
|
(uint16_t)(first_seg->pkt_len +
|
|
rx_packet_len);
|
|
first_seg->nb_segs++;
|
|
last_seg->next = rxm;
|
|
}
|
|
|
|
/* If this is not the last buffer of the received packet,
|
|
* update the pointer to the last mbuf of the current scattered
|
|
* packet and continue to parse the RX ring.
|
|
*/
|
|
if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
|
|
last_seg = rxm;
|
|
continue;
|
|
}
|
|
|
|
/* This is the last buffer of the received packet. If the CRC
|
|
* is not stripped by the hardware:
|
|
* - Subtract the CRC length from the total packet length.
|
|
* - If the last buffer only contains the whole CRC or a part
|
|
* of it, free the mbuf associated to the last buffer. If part
|
|
* of the CRC is also contained in the previous mbuf, subtract
|
|
* the length of that CRC part from the data length of the
|
|
* previous mbuf.
|
|
*/
|
|
rxm->next = NULL;
|
|
if (unlikely(rxq->crc_len > 0)) {
|
|
first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
|
|
if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
|
|
rte_pktmbuf_free_seg(rxm);
|
|
first_seg->nb_segs--;
|
|
last_seg->data_len =
|
|
(uint16_t)(last_seg->data_len -
|
|
(RTE_ETHER_CRC_LEN - rx_packet_len));
|
|
last_seg->next = NULL;
|
|
} else {
|
|
rxm->data_len = (uint16_t)(rx_packet_len -
|
|
RTE_ETHER_CRC_LEN);
|
|
}
|
|
}
|
|
|
|
first_seg->port = rxq->port_id;
|
|
first_seg->ol_flags = 0;
|
|
first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
|
|
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
|
|
iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
|
|
iavf_flex_rxd_to_ipsec_crypto_status(first_seg, &rxd,
|
|
&rxq->stats.ipsec_crypto);
|
|
rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
|
|
pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
|
|
|
|
first_seg->ol_flags |= pkt_flags;
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
|
|
first_seg->data_off));
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
first_seg = NULL;
|
|
}
|
|
|
|
/* Record index of the next RX descriptor to probe. */
|
|
rxq->rx_tail = rx_id;
|
|
rxq->pkt_first_seg = first_seg;
|
|
rxq->pkt_last_seg = last_seg;
|
|
|
|
iavf_update_rx_tail(rxq, nb_hold, rx_id);
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
/* implement recv_scattered_pkts */
|
|
uint16_t
|
|
iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct iavf_rx_queue *rxq = rx_queue;
|
|
union iavf_rx_desc rxd;
|
|
struct rte_mbuf *rxe;
|
|
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
|
|
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
|
|
struct rte_mbuf *nmb, *rxm;
|
|
uint16_t rx_id = rxq->rx_tail;
|
|
uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
|
|
struct rte_eth_dev *dev;
|
|
uint32_t rx_status;
|
|
uint64_t qword1;
|
|
uint64_t dma_addr;
|
|
uint64_t pkt_flags;
|
|
|
|
volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
|
|
volatile union iavf_rx_desc *rxdp;
|
|
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = &rx_ring[rx_id];
|
|
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
|
rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
|
|
IAVF_RXD_QW1_STATUS_SHIFT;
|
|
|
|
/* Check the DD bit */
|
|
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
|
|
break;
|
|
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mp);
|
|
if (unlikely(!nmb)) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", rxq->port_id, rxq->queue_id);
|
|
dev = &rte_eth_devices[rxq->port_id];
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
rxd = *rxdp;
|
|
nb_hold++;
|
|
rxe = rxq->sw_ring[rx_id];
|
|
rxq->sw_ring[rx_id] = nmb;
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
|
|
/* When next RX descriptor is on a cache line boundary,
|
|
* prefetch the next 4 RX descriptors and next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
|
|
/* Set data buffer address and data length of the mbuf */
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
|
|
rxm->data_len = rx_packet_len;
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
/* If this is the first buffer of the received packet, set the
|
|
* pointer to the first mbuf of the packet and initialize its
|
|
* context. Otherwise, update the total length and the number
|
|
* of segments of the current scattered packet, and update the
|
|
* pointer to the last mbuf of the current packet.
|
|
*/
|
|
if (!first_seg) {
|
|
first_seg = rxm;
|
|
first_seg->nb_segs = 1;
|
|
first_seg->pkt_len = rx_packet_len;
|
|
} else {
|
|
first_seg->pkt_len =
|
|
(uint16_t)(first_seg->pkt_len +
|
|
rx_packet_len);
|
|
first_seg->nb_segs++;
|
|
last_seg->next = rxm;
|
|
}
|
|
|
|
/* If this is not the last buffer of the received packet,
|
|
* update the pointer to the last mbuf of the current scattered
|
|
* packet and continue to parse the RX ring.
|
|
*/
|
|
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
|
|
last_seg = rxm;
|
|
continue;
|
|
}
|
|
|
|
/* This is the last buffer of the received packet. If the CRC
|
|
* is not stripped by the hardware:
|
|
* - Subtract the CRC length from the total packet length.
|
|
* - If the last buffer only contains the whole CRC or a part
|
|
* of it, free the mbuf associated to the last buffer. If part
|
|
* of the CRC is also contained in the previous mbuf, subtract
|
|
* the length of that CRC part from the data length of the
|
|
* previous mbuf.
|
|
*/
|
|
rxm->next = NULL;
|
|
if (unlikely(rxq->crc_len > 0)) {
|
|
first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
|
|
if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
|
|
rte_pktmbuf_free_seg(rxm);
|
|
first_seg->nb_segs--;
|
|
last_seg->data_len =
|
|
(uint16_t)(last_seg->data_len -
|
|
(RTE_ETHER_CRC_LEN - rx_packet_len));
|
|
last_seg->next = NULL;
|
|
} else
|
|
rxm->data_len = (uint16_t)(rx_packet_len -
|
|
RTE_ETHER_CRC_LEN);
|
|
}
|
|
|
|
first_seg->port = rxq->port_id;
|
|
first_seg->ol_flags = 0;
|
|
iavf_rxd_to_vlan_tci(first_seg, &rxd);
|
|
pkt_flags = iavf_rxd_to_pkt_flags(qword1);
|
|
first_seg->packet_type =
|
|
ptype_tbl[(uint8_t)((qword1 &
|
|
IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
|
|
|
|
if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
|
|
first_seg->hash.rss =
|
|
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
|
|
|
|
if (pkt_flags & RTE_MBUF_F_RX_FDIR)
|
|
pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
|
|
|
|
first_seg->ol_flags |= pkt_flags;
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
|
|
first_seg->data_off));
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
first_seg = NULL;
|
|
}
|
|
|
|
/* Record index of the next RX descriptor to probe. */
|
|
rxq->rx_tail = rx_id;
|
|
rxq->pkt_first_seg = first_seg;
|
|
rxq->pkt_last_seg = last_seg;
|
|
|
|
iavf_update_rx_tail(rxq, nb_hold, rx_id);
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
#define IAVF_LOOK_AHEAD 8
|
|
static inline int
|
|
iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
|
|
{
|
|
volatile union iavf_rx_flex_desc *rxdp;
|
|
struct rte_mbuf **rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t stat_err0;
|
|
uint16_t pkt_len;
|
|
int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
|
|
int32_t i, j, nb_rx = 0;
|
|
uint64_t pkt_flags;
|
|
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
|
|
rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
|
|
rxep = &rxq->sw_ring[rxq->rx_tail];
|
|
|
|
stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
|
|
|
|
/* Make sure there is at least 1 packet to receive */
|
|
if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
|
|
return 0;
|
|
|
|
/* Scan LOOK_AHEAD descriptors at a time to determine which
|
|
* descriptors reference packets that are ready to be received.
|
|
*/
|
|
for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
|
|
rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
|
|
/* Read desc statuses backwards to avoid race condition */
|
|
for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
|
|
s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
|
|
|
|
rte_smp_rmb();
|
|
|
|
/* Compute how many contiguous DD bits were set */
|
|
for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
|
|
var = s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
|
|
#ifdef RTE_ARCH_ARM
|
|
/* For Arm platforms, count only contiguous descriptors
|
|
* whose DD bit is set to 1. On Arm platforms, reads of
|
|
* descriptors can be reordered. Since the CPU may
|
|
* be reading the descriptors as the NIC updates them
|
|
* in memory, it is possbile that the DD bit for a
|
|
* descriptor earlier in the queue is read as not set
|
|
* while the DD bit for a descriptor later in the queue
|
|
* is read as set.
|
|
*/
|
|
if (var)
|
|
nb_dd += 1;
|
|
else
|
|
break;
|
|
#else
|
|
nb_dd += var;
|
|
#endif
|
|
}
|
|
|
|
nb_rx += nb_dd;
|
|
|
|
/* Translate descriptor info to mbuf parameters */
|
|
for (j = 0; j < nb_dd; j++) {
|
|
IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
|
|
rxq->rx_tail +
|
|
i * IAVF_LOOK_AHEAD + j);
|
|
|
|
mb = rxep[j];
|
|
pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
|
|
IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
|
|
mb->data_len = pkt_len;
|
|
mb->pkt_len = pkt_len;
|
|
mb->ol_flags = 0;
|
|
|
|
mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
|
|
rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
|
|
iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
|
|
iavf_flex_rxd_to_ipsec_crypto_status(mb, &rxdp[j],
|
|
&rxq->stats.ipsec_crypto);
|
|
rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
|
|
stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
|
|
pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
|
|
|
|
mb->ol_flags |= pkt_flags;
|
|
}
|
|
|
|
for (j = 0; j < IAVF_LOOK_AHEAD; j++)
|
|
rxq->rx_stage[i + j] = rxep[j];
|
|
|
|
if (nb_dd != IAVF_LOOK_AHEAD)
|
|
break;
|
|
}
|
|
|
|
/* Clear software ring entries */
|
|
for (i = 0; i < nb_rx; i++)
|
|
rxq->sw_ring[rxq->rx_tail + i] = NULL;
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
static inline int
|
|
iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
|
|
{
|
|
volatile union iavf_rx_desc *rxdp;
|
|
struct rte_mbuf **rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t pkt_len;
|
|
uint64_t qword1;
|
|
uint32_t rx_status;
|
|
int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
|
|
int32_t i, j, nb_rx = 0;
|
|
uint64_t pkt_flags;
|
|
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
|
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
rxep = &rxq->sw_ring[rxq->rx_tail];
|
|
|
|
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
|
rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
|
|
IAVF_RXD_QW1_STATUS_SHIFT;
|
|
|
|
/* Make sure there is at least 1 packet to receive */
|
|
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
|
|
return 0;
|
|
|
|
/* Scan LOOK_AHEAD descriptors at a time to determine which
|
|
* descriptors reference packets that are ready to be received.
|
|
*/
|
|
for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
|
|
rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
|
|
/* Read desc statuses backwards to avoid race condition */
|
|
for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
|
|
qword1 = rte_le_to_cpu_64(
|
|
rxdp[j].wb.qword1.status_error_len);
|
|
s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
|
|
IAVF_RXD_QW1_STATUS_SHIFT;
|
|
}
|
|
|
|
rte_smp_rmb();
|
|
|
|
/* Compute how many contiguous DD bits were set */
|
|
for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
|
|
var = s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
|
|
#ifdef RTE_ARCH_ARM
|
|
/* For Arm platforms, count only contiguous descriptors
|
|
* whose DD bit is set to 1. On Arm platforms, reads of
|
|
* descriptors can be reordered. Since the CPU may
|
|
* be reading the descriptors as the NIC updates them
|
|
* in memory, it is possbile that the DD bit for a
|
|
* descriptor earlier in the queue is read as not set
|
|
* while the DD bit for a descriptor later in the queue
|
|
* is read as set.
|
|
*/
|
|
if (var)
|
|
nb_dd += 1;
|
|
else
|
|
break;
|
|
#else
|
|
nb_dd += var;
|
|
#endif
|
|
}
|
|
|
|
nb_rx += nb_dd;
|
|
|
|
/* Translate descriptor info to mbuf parameters */
|
|
for (j = 0; j < nb_dd; j++) {
|
|
IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
|
|
rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
|
|
|
|
mb = rxep[j];
|
|
qword1 = rte_le_to_cpu_64
|
|
(rxdp[j].wb.qword1.status_error_len);
|
|
pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
|
|
mb->data_len = pkt_len;
|
|
mb->pkt_len = pkt_len;
|
|
mb->ol_flags = 0;
|
|
iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
|
|
pkt_flags = iavf_rxd_to_pkt_flags(qword1);
|
|
mb->packet_type =
|
|
ptype_tbl[(uint8_t)((qword1 &
|
|
IAVF_RXD_QW1_PTYPE_MASK) >>
|
|
IAVF_RXD_QW1_PTYPE_SHIFT)];
|
|
|
|
if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
|
|
mb->hash.rss = rte_le_to_cpu_32(
|
|
rxdp[j].wb.qword0.hi_dword.rss);
|
|
|
|
if (pkt_flags & RTE_MBUF_F_RX_FDIR)
|
|
pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
|
|
|
|
mb->ol_flags |= pkt_flags;
|
|
}
|
|
|
|
for (j = 0; j < IAVF_LOOK_AHEAD; j++)
|
|
rxq->rx_stage[i + j] = rxep[j];
|
|
|
|
if (nb_dd != IAVF_LOOK_AHEAD)
|
|
break;
|
|
}
|
|
|
|
/* Clear software ring entries */
|
|
for (i = 0; i < nb_rx; i++)
|
|
rxq->sw_ring[rxq->rx_tail + i] = NULL;
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
static inline uint16_t
|
|
iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t i;
|
|
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
|
|
|
|
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
|
|
|
|
for (i = 0; i < nb_pkts; i++)
|
|
rx_pkts[i] = stage[i];
|
|
|
|
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
|
|
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static inline int
|
|
iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
|
|
{
|
|
volatile union iavf_rx_desc *rxdp;
|
|
struct rte_mbuf **rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t alloc_idx, i;
|
|
uint64_t dma_addr;
|
|
int diag;
|
|
|
|
/* Allocate buffers in bulk */
|
|
alloc_idx = (uint16_t)(rxq->rx_free_trigger -
|
|
(rxq->rx_free_thresh - 1));
|
|
rxep = &rxq->sw_ring[alloc_idx];
|
|
diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
|
|
rxq->rx_free_thresh);
|
|
if (unlikely(diag != 0)) {
|
|
PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rxdp = &rxq->rx_ring[alloc_idx];
|
|
for (i = 0; i < rxq->rx_free_thresh; i++) {
|
|
if (likely(i < (rxq->rx_free_thresh - 1)))
|
|
/* Prefetch next mbuf */
|
|
rte_prefetch0(rxep[i + 1]);
|
|
|
|
mb = rxep[i];
|
|
rte_mbuf_refcnt_set(mb, 1);
|
|
mb->next = NULL;
|
|
mb->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mb->nb_segs = 1;
|
|
mb->port = rxq->port_id;
|
|
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
|
|
rxdp[i].read.hdr_addr = 0;
|
|
rxdp[i].read.pkt_addr = dma_addr;
|
|
}
|
|
|
|
/* Update rx tail register */
|
|
rte_wmb();
|
|
IAVF_PCI_REG_WC_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
|
|
|
|
rxq->rx_free_trigger =
|
|
(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
|
|
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
|
|
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline uint16_t
|
|
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
|
|
uint16_t nb_rx = 0;
|
|
|
|
if (!nb_pkts)
|
|
return 0;
|
|
|
|
if (rxq->rx_nb_avail)
|
|
return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
|
|
nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
|
|
else
|
|
nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_nb_avail = nb_rx;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
|
|
|
|
if (rxq->rx_tail > rxq->rx_free_trigger) {
|
|
if (iavf_rx_alloc_bufs(rxq) != 0) {
|
|
uint16_t i, j;
|
|
|
|
/* TODO: count rx_mbuf_alloc_failed here */
|
|
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
|
|
for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
|
|
rxq->sw_ring[j] = rxq->rx_stage[i];
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (rxq->rx_tail >= rxq->nb_rx_desc)
|
|
rxq->rx_tail = 0;
|
|
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
|
|
rxq->port_id, rxq->queue_id,
|
|
rxq->rx_tail, nb_rx);
|
|
|
|
if (rxq->rx_nb_avail)
|
|
return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t
|
|
iavf_recv_pkts_bulk_alloc(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_rx = 0, n, count;
|
|
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
|
|
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
|
|
|
|
while (nb_pkts) {
|
|
n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
|
|
count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
|
|
nb_rx = (uint16_t)(nb_rx + count);
|
|
nb_pkts = (uint16_t)(nb_pkts - count);
|
|
if (count < n)
|
|
break;
|
|
}
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
static inline int
|
|
iavf_xmit_cleanup(struct iavf_tx_queue *txq)
|
|
{
|
|
struct iavf_tx_entry *sw_ring = txq->sw_ring;
|
|
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
|
|
uint16_t nb_tx_desc = txq->nb_tx_desc;
|
|
uint16_t desc_to_clean_to;
|
|
uint16_t nb_tx_to_clean;
|
|
|
|
volatile struct iavf_tx_desc *txd = txq->tx_ring;
|
|
|
|
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
|
|
if (desc_to_clean_to >= nb_tx_desc)
|
|
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
|
|
|
|
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
|
|
if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
|
|
rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
|
|
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
|
|
PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
|
|
"(port=%d queue=%d)", desc_to_clean_to,
|
|
txq->port_id, txq->queue_id);
|
|
return -1;
|
|
}
|
|
|
|
if (last_desc_cleaned > desc_to_clean_to)
|
|
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
|
|
desc_to_clean_to);
|
|
else
|
|
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
|
|
last_desc_cleaned);
|
|
|
|
txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
|
|
|
|
txq->last_desc_cleaned = desc_to_clean_to;
|
|
txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check if the context descriptor is needed for TX offloading */
|
|
static inline uint16_t
|
|
iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
|
|
{
|
|
if (flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG |
|
|
RTE_MBUF_F_TX_TUNNEL_MASK))
|
|
return 1;
|
|
if (flags & RTE_MBUF_F_TX_VLAN &&
|
|
vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
iavf_fill_ctx_desc_cmd_field(volatile uint64_t *field, struct rte_mbuf *m,
|
|
uint8_t vlan_flag)
|
|
{
|
|
uint64_t cmd = 0;
|
|
|
|
/* TSO enabled */
|
|
if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
|
|
cmd = IAVF_TX_CTX_DESC_TSO << IAVF_TXD_CTX_QW1_CMD_SHIFT;
|
|
|
|
if (m->ol_flags & RTE_MBUF_F_TX_VLAN &&
|
|
vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
|
|
cmd |= IAVF_TX_CTX_DESC_IL2TAG2
|
|
<< IAVF_TXD_CTX_QW1_CMD_SHIFT;
|
|
}
|
|
|
|
*field |= cmd;
|
|
}
|
|
|
|
static inline void
|
|
iavf_fill_ctx_desc_ipsec_field(volatile uint64_t *field,
|
|
struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
|
|
{
|
|
uint64_t ipsec_field =
|
|
(uint64_t)ipsec_md->ctx_desc_ipsec_params <<
|
|
IAVF_TXD_CTX_QW1_IPSEC_PARAMS_CIPHERBLK_SHIFT;
|
|
|
|
*field |= ipsec_field;
|
|
}
|
|
|
|
|
|
static inline void
|
|
iavf_fill_ctx_desc_tunnelling_field(volatile uint64_t *qw0,
|
|
const struct rte_mbuf *m)
|
|
{
|
|
uint64_t eip_typ = IAVF_TX_CTX_DESC_EIPT_NONE;
|
|
uint64_t eip_len = 0;
|
|
uint64_t eip_noinc = 0;
|
|
/* Default - IP_ID is increment in each segment of LSO */
|
|
|
|
switch (m->ol_flags & (RTE_MBUF_F_TX_OUTER_IPV4 |
|
|
RTE_MBUF_F_TX_OUTER_IPV6 |
|
|
RTE_MBUF_F_TX_OUTER_IP_CKSUM)) {
|
|
case RTE_MBUF_F_TX_OUTER_IPV4:
|
|
eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_NO_CHECKSUM_OFFLOAD;
|
|
eip_len = m->outer_l3_len >> 2;
|
|
break;
|
|
case RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM:
|
|
eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_CHECKSUM_OFFLOAD;
|
|
eip_len = m->outer_l3_len >> 2;
|
|
break;
|
|
case RTE_MBUF_F_TX_OUTER_IPV6:
|
|
eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV6;
|
|
eip_len = m->outer_l3_len >> 2;
|
|
break;
|
|
}
|
|
|
|
*qw0 = eip_typ << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPT_SHIFT |
|
|
eip_len << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPLEN_SHIFT |
|
|
eip_noinc << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIP_NOINC_SHIFT;
|
|
}
|
|
|
|
static inline uint16_t
|
|
iavf_fill_ctx_desc_segmentation_field(volatile uint64_t *field,
|
|
struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
|
|
{
|
|
uint64_t segmentation_field = 0;
|
|
uint64_t total_length = 0;
|
|
|
|
if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
|
|
total_length = ipsec_md->l4_payload_len;
|
|
} else {
|
|
total_length = m->pkt_len - (m->l2_len + m->l3_len + m->l4_len);
|
|
|
|
if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
|
|
total_length -= m->outer_l3_len;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_IAVF_DEBUG_TX
|
|
if (!m->l4_len || !m->tso_segsz)
|
|
PMD_TX_LOG(DEBUG, "L4 length %d, LSO Segment size %d",
|
|
m->l4_len, m->tso_segsz);
|
|
if (m->tso_segsz < 88)
|
|
PMD_TX_LOG(DEBUG, "LSO Segment size %d is less than minimum %d",
|
|
m->tso_segsz, 88);
|
|
#endif
|
|
segmentation_field =
|
|
(((uint64_t)total_length << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) &
|
|
IAVF_TXD_CTX_QW1_TSO_LEN_MASK) |
|
|
(((uint64_t)m->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT) &
|
|
IAVF_TXD_CTX_QW1_MSS_MASK);
|
|
|
|
*field |= segmentation_field;
|
|
|
|
return total_length;
|
|
}
|
|
|
|
|
|
struct iavf_tx_context_desc_qws {
|
|
__le64 qw0;
|
|
__le64 qw1;
|
|
};
|
|
|
|
static inline void
|
|
iavf_fill_context_desc(volatile struct iavf_tx_context_desc *desc,
|
|
struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md,
|
|
uint16_t *tlen, uint8_t vlan_flag)
|
|
{
|
|
volatile struct iavf_tx_context_desc_qws *desc_qws =
|
|
(volatile struct iavf_tx_context_desc_qws *)desc;
|
|
/* fill descriptor type field */
|
|
desc_qws->qw1 = IAVF_TX_DESC_DTYPE_CONTEXT;
|
|
|
|
/* fill command field */
|
|
iavf_fill_ctx_desc_cmd_field(&desc_qws->qw1, m, vlan_flag);
|
|
|
|
/* fill segmentation field */
|
|
if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) {
|
|
/* fill IPsec field */
|
|
if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
|
|
iavf_fill_ctx_desc_ipsec_field(&desc_qws->qw1,
|
|
ipsec_md);
|
|
|
|
*tlen = iavf_fill_ctx_desc_segmentation_field(&desc_qws->qw1,
|
|
m, ipsec_md);
|
|
}
|
|
|
|
/* fill tunnelling field */
|
|
if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
|
|
iavf_fill_ctx_desc_tunnelling_field(&desc_qws->qw0, m);
|
|
else
|
|
desc_qws->qw0 = 0;
|
|
|
|
desc_qws->qw0 = rte_cpu_to_le_64(desc_qws->qw0);
|
|
desc_qws->qw1 = rte_cpu_to_le_64(desc_qws->qw1);
|
|
|
|
if (vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
|
|
desc->l2tag2 = m->vlan_tci;
|
|
}
|
|
|
|
|
|
static inline void
|
|
iavf_fill_ipsec_desc(volatile struct iavf_tx_ipsec_desc *desc,
|
|
const struct iavf_ipsec_crypto_pkt_metadata *md, uint16_t *ipsec_len)
|
|
{
|
|
desc->qw0 = rte_cpu_to_le_64(((uint64_t)md->l4_payload_len <<
|
|
IAVF_IPSEC_TX_DESC_QW0_L4PAYLEN_SHIFT) |
|
|
((uint64_t)md->esn << IAVF_IPSEC_TX_DESC_QW0_IPSECESN_SHIFT) |
|
|
((uint64_t)md->esp_trailer_len <<
|
|
IAVF_IPSEC_TX_DESC_QW0_TRAILERLEN_SHIFT));
|
|
|
|
desc->qw1 = rte_cpu_to_le_64(((uint64_t)md->sa_idx <<
|
|
IAVF_IPSEC_TX_DESC_QW1_IPSECSA_SHIFT) |
|
|
((uint64_t)md->next_proto <<
|
|
IAVF_IPSEC_TX_DESC_QW1_IPSECNH_SHIFT) |
|
|
((uint64_t)(md->len_iv & 0x3) <<
|
|
IAVF_IPSEC_TX_DESC_QW1_IVLEN_SHIFT) |
|
|
((uint64_t)(md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
|
|
1ULL : 0ULL) <<
|
|
IAVF_IPSEC_TX_DESC_QW1_UDP_SHIFT) |
|
|
(uint64_t)IAVF_TX_DESC_DTYPE_IPSEC);
|
|
|
|
/**
|
|
* TODO: Pre-calculate this in the Session initialization
|
|
*
|
|
* Calculate IPsec length required in data descriptor func when TSO
|
|
* offload is enabled
|
|
*/
|
|
*ipsec_len = sizeof(struct rte_esp_hdr) + (md->len_iv >> 2) +
|
|
(md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
|
|
sizeof(struct rte_udp_hdr) : 0);
|
|
}
|
|
|
|
static inline void
|
|
iavf_build_data_desc_cmd_offset_fields(volatile uint64_t *qw1,
|
|
struct rte_mbuf *m, uint8_t vlan_flag)
|
|
{
|
|
uint64_t command = 0;
|
|
uint64_t offset = 0;
|
|
uint64_t l2tag1 = 0;
|
|
|
|
*qw1 = IAVF_TX_DESC_DTYPE_DATA;
|
|
|
|
command = (uint64_t)IAVF_TX_DESC_CMD_ICRC;
|
|
|
|
/* Descriptor based VLAN insertion */
|
|
if ((vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) &&
|
|
m->ol_flags & RTE_MBUF_F_TX_VLAN) {
|
|
command |= (uint64_t)IAVF_TX_DESC_CMD_IL2TAG1;
|
|
l2tag1 |= m->vlan_tci;
|
|
}
|
|
|
|
/* Set MACLEN */
|
|
offset |= (m->l2_len >> 1) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
|
|
|
|
/* Enable L3 checksum offloading inner */
|
|
if (m->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
|
|
command |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
|
|
offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
} else if (m->ol_flags & RTE_MBUF_F_TX_IPV4) {
|
|
command |= IAVF_TX_DESC_CMD_IIPT_IPV4;
|
|
offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
} else if (m->ol_flags & RTE_MBUF_F_TX_IPV6) {
|
|
command |= IAVF_TX_DESC_CMD_IIPT_IPV6;
|
|
offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
}
|
|
|
|
if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
|
|
command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
offset |= (m->l4_len >> 2) <<
|
|
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
}
|
|
|
|
/* Enable L4 checksum offloads */
|
|
switch (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) {
|
|
case RTE_MBUF_F_TX_TCP_CKSUM:
|
|
command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
|
|
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
case RTE_MBUF_F_TX_SCTP_CKSUM:
|
|
command |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
|
|
offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
|
|
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
case RTE_MBUF_F_TX_UDP_CKSUM:
|
|
command |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
|
|
offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
|
|
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
break;
|
|
}
|
|
|
|
*qw1 = rte_cpu_to_le_64((((uint64_t)command <<
|
|
IAVF_TXD_DATA_QW1_CMD_SHIFT) & IAVF_TXD_DATA_QW1_CMD_MASK) |
|
|
(((uint64_t)offset << IAVF_TXD_DATA_QW1_OFFSET_SHIFT) &
|
|
IAVF_TXD_DATA_QW1_OFFSET_MASK) |
|
|
((uint64_t)l2tag1 << IAVF_TXD_DATA_QW1_L2TAG1_SHIFT));
|
|
}
|
|
|
|
static inline void
|
|
iavf_fill_data_desc(volatile struct iavf_tx_desc *desc,
|
|
struct rte_mbuf *m, uint64_t desc_template,
|
|
uint16_t tlen, uint16_t ipseclen)
|
|
{
|
|
uint32_t hdrlen = m->l2_len;
|
|
uint32_t bufsz = 0;
|
|
|
|
/* fill data descriptor qw1 from template */
|
|
desc->cmd_type_offset_bsz = desc_template;
|
|
|
|
/* set data buffer address */
|
|
desc->buffer_addr = rte_mbuf_data_iova(m);
|
|
|
|
/* calculate data buffer size less set header lengths */
|
|
if ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) &&
|
|
(m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
|
|
RTE_MBUF_F_TX_UDP_SEG))) {
|
|
hdrlen += m->outer_l3_len;
|
|
if (m->ol_flags & RTE_MBUF_F_TX_L4_MASK)
|
|
hdrlen += m->l3_len + m->l4_len;
|
|
else
|
|
hdrlen += m->l3_len;
|
|
if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
|
|
hdrlen += ipseclen;
|
|
bufsz = hdrlen + tlen;
|
|
} else if ((m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) &&
|
|
(m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
|
|
RTE_MBUF_F_TX_UDP_SEG))) {
|
|
hdrlen += m->outer_l3_len + m->l3_len + ipseclen;
|
|
if (m->ol_flags & RTE_MBUF_F_TX_L4_MASK)
|
|
hdrlen += m->l4_len;
|
|
bufsz = hdrlen + tlen;
|
|
|
|
} else {
|
|
bufsz = m->data_len;
|
|
}
|
|
|
|
/* set data buffer size */
|
|
desc->cmd_type_offset_bsz |=
|
|
(((uint64_t)bufsz << IAVF_TXD_DATA_QW1_TX_BUF_SZ_SHIFT) &
|
|
IAVF_TXD_DATA_QW1_TX_BUF_SZ_MASK);
|
|
|
|
desc->buffer_addr = rte_cpu_to_le_64(desc->buffer_addr);
|
|
desc->cmd_type_offset_bsz = rte_cpu_to_le_64(desc->cmd_type_offset_bsz);
|
|
}
|
|
|
|
|
|
static struct iavf_ipsec_crypto_pkt_metadata *
|
|
iavf_ipsec_crypto_get_pkt_metadata(const struct iavf_tx_queue *txq,
|
|
struct rte_mbuf *m)
|
|
{
|
|
if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
|
|
return RTE_MBUF_DYNFIELD(m, txq->ipsec_crypto_pkt_md_offset,
|
|
struct iavf_ipsec_crypto_pkt_metadata *);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* TX function */
|
|
uint16_t
|
|
iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct iavf_tx_queue *txq = tx_queue;
|
|
volatile struct iavf_tx_desc *txr = txq->tx_ring;
|
|
struct iavf_tx_entry *txe_ring = txq->sw_ring;
|
|
struct iavf_tx_entry *txe, *txn;
|
|
struct rte_mbuf *mb, *mb_seg;
|
|
uint16_t desc_idx, desc_idx_last;
|
|
uint16_t idx;
|
|
|
|
|
|
/* Check if the descriptor ring needs to be cleaned. */
|
|
if (txq->nb_free < txq->free_thresh)
|
|
iavf_xmit_cleanup(txq);
|
|
|
|
desc_idx = txq->tx_tail;
|
|
txe = &txe_ring[desc_idx];
|
|
|
|
for (idx = 0; idx < nb_pkts; idx++) {
|
|
volatile struct iavf_tx_desc *ddesc;
|
|
struct iavf_ipsec_crypto_pkt_metadata *ipsec_md;
|
|
|
|
uint16_t nb_desc_ctx, nb_desc_ipsec;
|
|
uint16_t nb_desc_data, nb_desc_required;
|
|
uint16_t tlen = 0, ipseclen = 0;
|
|
uint64_t ddesc_template = 0;
|
|
uint64_t ddesc_cmd = 0;
|
|
|
|
mb = tx_pkts[idx];
|
|
|
|
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
|
|
|
|
/**
|
|
* Get metadata for ipsec crypto from mbuf dynamic fields if
|
|
* security offload is specified.
|
|
*/
|
|
ipsec_md = iavf_ipsec_crypto_get_pkt_metadata(txq, mb);
|
|
|
|
nb_desc_data = mb->nb_segs;
|
|
nb_desc_ctx =
|
|
iavf_calc_context_desc(mb->ol_flags, txq->vlan_flag);
|
|
nb_desc_ipsec = !!(mb->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD);
|
|
|
|
/**
|
|
* The number of descriptors that must be allocated for
|
|
* a packet equals to the number of the segments of that
|
|
* packet plus the context and ipsec descriptors if needed.
|
|
*/
|
|
nb_desc_required = nb_desc_data + nb_desc_ctx + nb_desc_ipsec;
|
|
|
|
desc_idx_last = (uint16_t)(desc_idx + nb_desc_required - 1);
|
|
|
|
/* wrap descriptor ring */
|
|
if (desc_idx_last >= txq->nb_tx_desc)
|
|
desc_idx_last =
|
|
(uint16_t)(desc_idx_last - txq->nb_tx_desc);
|
|
|
|
PMD_TX_LOG(DEBUG,
|
|
"port_id=%u queue_id=%u tx_first=%u tx_last=%u",
|
|
txq->port_id, txq->queue_id, desc_idx, desc_idx_last);
|
|
|
|
if (nb_desc_required > txq->nb_free) {
|
|
if (iavf_xmit_cleanup(txq)) {
|
|
if (idx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
if (unlikely(nb_desc_required > txq->rs_thresh)) {
|
|
while (nb_desc_required > txq->nb_free) {
|
|
if (iavf_xmit_cleanup(txq)) {
|
|
if (idx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
iavf_build_data_desc_cmd_offset_fields(&ddesc_template, mb,
|
|
txq->vlan_flag);
|
|
|
|
/* Setup TX context descriptor if required */
|
|
if (nb_desc_ctx) {
|
|
volatile struct iavf_tx_context_desc *ctx_desc =
|
|
(volatile struct iavf_tx_context_desc *)
|
|
&txr[desc_idx];
|
|
|
|
/* clear QW0 or the previous writeback value
|
|
* may impact next write
|
|
*/
|
|
*(volatile uint64_t *)ctx_desc = 0;
|
|
|
|
txn = &txe_ring[txe->next_id];
|
|
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
|
|
|
|
if (txe->mbuf) {
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = NULL;
|
|
}
|
|
|
|
iavf_fill_context_desc(ctx_desc, mb, ipsec_md, &tlen,
|
|
txq->vlan_flag);
|
|
IAVF_DUMP_TX_DESC(txq, ctx_desc, desc_idx);
|
|
|
|
txe->last_id = desc_idx_last;
|
|
desc_idx = txe->next_id;
|
|
txe = txn;
|
|
}
|
|
|
|
if (nb_desc_ipsec) {
|
|
volatile struct iavf_tx_ipsec_desc *ipsec_desc =
|
|
(volatile struct iavf_tx_ipsec_desc *)
|
|
&txr[desc_idx];
|
|
|
|
txn = &txe_ring[txe->next_id];
|
|
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
|
|
|
|
if (txe->mbuf) {
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = NULL;
|
|
}
|
|
|
|
iavf_fill_ipsec_desc(ipsec_desc, ipsec_md, &ipseclen);
|
|
|
|
IAVF_DUMP_TX_DESC(txq, ipsec_desc, desc_idx);
|
|
|
|
txe->last_id = desc_idx_last;
|
|
desc_idx = txe->next_id;
|
|
txe = txn;
|
|
}
|
|
|
|
mb_seg = mb;
|
|
|
|
do {
|
|
ddesc = (volatile struct iavf_tx_desc *)
|
|
&txr[desc_idx];
|
|
|
|
txn = &txe_ring[txe->next_id];
|
|
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
|
|
|
|
if (txe->mbuf)
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
|
|
txe->mbuf = mb_seg;
|
|
iavf_fill_data_desc(ddesc, mb_seg,
|
|
ddesc_template, tlen, ipseclen);
|
|
|
|
IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx);
|
|
|
|
txe->last_id = desc_idx_last;
|
|
desc_idx = txe->next_id;
|
|
txe = txn;
|
|
mb_seg = mb_seg->next;
|
|
} while (mb_seg);
|
|
|
|
/* The last packet data descriptor needs End Of Packet (EOP) */
|
|
ddesc_cmd = IAVF_TX_DESC_CMD_EOP;
|
|
|
|
txq->nb_used = (uint16_t)(txq->nb_used + nb_desc_required);
|
|
txq->nb_free = (uint16_t)(txq->nb_free - nb_desc_required);
|
|
|
|
if (txq->nb_used >= txq->rs_thresh) {
|
|
PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
|
|
"%4u (port=%d queue=%d)",
|
|
desc_idx_last, txq->port_id, txq->queue_id);
|
|
|
|
ddesc_cmd |= IAVF_TX_DESC_CMD_RS;
|
|
|
|
/* Update txq RS bit counters */
|
|
txq->nb_used = 0;
|
|
}
|
|
|
|
ddesc->cmd_type_offset_bsz |= rte_cpu_to_le_64(ddesc_cmd <<
|
|
IAVF_TXD_DATA_QW1_CMD_SHIFT);
|
|
|
|
IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx - 1);
|
|
}
|
|
|
|
end_of_tx:
|
|
rte_wmb();
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
txq->port_id, txq->queue_id, desc_idx, idx);
|
|
|
|
IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, desc_idx);
|
|
txq->tx_tail = desc_idx;
|
|
|
|
return idx;
|
|
}
|
|
|
|
/* Check if the packet with vlan user priority is transmitted in the
|
|
* correct queue.
|
|
*/
|
|
static int
|
|
iavf_check_vlan_up2tc(struct iavf_tx_queue *txq, struct rte_mbuf *m)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
|
|
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
uint16_t up;
|
|
|
|
up = m->vlan_tci >> IAVF_VLAN_TAG_PCP_OFFSET;
|
|
|
|
if (!(vf->qos_cap->cap[txq->tc].tc_prio & BIT(up))) {
|
|
PMD_TX_LOG(ERR, "packet with vlan pcp %u cannot transmit in queue %u\n",
|
|
up, txq->queue_id);
|
|
return -1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* TX prep functions */
|
|
uint16_t
|
|
iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
int i, ret;
|
|
uint64_t ol_flags;
|
|
struct rte_mbuf *m;
|
|
struct iavf_tx_queue *txq = tx_queue;
|
|
struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
|
|
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
|
|
if (adapter->closed)
|
|
return 0;
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
m = tx_pkts[i];
|
|
ol_flags = m->ol_flags;
|
|
|
|
/* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
|
|
if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
|
|
if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
|
|
rte_errno = EINVAL;
|
|
return i;
|
|
}
|
|
} else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
|
|
(m->tso_segsz > IAVF_MAX_TSO_MSS)) {
|
|
/* MSS outside the range are considered malicious */
|
|
rte_errno = EINVAL;
|
|
return i;
|
|
}
|
|
|
|
if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
|
|
rte_errno = ENOTSUP;
|
|
return i;
|
|
}
|
|
|
|
#ifdef RTE_ETHDEV_DEBUG_TX
|
|
ret = rte_validate_tx_offload(m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
return i;
|
|
}
|
|
#endif
|
|
ret = rte_net_intel_cksum_prepare(m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
return i;
|
|
}
|
|
|
|
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
|
|
ol_flags & (RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN)) {
|
|
ret = iavf_check_vlan_up2tc(txq, m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/* choose rx function*/
|
|
void
|
|
iavf_set_rx_function(struct rte_eth_dev *dev)
|
|
{
|
|
struct iavf_adapter *adapter =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
|
|
int i;
|
|
struct iavf_rx_queue *rxq;
|
|
bool use_flex = true;
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
if (rxq->rxdid <= IAVF_RXDID_LEGACY_1) {
|
|
PMD_DRV_LOG(NOTICE, "request RXDID[%d] in Queue[%d] is legacy, "
|
|
"set rx_pkt_burst as legacy for all queues", rxq->rxdid, i);
|
|
use_flex = false;
|
|
} else if (!(vf->supported_rxdid & BIT(rxq->rxdid))) {
|
|
PMD_DRV_LOG(NOTICE, "request RXDID[%d] in Queue[%d] is not supported, "
|
|
"set rx_pkt_burst as legacy for all queues", rxq->rxdid, i);
|
|
use_flex = false;
|
|
}
|
|
}
|
|
|
|
#ifdef RTE_ARCH_X86
|
|
int check_ret;
|
|
bool use_avx2 = false;
|
|
bool use_avx512 = false;
|
|
|
|
check_ret = iavf_rx_vec_dev_check(dev);
|
|
if (check_ret >= 0 &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
|
|
if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
|
|
use_avx2 = true;
|
|
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
|
|
use_avx512 = true;
|
|
#endif
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
(void)iavf_rxq_vec_setup(rxq);
|
|
}
|
|
|
|
if (dev->data->scattered_rx) {
|
|
if (!use_avx512) {
|
|
PMD_DRV_LOG(DEBUG,
|
|
"Using %sVector Scattered Rx (port %d).",
|
|
use_avx2 ? "avx2 " : "",
|
|
dev->data->port_id);
|
|
} else {
|
|
if (check_ret == IAVF_VECTOR_PATH)
|
|
PMD_DRV_LOG(DEBUG,
|
|
"Using AVX512 Vector Scattered Rx (port %d).",
|
|
dev->data->port_id);
|
|
else
|
|
PMD_DRV_LOG(DEBUG,
|
|
"Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
|
|
dev->data->port_id);
|
|
}
|
|
if (use_flex) {
|
|
dev->rx_pkt_burst = use_avx2 ?
|
|
iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
|
|
iavf_recv_scattered_pkts_vec_flex_rxd;
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (use_avx512) {
|
|
if (check_ret == IAVF_VECTOR_PATH)
|
|
dev->rx_pkt_burst =
|
|
iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
|
|
else
|
|
dev->rx_pkt_burst =
|
|
iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload;
|
|
}
|
|
#endif
|
|
} else {
|
|
dev->rx_pkt_burst = use_avx2 ?
|
|
iavf_recv_scattered_pkts_vec_avx2 :
|
|
iavf_recv_scattered_pkts_vec;
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (use_avx512) {
|
|
if (check_ret == IAVF_VECTOR_PATH)
|
|
dev->rx_pkt_burst =
|
|
iavf_recv_scattered_pkts_vec_avx512;
|
|
else
|
|
dev->rx_pkt_burst =
|
|
iavf_recv_scattered_pkts_vec_avx512_offload;
|
|
}
|
|
#endif
|
|
}
|
|
} else {
|
|
if (!use_avx512) {
|
|
PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
|
|
use_avx2 ? "avx2 " : "",
|
|
dev->data->port_id);
|
|
} else {
|
|
if (check_ret == IAVF_VECTOR_PATH)
|
|
PMD_DRV_LOG(DEBUG,
|
|
"Using AVX512 Vector Rx (port %d).",
|
|
dev->data->port_id);
|
|
else
|
|
PMD_DRV_LOG(DEBUG,
|
|
"Using AVX512 OFFLOAD Vector Rx (port %d).",
|
|
dev->data->port_id);
|
|
}
|
|
if (use_flex) {
|
|
dev->rx_pkt_burst = use_avx2 ?
|
|
iavf_recv_pkts_vec_avx2_flex_rxd :
|
|
iavf_recv_pkts_vec_flex_rxd;
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (use_avx512) {
|
|
if (check_ret == IAVF_VECTOR_PATH)
|
|
dev->rx_pkt_burst =
|
|
iavf_recv_pkts_vec_avx512_flex_rxd;
|
|
else
|
|
dev->rx_pkt_burst =
|
|
iavf_recv_pkts_vec_avx512_flex_rxd_offload;
|
|
}
|
|
#endif
|
|
} else {
|
|
dev->rx_pkt_burst = use_avx2 ?
|
|
iavf_recv_pkts_vec_avx2 :
|
|
iavf_recv_pkts_vec;
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (use_avx512) {
|
|
if (check_ret == IAVF_VECTOR_PATH)
|
|
dev->rx_pkt_burst =
|
|
iavf_recv_pkts_vec_avx512;
|
|
else
|
|
dev->rx_pkt_burst =
|
|
iavf_recv_pkts_vec_avx512_offload;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
if (dev->data->scattered_rx) {
|
|
PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
|
|
dev->data->port_id);
|
|
if (use_flex)
|
|
dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
|
|
else
|
|
dev->rx_pkt_burst = iavf_recv_scattered_pkts;
|
|
} else if (adapter->rx_bulk_alloc_allowed) {
|
|
PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
|
|
} else {
|
|
PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
|
|
dev->data->port_id);
|
|
if (use_flex)
|
|
dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
|
|
else
|
|
dev->rx_pkt_burst = iavf_recv_pkts;
|
|
}
|
|
}
|
|
|
|
/* choose tx function*/
|
|
void
|
|
iavf_set_tx_function(struct rte_eth_dev *dev)
|
|
{
|
|
#ifdef RTE_ARCH_X86
|
|
struct iavf_tx_queue *txq;
|
|
int i;
|
|
int check_ret;
|
|
bool use_sse = false;
|
|
bool use_avx2 = false;
|
|
bool use_avx512 = false;
|
|
|
|
check_ret = iavf_tx_vec_dev_check(dev);
|
|
|
|
if (check_ret >= 0 &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
|
|
/* SSE and AVX2 not support offload path yet. */
|
|
if (check_ret == IAVF_VECTOR_PATH) {
|
|
use_sse = true;
|
|
if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
|
|
use_avx2 = true;
|
|
}
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
|
|
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
|
|
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
|
|
use_avx512 = true;
|
|
#endif
|
|
|
|
if (!use_sse && !use_avx2 && !use_avx512)
|
|
goto normal;
|
|
|
|
if (!use_avx512) {
|
|
PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
|
|
use_avx2 ? "avx2 " : "",
|
|
dev->data->port_id);
|
|
dev->tx_pkt_burst = use_avx2 ?
|
|
iavf_xmit_pkts_vec_avx2 :
|
|
iavf_xmit_pkts_vec;
|
|
}
|
|
dev->tx_pkt_prepare = NULL;
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (use_avx512) {
|
|
if (check_ret == IAVF_VECTOR_PATH) {
|
|
dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
|
|
PMD_DRV_LOG(DEBUG, "Using AVX512 Vector Tx (port %d).",
|
|
dev->data->port_id);
|
|
} else {
|
|
dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512_offload;
|
|
dev->tx_pkt_prepare = iavf_prep_pkts;
|
|
PMD_DRV_LOG(DEBUG, "Using AVX512 OFFLOAD Vector Tx (port %d).",
|
|
dev->data->port_id);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
if (!txq)
|
|
continue;
|
|
#ifdef CC_AVX512_SUPPORT
|
|
if (use_avx512)
|
|
iavf_txq_vec_setup_avx512(txq);
|
|
else
|
|
iavf_txq_vec_setup(txq);
|
|
#else
|
|
iavf_txq_vec_setup(txq);
|
|
#endif
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
normal:
|
|
#endif
|
|
PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
|
|
dev->data->port_id);
|
|
dev->tx_pkt_burst = iavf_xmit_pkts;
|
|
dev->tx_pkt_prepare = iavf_prep_pkts;
|
|
}
|
|
|
|
static int
|
|
iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
|
|
uint32_t free_cnt)
|
|
{
|
|
struct iavf_tx_entry *swr_ring = txq->sw_ring;
|
|
uint16_t i, tx_last, tx_id;
|
|
uint16_t nb_tx_free_last;
|
|
uint16_t nb_tx_to_clean;
|
|
uint32_t pkt_cnt;
|
|
|
|
/* Start free mbuf from the next of tx_tail */
|
|
tx_last = txq->tx_tail;
|
|
tx_id = swr_ring[tx_last].next_id;
|
|
|
|
if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
|
|
return 0;
|
|
|
|
nb_tx_to_clean = txq->nb_free;
|
|
nb_tx_free_last = txq->nb_free;
|
|
if (!free_cnt)
|
|
free_cnt = txq->nb_tx_desc;
|
|
|
|
/* Loop through swr_ring to count the amount of
|
|
* freeable mubfs and packets.
|
|
*/
|
|
for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
|
|
for (i = 0; i < nb_tx_to_clean &&
|
|
pkt_cnt < free_cnt &&
|
|
tx_id != tx_last; i++) {
|
|
if (swr_ring[tx_id].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
|
|
swr_ring[tx_id].mbuf = NULL;
|
|
|
|
/*
|
|
* last segment in the packet,
|
|
* increment packet count
|
|
*/
|
|
pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
|
|
}
|
|
|
|
tx_id = swr_ring[tx_id].next_id;
|
|
}
|
|
|
|
if (txq->rs_thresh > txq->nb_tx_desc -
|
|
txq->nb_free || tx_id == tx_last)
|
|
break;
|
|
|
|
if (pkt_cnt < free_cnt) {
|
|
if (iavf_xmit_cleanup(txq))
|
|
break;
|
|
|
|
nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
|
|
nb_tx_free_last = txq->nb_free;
|
|
}
|
|
}
|
|
|
|
return (int)pkt_cnt;
|
|
}
|
|
|
|
int
|
|
iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
|
|
{
|
|
struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
|
|
|
|
return iavf_tx_done_cleanup_full(q, free_cnt);
|
|
}
|
|
|
|
void
|
|
iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_rxq_info *qinfo)
|
|
{
|
|
struct iavf_rx_queue *rxq;
|
|
|
|
rxq = dev->data->rx_queues[queue_id];
|
|
|
|
qinfo->mp = rxq->mp;
|
|
qinfo->scattered_rx = dev->data->scattered_rx;
|
|
qinfo->nb_desc = rxq->nb_rx_desc;
|
|
|
|
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
|
|
qinfo->conf.rx_drop_en = true;
|
|
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
|
|
}
|
|
|
|
void
|
|
iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_txq_info *qinfo)
|
|
{
|
|
struct iavf_tx_queue *txq;
|
|
|
|
txq = dev->data->tx_queues[queue_id];
|
|
|
|
qinfo->nb_desc = txq->nb_tx_desc;
|
|
|
|
qinfo->conf.tx_free_thresh = txq->free_thresh;
|
|
qinfo->conf.tx_rs_thresh = txq->rs_thresh;
|
|
qinfo->conf.offloads = txq->offloads;
|
|
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
|
|
}
|
|
|
|
/* Get the number of used descriptors of a rx queue */
|
|
uint32_t
|
|
iavf_dev_rxq_count(void *rx_queue)
|
|
{
|
|
#define IAVF_RXQ_SCAN_INTERVAL 4
|
|
volatile union iavf_rx_desc *rxdp;
|
|
struct iavf_rx_queue *rxq;
|
|
uint16_t desc = 0;
|
|
|
|
rxq = rx_queue;
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
|
|
while ((desc < rxq->nb_rx_desc) &&
|
|
((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
|
|
IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
|
|
(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
|
|
/* Check the DD bit of a rx descriptor of each 4 in a group,
|
|
* to avoid checking too frequently and downgrading performance
|
|
* too much.
|
|
*/
|
|
desc += IAVF_RXQ_SCAN_INTERVAL;
|
|
rxdp += IAVF_RXQ_SCAN_INTERVAL;
|
|
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail +
|
|
desc - rxq->nb_rx_desc]);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
int
|
|
iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
|
|
{
|
|
struct iavf_rx_queue *rxq = rx_queue;
|
|
volatile uint64_t *status;
|
|
uint64_t mask;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= rxq->nb_rx_desc))
|
|
return -EINVAL;
|
|
|
|
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
|
|
return RTE_ETH_RX_DESC_UNAVAIL;
|
|
|
|
desc = rxq->rx_tail + offset;
|
|
if (desc >= rxq->nb_rx_desc)
|
|
desc -= rxq->nb_rx_desc;
|
|
|
|
status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
|
|
mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
|
|
<< IAVF_RXD_QW1_STATUS_SHIFT);
|
|
if (*status & mask)
|
|
return RTE_ETH_RX_DESC_DONE;
|
|
|
|
return RTE_ETH_RX_DESC_AVAIL;
|
|
}
|
|
|
|
int
|
|
iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
|
|
{
|
|
struct iavf_tx_queue *txq = tx_queue;
|
|
volatile uint64_t *status;
|
|
uint64_t mask, expect;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= txq->nb_tx_desc))
|
|
return -EINVAL;
|
|
|
|
desc = txq->tx_tail + offset;
|
|
/* go to next desc that has the RS bit */
|
|
desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
|
|
txq->rs_thresh;
|
|
if (desc >= txq->nb_tx_desc) {
|
|
desc -= txq->nb_tx_desc;
|
|
if (desc >= txq->nb_tx_desc)
|
|
desc -= txq->nb_tx_desc;
|
|
}
|
|
|
|
status = &txq->tx_ring[desc].cmd_type_offset_bsz;
|
|
mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
|
|
expect = rte_cpu_to_le_64(
|
|
IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
|
|
if ((*status & mask) == expect)
|
|
return RTE_ETH_TX_DESC_DONE;
|
|
|
|
return RTE_ETH_TX_DESC_FULL;
|
|
}
|
|
|
|
static inline uint32_t
|
|
iavf_get_default_ptype(uint16_t ptype)
|
|
{
|
|
static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
|
|
__rte_cache_aligned = {
|
|
/* L2 types */
|
|
/* [0] reserved */
|
|
[1] = RTE_PTYPE_L2_ETHER,
|
|
[2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
|
|
/* [3] - [5] reserved */
|
|
[6] = RTE_PTYPE_L2_ETHER_LLDP,
|
|
/* [7] - [10] reserved */
|
|
[11] = RTE_PTYPE_L2_ETHER_ARP,
|
|
/* [12] - [21] reserved */
|
|
|
|
/* Non tunneled IPv4 */
|
|
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
/* [25] reserved */
|
|
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
/* IPv4 --> IPv4 */
|
|
[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [32] reserved */
|
|
[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> IPv6 */
|
|
[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [39] reserved */
|
|
[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN */
|
|
[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
|
|
[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [47] reserved */
|
|
[48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
|
|
[51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [54] reserved */
|
|
[55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
|
|
[58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
|
|
[59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [62] reserved */
|
|
[63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
|
|
[66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [69] reserved */
|
|
[70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
/* [73] - [87] reserved */
|
|
|
|
/* Non tunneled IPv6 */
|
|
[88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
/* [91] reserved */
|
|
[92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
/* IPv6 --> IPv4 */
|
|
[95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [98] reserved */
|
|
[99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> IPv6 */
|
|
[102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [105] reserved */
|
|
[106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN */
|
|
[109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
|
|
[110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [113] reserved */
|
|
[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
|
|
[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [120] reserved */
|
|
[121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
|
|
[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
|
|
[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [128] reserved */
|
|
[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
|
|
[132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
/* [135] reserved */
|
|
[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
/* [139] - [299] reserved */
|
|
|
|
/* PPPoE */
|
|
[300] = RTE_PTYPE_L2_ETHER_PPPOE,
|
|
[301] = RTE_PTYPE_L2_ETHER_PPPOE,
|
|
|
|
/* PPPoE --> IPv4 */
|
|
[302] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[303] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[304] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[305] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[306] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[307] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
/* PPPoE --> IPv6 */
|
|
[308] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_FRAG,
|
|
[309] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
[310] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[311] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_TCP,
|
|
[312] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_SCTP,
|
|
[313] = RTE_PTYPE_L2_ETHER_PPPOE |
|
|
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_ICMP,
|
|
/* [314] - [324] reserved */
|
|
|
|
/* IPv4/IPv6 --> GTPC/GTPU */
|
|
[325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPC,
|
|
[326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPC,
|
|
[327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPC,
|
|
[328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPC,
|
|
[329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU,
|
|
[330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU,
|
|
|
|
/* IPv4 --> GTPU --> IPv4 */
|
|
[331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GTPU --> IPv4 */
|
|
[336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> GTPU --> IPv6 */
|
|
[341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv6 --> GTPU --> IPv6 */
|
|
[346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_FRAG,
|
|
[347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_NONFRAG,
|
|
[348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GTPU |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
|
|
/* IPv4 --> UDP ECPRI */
|
|
[372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
/* IPV6 --> UDP ECPRI */
|
|
[382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
[391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP,
|
|
/* All others reserved */
|
|
};
|
|
|
|
return ptype_tbl[ptype];
|
|
}
|
|
|
|
void __rte_cold
|
|
iavf_set_default_ptype_table(struct rte_eth_dev *dev)
|
|
{
|
|
struct iavf_adapter *ad =
|
|
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
|
int i;
|
|
|
|
for (i = 0; i < IAVF_MAX_PKT_TYPE; i++)
|
|
ad->ptype_tbl[i] = iavf_get_default_ptype(i);
|
|
}
|