f-stack/dpdk/drivers/raw/ifpga/base/ifpga_enumerate.c

1139 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#include <fcntl.h>
#include <inttypes.h>
#include <unistd.h>
#include "opae_hw_api.h"
#include "ifpga_api.h"
#include "ifpga_hw.h"
#include "ifpga_enumerate.h"
#include "ifpga_feature_dev.h"
struct dfl_fpga_enum_dfl {
u64 start;
u64 len;
void *addr;
TAILQ_ENTRY(dfl_fpga_enum_dfl) node;
};
TAILQ_HEAD(dfl_fpga_enum_dfls, dfl_fpga_enum_dfl);
struct dfl_fpga_enum_info {
struct ifpga_hw *hw;
struct dfl_fpga_enum_dfls dfls;
};
struct build_feature_devs_info {
struct opae_adapter_data_pci *pci_data;
struct ifpga_afu_info *acc_info;
void *fiu;
enum fpga_id_type current_type;
int current_port_id;
void *ioaddr;
void *ioend;
uint64_t phys_addr;
void *pfme_hdr;
struct ifpga_hw *hw;
};
static int feature_revision(void __iomem *start)
{
struct feature_header header;
header.csr = readq(start);
return header.revision;
}
static u32 feature_size(void __iomem *start)
{
struct feature_header header;
header.csr = readq(start);
/*the size of private feature is 4KB aligned*/
return header.next_header_offset ? header.next_header_offset:4096;
}
static u64 feature_id(void __iomem *start)
{
struct feature_header header;
header.csr = readq(start);
switch (header.type) {
case FEATURE_TYPE_FIU:
return FEATURE_ID_FIU_HEADER;
case FEATURE_TYPE_PRIVATE:
return header.id;
case FEATURE_TYPE_AFU:
return FEATURE_ID_AFU;
}
WARN_ON(1);
return 0;
}
static int
build_info_add_sub_feature(struct build_feature_devs_info *binfo,
void __iomem *start, u64 fid, unsigned int size,
unsigned int vec_start,
unsigned int vec_cnt)
{
struct ifpga_hw *hw = binfo->hw;
struct ifpga_feature *feature = NULL;
struct feature_irq_ctx *ctx = NULL;
int port_id, ret = 0;
unsigned int i;
fid = fid?fid:feature_id(start);
size = size?size:feature_size(start);
feature = opae_malloc(sizeof(struct ifpga_feature));
if (!feature)
return -ENOMEM;
feature->state = IFPGA_FEATURE_ATTACHED;
feature->addr = start;
feature->id = fid;
feature->size = size;
feature->revision = feature_revision(start);
feature->phys_addr = binfo->phys_addr +
((u8 *)start - (u8 *)binfo->ioaddr);
feature->vec_start = vec_start;
feature->vec_cnt = vec_cnt;
dev_debug(binfo, "%s: id=0x%llx, phys_addr=0x%llx, size=%u\n",
__func__, (unsigned long long)feature->id,
(unsigned long long)feature->phys_addr, size);
if (vec_cnt) {
if (vec_start + vec_cnt <= vec_start)
return -EINVAL;
ctx = zmalloc(sizeof(*ctx) * vec_cnt);
if (!ctx)
return -ENOMEM;
for (i = 0; i < vec_cnt; i++) {
ctx[i].eventfd = -1;
ctx[i].idx = vec_start + i;
}
}
feature->ctx = ctx;
feature->ctx_num = vec_cnt;
feature->vfio_dev_fd = binfo->pci_data->vfio_dev_fd;
if (binfo->current_type == FME_ID) {
feature->parent = &hw->fme;
feature->type = FEATURE_FME_TYPE;
feature->name = get_fme_feature_name(fid);
TAILQ_INSERT_TAIL(&hw->fme.feature_list, feature, next);
} else if (binfo->current_type == PORT_ID) {
port_id = binfo->current_port_id;
feature->parent = &hw->port[port_id];
feature->type = FEATURE_PORT_TYPE;
feature->name = get_port_feature_name(fid);
TAILQ_INSERT_TAIL(&hw->port[port_id].feature_list,
feature, next);
} else {
return -EFAULT;
}
return ret;
}
static int
create_feature_instance(struct build_feature_devs_info *binfo,
void __iomem *start, u64 fid,
unsigned int size, unsigned int vec_start,
unsigned int vec_cnt)
{
if (binfo->current_type != AFU_ID)
return build_info_add_sub_feature(binfo, start, fid, size,
vec_start, vec_cnt);
return 0;
}
/*
* UAFU GUID is dynamic as it can be changed after FME downloads different
* Green Bitstream to the port, so we treat the unknown GUIDs which are
* attached on port's feature list as UAFU.
*/
static bool feature_is_UAFU(struct build_feature_devs_info *binfo)
{
if ((binfo->current_type == PORT_ID) ||
(binfo->current_type == AFU_ID))
return true;
return false;
}
static int parse_feature_uafu(struct build_feature_devs_info *binfo,
struct feature_header *hdr)
{
u64 id = PORT_FEATURE_ID_UAFU;
struct ifpga_afu_info *info;
void *start = (void *)hdr;
struct feature_port_header *port_hdr = binfo->ioaddr;
struct feature_port_capability capability;
int ret;
int size;
if (binfo->acc_info) {
dev_info(binfo, "Sub AFU found @ %p.\n", start);
return 0;
}
capability.csr = readq(&port_hdr->capability);
if (binfo->current_type == AFU_ID) {
size = AFU_REGION_SIZE;
} else {
capability.csr = readq(&port_hdr->capability);
size = capability.mmio_size << 10;
}
ret = create_feature_instance(binfo, hdr, id, size, 0, 0);
if (ret)
return ret;
info = opae_malloc(sizeof(*info));
if (!info)
return -ENOMEM;
info->region[0].addr = start;
info->region[0].phys_addr = binfo->phys_addr +
(uint8_t *)start - (uint8_t *)binfo->ioaddr;
info->region[0].len = size;
info->num_regions = AFU_MAX_REGION;
binfo->acc_info = info;
return ret;
}
/* create and register proper private data */
static int build_info_commit_dev(struct build_feature_devs_info *binfo)
{
struct ifpga_afu_info *info = binfo->acc_info;
struct ifpga_hw *hw = binfo->hw;
struct opae_manager *mgr;
struct opae_bridge *br;
struct opae_accelerator *acc;
struct ifpga_port_hw *port;
struct ifpga_fme_hw *fme;
struct ifpga_feature *feature;
if (binfo->current_type == PORT_ID) {
if (!binfo->fiu)
return 0;
br = opae_bridge_alloc(hw->adapter->name, &ifpga_br_ops,
binfo->fiu);
if (!br)
return -ENOMEM;
br->id = binfo->current_port_id;
/* update irq info */
port = &hw->port[binfo->current_port_id];
feature = get_feature_by_id(&port->feature_list,
PORT_FEATURE_ID_UINT);
if (feature && info)
info->num_irqs = feature->vec_cnt;
acc = opae_accelerator_alloc(hw->adapter->name,
&ifpga_acc_ops, info);
if (!acc) {
opae_bridge_free(br);
return -ENOMEM;
}
acc->adapter = hw->adapter;
acc->br = br;
if (hw->adapter->mgr)
acc->mgr = hw->adapter->mgr;
acc->index = br->id;
fme = &hw->fme;
fme->nums_acc_region = info ? info->num_regions : 0;
opae_adapter_add_acc(hw->adapter, acc);
} else if (binfo->current_type == FME_ID) {
if (!binfo->fiu)
return 0;
mgr = opae_manager_alloc(hw->adapter->name, &ifpga_mgr_ops,
&ifpga_mgr_network_ops, binfo->fiu);
if (!mgr)
return -ENOMEM;
mgr->adapter = hw->adapter;
hw->adapter->mgr = mgr;
} else if (binfo->current_type == AFU_ID) {
if (!info)
return -EFAULT;
info->num_irqs = 0;
acc = opae_accelerator_alloc(hw->adapter->name,
&ifpga_acc_ops, info);
if (!acc)
return -ENOMEM;
acc->adapter = hw->adapter;
acc->br = NULL;
acc->mgr = NULL;
acc->index = hw->num_afus++;
opae_adapter_add_acc(hw->adapter, acc);
}
binfo->fiu = NULL;
return 0;
}
static int
build_info_create_dev(struct build_feature_devs_info *binfo,
enum fpga_id_type type, unsigned int index)
{
int ret;
if ((type == AFU_ID) && (binfo->current_type == PORT_ID))
return 0;
ret = build_info_commit_dev(binfo);
if (ret)
return ret;
binfo->current_type = type;
binfo->acc_info = NULL;
if (type == FME_ID) {
binfo->fiu = &binfo->hw->fme;
} else if (type == PORT_ID) {
binfo->fiu = &binfo->hw->port[index];
binfo->current_port_id = index;
}
return 0;
}
static int parse_feature_afus(struct build_feature_devs_info *binfo,
struct feature_header *hdr)
{
int ret;
struct feature_afu_header *afu_hdr, header;
u8 __iomem *start;
u8 __iomem *end = binfo->ioend;
ret = build_info_create_dev(binfo, AFU_ID, 0);
if (ret)
return ret;
start = (u8 __iomem *)hdr;
for (; start < end; start += header.next_afu) {
if ((unsigned int)(end - start) <
(unsigned int)(sizeof(*afu_hdr) + sizeof(*hdr)))
return -EINVAL;
hdr = (struct feature_header *)start;
afu_hdr = (struct feature_afu_header *)(hdr + 1);
header.csr = readq(&afu_hdr->csr);
if (feature_is_UAFU(binfo)) {
ret = parse_feature_uafu(binfo, hdr);
if (ret)
return ret;
}
if (!header.next_afu)
break;
}
return 0;
}
static int parse_feature_fme(struct build_feature_devs_info *binfo,
struct feature_header *start)
{
struct ifpga_hw *hw = binfo->hw;
struct ifpga_fme_hw *fme = &hw->fme;
int ret;
ret = build_info_create_dev(binfo, FME_ID, 0);
if (ret)
return ret;
/* Update FME states */
fme->state = IFPGA_FME_IMPLEMENTED;
fme->parent = hw;
TAILQ_INIT(&fme->feature_list);
spinlock_init(&fme->lock);
return create_feature_instance(binfo, start, 0, 0, 0, 0);
}
static int parse_feature_port(struct build_feature_devs_info *binfo,
void __iomem *start)
{
struct feature_port_header *port_hdr;
struct feature_port_capability capability;
struct ifpga_hw *hw = binfo->hw;
struct ifpga_port_hw *port;
unsigned int port_id;
int ret;
/* Get current port's id */
port_hdr = (struct feature_port_header *)start;
capability.csr = readq(&port_hdr->capability);
port_id = capability.port_number;
ret = build_info_create_dev(binfo, PORT_ID, port_id);
if (ret)
return ret;
/*found a Port device*/
port = &hw->port[port_id];
port->port_id = binfo->current_port_id;
port->parent = hw;
port->state = IFPGA_PORT_ATTACHED;
spinlock_init(&port->lock);
TAILQ_INIT(&port->feature_list);
return create_feature_instance(binfo, start, 0, 0, 0, 0);
}
static void enable_port_uafu(struct build_feature_devs_info *binfo,
void __iomem *start)
{
struct ifpga_port_hw *port = &binfo->hw->port[binfo->current_port_id];
UNUSED(start);
fpga_port_reset(port);
}
static int parse_feature_fiu(struct build_feature_devs_info *binfo,
struct feature_header *hdr)
{
struct feature_header header;
struct feature_fiu_header *fiu_hdr, fiu_header;
u8 __iomem *start = (u8 __iomem *)hdr;
int ret;
header.csr = readq(hdr);
switch (header.id) {
case FEATURE_FIU_ID_FME:
ret = parse_feature_fme(binfo, hdr);
binfo->pfme_hdr = hdr;
if (ret)
return ret;
break;
case FEATURE_FIU_ID_PORT:
ret = parse_feature_port(binfo, hdr);
enable_port_uafu(binfo, hdr);
if (ret)
return ret;
/* Check Port FIU's next_afu pointer to User AFU DFH */
fiu_hdr = (struct feature_fiu_header *)(hdr + 1);
fiu_header.csr = readq(&fiu_hdr->csr);
if (fiu_header.next_afu) {
start += fiu_header.next_afu;
ret = parse_feature_afus(binfo,
(struct feature_header *)start);
if (ret)
return ret;
} else {
dev_info(binfo, "No AFU detected on Port\n");
}
break;
default:
dev_info(binfo, "FIU TYPE %d is not supported yet.\n",
header.id);
}
return 0;
}
static void parse_feature_irqs(struct build_feature_devs_info *binfo,
void __iomem *start, unsigned int *vec_start,
unsigned int *vec_cnt)
{
UNUSED(binfo);
u64 id;
id = feature_id(start);
if ((binfo->current_type == PORT_ID) && (id == PORT_FEATURE_ID_UINT)) {
struct feature_port_uint *port_uint = start;
struct feature_port_uint_cap uint_cap;
uint_cap.csr = readq(&port_uint->capability);
if (uint_cap.intr_num) {
*vec_start = uint_cap.first_vec_num;
*vec_cnt = uint_cap.intr_num;
} else {
dev_debug(binfo, "UAFU doesn't support interrupt\n");
}
} else if ((binfo->current_type == PORT_ID) &&
(id == PORT_FEATURE_ID_ERROR)) {
struct feature_port_error *port_err = start;
struct feature_port_err_capability port_err_cap;
port_err_cap.csr = readq(&port_err->error_capability);
if (port_err_cap.support_intr) {
*vec_start = port_err_cap.intr_vector_num;
*vec_cnt = 1;
} else {
dev_debug(&binfo, "Port error doesn't support interrupt\n");
}
} else if ((binfo->current_type == FME_ID) &&
(id == FME_FEATURE_ID_GLOBAL_ERR)) {
struct feature_fme_err *fme_err = start;
struct feature_fme_error_capability fme_err_cap;
fme_err_cap.csr = readq(&fme_err->fme_err_capability);
if (fme_err_cap.support_intr) {
*vec_start = fme_err_cap.intr_vector_num;
*vec_cnt = 1;
} else {
dev_debug(&binfo, "FME error doesn't support interrupt\n");
}
}
}
static int parse_feature_fme_private(struct build_feature_devs_info *binfo,
struct feature_header *hdr)
{
unsigned int vec_start = 0;
unsigned int vec_cnt = 0;
parse_feature_irqs(binfo, hdr, &vec_start, &vec_cnt);
return create_feature_instance(binfo, hdr, 0, 0, vec_start, vec_cnt);
}
static int parse_feature_port_private(struct build_feature_devs_info *binfo,
struct feature_header *hdr)
{
unsigned int vec_start = 0;
unsigned int vec_cnt = 0;
parse_feature_irqs(binfo, hdr, &vec_start, &vec_cnt);
return create_feature_instance(binfo, hdr, 0, 0, vec_start, vec_cnt);
}
static int parse_feature_private(struct build_feature_devs_info *binfo,
struct feature_header *hdr)
{
struct feature_header header;
header.csr = readq(hdr);
switch (binfo->current_type) {
case FME_ID:
return parse_feature_fme_private(binfo, hdr);
case PORT_ID:
return parse_feature_port_private(binfo, hdr);
case AFU_ID:
dev_err(binfo, "private feature %x belonging to AFU "
"is not supported yet.\n", header.id);
break;
default:
dev_err(binfo, "private feature %x belonging to TYPE %d "
"(unknown_type) is not supported yet.\n",
header.id, binfo->current_type);
break;
}
return 0;
}
static int parse_feature(struct build_feature_devs_info *binfo,
struct feature_header *hdr)
{
struct feature_header header;
int ret = 0;
header.csr = readq(hdr);
switch (header.type) {
case FEATURE_TYPE_AFU:
ret = parse_feature_afus(binfo, hdr);
break;
case FEATURE_TYPE_PRIVATE:
ret = parse_feature_private(binfo, hdr);
break;
case FEATURE_TYPE_FIU:
ret = parse_feature_fiu(binfo, hdr);
break;
default:
dev_err(binfo, "Feature Type %x is not supported.\n",
hdr->type);
};
return ret;
}
static int build_info_prepare(struct build_feature_devs_info *binfo,
struct dfl_fpga_enum_dfl *dfl)
{
if (!binfo || !dfl)
return -EINVAL;
binfo->ioaddr = dfl->addr;
binfo->ioend = (u8 *)dfl->addr + dfl->len;
binfo->phys_addr = dfl->start;
return 0;
}
static int parse_feature_list(struct build_feature_devs_info *binfo,
struct dfl_fpga_enum_dfl *dfl)
{
u8 *start, *end;
struct feature_header *hdr, header;
int ret = 0;
ret = build_info_prepare(binfo, dfl);
if (ret)
return ret;
start = (u8 *)binfo->ioaddr;
end = (u8 *)binfo->ioend;
/* walk through the device feature list via DFH's next DFH pointer. */
for (; start < end; start += header.next_header_offset) {
if ((unsigned int)(end - start) < (unsigned int)sizeof(*hdr)) {
dev_err(binfo, "The region is too small to "
"contain a feature.\n");
ret = -EINVAL;
break;
}
hdr = (struct feature_header *)start;
header.csr = opae_readq(hdr);
dev_debug(binfo, "%s: address=0x%p, val=0x%"PRIx64", "
"header.id=0x%x, header.next_offset=0x%x, "
"header.eol=0x%x, header.type=0x%x\n",
__func__, hdr, header.csr, header.id,
header.next_header_offset, header.end_of_list,
header.type);
ret = parse_feature(binfo, hdr);
if (ret)
return ret;
/* stop parsing if EOL(End of List) is set or offset is 0 */
if (header.end_of_list || !header.next_header_offset)
break;
}
return build_info_commit_dev(binfo);
}
static void build_info_free(struct build_feature_devs_info *binfo)
{
opae_free(binfo);
}
static void ifpga_print_device_feature_list(struct ifpga_hw *hw)
{
struct ifpga_fme_hw *fme = &hw->fme;
struct ifpga_port_hw *port;
struct ifpga_feature *feature;
int i;
if (fme->state == IFPGA_FME_UNUSED) {
dev_info(hw, "FME is not present\n");
return;
}
dev_info(hw, "found fme_device, is in PF: %s\n",
is_ifpga_hw_pf(hw) ? "yes" : "no");
ifpga_for_each_fme_feature(fme, feature) {
if (feature->state != IFPGA_FEATURE_ATTACHED)
continue;
dev_info(hw, "%12s: %p - %p - paddr: 0x%lx\n",
feature->name, feature->addr,
feature->addr + feature->size - 1,
(unsigned long)feature->phys_addr);
}
for (i = 0; i < MAX_FPGA_PORT_NUM; i++) {
port = &hw->port[i];
if (port->state != IFPGA_PORT_ATTACHED)
continue;
dev_info(hw, "port device: %d\n", port->port_id);
ifpga_for_each_port_feature(port, feature) {
if (feature->state != IFPGA_FEATURE_ATTACHED)
continue;
dev_info(hw, "%12s: %p - %p - paddr:0x%lx\n",
feature->name,
feature->addr,
feature->addr +
feature->size - 1,
(unsigned long)feature->phys_addr);
}
}
}
static struct dfl_fpga_enum_info *dfl_fpga_enum_info_alloc(struct ifpga_hw *hw)
{
struct dfl_fpga_enum_info *info;
info = opae_zmalloc(sizeof(*info));
if (!info)
return NULL;
info->hw = hw;
TAILQ_INIT(&info->dfls);
return info;
}
static void dfl_fpga_enum_info_free(struct dfl_fpga_enum_info *info)
{
struct dfl_fpga_enum_dfl *tmp, *dfl;
if (!info)
return;
/* remove all device feature lists in the list. */
for (dfl = TAILQ_FIRST(&info->dfls);
dfl && (tmp = TAILQ_NEXT(dfl, node), 1);
dfl = tmp) {
TAILQ_REMOVE(&info->dfls, dfl, node);
opae_free(dfl);
}
opae_free(info);
}
static int dfl_fpga_enum_info_add_dfl(struct dfl_fpga_enum_info *info,
u64 start, u64 len, void *addr)
{
struct dfl_fpga_enum_dfl *dfl;
dfl = opae_zmalloc(sizeof(*dfl));
if (!dfl)
return -ENOMEM;
dfl->start = start;
dfl->len = len;
dfl->addr = addr;
TAILQ_INSERT_TAIL(&info->dfls, dfl, node);
return 0;
}
#define PCI_CFG_SPACE_SIZE 256
#define PCI_CFG_SPACE_EXP_SIZE 4096
#define PCI_EXT_CAP_ID(header) (header & 0x0000ffff)
#define PCI_EXT_CAP_NEXT(header) ((header >> 20) & 0xffc)
static int
pci_find_next_ecap(int fd, int start, u32 cap)
{
u32 header;
int ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
int pos = PCI_CFG_SPACE_SIZE;
int ret;
if (start > 0)
pos = start;
ret = pread(fd, &header, sizeof(header), pos);
if (ret < 0)
return ret;
/*
* If we have no capabilities, this is indicated by cap ID,
* cap version and next pointer all being 0.
*/
if (header == 0)
return 0;
while (ttl-- > 0) {
if ((PCI_EXT_CAP_ID(header) == cap) && (pos != start))
return pos;
pos = PCI_EXT_CAP_NEXT(header);
if (pos < PCI_CFG_SPACE_SIZE)
break;
ret = pread(fd, &header, sizeof(header), pos);
if (ret < 0)
return ret;
}
return 0;
}
#define PCI_EXT_CAP_ID_VNDR 0x0B
#define PCI_VNDR_HEADER 4
#define PCI_VNDR_HEADER_ID(x) ((x) & 0xffff)
#define PCI_VENDOR_ID_INTEL 0x8086
#define PCI_VSEC_ID_INTEL_DFLS 0x43
#define PCI_VNDR_DFLS_CNT 0x8
#define PCI_VNDR_DFLS_RES 0xc
#define PCI_VNDR_DFLS_RES_BAR_MASK GENMASK(2, 0)
#define PCI_VNDR_DFLS_RES_OFF_MASK GENMASK(31, 3)
static int find_dfls_by_vsec(struct dfl_fpga_enum_info *info)
{
struct ifpga_hw *hw;
struct opae_adapter_data_pci *pci_data;
char path[64];
u32 bir, offset, vndr_hdr, i, dfl_cnt, dfl_res;
int fd, ret, dfl_res_off, voff = 0;
u64 start, len;
void *addr;
if (!info || !info->hw)
return -EINVAL;
hw = info->hw;
if (!hw->adapter || !hw->pci_data)
return -EINVAL;
pci_data = hw->pci_data;
ret = snprintf(path, sizeof(path), "/sys/bus/pci/devices/%s/config",
hw->adapter->name);
if ((unsigned int)ret >= sizeof(path))
return -EINVAL;
fd = open(path, O_RDWR);
if (fd < 0)
return -EIO;
while ((voff = pci_find_next_ecap(fd, voff,
PCI_EXT_CAP_ID_VNDR))) {
vndr_hdr = 0;
ret = pread(fd, &vndr_hdr, sizeof(vndr_hdr),
voff + PCI_VNDR_HEADER);
if (ret < 0) {
ret = -EIO;
goto free_handle;
}
if (PCI_VNDR_HEADER_ID(vndr_hdr) == PCI_VSEC_ID_INTEL_DFLS &&
pci_data->vendor_id == PCI_VENDOR_ID_INTEL)
break;
}
if (!voff) {
dev_debug(hw, "%s no DFL VSEC found\n", __func__);
ret = -ENODEV;
goto free_handle;
}
dfl_cnt = 0;
ret = pread(fd, &dfl_cnt, sizeof(dfl_cnt), voff + PCI_VNDR_DFLS_CNT);
if (ret < 0) {
ret = -EIO;
goto free_handle;
}
dfl_res_off = voff + PCI_VNDR_DFLS_RES;
if (dfl_res_off + (dfl_cnt * sizeof(u32)) > PCI_CFG_SPACE_EXP_SIZE) {
dev_err(hw, "%s DFL VSEC too big for PCIe config space\n",
__func__);
ret = -EINVAL;
goto free_handle;
}
for (i = 0; i < dfl_cnt; i++, dfl_res_off += sizeof(u32)) {
dfl_res = GENMASK(31, 0);
ret = pread(fd, &dfl_res, sizeof(dfl_res), dfl_res_off);
bir = dfl_res & PCI_VNDR_DFLS_RES_BAR_MASK;
if (bir >= PCI_MAX_RESOURCE) {
dev_err(hw, "%s bad bir number %d\n",
__func__, bir);
ret = -EINVAL;
goto free_handle;
}
len = pci_data->region[bir].len;
offset = dfl_res & PCI_VNDR_DFLS_RES_OFF_MASK;
if (offset >= len) {
dev_err(hw, "%s bad offset %u >= %"PRIu64"\n",
__func__, offset, len);
ret = -EINVAL;
goto free_handle;
}
dev_debug(hw, "%s BAR %d offset 0x%x\n", __func__, bir, offset);
len -= offset;
start = pci_data->region[bir].phys_addr + offset;
addr = pci_data->region[bir].addr + offset;
dfl_fpga_enum_info_add_dfl(info, start, len, addr);
}
free_handle:
close(fd);
return ret;
}
/* default method of finding dfls starting at offset 0 of bar 0 */
static int
find_dfls_by_default(struct dfl_fpga_enum_info *info)
{
struct ifpga_hw *hw;
struct opae_adapter_data_pci *pci_data;
int port_num, bar, i, ret = 0;
u64 start, len;
void *addr;
u32 offset;
struct feature_header hdr;
struct feature_fme_capability cap;
struct feature_fme_port port;
struct feature_fme_header *fme_hdr;
if (!info || !info->hw)
return -EINVAL;
hw = info->hw;
if (!hw->pci_data)
return -EINVAL;
pci_data = hw->pci_data;
/* start to find Device Feature List from Bar 0 */
addr = pci_data->region[0].addr;
if (!addr)
return -ENOMEM;
/*
* PF device has FME and Ports/AFUs, and VF device only has one
* Port/AFU. Check them and add related "Device Feature List" info
* for the next step enumeration.
*/
hdr.csr = opae_readq(addr);
if ((hdr.type == FEATURE_TYPE_FIU) && (hdr.id == FEATURE_FIU_ID_FME)) {
start = pci_data->region[0].phys_addr;
len = pci_data->region[0].len;
addr = pci_data->region[0].addr;
dfl_fpga_enum_info_add_dfl(info, start, len, addr);
/*
* find more Device Feature Lists (e.g. Ports) per information
* indicated by FME module.
*/
fme_hdr = (struct feature_fme_header *)addr;
cap.csr = opae_readq(&fme_hdr->capability);
port_num = (int)cap.num_ports;
dev_info(hw, "port_num = %d\n", port_num);
if (port_num > MAX_FPGA_PORT_NUM)
port_num = MAX_FPGA_PORT_NUM;
for (i = 0; i < port_num; i++) {
port.csr = opae_readq(&fme_hdr->port[i]);
/* skip ports which are not implemented. */
if (!port.port_implemented)
continue;
/* skip port which only could be accessed via VF */
if (port.afu_access_control == FME_AFU_ACCESS_VF)
continue;
/*
* add Port's Device Feature List information for next
* step enumeration.
*/
bar = (int)port.port_bar;
offset = port.port_offset;
if (bar == FME_PORT_OFST_BAR_SKIP) {
continue;
} else if (bar >= PCI_MAX_RESOURCE) {
dev_err(hw, "bad BAR %d for port %d\n", bar, i);
ret = -EINVAL;
break;
}
dev_info(hw, "BAR %d offset %u\n", bar, offset);
len = pci_data->region[bar].len;
if (offset >= len) {
dev_warn(hw, "bad port offset %u >= %pa\n",
offset, &len);
continue;
}
len -= offset;
start = pci_data->region[bar].phys_addr + offset;
addr = pci_data->region[bar].addr + offset;
dfl_fpga_enum_info_add_dfl(info, start, len, addr);
}
} else if ((hdr.type == FEATURE_TYPE_FIU) &&
(hdr.id == FEATURE_FIU_ID_PORT)) {
start = pci_data->region[0].phys_addr;
len = pci_data->region[0].len;
addr = pci_data->region[0].addr;
dfl_fpga_enum_info_add_dfl(info, start, len, addr);
} else if (hdr.type == FEATURE_TYPE_AFU) {
start = pci_data->region[0].phys_addr;
len = pci_data->region[0].len;
addr = pci_data->region[0].addr;
dfl_fpga_enum_info_add_dfl(info, start, len, addr);
} else {
dev_info(hw, "Unknown feature type 0x%x id 0x%x\n",
hdr.type, hdr.id);
ret = -ENODEV;
}
return ret;
}
static int dfl_fpga_feature_devs_enumerate(struct dfl_fpga_enum_info *info)
{
struct build_feature_devs_info *binfo;
struct dfl_fpga_enum_dfl *dfl;
int ret = 0;
if (!info || !info->hw)
return -EINVAL;
/* create and init build info for enumeration */
binfo = opae_zmalloc(sizeof(*binfo));
if (!binfo)
return -ENOMEM;
binfo->hw = info->hw;
binfo->pci_data = info->hw->pci_data;
/*
* start enumeration for all feature devices based on Device Feature
* Lists.
*/
TAILQ_FOREACH(dfl, &info->dfls, node) {
ret = parse_feature_list(binfo, dfl);
if (ret)
break;
}
build_info_free(binfo);
return ret;
}
int ifpga_bus_enumerate(struct ifpga_hw *hw)
{
struct dfl_fpga_enum_info *info;
int ret;
/* allocate enumeration info */
info = dfl_fpga_enum_info_alloc(hw);
if (!info)
return -ENOMEM;
ret = find_dfls_by_vsec(info);
if (ret < 0)
ret = find_dfls_by_default(info);
if (ret)
goto exit;
/* start enumeration with prepared enumeration information */
ret = dfl_fpga_feature_devs_enumerate(info);
if (ret < 0) {
dev_err(hw, "Enumeration failure\n");
goto exit;
}
ifpga_print_device_feature_list(hw);
exit:
dfl_fpga_enum_info_free(info);
return ret;
}
static void ifpga_print_acc_list(struct opae_adapter *adapter)
{
struct opae_accelerator *acc;
struct ifpga_afu_info *info;
struct uuid guid;
char buf[48];
int i;
opae_adapter_for_each_acc(adapter, acc) {
info = acc->data;
if (!info)
continue;
acc->ops->get_uuid(acc, &guid);
i = sprintf(buf, "%02x%02x%02x%02x-",
guid.b[15], guid.b[14], guid.b[13], guid.b[12]);
i += sprintf(buf+i, "%02x%02x-", guid.b[11], guid.b[10]);
i += sprintf(buf+i, "%02x%02x-", guid.b[9], guid.b[8]);
i += sprintf(buf+i, "%02x%02x-", guid.b[7], guid.b[6]);
sprintf(buf+i, "%02x%02x%02x%02x%02x%02x",
guid.b[5], guid.b[4], guid.b[3],
guid.b[2], guid.b[1], guid.b[0]);
dev_info(hw, "AFU(%s-%d)@%p: len:0x%"PRIx64", guid:%s\n",
acc->name, acc->index, info->region[0].addr,
info->region[0].len, buf);
}
}
int ifpga_bus_init(struct ifpga_hw *hw)
{
int i, ret = 0;
struct ifpga_port_hw *port;
ret = fme_hw_init(&hw->fme);
if (ret)
return ret;
for (i = 0; i < MAX_FPGA_PORT_NUM; i++) {
port = &hw->port[i];
port_hw_init(port);
}
ifpga_print_acc_list(hw->adapter);
return 0;
}
int ifpga_bus_uinit(struct ifpga_hw *hw)
{
int i;
struct ifpga_port_hw *port;
if (hw) {
fme_hw_uinit(&hw->fme);
for (i = 0; i < MAX_FPGA_PORT_NUM; i++) {
port = &hw->port[i];
port_hw_uinit(port);
}
}
return 0;
}