mirror of https://github.com/F-Stack/f-stack.git
2524 lines
63 KiB
C
2524 lines
63 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(C) 2021 Marvell.
|
|
*/
|
|
|
|
#ifndef _CNXK_SE_H_
|
|
#define _CNXK_SE_H_
|
|
#include <stdbool.h>
|
|
|
|
#include "cnxk_cryptodev.h"
|
|
#include "cnxk_cryptodev_ops.h"
|
|
|
|
#define SRC_IOV_SIZE \
|
|
(sizeof(struct roc_se_iov_ptr) + \
|
|
(sizeof(struct roc_se_buf_ptr) * ROC_SE_MAX_SG_CNT))
|
|
#define DST_IOV_SIZE \
|
|
(sizeof(struct roc_se_iov_ptr) + \
|
|
(sizeof(struct roc_se_buf_ptr) * ROC_SE_MAX_SG_CNT))
|
|
|
|
struct cnxk_se_sess {
|
|
uint16_t cpt_op : 4;
|
|
uint16_t zsk_flag : 4;
|
|
uint16_t aes_gcm : 1;
|
|
uint16_t aes_ctr : 1;
|
|
uint16_t chacha_poly : 1;
|
|
uint16_t is_null : 1;
|
|
uint16_t is_gmac : 1;
|
|
uint16_t rsvd1 : 3;
|
|
uint16_t aad_length;
|
|
uint8_t mac_len;
|
|
uint8_t iv_length;
|
|
uint8_t auth_iv_length;
|
|
uint16_t iv_offset;
|
|
uint16_t auth_iv_offset;
|
|
uint32_t salt;
|
|
uint64_t cpt_inst_w7;
|
|
struct roc_se_ctx roc_se_ctx;
|
|
} __rte_cache_aligned;
|
|
|
|
static inline void
|
|
cpt_pack_iv(uint8_t *iv_src, uint8_t *iv_dst)
|
|
{
|
|
/* pack the first 8 bytes of IV to 6 bytes.
|
|
* discard the 2 MSB bits of each byte
|
|
*/
|
|
iv_dst[0] = (((iv_src[0] & 0x3f) << 2) | ((iv_src[1] >> 4) & 0x3));
|
|
iv_dst[1] = (((iv_src[1] & 0xf) << 4) | ((iv_src[2] >> 2) & 0xf));
|
|
iv_dst[2] = (((iv_src[2] & 0x3) << 6) | (iv_src[3] & 0x3f));
|
|
|
|
iv_dst[3] = (((iv_src[4] & 0x3f) << 2) | ((iv_src[5] >> 4) & 0x3));
|
|
iv_dst[4] = (((iv_src[5] & 0xf) << 4) | ((iv_src[6] >> 2) & 0xf));
|
|
iv_dst[5] = (((iv_src[6] & 0x3) << 6) | (iv_src[7] & 0x3f));
|
|
}
|
|
|
|
static inline void
|
|
pdcp_iv_copy(uint8_t *iv_d, uint8_t *iv_s, const uint8_t pdcp_alg_type,
|
|
uint8_t pack_iv)
|
|
{
|
|
uint32_t *iv_s_temp, iv_temp[4];
|
|
int j;
|
|
|
|
if (pdcp_alg_type == ROC_SE_PDCP_ALG_TYPE_SNOW3G) {
|
|
/*
|
|
* DPDK seems to provide it in form of IV3 IV2 IV1 IV0
|
|
* and BigEndian, MC needs it as IV0 IV1 IV2 IV3
|
|
*/
|
|
|
|
iv_s_temp = (uint32_t *)iv_s;
|
|
|
|
for (j = 0; j < 4; j++)
|
|
iv_temp[j] = iv_s_temp[3 - j];
|
|
memcpy(iv_d, iv_temp, 16);
|
|
} else {
|
|
if (pack_iv) {
|
|
cpt_pack_iv(iv_s, iv_d);
|
|
memcpy(iv_d + 6, iv_s + 8, 17);
|
|
} else
|
|
memcpy(iv_d, iv_s, 16);
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cpt_mac_len_verify(struct rte_crypto_auth_xform *auth)
|
|
{
|
|
uint16_t mac_len = auth->digest_length;
|
|
int ret;
|
|
|
|
switch (auth->algo) {
|
|
case RTE_CRYPTO_AUTH_MD5:
|
|
case RTE_CRYPTO_AUTH_MD5_HMAC:
|
|
ret = (mac_len == 16) ? 0 : -1;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA1:
|
|
case RTE_CRYPTO_AUTH_SHA1_HMAC:
|
|
ret = (mac_len == 20) ? 0 : -1;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA224:
|
|
case RTE_CRYPTO_AUTH_SHA224_HMAC:
|
|
ret = (mac_len == 28) ? 0 : -1;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA256:
|
|
case RTE_CRYPTO_AUTH_SHA256_HMAC:
|
|
ret = (mac_len == 32) ? 0 : -1;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA384:
|
|
case RTE_CRYPTO_AUTH_SHA384_HMAC:
|
|
ret = (mac_len == 48) ? 0 : -1;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA512:
|
|
case RTE_CRYPTO_AUTH_SHA512_HMAC:
|
|
ret = (mac_len == 64) ? 0 : -1;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_NULL:
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cpt_fc_salt_update(struct roc_se_ctx *se_ctx, uint8_t *salt)
|
|
{
|
|
struct roc_se_context *fctx = &se_ctx->se_ctx.fctx;
|
|
memcpy(fctx->enc.encr_iv, salt, 4);
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
fill_sg_comp(struct roc_se_sglist_comp *list, uint32_t i, phys_addr_t dma_addr,
|
|
uint32_t size)
|
|
{
|
|
struct roc_se_sglist_comp *to = &list[i >> 2];
|
|
|
|
to->u.s.len[i % 4] = rte_cpu_to_be_16(size);
|
|
to->ptr[i % 4] = rte_cpu_to_be_64(dma_addr);
|
|
i++;
|
|
return i;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
fill_sg_comp_from_buf(struct roc_se_sglist_comp *list, uint32_t i,
|
|
struct roc_se_buf_ptr *from)
|
|
{
|
|
struct roc_se_sglist_comp *to = &list[i >> 2];
|
|
|
|
to->u.s.len[i % 4] = rte_cpu_to_be_16(from->size);
|
|
to->ptr[i % 4] = rte_cpu_to_be_64((uint64_t)from->vaddr);
|
|
i++;
|
|
return i;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
fill_sg_comp_from_buf_min(struct roc_se_sglist_comp *list, uint32_t i,
|
|
struct roc_se_buf_ptr *from, uint32_t *psize)
|
|
{
|
|
struct roc_se_sglist_comp *to = &list[i >> 2];
|
|
uint32_t size = *psize;
|
|
uint32_t e_len;
|
|
|
|
e_len = (size > from->size) ? from->size : size;
|
|
to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
|
|
to->ptr[i % 4] = rte_cpu_to_be_64((uint64_t)from->vaddr);
|
|
*psize -= e_len;
|
|
i++;
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* This fills the MC expected SGIO list
|
|
* from IOV given by user.
|
|
*/
|
|
static __rte_always_inline uint32_t
|
|
fill_sg_comp_from_iov(struct roc_se_sglist_comp *list, uint32_t i,
|
|
struct roc_se_iov_ptr *from, uint32_t from_offset,
|
|
uint32_t *psize, struct roc_se_buf_ptr *extra_buf,
|
|
uint32_t extra_offset)
|
|
{
|
|
int32_t j;
|
|
uint32_t extra_len = extra_buf ? extra_buf->size : 0;
|
|
uint32_t size = *psize;
|
|
|
|
for (j = 0; (j < from->buf_cnt) && size; j++) {
|
|
struct roc_se_sglist_comp *to = &list[i >> 2];
|
|
uint32_t buf_sz = from->bufs[j].size;
|
|
void *vaddr = from->bufs[j].vaddr;
|
|
uint64_t e_vaddr;
|
|
uint32_t e_len;
|
|
|
|
if (unlikely(from_offset)) {
|
|
if (from_offset >= buf_sz) {
|
|
from_offset -= buf_sz;
|
|
continue;
|
|
}
|
|
e_vaddr = (uint64_t)vaddr + from_offset;
|
|
e_len = (size > (buf_sz - from_offset)) ?
|
|
(buf_sz - from_offset) :
|
|
size;
|
|
from_offset = 0;
|
|
} else {
|
|
e_vaddr = (uint64_t)vaddr;
|
|
e_len = (size > buf_sz) ? buf_sz : size;
|
|
}
|
|
|
|
to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
|
|
to->ptr[i % 4] = rte_cpu_to_be_64(e_vaddr);
|
|
|
|
if (extra_len && (e_len >= extra_offset)) {
|
|
/* Break the data at given offset */
|
|
uint32_t next_len = e_len - extra_offset;
|
|
uint64_t next_vaddr = e_vaddr + extra_offset;
|
|
|
|
if (!extra_offset) {
|
|
i--;
|
|
} else {
|
|
e_len = extra_offset;
|
|
size -= e_len;
|
|
to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
|
|
}
|
|
|
|
extra_len = RTE_MIN(extra_len, size);
|
|
/* Insert extra data ptr */
|
|
if (extra_len) {
|
|
i++;
|
|
to = &list[i >> 2];
|
|
to->u.s.len[i % 4] =
|
|
rte_cpu_to_be_16(extra_len);
|
|
to->ptr[i % 4] = rte_cpu_to_be_64(
|
|
(uint64_t)extra_buf->vaddr);
|
|
size -= extra_len;
|
|
}
|
|
|
|
next_len = RTE_MIN(next_len, size);
|
|
/* insert the rest of the data */
|
|
if (next_len) {
|
|
i++;
|
|
to = &list[i >> 2];
|
|
to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
|
|
to->ptr[i % 4] = rte_cpu_to_be_64(next_vaddr);
|
|
size -= next_len;
|
|
}
|
|
extra_len = 0;
|
|
|
|
} else {
|
|
size -= e_len;
|
|
}
|
|
if (extra_offset)
|
|
extra_offset -= size;
|
|
i++;
|
|
}
|
|
|
|
*psize = size;
|
|
return (uint32_t)i;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cpt_digest_gen_prep(uint32_t flags, uint64_t d_lens,
|
|
struct roc_se_fc_params *params, struct cpt_inst_s *inst)
|
|
{
|
|
void *m_vaddr = params->meta_buf.vaddr;
|
|
uint32_t size, i;
|
|
uint16_t data_len, mac_len, key_len;
|
|
roc_se_auth_type hash_type;
|
|
struct roc_se_ctx *ctx;
|
|
struct roc_se_sglist_comp *gather_comp;
|
|
struct roc_se_sglist_comp *scatter_comp;
|
|
uint8_t *in_buffer;
|
|
uint32_t g_size_bytes, s_size_bytes;
|
|
union cpt_inst_w4 cpt_inst_w4;
|
|
|
|
ctx = params->ctx_buf.vaddr;
|
|
|
|
hash_type = ctx->hash_type;
|
|
mac_len = ctx->mac_len;
|
|
key_len = ctx->auth_key_len;
|
|
data_len = ROC_SE_AUTH_DLEN(d_lens);
|
|
|
|
/*GP op header */
|
|
cpt_inst_w4.s.opcode_minor = 0;
|
|
cpt_inst_w4.s.param2 = ((uint16_t)hash_type << 8);
|
|
if (ctx->hmac) {
|
|
cpt_inst_w4.s.opcode_major =
|
|
ROC_SE_MAJOR_OP_HMAC | ROC_SE_DMA_MODE;
|
|
cpt_inst_w4.s.param1 = key_len;
|
|
cpt_inst_w4.s.dlen = data_len + RTE_ALIGN_CEIL(key_len, 8);
|
|
} else {
|
|
cpt_inst_w4.s.opcode_major =
|
|
ROC_SE_MAJOR_OP_HASH | ROC_SE_DMA_MODE;
|
|
cpt_inst_w4.s.param1 = 0;
|
|
cpt_inst_w4.s.dlen = data_len;
|
|
}
|
|
|
|
/* Null auth only case enters the if */
|
|
if (unlikely(!hash_type && !ctx->enc_cipher)) {
|
|
cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_MISC;
|
|
/* Minor op is passthrough */
|
|
cpt_inst_w4.s.opcode_minor = 0x03;
|
|
/* Send out completion code only */
|
|
cpt_inst_w4.s.param2 = 0x1;
|
|
}
|
|
|
|
/* DPTR has SG list */
|
|
in_buffer = m_vaddr;
|
|
|
|
((uint16_t *)in_buffer)[0] = 0;
|
|
((uint16_t *)in_buffer)[1] = 0;
|
|
|
|
/* TODO Add error check if space will be sufficient */
|
|
gather_comp = (struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8);
|
|
|
|
/*
|
|
* Input gather list
|
|
*/
|
|
|
|
i = 0;
|
|
|
|
if (ctx->hmac) {
|
|
uint64_t k_vaddr = (uint64_t)ctx->auth_key;
|
|
/* Key */
|
|
i = fill_sg_comp(gather_comp, i, k_vaddr,
|
|
RTE_ALIGN_CEIL(key_len, 8));
|
|
}
|
|
|
|
/* input data */
|
|
size = data_len;
|
|
if (size) {
|
|
i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0,
|
|
&size, NULL, 0);
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient dst IOV size, short by %dB",
|
|
size);
|
|
return -1;
|
|
}
|
|
} else {
|
|
/*
|
|
* Looks like we need to support zero data
|
|
* gather ptr in case of hash & hmac
|
|
*/
|
|
i++;
|
|
}
|
|
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
|
|
g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
/*
|
|
* Output Gather list
|
|
*/
|
|
|
|
i = 0;
|
|
scatter_comp = (struct roc_se_sglist_comp *)((uint8_t *)gather_comp +
|
|
g_size_bytes);
|
|
|
|
if (flags & ROC_SE_VALID_MAC_BUF) {
|
|
if (unlikely(params->mac_buf.size < mac_len)) {
|
|
plt_dp_err("Insufficient MAC size");
|
|
return -1;
|
|
}
|
|
|
|
size = mac_len;
|
|
i = fill_sg_comp_from_buf_min(scatter_comp, i, ¶ms->mac_buf,
|
|
&size);
|
|
} else {
|
|
size = mac_len;
|
|
i = fill_sg_comp_from_iov(scatter_comp, i, params->src_iov,
|
|
data_len, &size, NULL, 0);
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient dst IOV size, short by %dB",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
|
|
s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE;
|
|
|
|
/* This is DPTR len in case of SG mode */
|
|
cpt_inst_w4.s.dlen = size;
|
|
|
|
inst->dptr = (uint64_t)in_buffer;
|
|
inst->w4.u64 = cpt_inst_w4.u64;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cpt_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
|
|
struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst)
|
|
{
|
|
uint32_t iv_offset = 0;
|
|
int32_t inputlen, outputlen, enc_dlen, auth_dlen;
|
|
struct roc_se_ctx *se_ctx;
|
|
uint32_t cipher_type, hash_type;
|
|
uint32_t mac_len, size;
|
|
uint8_t iv_len = 16;
|
|
struct roc_se_buf_ptr *aad_buf = NULL;
|
|
uint32_t encr_offset, auth_offset;
|
|
uint32_t encr_data_len, auth_data_len, aad_len = 0;
|
|
uint32_t passthrough_len = 0;
|
|
union cpt_inst_w4 cpt_inst_w4;
|
|
void *offset_vaddr;
|
|
uint8_t op_minor;
|
|
|
|
encr_offset = ROC_SE_ENCR_OFFSET(d_offs);
|
|
auth_offset = ROC_SE_AUTH_OFFSET(d_offs);
|
|
encr_data_len = ROC_SE_ENCR_DLEN(d_lens);
|
|
auth_data_len = ROC_SE_AUTH_DLEN(d_lens);
|
|
if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) {
|
|
/* We don't support both AAD and auth data separately */
|
|
auth_data_len = 0;
|
|
auth_offset = 0;
|
|
aad_len = fc_params->aad_buf.size;
|
|
aad_buf = &fc_params->aad_buf;
|
|
}
|
|
se_ctx = fc_params->ctx_buf.vaddr;
|
|
cipher_type = se_ctx->enc_cipher;
|
|
hash_type = se_ctx->hash_type;
|
|
mac_len = se_ctx->mac_len;
|
|
op_minor = se_ctx->template_w4.s.opcode_minor;
|
|
|
|
if (unlikely(!(flags & ROC_SE_VALID_IV_BUF))) {
|
|
iv_len = 0;
|
|
iv_offset = ROC_SE_ENCR_IV_OFFSET(d_offs);
|
|
}
|
|
|
|
if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) {
|
|
/*
|
|
* When AAD is given, data above encr_offset is pass through
|
|
* Since AAD is given as separate pointer and not as offset,
|
|
* this is a special case as we need to fragment input data
|
|
* into passthrough + encr_data and then insert AAD in between.
|
|
*/
|
|
if (hash_type != ROC_SE_GMAC_TYPE) {
|
|
passthrough_len = encr_offset;
|
|
auth_offset = passthrough_len + iv_len;
|
|
encr_offset = passthrough_len + aad_len + iv_len;
|
|
auth_data_len = aad_len + encr_data_len;
|
|
} else {
|
|
passthrough_len = 16 + aad_len;
|
|
auth_offset = passthrough_len + iv_len;
|
|
auth_data_len = aad_len;
|
|
}
|
|
} else {
|
|
encr_offset += iv_len;
|
|
auth_offset += iv_len;
|
|
}
|
|
|
|
/* Encryption */
|
|
cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_FC;
|
|
cpt_inst_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_ENCRYPT;
|
|
cpt_inst_w4.s.opcode_minor |= (uint64_t)op_minor;
|
|
|
|
if (hash_type == ROC_SE_GMAC_TYPE) {
|
|
encr_offset = 0;
|
|
encr_data_len = 0;
|
|
}
|
|
|
|
auth_dlen = auth_offset + auth_data_len;
|
|
enc_dlen = encr_data_len + encr_offset;
|
|
if (unlikely(encr_data_len & 0xf)) {
|
|
if ((cipher_type == ROC_SE_DES3_CBC) ||
|
|
(cipher_type == ROC_SE_DES3_ECB))
|
|
enc_dlen =
|
|
RTE_ALIGN_CEIL(encr_data_len, 8) + encr_offset;
|
|
else if (likely((cipher_type == ROC_SE_AES_CBC) ||
|
|
(cipher_type == ROC_SE_AES_ECB)))
|
|
enc_dlen =
|
|
RTE_ALIGN_CEIL(encr_data_len, 8) + encr_offset;
|
|
}
|
|
|
|
if (unlikely(auth_dlen > enc_dlen)) {
|
|
inputlen = auth_dlen;
|
|
outputlen = auth_dlen + mac_len;
|
|
} else {
|
|
inputlen = enc_dlen;
|
|
outputlen = enc_dlen + mac_len;
|
|
}
|
|
|
|
if (op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST)
|
|
outputlen = enc_dlen;
|
|
|
|
/* GP op header */
|
|
cpt_inst_w4.s.param1 = encr_data_len;
|
|
cpt_inst_w4.s.param2 = auth_data_len;
|
|
|
|
/*
|
|
* In cn9k, cn10k since we have a limitation of
|
|
* IV & Offset control word not part of instruction
|
|
* and need to be part of Data Buffer, we check if
|
|
* head room is there and then only do the Direct mode processing
|
|
*/
|
|
if (likely((flags & ROC_SE_SINGLE_BUF_INPLACE) &&
|
|
(flags & ROC_SE_SINGLE_BUF_HEADROOM))) {
|
|
void *dm_vaddr = fc_params->bufs[0].vaddr;
|
|
|
|
/* Use Direct mode */
|
|
|
|
offset_vaddr =
|
|
(uint8_t *)dm_vaddr - ROC_SE_OFF_CTRL_LEN - iv_len;
|
|
|
|
/* DPTR */
|
|
inst->dptr = (uint64_t)offset_vaddr;
|
|
|
|
/* RPTR should just exclude offset control word */
|
|
inst->rptr = (uint64_t)dm_vaddr - iv_len;
|
|
|
|
cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN;
|
|
|
|
if (likely(iv_len)) {
|
|
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
|
|
ROC_SE_OFF_CTRL_LEN);
|
|
uint64_t *src = fc_params->iv_buf;
|
|
dest[0] = src[0];
|
|
dest[1] = src[1];
|
|
}
|
|
|
|
} else {
|
|
void *m_vaddr = fc_params->meta_buf.vaddr;
|
|
uint32_t i, g_size_bytes, s_size_bytes;
|
|
struct roc_se_sglist_comp *gather_comp;
|
|
struct roc_se_sglist_comp *scatter_comp;
|
|
uint8_t *in_buffer;
|
|
|
|
/* This falls under strict SG mode */
|
|
offset_vaddr = m_vaddr;
|
|
size = ROC_SE_OFF_CTRL_LEN + iv_len;
|
|
|
|
m_vaddr = (uint8_t *)m_vaddr + size;
|
|
|
|
cpt_inst_w4.s.opcode_major |= (uint64_t)ROC_SE_DMA_MODE;
|
|
|
|
if (likely(iv_len)) {
|
|
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
|
|
ROC_SE_OFF_CTRL_LEN);
|
|
uint64_t *src = fc_params->iv_buf;
|
|
dest[0] = src[0];
|
|
dest[1] = src[1];
|
|
}
|
|
|
|
/* DPTR has SG list */
|
|
in_buffer = m_vaddr;
|
|
|
|
((uint16_t *)in_buffer)[0] = 0;
|
|
((uint16_t *)in_buffer)[1] = 0;
|
|
|
|
/* TODO Add error check if space will be sufficient */
|
|
gather_comp =
|
|
(struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8);
|
|
|
|
/*
|
|
* Input Gather List
|
|
*/
|
|
|
|
i = 0;
|
|
|
|
/* Offset control word that includes iv */
|
|
i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr,
|
|
ROC_SE_OFF_CTRL_LEN + iv_len);
|
|
|
|
/* Add input data */
|
|
size = inputlen - iv_len;
|
|
if (likely(size)) {
|
|
uint32_t aad_offset = aad_len ? passthrough_len : 0;
|
|
|
|
if (unlikely(flags & ROC_SE_SINGLE_BUF_INPLACE)) {
|
|
i = fill_sg_comp_from_buf_min(
|
|
gather_comp, i, fc_params->bufs, &size);
|
|
} else {
|
|
i = fill_sg_comp_from_iov(
|
|
gather_comp, i, fc_params->src_iov, 0,
|
|
&size, aad_buf, aad_offset);
|
|
}
|
|
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
|
|
g_size_bytes =
|
|
((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
/*
|
|
* Output Scatter list
|
|
*/
|
|
i = 0;
|
|
scatter_comp =
|
|
(struct roc_se_sglist_comp *)((uint8_t *)gather_comp +
|
|
g_size_bytes);
|
|
|
|
/* Add IV */
|
|
if (likely(iv_len)) {
|
|
i = fill_sg_comp(scatter_comp, i,
|
|
(uint64_t)offset_vaddr +
|
|
ROC_SE_OFF_CTRL_LEN,
|
|
iv_len);
|
|
}
|
|
|
|
/* output data or output data + digest*/
|
|
if (unlikely(flags & ROC_SE_VALID_MAC_BUF)) {
|
|
size = outputlen - iv_len - mac_len;
|
|
if (size) {
|
|
uint32_t aad_offset =
|
|
aad_len ? passthrough_len : 0;
|
|
|
|
if (unlikely(flags &
|
|
ROC_SE_SINGLE_BUF_INPLACE)) {
|
|
i = fill_sg_comp_from_buf_min(
|
|
scatter_comp, i,
|
|
fc_params->bufs, &size);
|
|
} else {
|
|
i = fill_sg_comp_from_iov(
|
|
scatter_comp, i,
|
|
fc_params->dst_iov, 0, &size,
|
|
aad_buf, aad_offset);
|
|
}
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer"
|
|
" space, size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
/* mac_data */
|
|
if (mac_len) {
|
|
i = fill_sg_comp_from_buf(scatter_comp, i,
|
|
&fc_params->mac_buf);
|
|
}
|
|
} else {
|
|
/* Output including mac */
|
|
size = outputlen - iv_len;
|
|
if (likely(size)) {
|
|
uint32_t aad_offset =
|
|
aad_len ? passthrough_len : 0;
|
|
|
|
if (unlikely(flags &
|
|
ROC_SE_SINGLE_BUF_INPLACE)) {
|
|
i = fill_sg_comp_from_buf_min(
|
|
scatter_comp, i,
|
|
fc_params->bufs, &size);
|
|
} else {
|
|
i = fill_sg_comp_from_iov(
|
|
scatter_comp, i,
|
|
fc_params->dst_iov, 0, &size,
|
|
aad_buf, aad_offset);
|
|
}
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer"
|
|
" space, size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
|
|
s_size_bytes =
|
|
((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE;
|
|
|
|
/* This is DPTR len in case of SG mode */
|
|
cpt_inst_w4.s.dlen = size;
|
|
|
|
inst->dptr = (uint64_t)in_buffer;
|
|
}
|
|
|
|
if (unlikely((encr_offset >> 16) || (iv_offset >> 8) ||
|
|
(auth_offset >> 8))) {
|
|
plt_dp_err("Offset not supported");
|
|
plt_dp_err("enc_offset: %d", encr_offset);
|
|
plt_dp_err("iv_offset : %d", iv_offset);
|
|
plt_dp_err("auth_offset: %d", auth_offset);
|
|
return -1;
|
|
}
|
|
|
|
*(uint64_t *)offset_vaddr = rte_cpu_to_be_64(
|
|
((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) |
|
|
((uint64_t)auth_offset));
|
|
|
|
inst->w4.u64 = cpt_inst_w4.u64;
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cpt_dec_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
|
|
struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst)
|
|
{
|
|
uint32_t iv_offset = 0, size;
|
|
int32_t inputlen, outputlen, enc_dlen, auth_dlen;
|
|
struct roc_se_ctx *se_ctx;
|
|
int32_t hash_type, mac_len;
|
|
uint8_t iv_len = 16;
|
|
struct roc_se_buf_ptr *aad_buf = NULL;
|
|
uint32_t encr_offset, auth_offset;
|
|
uint32_t encr_data_len, auth_data_len, aad_len = 0;
|
|
uint32_t passthrough_len = 0;
|
|
union cpt_inst_w4 cpt_inst_w4;
|
|
void *offset_vaddr;
|
|
uint8_t op_minor;
|
|
|
|
encr_offset = ROC_SE_ENCR_OFFSET(d_offs);
|
|
auth_offset = ROC_SE_AUTH_OFFSET(d_offs);
|
|
encr_data_len = ROC_SE_ENCR_DLEN(d_lens);
|
|
auth_data_len = ROC_SE_AUTH_DLEN(d_lens);
|
|
|
|
if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) {
|
|
/* We don't support both AAD and auth data separately */
|
|
auth_data_len = 0;
|
|
auth_offset = 0;
|
|
aad_len = fc_params->aad_buf.size;
|
|
aad_buf = &fc_params->aad_buf;
|
|
}
|
|
|
|
se_ctx = fc_params->ctx_buf.vaddr;
|
|
hash_type = se_ctx->hash_type;
|
|
mac_len = se_ctx->mac_len;
|
|
op_minor = se_ctx->template_w4.s.opcode_minor;
|
|
|
|
if (unlikely(!(flags & ROC_SE_VALID_IV_BUF))) {
|
|
iv_len = 0;
|
|
iv_offset = ROC_SE_ENCR_IV_OFFSET(d_offs);
|
|
}
|
|
|
|
if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) {
|
|
/*
|
|
* When AAD is given, data above encr_offset is pass through
|
|
* Since AAD is given as separate pointer and not as offset,
|
|
* this is a special case as we need to fragment input data
|
|
* into passthrough + encr_data and then insert AAD in between.
|
|
*/
|
|
if (hash_type != ROC_SE_GMAC_TYPE) {
|
|
passthrough_len = encr_offset;
|
|
auth_offset = passthrough_len + iv_len;
|
|
encr_offset = passthrough_len + aad_len + iv_len;
|
|
auth_data_len = aad_len + encr_data_len;
|
|
} else {
|
|
passthrough_len = 16 + aad_len;
|
|
auth_offset = passthrough_len + iv_len;
|
|
auth_data_len = aad_len;
|
|
}
|
|
} else {
|
|
encr_offset += iv_len;
|
|
auth_offset += iv_len;
|
|
}
|
|
|
|
/* Decryption */
|
|
cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_FC;
|
|
cpt_inst_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_DECRYPT;
|
|
cpt_inst_w4.s.opcode_minor |= (uint64_t)op_minor;
|
|
|
|
if (hash_type == ROC_SE_GMAC_TYPE) {
|
|
encr_offset = 0;
|
|
encr_data_len = 0;
|
|
}
|
|
|
|
enc_dlen = encr_offset + encr_data_len;
|
|
auth_dlen = auth_offset + auth_data_len;
|
|
|
|
if (auth_dlen > enc_dlen) {
|
|
inputlen = auth_dlen + mac_len;
|
|
outputlen = auth_dlen;
|
|
} else {
|
|
inputlen = enc_dlen + mac_len;
|
|
outputlen = enc_dlen;
|
|
}
|
|
|
|
if (op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST)
|
|
outputlen = inputlen = enc_dlen;
|
|
|
|
cpt_inst_w4.s.param1 = encr_data_len;
|
|
cpt_inst_w4.s.param2 = auth_data_len;
|
|
|
|
/*
|
|
* In cn9k, cn10k since we have a limitation of
|
|
* IV & Offset control word not part of instruction
|
|
* and need to be part of Data Buffer, we check if
|
|
* head room is there and then only do the Direct mode processing
|
|
*/
|
|
if (likely((flags & ROC_SE_SINGLE_BUF_INPLACE) &&
|
|
(flags & ROC_SE_SINGLE_BUF_HEADROOM))) {
|
|
void *dm_vaddr = fc_params->bufs[0].vaddr;
|
|
|
|
/* Use Direct mode */
|
|
|
|
offset_vaddr =
|
|
(uint8_t *)dm_vaddr - ROC_SE_OFF_CTRL_LEN - iv_len;
|
|
inst->dptr = (uint64_t)offset_vaddr;
|
|
|
|
/* RPTR should just exclude offset control word */
|
|
inst->rptr = (uint64_t)dm_vaddr - iv_len;
|
|
|
|
cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN;
|
|
|
|
if (likely(iv_len)) {
|
|
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
|
|
ROC_SE_OFF_CTRL_LEN);
|
|
uint64_t *src = fc_params->iv_buf;
|
|
dest[0] = src[0];
|
|
dest[1] = src[1];
|
|
}
|
|
|
|
} else {
|
|
void *m_vaddr = fc_params->meta_buf.vaddr;
|
|
uint32_t g_size_bytes, s_size_bytes;
|
|
struct roc_se_sglist_comp *gather_comp;
|
|
struct roc_se_sglist_comp *scatter_comp;
|
|
uint8_t *in_buffer;
|
|
uint8_t i = 0;
|
|
|
|
/* This falls under strict SG mode */
|
|
offset_vaddr = m_vaddr;
|
|
size = ROC_SE_OFF_CTRL_LEN + iv_len;
|
|
|
|
m_vaddr = (uint8_t *)m_vaddr + size;
|
|
|
|
cpt_inst_w4.s.opcode_major |= (uint64_t)ROC_SE_DMA_MODE;
|
|
|
|
if (likely(iv_len)) {
|
|
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
|
|
ROC_SE_OFF_CTRL_LEN);
|
|
uint64_t *src = fc_params->iv_buf;
|
|
dest[0] = src[0];
|
|
dest[1] = src[1];
|
|
}
|
|
|
|
/* DPTR has SG list */
|
|
in_buffer = m_vaddr;
|
|
|
|
((uint16_t *)in_buffer)[0] = 0;
|
|
((uint16_t *)in_buffer)[1] = 0;
|
|
|
|
/* TODO Add error check if space will be sufficient */
|
|
gather_comp =
|
|
(struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8);
|
|
|
|
/*
|
|
* Input Gather List
|
|
*/
|
|
i = 0;
|
|
|
|
/* Offset control word that includes iv */
|
|
i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr,
|
|
ROC_SE_OFF_CTRL_LEN + iv_len);
|
|
|
|
/* Add input data */
|
|
if (flags & ROC_SE_VALID_MAC_BUF) {
|
|
size = inputlen - iv_len - mac_len;
|
|
if (size) {
|
|
/* input data only */
|
|
if (unlikely(flags &
|
|
ROC_SE_SINGLE_BUF_INPLACE)) {
|
|
i = fill_sg_comp_from_buf_min(
|
|
gather_comp, i, fc_params->bufs,
|
|
&size);
|
|
} else {
|
|
uint32_t aad_offset =
|
|
aad_len ? passthrough_len : 0;
|
|
|
|
i = fill_sg_comp_from_iov(
|
|
gather_comp, i,
|
|
fc_params->src_iov, 0, &size,
|
|
aad_buf, aad_offset);
|
|
}
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer"
|
|
" space, size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* mac data */
|
|
if (mac_len) {
|
|
i = fill_sg_comp_from_buf(gather_comp, i,
|
|
&fc_params->mac_buf);
|
|
}
|
|
} else {
|
|
/* input data + mac */
|
|
size = inputlen - iv_len;
|
|
if (size) {
|
|
if (unlikely(flags &
|
|
ROC_SE_SINGLE_BUF_INPLACE)) {
|
|
i = fill_sg_comp_from_buf_min(
|
|
gather_comp, i, fc_params->bufs,
|
|
&size);
|
|
} else {
|
|
uint32_t aad_offset =
|
|
aad_len ? passthrough_len : 0;
|
|
|
|
if (unlikely(!fc_params->src_iov)) {
|
|
plt_dp_err("Bad input args");
|
|
return -1;
|
|
}
|
|
|
|
i = fill_sg_comp_from_iov(
|
|
gather_comp, i,
|
|
fc_params->src_iov, 0, &size,
|
|
aad_buf, aad_offset);
|
|
}
|
|
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer"
|
|
" space, size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
|
|
g_size_bytes =
|
|
((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
/*
|
|
* Output Scatter List
|
|
*/
|
|
|
|
i = 0;
|
|
scatter_comp =
|
|
(struct roc_se_sglist_comp *)((uint8_t *)gather_comp +
|
|
g_size_bytes);
|
|
|
|
/* Add iv */
|
|
if (iv_len) {
|
|
i = fill_sg_comp(scatter_comp, i,
|
|
(uint64_t)offset_vaddr +
|
|
ROC_SE_OFF_CTRL_LEN,
|
|
iv_len);
|
|
}
|
|
|
|
/* Add output data */
|
|
size = outputlen - iv_len;
|
|
if (size) {
|
|
if (unlikely(flags & ROC_SE_SINGLE_BUF_INPLACE)) {
|
|
/* handle single buffer here */
|
|
i = fill_sg_comp_from_buf_min(scatter_comp, i,
|
|
fc_params->bufs,
|
|
&size);
|
|
} else {
|
|
uint32_t aad_offset =
|
|
aad_len ? passthrough_len : 0;
|
|
|
|
if (unlikely(!fc_params->dst_iov)) {
|
|
plt_dp_err("Bad input args");
|
|
return -1;
|
|
}
|
|
|
|
i = fill_sg_comp_from_iov(
|
|
scatter_comp, i, fc_params->dst_iov, 0,
|
|
&size, aad_buf, aad_offset);
|
|
}
|
|
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
|
|
s_size_bytes =
|
|
((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE;
|
|
|
|
/* This is DPTR len in case of SG mode */
|
|
cpt_inst_w4.s.dlen = size;
|
|
|
|
inst->dptr = (uint64_t)in_buffer;
|
|
}
|
|
|
|
if (unlikely((encr_offset >> 16) || (iv_offset >> 8) ||
|
|
(auth_offset >> 8))) {
|
|
plt_dp_err("Offset not supported");
|
|
plt_dp_err("enc_offset: %d", encr_offset);
|
|
plt_dp_err("iv_offset : %d", iv_offset);
|
|
plt_dp_err("auth_offset: %d", auth_offset);
|
|
return -1;
|
|
}
|
|
|
|
*(uint64_t *)offset_vaddr = rte_cpu_to_be_64(
|
|
((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) |
|
|
((uint64_t)auth_offset));
|
|
|
|
inst->w4.u64 = cpt_inst_w4.u64;
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cpt_zuc_snow3g_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens,
|
|
struct roc_se_fc_params *params, struct cpt_inst_s *inst)
|
|
{
|
|
uint32_t size;
|
|
int32_t inputlen, outputlen;
|
|
struct roc_se_ctx *se_ctx;
|
|
uint32_t mac_len = 0;
|
|
uint8_t pdcp_alg_type;
|
|
uint32_t encr_offset, auth_offset;
|
|
uint32_t encr_data_len, auth_data_len;
|
|
int flags, iv_len;
|
|
uint64_t offset_ctrl;
|
|
uint64_t *offset_vaddr;
|
|
uint8_t *iv_s;
|
|
uint8_t pack_iv = 0;
|
|
union cpt_inst_w4 cpt_inst_w4;
|
|
|
|
se_ctx = params->ctx_buf.vaddr;
|
|
flags = se_ctx->zsk_flags;
|
|
mac_len = se_ctx->mac_len;
|
|
pdcp_alg_type = se_ctx->pdcp_alg_type;
|
|
|
|
cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_ZUC_SNOW3G;
|
|
|
|
cpt_inst_w4.s.opcode_minor = se_ctx->template_w4.s.opcode_minor;
|
|
|
|
if (flags == 0x1) {
|
|
iv_s = params->auth_iv_buf;
|
|
iv_len = params->auth_iv_len;
|
|
|
|
if (iv_len == 25) {
|
|
roc_se_zuc_bytes_swap(iv_s, iv_len);
|
|
iv_len -= 2;
|
|
pack_iv = 1;
|
|
}
|
|
|
|
/*
|
|
* Microcode expects offsets in bytes
|
|
* TODO: Rounding off
|
|
*/
|
|
auth_data_len = ROC_SE_AUTH_DLEN(d_lens);
|
|
|
|
/* EIA3 or UIA2 */
|
|
auth_offset = ROC_SE_AUTH_OFFSET(d_offs);
|
|
auth_offset = auth_offset / 8;
|
|
|
|
/* consider iv len */
|
|
auth_offset += iv_len;
|
|
|
|
inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
|
|
outputlen = mac_len;
|
|
|
|
offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
|
|
|
|
encr_data_len = 0;
|
|
encr_offset = 0;
|
|
} else {
|
|
iv_s = params->iv_buf;
|
|
iv_len = params->cipher_iv_len;
|
|
|
|
if (iv_len == 25) {
|
|
roc_se_zuc_bytes_swap(iv_s, iv_len);
|
|
iv_len -= 2;
|
|
pack_iv = 1;
|
|
}
|
|
|
|
/* EEA3 or UEA2 */
|
|
/*
|
|
* Microcode expects offsets in bytes
|
|
* TODO: Rounding off
|
|
*/
|
|
encr_data_len = ROC_SE_ENCR_DLEN(d_lens);
|
|
|
|
encr_offset = ROC_SE_ENCR_OFFSET(d_offs);
|
|
encr_offset = encr_offset / 8;
|
|
/* consider iv len */
|
|
encr_offset += iv_len;
|
|
|
|
inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
|
|
outputlen = inputlen;
|
|
|
|
/* iv offset is 0 */
|
|
offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
|
|
|
|
auth_data_len = 0;
|
|
auth_offset = 0;
|
|
}
|
|
|
|
if (unlikely((encr_offset >> 16) || (auth_offset >> 8))) {
|
|
plt_dp_err("Offset not supported");
|
|
plt_dp_err("enc_offset: %d", encr_offset);
|
|
plt_dp_err("auth_offset: %d", auth_offset);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* GP op header, lengths are expected in bits.
|
|
*/
|
|
cpt_inst_w4.s.param1 = encr_data_len;
|
|
cpt_inst_w4.s.param2 = auth_data_len;
|
|
|
|
/*
|
|
* In cn9k, cn10k since we have a limitation of
|
|
* IV & Offset control word not part of instruction
|
|
* and need to be part of Data Buffer, we check if
|
|
* head room is there and then only do the Direct mode processing
|
|
*/
|
|
if (likely((req_flags & ROC_SE_SINGLE_BUF_INPLACE) &&
|
|
(req_flags & ROC_SE_SINGLE_BUF_HEADROOM))) {
|
|
void *dm_vaddr = params->bufs[0].vaddr;
|
|
|
|
/* Use Direct mode */
|
|
|
|
offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
|
|
ROC_SE_OFF_CTRL_LEN - iv_len);
|
|
|
|
/* DPTR */
|
|
inst->dptr = (uint64_t)offset_vaddr;
|
|
/* RPTR should just exclude offset control word */
|
|
inst->rptr = (uint64_t)dm_vaddr - iv_len;
|
|
|
|
cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN;
|
|
|
|
uint8_t *iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN);
|
|
pdcp_iv_copy(iv_d, iv_s, pdcp_alg_type, pack_iv);
|
|
|
|
*offset_vaddr = offset_ctrl;
|
|
} else {
|
|
void *m_vaddr = params->meta_buf.vaddr;
|
|
uint32_t i, g_size_bytes, s_size_bytes;
|
|
struct roc_se_sglist_comp *gather_comp;
|
|
struct roc_se_sglist_comp *scatter_comp;
|
|
uint8_t *in_buffer;
|
|
uint8_t *iv_d;
|
|
|
|
/* save space for iv */
|
|
offset_vaddr = m_vaddr;
|
|
|
|
m_vaddr = (uint8_t *)m_vaddr + ROC_SE_OFF_CTRL_LEN +
|
|
RTE_ALIGN_CEIL(iv_len, 8);
|
|
|
|
cpt_inst_w4.s.opcode_major |= (uint64_t)ROC_SE_DMA_MODE;
|
|
|
|
/* DPTR has SG list */
|
|
in_buffer = m_vaddr;
|
|
|
|
((uint16_t *)in_buffer)[0] = 0;
|
|
((uint16_t *)in_buffer)[1] = 0;
|
|
|
|
/* TODO Add error check if space will be sufficient */
|
|
gather_comp =
|
|
(struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8);
|
|
|
|
/*
|
|
* Input Gather List
|
|
*/
|
|
i = 0;
|
|
|
|
/* Offset control word followed by iv */
|
|
|
|
i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr,
|
|
ROC_SE_OFF_CTRL_LEN + iv_len);
|
|
|
|
/* iv offset is 0 */
|
|
*offset_vaddr = offset_ctrl;
|
|
|
|
iv_d = ((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN);
|
|
pdcp_iv_copy(iv_d, iv_s, pdcp_alg_type, pack_iv);
|
|
|
|
/* input data */
|
|
size = inputlen - iv_len;
|
|
if (size) {
|
|
i = fill_sg_comp_from_iov(gather_comp, i,
|
|
params->src_iov, 0, &size,
|
|
NULL, 0);
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
|
|
g_size_bytes =
|
|
((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
/*
|
|
* Output Scatter List
|
|
*/
|
|
|
|
i = 0;
|
|
scatter_comp =
|
|
(struct roc_se_sglist_comp *)((uint8_t *)gather_comp +
|
|
g_size_bytes);
|
|
|
|
if (flags == 0x1) {
|
|
/* IV in SLIST only for EEA3 & UEA2 */
|
|
iv_len = 0;
|
|
}
|
|
|
|
if (iv_len) {
|
|
i = fill_sg_comp(scatter_comp, i,
|
|
(uint64_t)offset_vaddr +
|
|
ROC_SE_OFF_CTRL_LEN,
|
|
iv_len);
|
|
}
|
|
|
|
/* Add output data */
|
|
if (req_flags & ROC_SE_VALID_MAC_BUF) {
|
|
size = outputlen - iv_len - mac_len;
|
|
if (size) {
|
|
i = fill_sg_comp_from_iov(scatter_comp, i,
|
|
params->dst_iov, 0,
|
|
&size, NULL, 0);
|
|
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* mac data */
|
|
if (mac_len) {
|
|
i = fill_sg_comp_from_buf(scatter_comp, i,
|
|
¶ms->mac_buf);
|
|
}
|
|
} else {
|
|
/* Output including mac */
|
|
size = outputlen - iv_len;
|
|
if (size) {
|
|
i = fill_sg_comp_from_iov(scatter_comp, i,
|
|
params->dst_iov, 0,
|
|
&size, NULL, 0);
|
|
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
|
|
s_size_bytes =
|
|
((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE;
|
|
|
|
/* This is DPTR len in case of SG mode */
|
|
cpt_inst_w4.s.dlen = size;
|
|
|
|
inst->dptr = (uint64_t)in_buffer;
|
|
}
|
|
|
|
inst->w4.u64 = cpt_inst_w4.u64;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cpt_kasumi_enc_prep(uint32_t req_flags, uint64_t d_offs, uint64_t d_lens,
|
|
struct roc_se_fc_params *params, struct cpt_inst_s *inst)
|
|
{
|
|
void *m_vaddr = params->meta_buf.vaddr;
|
|
uint32_t size;
|
|
int32_t inputlen = 0, outputlen = 0;
|
|
struct roc_se_ctx *se_ctx;
|
|
uint32_t mac_len = 0;
|
|
uint8_t i = 0;
|
|
uint32_t encr_offset, auth_offset;
|
|
uint32_t encr_data_len, auth_data_len;
|
|
int flags;
|
|
uint8_t *iv_s, *iv_d, iv_len = 8;
|
|
uint8_t dir = 0;
|
|
uint64_t *offset_vaddr;
|
|
union cpt_inst_w4 cpt_inst_w4;
|
|
uint8_t *in_buffer;
|
|
uint32_t g_size_bytes, s_size_bytes;
|
|
struct roc_se_sglist_comp *gather_comp;
|
|
struct roc_se_sglist_comp *scatter_comp;
|
|
|
|
encr_offset = ROC_SE_ENCR_OFFSET(d_offs) / 8;
|
|
auth_offset = ROC_SE_AUTH_OFFSET(d_offs) / 8;
|
|
encr_data_len = ROC_SE_ENCR_DLEN(d_lens);
|
|
auth_data_len = ROC_SE_AUTH_DLEN(d_lens);
|
|
|
|
se_ctx = params->ctx_buf.vaddr;
|
|
flags = se_ctx->zsk_flags;
|
|
mac_len = se_ctx->mac_len;
|
|
|
|
if (flags == 0x0)
|
|
iv_s = params->iv_buf;
|
|
else
|
|
iv_s = params->auth_iv_buf;
|
|
|
|
dir = iv_s[8] & 0x1;
|
|
|
|
cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_KASUMI | ROC_SE_DMA_MODE;
|
|
|
|
/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
|
|
cpt_inst_w4.s.opcode_minor = ((1 << 6) | (se_ctx->k_ecb << 5) |
|
|
(dir << 4) | (0 << 3) | (flags & 0x7));
|
|
|
|
/*
|
|
* GP op header, lengths are expected in bits.
|
|
*/
|
|
cpt_inst_w4.s.param1 = encr_data_len;
|
|
cpt_inst_w4.s.param2 = auth_data_len;
|
|
|
|
/* consider iv len */
|
|
if (flags == 0x0) {
|
|
encr_offset += iv_len;
|
|
auth_offset += iv_len;
|
|
}
|
|
|
|
/* save space for offset ctrl and iv */
|
|
offset_vaddr = m_vaddr;
|
|
|
|
m_vaddr = (uint8_t *)m_vaddr + ROC_SE_OFF_CTRL_LEN + iv_len;
|
|
|
|
/* DPTR has SG list */
|
|
in_buffer = m_vaddr;
|
|
|
|
((uint16_t *)in_buffer)[0] = 0;
|
|
((uint16_t *)in_buffer)[1] = 0;
|
|
|
|
/* TODO Add error check if space will be sufficient */
|
|
gather_comp = (struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8);
|
|
|
|
/*
|
|
* Input Gather List
|
|
*/
|
|
i = 0;
|
|
|
|
/* Offset control word followed by iv */
|
|
|
|
if (flags == 0x0) {
|
|
inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
|
|
outputlen = inputlen;
|
|
/* iv offset is 0 */
|
|
*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
|
|
if (unlikely((encr_offset >> 16))) {
|
|
plt_dp_err("Offset not supported");
|
|
plt_dp_err("enc_offset: %d", encr_offset);
|
|
return -1;
|
|
}
|
|
} else {
|
|
inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
|
|
outputlen = mac_len;
|
|
/* iv offset is 0 */
|
|
*offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
|
|
if (unlikely((auth_offset >> 8))) {
|
|
plt_dp_err("Offset not supported");
|
|
plt_dp_err("auth_offset: %d", auth_offset);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr,
|
|
ROC_SE_OFF_CTRL_LEN + iv_len);
|
|
|
|
/* IV */
|
|
iv_d = (uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN;
|
|
memcpy(iv_d, iv_s, iv_len);
|
|
|
|
/* input data */
|
|
size = inputlen - iv_len;
|
|
if (size) {
|
|
i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0,
|
|
&size, NULL, 0);
|
|
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
|
|
g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
/*
|
|
* Output Scatter List
|
|
*/
|
|
|
|
i = 0;
|
|
scatter_comp = (struct roc_se_sglist_comp *)((uint8_t *)gather_comp +
|
|
g_size_bytes);
|
|
|
|
if (flags == 0x1) {
|
|
/* IV in SLIST only for F8 */
|
|
iv_len = 0;
|
|
}
|
|
|
|
/* IV */
|
|
if (iv_len) {
|
|
i = fill_sg_comp(scatter_comp, i,
|
|
(uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN,
|
|
iv_len);
|
|
}
|
|
|
|
/* Add output data */
|
|
if (req_flags & ROC_SE_VALID_MAC_BUF) {
|
|
size = outputlen - iv_len - mac_len;
|
|
if (size) {
|
|
i = fill_sg_comp_from_iov(scatter_comp, i,
|
|
params->dst_iov, 0, &size,
|
|
NULL, 0);
|
|
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* mac data */
|
|
if (mac_len) {
|
|
i = fill_sg_comp_from_buf(scatter_comp, i,
|
|
¶ms->mac_buf);
|
|
}
|
|
} else {
|
|
/* Output including mac */
|
|
size = outputlen - iv_len;
|
|
if (size) {
|
|
i = fill_sg_comp_from_iov(scatter_comp, i,
|
|
params->dst_iov, 0, &size,
|
|
NULL, 0);
|
|
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
|
|
s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE;
|
|
|
|
/* This is DPTR len in case of SG mode */
|
|
cpt_inst_w4.s.dlen = size;
|
|
|
|
inst->dptr = (uint64_t)in_buffer;
|
|
inst->w4.u64 = cpt_inst_w4.u64;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cpt_kasumi_dec_prep(uint64_t d_offs, uint64_t d_lens,
|
|
struct roc_se_fc_params *params, struct cpt_inst_s *inst)
|
|
{
|
|
void *m_vaddr = params->meta_buf.vaddr;
|
|
uint32_t size;
|
|
int32_t inputlen = 0, outputlen;
|
|
struct roc_se_ctx *se_ctx;
|
|
uint8_t i = 0, iv_len = 8;
|
|
uint32_t encr_offset;
|
|
uint32_t encr_data_len;
|
|
int flags;
|
|
uint8_t dir = 0;
|
|
uint64_t *offset_vaddr;
|
|
union cpt_inst_w4 cpt_inst_w4;
|
|
uint8_t *in_buffer;
|
|
uint32_t g_size_bytes, s_size_bytes;
|
|
struct roc_se_sglist_comp *gather_comp;
|
|
struct roc_se_sglist_comp *scatter_comp;
|
|
|
|
encr_offset = ROC_SE_ENCR_OFFSET(d_offs) / 8;
|
|
encr_data_len = ROC_SE_ENCR_DLEN(d_lens);
|
|
|
|
se_ctx = params->ctx_buf.vaddr;
|
|
flags = se_ctx->zsk_flags;
|
|
|
|
cpt_inst_w4.u64 = 0;
|
|
cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_KASUMI | ROC_SE_DMA_MODE;
|
|
|
|
/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
|
|
cpt_inst_w4.s.opcode_minor = ((1 << 6) | (se_ctx->k_ecb << 5) |
|
|
(dir << 4) | (0 << 3) | (flags & 0x7));
|
|
|
|
/*
|
|
* GP op header, lengths are expected in bits.
|
|
*/
|
|
cpt_inst_w4.s.param1 = encr_data_len;
|
|
|
|
/* consider iv len */
|
|
encr_offset += iv_len;
|
|
|
|
inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
|
|
outputlen = inputlen;
|
|
|
|
/* save space for offset ctrl & iv */
|
|
offset_vaddr = m_vaddr;
|
|
|
|
m_vaddr = (uint8_t *)m_vaddr + ROC_SE_OFF_CTRL_LEN + iv_len;
|
|
|
|
/* DPTR has SG list */
|
|
in_buffer = m_vaddr;
|
|
|
|
((uint16_t *)in_buffer)[0] = 0;
|
|
((uint16_t *)in_buffer)[1] = 0;
|
|
|
|
/* TODO Add error check if space will be sufficient */
|
|
gather_comp = (struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8);
|
|
|
|
/*
|
|
* Input Gather List
|
|
*/
|
|
i = 0;
|
|
|
|
/* Offset control word followed by iv */
|
|
*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
|
|
if (unlikely((encr_offset >> 16))) {
|
|
plt_dp_err("Offset not supported");
|
|
plt_dp_err("enc_offset: %d", encr_offset);
|
|
return -1;
|
|
}
|
|
|
|
i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr,
|
|
ROC_SE_OFF_CTRL_LEN + iv_len);
|
|
|
|
/* IV */
|
|
memcpy((uint8_t *)offset_vaddr + ROC_SE_OFF_CTRL_LEN, params->iv_buf,
|
|
iv_len);
|
|
|
|
/* Add input data */
|
|
size = inputlen - iv_len;
|
|
if (size) {
|
|
i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov, 0,
|
|
&size, NULL, 0);
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
|
|
g_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
/*
|
|
* Output Scatter List
|
|
*/
|
|
|
|
i = 0;
|
|
scatter_comp = (struct roc_se_sglist_comp *)((uint8_t *)gather_comp +
|
|
g_size_bytes);
|
|
|
|
/* IV */
|
|
i = fill_sg_comp(scatter_comp, i,
|
|
(uint64_t)offset_vaddr + ROC_SE_OFF_CTRL_LEN, iv_len);
|
|
|
|
/* Add output data */
|
|
size = outputlen - iv_len;
|
|
if (size) {
|
|
i = fill_sg_comp_from_iov(scatter_comp, i, params->dst_iov, 0,
|
|
&size, NULL, 0);
|
|
if (unlikely(size)) {
|
|
plt_dp_err("Insufficient buffer space,"
|
|
" size %d needed",
|
|
size);
|
|
return -1;
|
|
}
|
|
}
|
|
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
|
|
s_size_bytes = ((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
|
|
|
|
size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE;
|
|
|
|
/* This is DPTR len in case of SG mode */
|
|
cpt_inst_w4.s.dlen = size;
|
|
|
|
inst->dptr = (uint64_t)in_buffer;
|
|
inst->w4.u64 = cpt_inst_w4.u64;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cpt_fc_dec_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
|
|
struct roc_se_fc_params *fc_params,
|
|
struct cpt_inst_s *inst)
|
|
{
|
|
struct roc_se_ctx *ctx = fc_params->ctx_buf.vaddr;
|
|
uint8_t fc_type;
|
|
int ret = -1;
|
|
|
|
fc_type = ctx->fc_type;
|
|
|
|
if (likely(fc_type == ROC_SE_FC_GEN)) {
|
|
ret = cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, inst);
|
|
} else if (fc_type == ROC_SE_PDCP) {
|
|
ret = cpt_zuc_snow3g_prep(flags, d_offs, d_lens, fc_params,
|
|
inst);
|
|
} else if (fc_type == ROC_SE_KASUMI) {
|
|
ret = cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, inst);
|
|
}
|
|
|
|
/*
|
|
* For AUTH_ONLY case,
|
|
* MC only supports digest generation and verification
|
|
* should be done in software by memcmp()
|
|
*/
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
|
|
struct roc_se_fc_params *fc_params,
|
|
struct cpt_inst_s *inst)
|
|
{
|
|
struct roc_se_ctx *ctx = fc_params->ctx_buf.vaddr;
|
|
uint8_t fc_type;
|
|
int ret = -1;
|
|
|
|
fc_type = ctx->fc_type;
|
|
|
|
if (likely(fc_type == ROC_SE_FC_GEN)) {
|
|
ret = cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, inst);
|
|
} else if (fc_type == ROC_SE_PDCP) {
|
|
ret = cpt_zuc_snow3g_prep(flags, d_offs, d_lens, fc_params,
|
|
inst);
|
|
} else if (fc_type == ROC_SE_KASUMI) {
|
|
ret = cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params,
|
|
inst);
|
|
} else if (fc_type == ROC_SE_HASH_HMAC) {
|
|
ret = cpt_digest_gen_prep(flags, d_lens, fc_params, inst);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_sess_aead(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess)
|
|
{
|
|
struct rte_crypto_aead_xform *aead_form;
|
|
roc_se_cipher_type enc_type = 0; /* NULL Cipher type */
|
|
roc_se_auth_type auth_type = 0; /* NULL Auth type */
|
|
uint32_t cipher_key_len = 0;
|
|
uint8_t aes_gcm = 0;
|
|
aead_form = &xform->aead;
|
|
|
|
if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) {
|
|
sess->cpt_op |= ROC_SE_OP_CIPHER_ENCRYPT;
|
|
sess->cpt_op |= ROC_SE_OP_AUTH_GENERATE;
|
|
} else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT) {
|
|
sess->cpt_op |= ROC_SE_OP_CIPHER_DECRYPT;
|
|
sess->cpt_op |= ROC_SE_OP_AUTH_VERIFY;
|
|
} else {
|
|
plt_dp_err("Unknown aead operation\n");
|
|
return -1;
|
|
}
|
|
switch (aead_form->algo) {
|
|
case RTE_CRYPTO_AEAD_AES_GCM:
|
|
enc_type = ROC_SE_AES_GCM;
|
|
cipher_key_len = 16;
|
|
aes_gcm = 1;
|
|
break;
|
|
case RTE_CRYPTO_AEAD_AES_CCM:
|
|
plt_dp_err("Crypto: Unsupported cipher algo %u",
|
|
aead_form->algo);
|
|
return -1;
|
|
case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
|
|
enc_type = ROC_SE_CHACHA20;
|
|
auth_type = ROC_SE_POLY1305;
|
|
cipher_key_len = 32;
|
|
sess->chacha_poly = 1;
|
|
break;
|
|
default:
|
|
plt_dp_err("Crypto: Undefined cipher algo %u specified",
|
|
aead_form->algo);
|
|
return -1;
|
|
}
|
|
if (aead_form->key.length < cipher_key_len) {
|
|
plt_dp_err("Invalid cipher params keylen %u",
|
|
aead_form->key.length);
|
|
return -1;
|
|
}
|
|
sess->zsk_flag = 0;
|
|
sess->aes_gcm = aes_gcm;
|
|
sess->mac_len = aead_form->digest_length;
|
|
sess->iv_offset = aead_form->iv.offset;
|
|
sess->iv_length = aead_form->iv.length;
|
|
sess->aad_length = aead_form->aad_length;
|
|
|
|
if (unlikely(roc_se_ciph_key_set(&sess->roc_se_ctx, enc_type,
|
|
aead_form->key.data,
|
|
aead_form->key.length, NULL)))
|
|
return -1;
|
|
|
|
if (unlikely(roc_se_auth_key_set(&sess->roc_se_ctx, auth_type, NULL, 0,
|
|
aead_form->digest_length)))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_sess_cipher(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess)
|
|
{
|
|
struct rte_crypto_cipher_xform *c_form;
|
|
roc_se_cipher_type enc_type = 0; /* NULL Cipher type */
|
|
uint32_t cipher_key_len = 0;
|
|
uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0;
|
|
|
|
c_form = &xform->cipher;
|
|
|
|
if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
|
|
sess->cpt_op |= ROC_SE_OP_CIPHER_ENCRYPT;
|
|
else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT) {
|
|
sess->cpt_op |= ROC_SE_OP_CIPHER_DECRYPT;
|
|
if (xform->next != NULL &&
|
|
xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
|
|
/* Perform decryption followed by auth verify */
|
|
sess->roc_se_ctx.template_w4.s.opcode_minor =
|
|
ROC_SE_FC_MINOR_OP_HMAC_FIRST;
|
|
}
|
|
} else {
|
|
plt_dp_err("Unknown cipher operation\n");
|
|
return -1;
|
|
}
|
|
|
|
switch (c_form->algo) {
|
|
case RTE_CRYPTO_CIPHER_AES_CBC:
|
|
enc_type = ROC_SE_AES_CBC;
|
|
cipher_key_len = 16;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_3DES_CBC:
|
|
enc_type = ROC_SE_DES3_CBC;
|
|
cipher_key_len = 24;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_DES_CBC:
|
|
/* DES is implemented using 3DES in hardware */
|
|
enc_type = ROC_SE_DES3_CBC;
|
|
cipher_key_len = 8;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_AES_CTR:
|
|
enc_type = ROC_SE_AES_CTR;
|
|
cipher_key_len = 16;
|
|
aes_ctr = 1;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_NULL:
|
|
enc_type = 0;
|
|
is_null = 1;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_KASUMI_F8:
|
|
enc_type = ROC_SE_KASUMI_F8_ECB;
|
|
cipher_key_len = 16;
|
|
zsk_flag = ROC_SE_K_F8;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
|
|
enc_type = ROC_SE_SNOW3G_UEA2;
|
|
cipher_key_len = 16;
|
|
zsk_flag = ROC_SE_ZS_EA;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_ZUC_EEA3:
|
|
enc_type = ROC_SE_ZUC_EEA3;
|
|
cipher_key_len = c_form->key.length;
|
|
zsk_flag = ROC_SE_ZS_EA;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_AES_XTS:
|
|
enc_type = ROC_SE_AES_XTS;
|
|
cipher_key_len = 16;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_3DES_ECB:
|
|
enc_type = ROC_SE_DES3_ECB;
|
|
cipher_key_len = 24;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_AES_ECB:
|
|
enc_type = ROC_SE_AES_ECB;
|
|
cipher_key_len = 16;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_3DES_CTR:
|
|
case RTE_CRYPTO_CIPHER_AES_F8:
|
|
case RTE_CRYPTO_CIPHER_ARC4:
|
|
plt_dp_err("Crypto: Unsupported cipher algo %u", c_form->algo);
|
|
return -1;
|
|
default:
|
|
plt_dp_err("Crypto: Undefined cipher algo %u specified",
|
|
c_form->algo);
|
|
return -1;
|
|
}
|
|
|
|
if (c_form->key.length < cipher_key_len) {
|
|
plt_dp_err("Invalid cipher params keylen %u",
|
|
c_form->key.length);
|
|
return -1;
|
|
}
|
|
|
|
sess->zsk_flag = zsk_flag;
|
|
sess->aes_gcm = 0;
|
|
sess->aes_ctr = aes_ctr;
|
|
sess->iv_offset = c_form->iv.offset;
|
|
sess->iv_length = c_form->iv.length;
|
|
sess->is_null = is_null;
|
|
|
|
if (unlikely(roc_se_ciph_key_set(&sess->roc_se_ctx, enc_type,
|
|
c_form->key.data, c_form->key.length,
|
|
NULL)))
|
|
return -1;
|
|
|
|
if ((enc_type >= ROC_SE_ZUC_EEA3) && (enc_type <= ROC_SE_AES_CTR_EEA2))
|
|
roc_se_ctx_swap(&sess->roc_se_ctx);
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_sess_auth(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess)
|
|
{
|
|
struct rte_crypto_auth_xform *a_form;
|
|
roc_se_auth_type auth_type = 0; /* NULL Auth type */
|
|
uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
|
|
|
|
if (xform->next != NULL &&
|
|
xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
|
|
xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
|
|
/* Perform auth followed by encryption */
|
|
sess->roc_se_ctx.template_w4.s.opcode_minor =
|
|
ROC_SE_FC_MINOR_OP_HMAC_FIRST;
|
|
}
|
|
|
|
a_form = &xform->auth;
|
|
|
|
if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
|
|
sess->cpt_op |= ROC_SE_OP_AUTH_VERIFY;
|
|
else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
|
|
sess->cpt_op |= ROC_SE_OP_AUTH_GENERATE;
|
|
else {
|
|
plt_dp_err("Unknown auth operation");
|
|
return -1;
|
|
}
|
|
|
|
switch (a_form->algo) {
|
|
case RTE_CRYPTO_AUTH_SHA1_HMAC:
|
|
/* Fall through */
|
|
case RTE_CRYPTO_AUTH_SHA1:
|
|
auth_type = ROC_SE_SHA1_TYPE;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA256_HMAC:
|
|
case RTE_CRYPTO_AUTH_SHA256:
|
|
auth_type = ROC_SE_SHA2_SHA256;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA512_HMAC:
|
|
case RTE_CRYPTO_AUTH_SHA512:
|
|
auth_type = ROC_SE_SHA2_SHA512;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_AES_GMAC:
|
|
auth_type = ROC_SE_GMAC_TYPE;
|
|
aes_gcm = 1;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA224_HMAC:
|
|
case RTE_CRYPTO_AUTH_SHA224:
|
|
auth_type = ROC_SE_SHA2_SHA224;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA384_HMAC:
|
|
case RTE_CRYPTO_AUTH_SHA384:
|
|
auth_type = ROC_SE_SHA2_SHA384;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_MD5_HMAC:
|
|
case RTE_CRYPTO_AUTH_MD5:
|
|
auth_type = ROC_SE_MD5_TYPE;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_KASUMI_F9:
|
|
auth_type = ROC_SE_KASUMI_F9_ECB;
|
|
/*
|
|
* Indicate that direction needs to be taken out
|
|
* from end of src
|
|
*/
|
|
zsk_flag = ROC_SE_K_F9;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
|
|
auth_type = ROC_SE_SNOW3G_UIA2;
|
|
zsk_flag = ROC_SE_ZS_IA;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_ZUC_EIA3:
|
|
auth_type = ROC_SE_ZUC_EIA3;
|
|
zsk_flag = ROC_SE_ZS_IA;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_NULL:
|
|
auth_type = 0;
|
|
is_null = 1;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
|
|
case RTE_CRYPTO_AUTH_AES_CMAC:
|
|
case RTE_CRYPTO_AUTH_AES_CBC_MAC:
|
|
plt_dp_err("Crypto: Unsupported hash algo %u", a_form->algo);
|
|
return -1;
|
|
default:
|
|
plt_dp_err("Crypto: Undefined Hash algo %u specified",
|
|
a_form->algo);
|
|
return -1;
|
|
}
|
|
|
|
sess->zsk_flag = zsk_flag;
|
|
sess->aes_gcm = aes_gcm;
|
|
sess->mac_len = a_form->digest_length;
|
|
sess->is_null = is_null;
|
|
if (zsk_flag) {
|
|
sess->auth_iv_offset = a_form->iv.offset;
|
|
sess->auth_iv_length = a_form->iv.length;
|
|
}
|
|
if (unlikely(roc_se_auth_key_set(&sess->roc_se_ctx, auth_type,
|
|
a_form->key.data, a_form->key.length,
|
|
a_form->digest_length)))
|
|
return -1;
|
|
|
|
if ((auth_type >= ROC_SE_ZUC_EIA3) &&
|
|
(auth_type <= ROC_SE_AES_CMAC_EIA2))
|
|
roc_se_ctx_swap(&sess->roc_se_ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_sess_gmac(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess)
|
|
{
|
|
struct rte_crypto_auth_xform *a_form;
|
|
roc_se_cipher_type enc_type = 0; /* NULL Cipher type */
|
|
roc_se_auth_type auth_type = 0; /* NULL Auth type */
|
|
|
|
a_form = &xform->auth;
|
|
|
|
if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
|
|
sess->cpt_op |= ROC_SE_OP_ENCODE;
|
|
else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
|
|
sess->cpt_op |= ROC_SE_OP_DECODE;
|
|
else {
|
|
plt_dp_err("Unknown auth operation");
|
|
return -1;
|
|
}
|
|
|
|
switch (a_form->algo) {
|
|
case RTE_CRYPTO_AUTH_AES_GMAC:
|
|
enc_type = ROC_SE_AES_GCM;
|
|
auth_type = ROC_SE_GMAC_TYPE;
|
|
break;
|
|
default:
|
|
plt_dp_err("Crypto: Undefined cipher algo %u specified",
|
|
a_form->algo);
|
|
return -1;
|
|
}
|
|
|
|
sess->zsk_flag = 0;
|
|
sess->aes_gcm = 0;
|
|
sess->is_gmac = 1;
|
|
sess->iv_offset = a_form->iv.offset;
|
|
sess->iv_length = a_form->iv.length;
|
|
sess->mac_len = a_form->digest_length;
|
|
|
|
if (unlikely(roc_se_ciph_key_set(&sess->roc_se_ctx, enc_type,
|
|
a_form->key.data, a_form->key.length,
|
|
NULL)))
|
|
return -1;
|
|
|
|
if (unlikely(roc_se_auth_key_set(&sess->roc_se_ctx, auth_type, NULL, 0,
|
|
a_form->digest_length)))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline void *
|
|
alloc_op_meta(struct roc_se_buf_ptr *buf, int32_t len,
|
|
struct rte_mempool *cpt_meta_pool,
|
|
struct cpt_inflight_req *infl_req)
|
|
{
|
|
uint8_t *mdata;
|
|
|
|
if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
|
|
return NULL;
|
|
|
|
buf->vaddr = mdata;
|
|
buf->size = len;
|
|
|
|
infl_req->mdata = mdata;
|
|
infl_req->op_flags |= CPT_OP_FLAGS_METABUF;
|
|
|
|
return mdata;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
prepare_iov_from_pkt(struct rte_mbuf *pkt, struct roc_se_iov_ptr *iovec,
|
|
uint32_t start_offset)
|
|
{
|
|
uint16_t index = 0;
|
|
void *seg_data = NULL;
|
|
int32_t seg_size = 0;
|
|
|
|
if (!pkt) {
|
|
iovec->buf_cnt = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (!start_offset) {
|
|
seg_data = rte_pktmbuf_mtod(pkt, void *);
|
|
seg_size = pkt->data_len;
|
|
} else {
|
|
while (start_offset >= pkt->data_len) {
|
|
start_offset -= pkt->data_len;
|
|
pkt = pkt->next;
|
|
}
|
|
|
|
seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
|
|
seg_size = pkt->data_len - start_offset;
|
|
if (!seg_size)
|
|
return 1;
|
|
}
|
|
|
|
/* first seg */
|
|
iovec->bufs[index].vaddr = seg_data;
|
|
iovec->bufs[index].size = seg_size;
|
|
index++;
|
|
pkt = pkt->next;
|
|
|
|
while (unlikely(pkt != NULL)) {
|
|
seg_data = rte_pktmbuf_mtod(pkt, void *);
|
|
seg_size = pkt->data_len;
|
|
if (!seg_size)
|
|
break;
|
|
|
|
iovec->bufs[index].vaddr = seg_data;
|
|
iovec->bufs[index].size = seg_size;
|
|
|
|
index++;
|
|
|
|
pkt = pkt->next;
|
|
}
|
|
|
|
iovec->buf_cnt = index;
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
|
|
struct roc_se_fc_params *param, uint32_t *flags)
|
|
{
|
|
uint16_t index = 0;
|
|
void *seg_data = NULL;
|
|
uint32_t seg_size = 0;
|
|
struct roc_se_iov_ptr *iovec;
|
|
|
|
seg_data = rte_pktmbuf_mtod(pkt, void *);
|
|
seg_size = pkt->data_len;
|
|
|
|
/* first seg */
|
|
if (likely(!pkt->next)) {
|
|
uint32_t headroom;
|
|
|
|
*flags |= ROC_SE_SINGLE_BUF_INPLACE;
|
|
headroom = rte_pktmbuf_headroom(pkt);
|
|
if (likely(headroom >= 24))
|
|
*flags |= ROC_SE_SINGLE_BUF_HEADROOM;
|
|
|
|
param->bufs[0].vaddr = seg_data;
|
|
param->bufs[0].size = seg_size;
|
|
return 0;
|
|
}
|
|
iovec = param->src_iov;
|
|
iovec->bufs[index].vaddr = seg_data;
|
|
iovec->bufs[index].size = seg_size;
|
|
index++;
|
|
pkt = pkt->next;
|
|
|
|
while (unlikely(pkt != NULL)) {
|
|
seg_data = rte_pktmbuf_mtod(pkt, void *);
|
|
seg_size = pkt->data_len;
|
|
|
|
if (!seg_size)
|
|
break;
|
|
|
|
iovec->bufs[index].vaddr = seg_data;
|
|
iovec->bufs[index].size = seg_size;
|
|
|
|
index++;
|
|
|
|
pkt = pkt->next;
|
|
}
|
|
|
|
iovec->buf_cnt = index;
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_fc_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess,
|
|
struct cpt_qp_meta_info *m_info,
|
|
struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst)
|
|
{
|
|
struct roc_se_ctx *ctx = &sess->roc_se_ctx;
|
|
uint8_t op_minor = ctx->template_w4.s.opcode_minor;
|
|
struct rte_crypto_sym_op *sym_op = cop->sym;
|
|
void *mdata = NULL;
|
|
uint32_t mc_hash_off;
|
|
uint32_t flags = 0;
|
|
uint64_t d_offs, d_lens;
|
|
struct rte_mbuf *m_src, *m_dst;
|
|
uint8_t cpt_op = sess->cpt_op;
|
|
#ifdef CPT_ALWAYS_USE_SG_MODE
|
|
uint8_t inplace = 0;
|
|
#else
|
|
uint8_t inplace = 1;
|
|
#endif
|
|
struct roc_se_fc_params fc_params;
|
|
char src[SRC_IOV_SIZE];
|
|
char dst[SRC_IOV_SIZE];
|
|
uint32_t iv_buf[4];
|
|
int ret;
|
|
|
|
fc_params.cipher_iv_len = sess->iv_length;
|
|
fc_params.auth_iv_len = sess->auth_iv_length;
|
|
|
|
if (likely(sess->iv_length)) {
|
|
flags |= ROC_SE_VALID_IV_BUF;
|
|
fc_params.iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *,
|
|
sess->iv_offset);
|
|
if (sess->aes_ctr && unlikely(sess->iv_length != 16)) {
|
|
memcpy((uint8_t *)iv_buf,
|
|
rte_crypto_op_ctod_offset(cop, uint8_t *,
|
|
sess->iv_offset),
|
|
12);
|
|
iv_buf[3] = rte_cpu_to_be_32(0x1);
|
|
fc_params.iv_buf = iv_buf;
|
|
}
|
|
}
|
|
|
|
if (sess->zsk_flag) {
|
|
fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(
|
|
cop, uint8_t *, sess->auth_iv_offset);
|
|
if (sess->zsk_flag != ROC_SE_ZS_EA)
|
|
inplace = 0;
|
|
}
|
|
m_src = sym_op->m_src;
|
|
m_dst = sym_op->m_dst;
|
|
|
|
if (sess->aes_gcm || sess->chacha_poly) {
|
|
uint8_t *salt;
|
|
uint8_t *aad_data;
|
|
uint16_t aad_len;
|
|
|
|
d_offs = sym_op->aead.data.offset;
|
|
d_lens = sym_op->aead.data.length;
|
|
mc_hash_off =
|
|
sym_op->aead.data.offset + sym_op->aead.data.length;
|
|
|
|
aad_data = sym_op->aead.aad.data;
|
|
aad_len = sess->aad_length;
|
|
if (likely((aad_data + aad_len) ==
|
|
rte_pktmbuf_mtod_offset(m_src, uint8_t *,
|
|
sym_op->aead.data.offset))) {
|
|
d_offs = (d_offs - aad_len) | (d_offs << 16);
|
|
d_lens = (d_lens + aad_len) | (d_lens << 32);
|
|
} else {
|
|
fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
|
|
fc_params.aad_buf.size = aad_len;
|
|
flags |= ROC_SE_VALID_AAD_BUF;
|
|
inplace = 0;
|
|
d_offs = d_offs << 16;
|
|
d_lens = d_lens << 32;
|
|
}
|
|
|
|
salt = fc_params.iv_buf;
|
|
if (unlikely(*(uint32_t *)salt != sess->salt)) {
|
|
cpt_fc_salt_update(&sess->roc_se_ctx, salt);
|
|
sess->salt = *(uint32_t *)salt;
|
|
}
|
|
fc_params.iv_buf = salt + 4;
|
|
if (likely(sess->mac_len)) {
|
|
struct rte_mbuf *m =
|
|
(cpt_op & ROC_SE_OP_ENCODE) ? m_dst : m_src;
|
|
|
|
if (!m)
|
|
m = m_src;
|
|
|
|
/* hmac immediately following data is best case */
|
|
if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
|
|
mc_hash_off !=
|
|
(uint8_t *)sym_op->aead.digest.data)) {
|
|
flags |= ROC_SE_VALID_MAC_BUF;
|
|
fc_params.mac_buf.size = sess->mac_len;
|
|
fc_params.mac_buf.vaddr =
|
|
sym_op->aead.digest.data;
|
|
inplace = 0;
|
|
}
|
|
}
|
|
} else {
|
|
d_offs = sym_op->cipher.data.offset;
|
|
d_lens = sym_op->cipher.data.length;
|
|
mc_hash_off =
|
|
sym_op->cipher.data.offset + sym_op->cipher.data.length;
|
|
d_offs = (d_offs << 16) | sym_op->auth.data.offset;
|
|
d_lens = (d_lens << 32) | sym_op->auth.data.length;
|
|
|
|
if (mc_hash_off <
|
|
(sym_op->auth.data.offset + sym_op->auth.data.length)) {
|
|
mc_hash_off = (sym_op->auth.data.offset +
|
|
sym_op->auth.data.length);
|
|
}
|
|
/* for gmac, salt should be updated like in gcm */
|
|
if (unlikely(sess->is_gmac)) {
|
|
uint8_t *salt;
|
|
salt = fc_params.iv_buf;
|
|
if (unlikely(*(uint32_t *)salt != sess->salt)) {
|
|
cpt_fc_salt_update(&sess->roc_se_ctx, salt);
|
|
sess->salt = *(uint32_t *)salt;
|
|
}
|
|
fc_params.iv_buf = salt + 4;
|
|
}
|
|
if (likely(sess->mac_len)) {
|
|
struct rte_mbuf *m;
|
|
|
|
m = (cpt_op & ROC_SE_OP_ENCODE) ? m_dst : m_src;
|
|
if (!m)
|
|
m = m_src;
|
|
|
|
/* hmac immediately following data is best case */
|
|
if (!(op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) &&
|
|
(unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
|
|
mc_hash_off !=
|
|
(uint8_t *)sym_op->auth.digest.data))) {
|
|
flags |= ROC_SE_VALID_MAC_BUF;
|
|
fc_params.mac_buf.size = sess->mac_len;
|
|
fc_params.mac_buf.vaddr =
|
|
sym_op->auth.digest.data;
|
|
inplace = 0;
|
|
}
|
|
}
|
|
}
|
|
fc_params.ctx_buf.vaddr = &sess->roc_se_ctx;
|
|
|
|
if (!(op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) &&
|
|
unlikely(sess->is_null || sess->cpt_op == ROC_SE_OP_DECODE))
|
|
inplace = 0;
|
|
|
|
if (likely(!m_dst && inplace)) {
|
|
/* Case of single buffer without AAD buf or
|
|
* separate mac buf in place and
|
|
* not air crypto
|
|
*/
|
|
fc_params.dst_iov = fc_params.src_iov = (void *)src;
|
|
|
|
if (unlikely(prepare_iov_from_pkt_inplace(m_src, &fc_params,
|
|
&flags))) {
|
|
plt_dp_err("Prepare inplace src iov failed");
|
|
ret = -EINVAL;
|
|
goto err_exit;
|
|
}
|
|
|
|
} else {
|
|
/* Out of place processing */
|
|
fc_params.src_iov = (void *)src;
|
|
fc_params.dst_iov = (void *)dst;
|
|
|
|
/* Store SG I/O in the api for reuse */
|
|
if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
|
|
plt_dp_err("Prepare src iov failed");
|
|
ret = -EINVAL;
|
|
goto err_exit;
|
|
}
|
|
|
|
if (unlikely(m_dst != NULL)) {
|
|
uint32_t pkt_len;
|
|
|
|
/* Try to make room as much as src has */
|
|
pkt_len = rte_pktmbuf_pkt_len(m_dst);
|
|
|
|
if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
|
|
pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
|
|
if (!rte_pktmbuf_append(m_dst, pkt_len)) {
|
|
plt_dp_err("Not enough space in "
|
|
"m_dst %p, need %u"
|
|
" more",
|
|
m_dst, pkt_len);
|
|
ret = -EINVAL;
|
|
goto err_exit;
|
|
}
|
|
}
|
|
|
|
if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
|
|
plt_dp_err("Prepare dst iov failed for "
|
|
"m_dst %p",
|
|
m_dst);
|
|
ret = -EINVAL;
|
|
goto err_exit;
|
|
}
|
|
} else {
|
|
fc_params.dst_iov = (void *)src;
|
|
}
|
|
}
|
|
|
|
if (unlikely(!((flags & ROC_SE_SINGLE_BUF_INPLACE) &&
|
|
(flags & ROC_SE_SINGLE_BUF_HEADROOM) &&
|
|
((ctx->fc_type == ROC_SE_FC_GEN) ||
|
|
(ctx->fc_type == ROC_SE_PDCP))))) {
|
|
mdata = alloc_op_meta(&fc_params.meta_buf, m_info->mlen,
|
|
m_info->pool, infl_req);
|
|
if (mdata == NULL) {
|
|
plt_dp_err("Error allocating meta buffer for request");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* Finally prepare the instruction */
|
|
if (cpt_op & ROC_SE_OP_ENCODE)
|
|
ret = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &fc_params,
|
|
inst);
|
|
else
|
|
ret = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens, &fc_params,
|
|
inst);
|
|
|
|
if (unlikely(ret)) {
|
|
plt_dp_err("Preparing request failed due to bad input arg");
|
|
goto free_mdata_and_exit;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_mdata_and_exit:
|
|
if (infl_req->op_flags & CPT_OP_FLAGS_METABUF)
|
|
rte_mempool_put(m_info->pool, infl_req->mdata);
|
|
err_exit:
|
|
return ret;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
compl_auth_verify(struct rte_crypto_op *op, uint8_t *gen_mac, uint64_t mac_len)
|
|
{
|
|
uint8_t *mac;
|
|
struct rte_crypto_sym_op *sym_op = op->sym;
|
|
|
|
if (sym_op->auth.digest.data)
|
|
mac = sym_op->auth.digest.data;
|
|
else
|
|
mac = rte_pktmbuf_mtod_offset(sym_op->m_src, uint8_t *,
|
|
sym_op->auth.data.length +
|
|
sym_op->auth.data.offset);
|
|
if (!mac) {
|
|
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
|
|
return;
|
|
}
|
|
|
|
if (memcmp(mac, gen_mac, mac_len))
|
|
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
|
|
else
|
|
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
find_kasumif9_direction_and_length(uint8_t *src, uint32_t counter_num_bytes,
|
|
uint32_t *addr_length_in_bits,
|
|
uint8_t *addr_direction)
|
|
{
|
|
uint8_t found = 0;
|
|
uint32_t pos;
|
|
uint8_t last_byte;
|
|
while (!found && counter_num_bytes > 0) {
|
|
counter_num_bytes--;
|
|
if (src[counter_num_bytes] == 0x00)
|
|
continue;
|
|
pos = rte_bsf32(src[counter_num_bytes]);
|
|
if (pos == 7) {
|
|
if (likely(counter_num_bytes > 0)) {
|
|
last_byte = src[counter_num_bytes - 1];
|
|
*addr_direction = last_byte & 0x1;
|
|
*addr_length_in_bits =
|
|
counter_num_bytes * 8 - 1;
|
|
}
|
|
} else {
|
|
last_byte = src[counter_num_bytes];
|
|
*addr_direction = (last_byte >> (pos + 1)) & 0x1;
|
|
*addr_length_in_bits =
|
|
counter_num_bytes * 8 + (8 - (pos + 2));
|
|
}
|
|
found = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This handles all auth only except AES_GMAC
|
|
*/
|
|
static __rte_always_inline int
|
|
fill_digest_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess,
|
|
struct cpt_qp_meta_info *m_info,
|
|
struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst)
|
|
{
|
|
uint32_t space = 0;
|
|
struct rte_crypto_sym_op *sym_op = cop->sym;
|
|
void *mdata;
|
|
uint32_t auth_range_off;
|
|
uint32_t flags = 0;
|
|
uint64_t d_offs = 0, d_lens;
|
|
struct rte_mbuf *m_src, *m_dst;
|
|
uint16_t auth_op = sess->cpt_op & ROC_SE_OP_AUTH_MASK;
|
|
uint16_t mac_len = sess->mac_len;
|
|
struct roc_se_fc_params params;
|
|
char src[SRC_IOV_SIZE];
|
|
uint8_t iv_buf[16];
|
|
int ret;
|
|
|
|
memset(¶ms, 0, sizeof(struct roc_se_fc_params));
|
|
|
|
m_src = sym_op->m_src;
|
|
|
|
mdata = alloc_op_meta(¶ms.meta_buf, m_info->mlen, m_info->pool,
|
|
infl_req);
|
|
if (mdata == NULL) {
|
|
ret = -ENOMEM;
|
|
goto err_exit;
|
|
}
|
|
|
|
auth_range_off = sym_op->auth.data.offset;
|
|
|
|
flags = ROC_SE_VALID_MAC_BUF;
|
|
params.src_iov = (void *)src;
|
|
if (unlikely(sess->zsk_flag)) {
|
|
/*
|
|
* Since for Zuc, Kasumi, Snow3g offsets are in bits
|
|
* we will send pass through even for auth only case,
|
|
* let MC handle it
|
|
*/
|
|
d_offs = auth_range_off;
|
|
auth_range_off = 0;
|
|
params.auth_iv_len = sess->auth_iv_length;
|
|
params.auth_iv_buf = rte_crypto_op_ctod_offset(
|
|
cop, uint8_t *, sess->auth_iv_offset);
|
|
if (sess->zsk_flag == ROC_SE_K_F9) {
|
|
uint32_t length_in_bits, num_bytes;
|
|
uint8_t *src, direction = 0;
|
|
|
|
memcpy(iv_buf,
|
|
rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *), 8);
|
|
/*
|
|
* This is kasumi f9, take direction from
|
|
* source buffer
|
|
*/
|
|
length_in_bits = cop->sym->auth.data.length;
|
|
num_bytes = (length_in_bits >> 3);
|
|
src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
|
|
find_kasumif9_direction_and_length(
|
|
src, num_bytes, &length_in_bits, &direction);
|
|
length_in_bits -= 64;
|
|
cop->sym->auth.data.offset += 64;
|
|
d_offs = cop->sym->auth.data.offset;
|
|
auth_range_off = d_offs / 8;
|
|
cop->sym->auth.data.length = length_in_bits;
|
|
|
|
/* Store it at end of auth iv */
|
|
iv_buf[8] = direction;
|
|
params.auth_iv_buf = iv_buf;
|
|
}
|
|
}
|
|
|
|
d_lens = sym_op->auth.data.length;
|
|
|
|
params.ctx_buf.vaddr = &sess->roc_se_ctx;
|
|
|
|
if (auth_op == ROC_SE_OP_AUTH_GENERATE) {
|
|
if (sym_op->auth.digest.data) {
|
|
/*
|
|
* Digest to be generated
|
|
* in separate buffer
|
|
*/
|
|
params.mac_buf.size = sess->mac_len;
|
|
params.mac_buf.vaddr = sym_op->auth.digest.data;
|
|
} else {
|
|
uint32_t off = sym_op->auth.data.offset +
|
|
sym_op->auth.data.length;
|
|
int32_t dlen, space;
|
|
|
|
m_dst = sym_op->m_dst ? sym_op->m_dst : sym_op->m_src;
|
|
dlen = rte_pktmbuf_pkt_len(m_dst);
|
|
|
|
space = off + mac_len - dlen;
|
|
if (space > 0)
|
|
if (!rte_pktmbuf_append(m_dst, space)) {
|
|
plt_dp_err("Failed to extend "
|
|
"mbuf by %uB",
|
|
space);
|
|
ret = -EINVAL;
|
|
goto free_mdata_and_exit;
|
|
}
|
|
|
|
params.mac_buf.vaddr =
|
|
rte_pktmbuf_mtod_offset(m_dst, void *, off);
|
|
params.mac_buf.size = mac_len;
|
|
}
|
|
} else {
|
|
uint64_t *op = mdata;
|
|
|
|
/* Need space for storing generated mac */
|
|
space += 2 * sizeof(uint64_t);
|
|
|
|
params.mac_buf.vaddr = (uint8_t *)mdata + space;
|
|
params.mac_buf.size = mac_len;
|
|
space += RTE_ALIGN_CEIL(mac_len, 8);
|
|
op[0] = (uintptr_t)params.mac_buf.vaddr;
|
|
op[1] = mac_len;
|
|
infl_req->op_flags |= CPT_OP_FLAGS_AUTH_VERIFY;
|
|
}
|
|
|
|
params.meta_buf.vaddr = (uint8_t *)mdata + space;
|
|
params.meta_buf.size -= space;
|
|
|
|
/* Out of place processing */
|
|
params.src_iov = (void *)src;
|
|
|
|
/*Store SG I/O in the api for reuse */
|
|
if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
|
|
plt_dp_err("Prepare src iov failed");
|
|
ret = -EINVAL;
|
|
goto free_mdata_and_exit;
|
|
}
|
|
|
|
ret = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, ¶ms, inst);
|
|
if (ret)
|
|
goto free_mdata_and_exit;
|
|
|
|
return 0;
|
|
|
|
free_mdata_and_exit:
|
|
if (infl_req->op_flags & CPT_OP_FLAGS_METABUF)
|
|
rte_mempool_put(m_info->pool, infl_req->mdata);
|
|
err_exit:
|
|
return ret;
|
|
}
|
|
#endif /*_CNXK_SE_H_ */
|