f-stack/dpdk/drivers/net/ice/ice_dcf_ethdev.c

2112 lines
55 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <errno.h>
#include <stdbool.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <unistd.h>
#include <rte_interrupts.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_atomic.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <ethdev_pci.h>
#include <rte_kvargs.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <dev_driver.h>
#include <iavf_devids.h>
#include "ice_generic_flow.h"
#include "ice_dcf_ethdev.h"
#include "ice_rxtx.h"
#define DCF_NUM_MACADDR_MAX 64
static int dcf_add_del_mc_addr_list(struct ice_dcf_hw *hw,
struct rte_ether_addr *mc_addrs,
uint32_t mc_addrs_num, bool add);
static int
ice_dcf_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static int
ice_dcf_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static int
ice_dcf_dev_init(struct rte_eth_dev *eth_dev);
static int
ice_dcf_dev_uninit(struct rte_eth_dev *eth_dev);
static int
ice_dcf_cap_check_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque);
static int
ice_dcf_engine_disabled_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque);
struct ice_devarg {
enum ice_dcf_devrarg type;
const char *key;
int (*handler)(__rte_unused const char *key,
const char *value, __rte_unused void *opaque);
};
static const struct ice_devarg ice_devargs_table[] = {
{ICE_DCF_DEVARG_CAP, "cap", ice_dcf_cap_check_handler},
{ICE_DCF_DEVARG_ACL, "acl", ice_dcf_engine_disabled_handler},
};
struct rte_ice_dcf_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned int offset;
};
static const struct rte_ice_dcf_xstats_name_off rte_ice_dcf_stats_strings[] = {
{"rx_bytes", offsetof(struct ice_dcf_eth_stats, rx_bytes)},
{"rx_unicast_packets", offsetof(struct ice_dcf_eth_stats, rx_unicast)},
{"rx_multicast_packets", offsetof(struct ice_dcf_eth_stats, rx_multicast)},
{"rx_broadcast_packets", offsetof(struct ice_dcf_eth_stats, rx_broadcast)},
{"rx_dropped_packets", offsetof(struct ice_dcf_eth_stats, rx_discards)},
{"rx_unknown_protocol_packets", offsetof(struct ice_dcf_eth_stats,
rx_unknown_protocol)},
{"tx_bytes", offsetof(struct ice_dcf_eth_stats, tx_bytes)},
{"tx_unicast_packets", offsetof(struct ice_dcf_eth_stats, tx_unicast)},
{"tx_multicast_packets", offsetof(struct ice_dcf_eth_stats, tx_multicast)},
{"tx_broadcast_packets", offsetof(struct ice_dcf_eth_stats, tx_broadcast)},
{"tx_dropped_packets", offsetof(struct ice_dcf_eth_stats, tx_discards)},
{"tx_error_packets", offsetof(struct ice_dcf_eth_stats, tx_errors)},
};
#define ICE_DCF_NB_XSTATS (sizeof(rte_ice_dcf_stats_strings) / \
sizeof(rte_ice_dcf_stats_strings[0]))
static uint16_t
ice_dcf_recv_pkts(__rte_unused void *rx_queue,
__rte_unused struct rte_mbuf **bufs,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
static uint16_t
ice_dcf_xmit_pkts(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **bufs,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
static int
ice_dcf_init_rxq(struct rte_eth_dev *dev, struct ice_rx_queue *rxq)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct rte_eth_dev_data *dev_data = dev->data;
struct iavf_hw *hw = &dcf_ad->real_hw.avf;
uint16_t buf_size, max_pkt_len;
buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
rxq->rx_hdr_len = 0;
rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
rxq->rx_buf_len = RTE_MIN(rxq->rx_buf_len, ICE_RX_MAX_DATA_BUF_SIZE);
max_pkt_len = RTE_MIN(ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
dev->data->mtu + ICE_ETH_OVERHEAD);
/* Check maximum packet length is set correctly. */
if (max_pkt_len <= RTE_ETHER_MIN_LEN ||
max_pkt_len > ICE_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u",
(uint32_t)RTE_ETHER_MIN_LEN,
(uint32_t)ICE_FRAME_SIZE_MAX);
return -EINVAL;
}
rxq->max_pkt_len = max_pkt_len;
if ((dev_data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ||
(rxq->max_pkt_len + 2 * RTE_VLAN_HLEN) > buf_size) {
dev_data->scattered_rx = 1;
}
rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
IAVF_WRITE_FLUSH(hw);
return 0;
}
static int
ice_dcf_init_rx_queues(struct rte_eth_dev *dev)
{
struct ice_rx_queue **rxq =
(struct ice_rx_queue **)dev->data->rx_queues;
int i, ret;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!rxq[i] || !rxq[i]->q_set)
continue;
ret = ice_dcf_init_rxq(dev, rxq[i]);
if (ret)
return ret;
}
ice_set_rx_function(dev);
ice_set_tx_function(dev);
return 0;
}
#define IAVF_MISC_VEC_ID RTE_INTR_VEC_ZERO_OFFSET
#define IAVF_RX_VEC_START RTE_INTR_VEC_RXTX_OFFSET
#define IAVF_ITR_INDEX_DEFAULT 0
#define IAVF_QUEUE_ITR_INTERVAL_DEFAULT 32 /* 32 us */
#define IAVF_QUEUE_ITR_INTERVAL_MAX 8160 /* 8160 us */
static inline uint16_t
iavf_calc_itr_interval(int16_t interval)
{
if (interval < 0 || interval > IAVF_QUEUE_ITR_INTERVAL_MAX)
interval = IAVF_QUEUE_ITR_INTERVAL_DEFAULT;
/* Convert to hardware count, as writing each 1 represents 2 us */
return interval / 2;
}
static int
ice_dcf_config_rx_queues_irqs(struct rte_eth_dev *dev,
struct rte_intr_handle *intr_handle)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
uint16_t interval, i;
int vec;
if (rte_intr_cap_multiple(intr_handle) &&
dev->data->dev_conf.intr_conf.rxq) {
if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
return -1;
}
if (rte_intr_dp_is_en(intr_handle)) {
if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
dev->data->nb_rx_queues)) {
PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
dev->data->nb_rx_queues);
return -1;
}
}
if (!dev->data->dev_conf.intr_conf.rxq ||
!rte_intr_dp_is_en(intr_handle)) {
/* Rx interrupt disabled, Map interrupt only for writeback */
hw->nb_msix = 1;
if (hw->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
/* If WB_ON_ITR supports, enable it */
hw->msix_base = IAVF_RX_VEC_START;
/* Set the ITR for index zero, to 2us to make sure that
* we leave time for aggregation to occur, but don't
* increase latency dramatically.
*/
IAVF_WRITE_REG(&hw->avf,
IAVF_VFINT_DYN_CTLN1(hw->msix_base - 1),
(0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
(2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
} else {
/* If no WB_ON_ITR offload flags, need to set
* interrupt for descriptor write back.
*/
hw->msix_base = IAVF_MISC_VEC_ID;
/* set ITR to max */
interval =
iavf_calc_itr_interval(IAVF_QUEUE_ITR_INTERVAL_MAX);
IAVF_WRITE_REG(&hw->avf, IAVF_VFINT_DYN_CTL01,
IAVF_VFINT_DYN_CTL01_INTENA_MASK |
(IAVF_ITR_INDEX_DEFAULT <<
IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
(interval <<
IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
}
IAVF_WRITE_FLUSH(&hw->avf);
/* map all queues to the same interrupt */
for (i = 0; i < dev->data->nb_rx_queues; i++)
hw->rxq_map[hw->msix_base] |= 1 << i;
} else {
if (!rte_intr_allow_others(intr_handle)) {
hw->nb_msix = 1;
hw->msix_base = IAVF_MISC_VEC_ID;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
hw->rxq_map[hw->msix_base] |= 1 << i;
rte_intr_vec_list_index_set(intr_handle,
i, IAVF_MISC_VEC_ID);
}
PMD_DRV_LOG(DEBUG,
"vector %u are mapping to all Rx queues",
hw->msix_base);
} else {
/* If Rx interrupt is required, and we can use
* multi interrupts, then the vec is from 1
*/
hw->nb_msix = RTE_MIN(hw->vf_res->max_vectors,
rte_intr_nb_efd_get(intr_handle));
hw->msix_base = IAVF_MISC_VEC_ID;
vec = IAVF_MISC_VEC_ID;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
hw->rxq_map[vec] |= 1 << i;
rte_intr_vec_list_index_set(intr_handle,
i, vec++);
if (vec >= hw->nb_msix)
vec = IAVF_RX_VEC_START;
}
PMD_DRV_LOG(DEBUG,
"%u vectors are mapping to %u Rx queues",
hw->nb_msix, dev->data->nb_rx_queues);
}
}
if (ice_dcf_config_irq_map(hw)) {
PMD_DRV_LOG(ERR, "config interrupt mapping failed");
return -1;
}
return 0;
}
static int
alloc_rxq_mbufs(struct ice_rx_queue *rxq)
{
volatile union ice_rx_flex_desc *rxd;
struct rte_mbuf *mbuf = NULL;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!mbuf)) {
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.pkt_addr = dma_addr;
rxd->read.hdr_addr = 0;
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
rxd->read.rsvd1 = 0;
rxd->read.rsvd2 = 0;
#endif
rxq->sw_ring[i].mbuf = (void *)mbuf;
}
return 0;
}
static int
ice_dcf_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct iavf_hw *hw = &ad->real_hw.avf;
struct ice_rx_queue *rxq;
int err = 0;
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
rxq = dev->data->rx_queues[rx_queue_id];
err = alloc_rxq_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail register. */
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = ice_dcf_switch_queue(&ad->real_hw, rx_queue_id, true, true);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
return err;
}
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static inline void
reset_rx_queue(struct ice_rx_queue *rxq)
{
uint16_t len;
uint32_t i;
if (!rxq)
return;
len = rxq->nb_rx_desc + ICE_RX_MAX_BURST;
for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
((volatile char *)rxq->rx_ring)[i] = 0;
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < ICE_RX_MAX_BURST; i++)
rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
/* for rx bulk */
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
static inline void
reset_tx_queue(struct ice_tx_queue *txq)
{
struct ice_tx_entry *txe;
uint32_t i, size;
uint16_t prev;
if (!txq) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
return;
}
txe = txq->sw_ring;
size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->tx_ring)[i] = 0;
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->tx_ring[i].cmd_type_offset_bsz =
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_tail = 0;
txq->nb_tx_used = 0;
txq->last_desc_cleaned = txq->nb_tx_desc - 1;
txq->nb_tx_free = txq->nb_tx_desc - 1;
txq->tx_next_dd = txq->tx_rs_thresh - 1;
txq->tx_next_rs = txq->tx_rs_thresh - 1;
}
static int
ice_dcf_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct ice_rx_queue *rxq;
int err;
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
err = ice_dcf_switch_queue(hw, rx_queue_id, true, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return err;
}
rxq = dev->data->rx_queues[rx_queue_id];
rxq->rx_rel_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
ice_dcf_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct iavf_hw *hw = &ad->real_hw.avf;
struct ice_tx_queue *txq;
int err = 0;
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
txq = dev->data->tx_queues[tx_queue_id];
/* Init the RX tail register. */
txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(tx_queue_id);
IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = ice_dcf_switch_queue(&ad->real_hw, tx_queue_id, false, true);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
tx_queue_id);
return err;
}
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
ice_dcf_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct ice_tx_queue *txq;
int err;
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
err = ice_dcf_switch_queue(hw, tx_queue_id, false, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
tx_queue_id);
return err;
}
txq = dev->data->tx_queues[tx_queue_id];
txq->tx_rel_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
ice_dcf_start_queues(struct rte_eth_dev *dev)
{
struct ice_rx_queue *rxq;
struct ice_tx_queue *txq;
int nb_rxq = 0;
int nb_txq, i;
for (nb_txq = 0; nb_txq < dev->data->nb_tx_queues; nb_txq++) {
txq = dev->data->tx_queues[nb_txq];
if (txq->tx_deferred_start)
continue;
if (ice_dcf_tx_queue_start(dev, nb_txq) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", nb_txq);
goto tx_err;
}
}
for (nb_rxq = 0; nb_rxq < dev->data->nb_rx_queues; nb_rxq++) {
rxq = dev->data->rx_queues[nb_rxq];
if (rxq->rx_deferred_start)
continue;
if (ice_dcf_rx_queue_start(dev, nb_rxq) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", nb_rxq);
goto rx_err;
}
}
return 0;
/* stop the started queues if failed to start all queues */
rx_err:
for (i = 0; i < nb_rxq; i++)
ice_dcf_rx_queue_stop(dev, i);
tx_err:
for (i = 0; i < nb_txq; i++)
ice_dcf_tx_queue_stop(dev, i);
return -1;
}
static int
ice_dcf_dev_start(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct rte_intr_handle *intr_handle = dev->intr_handle;
struct ice_adapter *ad = &dcf_ad->parent;
struct ice_dcf_hw *hw = &dcf_ad->real_hw;
int ret;
if (hw->resetting) {
PMD_DRV_LOG(ERR,
"The DCF has been reset by PF, please reinit first");
return -EIO;
}
if (hw->tm_conf.root && !hw->tm_conf.committed) {
PMD_DRV_LOG(ERR,
"please call hierarchy_commit() before starting the port");
return -EIO;
}
ad->pf.adapter_stopped = 0;
hw->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
ret = ice_dcf_init_rx_queues(dev);
if (ret) {
PMD_DRV_LOG(ERR, "Fail to init queues");
return ret;
}
if (hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
ret = ice_dcf_init_rss(hw);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to configure RSS");
return ret;
}
}
ret = ice_dcf_configure_queues(hw);
if (ret) {
PMD_DRV_LOG(ERR, "Fail to config queues");
return ret;
}
ret = ice_dcf_config_rx_queues_irqs(dev, intr_handle);
if (ret) {
PMD_DRV_LOG(ERR, "Fail to config rx queues' irqs");
return ret;
}
if (dev->data->dev_conf.intr_conf.rxq != 0) {
rte_intr_disable(intr_handle);
rte_intr_enable(intr_handle);
}
ret = ice_dcf_start_queues(dev);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to enable queues");
return ret;
}
ret = ice_dcf_add_del_all_mac_addr(hw, hw->eth_dev->data->mac_addrs,
true, VIRTCHNL_ETHER_ADDR_PRIMARY);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to add mac addr");
return ret;
}
if (dcf_ad->mc_addrs_num) {
/* flush previous addresses */
ret = dcf_add_del_mc_addr_list(hw, dcf_ad->mc_addrs,
dcf_ad->mc_addrs_num, true);
if (ret)
return ret;
}
dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
return 0;
}
static void
ice_dcf_stop_queues(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct ice_rx_queue *rxq;
struct ice_tx_queue *txq;
int ret, i;
/* Stop All queues */
ret = ice_dcf_disable_queues(hw);
if (ret)
PMD_DRV_LOG(WARNING, "Fail to stop queues");
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
txq->tx_rel_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
rxq->rx_rel_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
}
static int
ice_dcf_dev_stop(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct rte_intr_handle *intr_handle = dev->intr_handle;
struct ice_adapter *ad = &dcf_ad->parent;
struct ice_dcf_hw *hw = &dcf_ad->real_hw;
if (ad->pf.adapter_stopped == 1) {
PMD_DRV_LOG(DEBUG, "Port is already stopped");
return 0;
}
/* Stop the VF representors for this device */
ice_dcf_vf_repr_stop_all(dcf_ad);
ice_dcf_stop_queues(dev);
rte_intr_efd_disable(intr_handle);
rte_intr_vec_list_free(intr_handle);
ice_dcf_add_del_all_mac_addr(&dcf_ad->real_hw,
dcf_ad->real_hw.eth_dev->data->mac_addrs,
false, VIRTCHNL_ETHER_ADDR_PRIMARY);
if (dcf_ad->mc_addrs_num)
/* flush previous addresses */
(void)dcf_add_del_mc_addr_list(&dcf_ad->real_hw,
dcf_ad->mc_addrs,
dcf_ad->mc_addrs_num, false);
dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
ad->pf.adapter_stopped = 1;
hw->tm_conf.committed = false;
return 0;
}
static int
ice_dcf_dev_configure(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct ice_adapter *ad = &dcf_ad->parent;
ad->rx_bulk_alloc_allowed = true;
ad->tx_simple_allowed = true;
if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
return 0;
}
static int
ice_dcf_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
dev_info->max_mac_addrs = DCF_NUM_MACADDR_MAX;
dev_info->max_rx_queues = hw->vsi_res->num_queue_pairs;
dev_info->max_tx_queues = hw->vsi_res->num_queue_pairs;
dev_info->min_rx_bufsize = ICE_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = ICE_FRAME_SIZE_MAX;
dev_info->hash_key_size = hw->vf_res->rss_key_size;
dev_info->reta_size = hw->vf_res->rss_lut_size;
dev_info->flow_type_rss_offloads = ICE_RSS_OFFLOAD_ALL;
dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
dev_info->max_mtu = dev_info->max_rx_pktlen - ICE_ETH_OVERHEAD;
dev_info->min_mtu = RTE_ETHER_MIN_MTU;
dev_info->rx_offload_capa =
RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_SCATTER |
RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
RTE_ETH_RX_OFFLOAD_RSS_HASH;
dev_info->tx_offload_capa =
RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_TSO |
RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = ICE_DEFAULT_RX_PTHRESH,
.hthresh = ICE_DEFAULT_RX_HTHRESH,
.wthresh = ICE_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = ICE_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = ICE_DEFAULT_TX_PTHRESH,
.hthresh = ICE_DEFAULT_TX_HTHRESH,
.wthresh = ICE_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = ICE_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = ICE_DEFAULT_TX_RSBIT_THRESH,
.offloads = 0,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = ICE_MAX_RING_DESC,
.nb_min = ICE_MIN_RING_DESC,
.nb_align = ICE_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = ICE_MAX_RING_DESC,
.nb_min = ICE_MIN_RING_DESC,
.nb_align = ICE_ALIGN_RING_DESC,
};
return 0;
}
static int
dcf_config_promisc(struct ice_dcf_adapter *adapter,
bool enable_unicast,
bool enable_multicast)
{
struct ice_dcf_hw *hw = &adapter->real_hw;
struct virtchnl_promisc_info promisc;
struct dcf_virtchnl_cmd args;
int err;
promisc.flags = 0;
promisc.vsi_id = hw->vsi_res->vsi_id;
if (enable_unicast)
promisc.flags |= FLAG_VF_UNICAST_PROMISC;
if (enable_multicast)
promisc.flags |= FLAG_VF_MULTICAST_PROMISC;
memset(&args, 0, sizeof(args));
args.v_op = VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE;
args.req_msg = (uint8_t *)&promisc;
args.req_msglen = sizeof(promisc);
err = ice_dcf_execute_virtchnl_cmd(hw, &args);
if (err) {
PMD_DRV_LOG(ERR,
"fail to execute command VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE");
return err;
}
adapter->promisc_unicast_enabled = enable_unicast;
adapter->promisc_multicast_enabled = enable_multicast;
return 0;
}
static int
ice_dcf_dev_promiscuous_enable(__rte_unused struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
if (adapter->promisc_unicast_enabled) {
PMD_DRV_LOG(INFO, "promiscuous has been enabled");
return 0;
}
return dcf_config_promisc(adapter, true,
adapter->promisc_multicast_enabled);
}
static int
ice_dcf_dev_promiscuous_disable(__rte_unused struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
if (!adapter->promisc_unicast_enabled) {
PMD_DRV_LOG(INFO, "promiscuous has been disabled");
return 0;
}
return dcf_config_promisc(adapter, false,
adapter->promisc_multicast_enabled);
}
static int
ice_dcf_dev_allmulticast_enable(__rte_unused struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
if (adapter->promisc_multicast_enabled) {
PMD_DRV_LOG(INFO, "allmulticast has been enabled");
return 0;
}
return dcf_config_promisc(adapter, adapter->promisc_unicast_enabled,
true);
}
static int
ice_dcf_dev_allmulticast_disable(__rte_unused struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
if (!adapter->promisc_multicast_enabled) {
PMD_DRV_LOG(INFO, "allmulticast has been disabled");
return 0;
}
return dcf_config_promisc(adapter, adapter->promisc_unicast_enabled,
false);
}
static int
dcf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
__rte_unused uint32_t index,
__rte_unused uint32_t pool)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
int err;
if (rte_is_zero_ether_addr(addr)) {
PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
return -EINVAL;
}
err = ice_dcf_add_del_all_mac_addr(&adapter->real_hw, addr, true,
VIRTCHNL_ETHER_ADDR_EXTRA);
if (err) {
PMD_DRV_LOG(ERR, "fail to add MAC address");
return err;
}
return 0;
}
static void
dcf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct rte_ether_addr *addr = &dev->data->mac_addrs[index];
int err;
err = ice_dcf_add_del_all_mac_addr(&adapter->real_hw, addr, false,
VIRTCHNL_ETHER_ADDR_EXTRA);
if (err)
PMD_DRV_LOG(ERR, "fail to remove MAC address");
}
static int
dcf_add_del_mc_addr_list(struct ice_dcf_hw *hw,
struct rte_ether_addr *mc_addrs,
uint32_t mc_addrs_num, bool add)
{
struct virtchnl_ether_addr_list *list;
struct dcf_virtchnl_cmd args;
uint32_t i;
int len, err = 0;
len = sizeof(struct virtchnl_ether_addr_list);
len += sizeof(struct virtchnl_ether_addr) * mc_addrs_num;
list = rte_zmalloc(NULL, len, 0);
if (!list) {
PMD_DRV_LOG(ERR, "fail to allocate memory");
return -ENOMEM;
}
for (i = 0; i < mc_addrs_num; i++) {
memcpy(list->list[i].addr, mc_addrs[i].addr_bytes,
sizeof(list->list[i].addr));
list->list[i].type = VIRTCHNL_ETHER_ADDR_EXTRA;
}
list->vsi_id = hw->vsi_res->vsi_id;
list->num_elements = mc_addrs_num;
memset(&args, 0, sizeof(args));
args.v_op = add ? VIRTCHNL_OP_ADD_ETH_ADDR :
VIRTCHNL_OP_DEL_ETH_ADDR;
args.req_msg = (uint8_t *)list;
args.req_msglen = len;
err = ice_dcf_execute_virtchnl_cmd(hw, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command %s",
add ? "OP_ADD_ETHER_ADDRESS" :
"OP_DEL_ETHER_ADDRESS");
rte_free(list);
return err;
}
static int
dcf_set_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addrs,
uint32_t mc_addrs_num)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
uint32_t i;
int ret;
if (mc_addrs_num > DCF_NUM_MACADDR_MAX) {
PMD_DRV_LOG(ERR,
"can't add more than a limited number (%u) of addresses.",
(uint32_t)DCF_NUM_MACADDR_MAX);
return -EINVAL;
}
for (i = 0; i < mc_addrs_num; i++) {
if (!rte_is_multicast_ether_addr(&mc_addrs[i])) {
const uint8_t *mac = mc_addrs[i].addr_bytes;
PMD_DRV_LOG(ERR,
"Invalid mac: %02x:%02x:%02x:%02x:%02x:%02x",
mac[0], mac[1], mac[2], mac[3], mac[4],
mac[5]);
return -EINVAL;
}
}
if (adapter->mc_addrs_num) {
/* flush previous addresses */
ret = dcf_add_del_mc_addr_list(hw, adapter->mc_addrs,
adapter->mc_addrs_num, false);
if (ret)
return ret;
}
if (!mc_addrs_num) {
adapter->mc_addrs_num = 0;
return 0;
}
/* add new ones */
ret = dcf_add_del_mc_addr_list(hw, mc_addrs, mc_addrs_num, true);
if (ret) {
/* if adding mac address list fails, should add the
* previous addresses back.
*/
if (adapter->mc_addrs_num)
(void)dcf_add_del_mc_addr_list(hw, adapter->mc_addrs,
adapter->mc_addrs_num,
true);
return ret;
}
adapter->mc_addrs_num = mc_addrs_num;
memcpy(adapter->mc_addrs,
mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
return 0;
}
static int
dcf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
struct rte_ether_addr *old_addr;
int ret;
old_addr = hw->eth_dev->data->mac_addrs;
if (rte_is_same_ether_addr(old_addr, mac_addr))
return 0;
ret = ice_dcf_add_del_all_mac_addr(&adapter->real_hw, old_addr, false,
VIRTCHNL_ETHER_ADDR_PRIMARY);
if (ret)
PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
" %02X:%02X:%02X:%02X:%02X:%02X",
old_addr->addr_bytes[0],
old_addr->addr_bytes[1],
old_addr->addr_bytes[2],
old_addr->addr_bytes[3],
old_addr->addr_bytes[4],
old_addr->addr_bytes[5]);
ret = ice_dcf_add_del_all_mac_addr(&adapter->real_hw, mac_addr, true,
VIRTCHNL_ETHER_ADDR_PRIMARY);
if (ret)
PMD_DRV_LOG(ERR, "Fail to add new MAC:"
" %02X:%02X:%02X:%02X:%02X:%02X",
mac_addr->addr_bytes[0],
mac_addr->addr_bytes[1],
mac_addr->addr_bytes[2],
mac_addr->addr_bytes[3],
mac_addr->addr_bytes[4],
mac_addr->addr_bytes[5]);
if (ret)
return -EIO;
rte_ether_addr_copy(mac_addr, hw->eth_dev->data->mac_addrs);
return 0;
}
static int
dcf_add_del_vlan_v2(struct ice_dcf_hw *hw, uint16_t vlanid, bool add)
{
struct virtchnl_vlan_supported_caps *supported_caps =
&hw->vlan_v2_caps.filtering.filtering_support;
struct virtchnl_vlan *vlan_setting;
struct virtchnl_vlan_filter_list_v2 vlan_filter;
struct dcf_virtchnl_cmd args;
uint32_t filtering_caps;
int err;
if (supported_caps->outer) {
filtering_caps = supported_caps->outer;
vlan_setting = &vlan_filter.filters[0].outer;
} else {
filtering_caps = supported_caps->inner;
vlan_setting = &vlan_filter.filters[0].inner;
}
if (!(filtering_caps & VIRTCHNL_VLAN_ETHERTYPE_8100))
return -ENOTSUP;
memset(&vlan_filter, 0, sizeof(vlan_filter));
vlan_filter.vport_id = hw->vsi_res->vsi_id;
vlan_filter.num_elements = 1;
vlan_setting->tpid = RTE_ETHER_TYPE_VLAN;
vlan_setting->tci = vlanid;
memset(&args, 0, sizeof(args));
args.v_op = add ? VIRTCHNL_OP_ADD_VLAN_V2 : VIRTCHNL_OP_DEL_VLAN_V2;
args.req_msg = (uint8_t *)&vlan_filter;
args.req_msglen = sizeof(vlan_filter);
err = ice_dcf_execute_virtchnl_cmd(hw, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command %s",
add ? "OP_ADD_VLAN_V2" : "OP_DEL_VLAN_V2");
return err;
}
static int
dcf_add_del_vlan(struct ice_dcf_hw *hw, uint16_t vlanid, bool add)
{
struct virtchnl_vlan_filter_list *vlan_list;
uint8_t cmd_buffer[sizeof(struct virtchnl_vlan_filter_list) +
sizeof(uint16_t)];
struct dcf_virtchnl_cmd args;
int err;
vlan_list = (struct virtchnl_vlan_filter_list *)cmd_buffer;
vlan_list->vsi_id = hw->vsi_res->vsi_id;
vlan_list->num_elements = 1;
vlan_list->vlan_id[0] = vlanid;
memset(&args, 0, sizeof(args));
args.v_op = add ? VIRTCHNL_OP_ADD_VLAN : VIRTCHNL_OP_DEL_VLAN;
args.req_msg = cmd_buffer;
args.req_msglen = sizeof(cmd_buffer);
err = ice_dcf_execute_virtchnl_cmd(hw, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command %s",
add ? "OP_ADD_VLAN" : "OP_DEL_VLAN");
return err;
}
static int
dcf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
int err;
if (hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
err = dcf_add_del_vlan_v2(hw, vlan_id, on);
if (err)
return -EIO;
return 0;
}
if (!(hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
return -ENOTSUP;
err = dcf_add_del_vlan(hw, vlan_id, on);
if (err)
return -EIO;
return 0;
}
static void
dcf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
{
struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
uint32_t i, j;
uint64_t ids;
for (i = 0; i < RTE_DIM(vfc->ids); i++) {
if (vfc->ids[i] == 0)
continue;
ids = vfc->ids[i];
for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
if (ids & 1)
dcf_add_del_vlan_v2(hw, 64 * i + j, enable);
}
}
}
static int
dcf_config_vlan_strip_v2(struct ice_dcf_hw *hw, bool enable)
{
struct virtchnl_vlan_supported_caps *stripping_caps =
&hw->vlan_v2_caps.offloads.stripping_support;
struct virtchnl_vlan_setting vlan_strip;
struct dcf_virtchnl_cmd args;
uint32_t *ethertype;
int ret;
if ((stripping_caps->outer & VIRTCHNL_VLAN_ETHERTYPE_8100) &&
(stripping_caps->outer & VIRTCHNL_VLAN_TOGGLE))
ethertype = &vlan_strip.outer_ethertype_setting;
else if ((stripping_caps->inner & VIRTCHNL_VLAN_ETHERTYPE_8100) &&
(stripping_caps->inner & VIRTCHNL_VLAN_TOGGLE))
ethertype = &vlan_strip.inner_ethertype_setting;
else
return -ENOTSUP;
memset(&vlan_strip, 0, sizeof(vlan_strip));
vlan_strip.vport_id = hw->vsi_res->vsi_id;
*ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
memset(&args, 0, sizeof(args));
args.v_op = enable ? VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 :
VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2;
args.req_msg = (uint8_t *)&vlan_strip;
args.req_msglen = sizeof(vlan_strip);
ret = ice_dcf_execute_virtchnl_cmd(hw, &args);
if (ret)
PMD_DRV_LOG(ERR, "fail to execute command %s",
enable ? "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2" :
"VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2");
return ret;
}
static int
dcf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
{
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
bool enable;
int err;
if (mask & RTE_ETH_VLAN_FILTER_MASK) {
enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER);
dcf_iterate_vlan_filters_v2(dev, enable);
}
if (mask & RTE_ETH_VLAN_STRIP_MASK) {
enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP);
err = dcf_config_vlan_strip_v2(hw, enable);
/* If not support, the stripping is already disabled by PF */
if (err == -ENOTSUP && !enable)
err = 0;
if (err)
return -EIO;
}
return 0;
}
static int
dcf_enable_vlan_strip(struct ice_dcf_hw *hw)
{
struct dcf_virtchnl_cmd args;
int ret;
memset(&args, 0, sizeof(args));
args.v_op = VIRTCHNL_OP_ENABLE_VLAN_STRIPPING;
ret = ice_dcf_execute_virtchnl_cmd(hw, &args);
if (ret)
PMD_DRV_LOG(ERR,
"Failed to execute command of OP_ENABLE_VLAN_STRIPPING");
return ret;
}
static int
dcf_disable_vlan_strip(struct ice_dcf_hw *hw)
{
struct dcf_virtchnl_cmd args;
int ret;
memset(&args, 0, sizeof(args));
args.v_op = VIRTCHNL_OP_DISABLE_VLAN_STRIPPING;
ret = ice_dcf_execute_virtchnl_cmd(hw, &args);
if (ret)
PMD_DRV_LOG(ERR,
"Failed to execute command of OP_DISABLE_VLAN_STRIPPING");
return ret;
}
static int
dcf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
int err;
if (hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
return dcf_dev_vlan_offload_set_v2(dev, mask);
if (!(hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
return -ENOTSUP;
/* Vlan stripping setting */
if (mask & RTE_ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
err = dcf_enable_vlan_strip(hw);
else
err = dcf_disable_vlan_strip(hw);
if (err)
return -EIO;
}
return 0;
}
static int
ice_dcf_dev_flow_ops_get(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops)
{
if (!dev)
return -EINVAL;
*ops = &ice_flow_ops;
return 0;
}
static int
ice_dcf_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
uint8_t *lut;
uint16_t i, idx, shift;
int ret;
if (!(hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
if (reta_size != hw->vf_res->rss_lut_size) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, hw->vf_res->rss_lut_size);
return -EINVAL;
}
lut = rte_zmalloc("rss_lut", reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
/* store the old lut table temporarily */
rte_memcpy(lut, hw->rss_lut, reta_size);
for (i = 0; i < reta_size; i++) {
idx = i / RTE_ETH_RETA_GROUP_SIZE;
shift = i % RTE_ETH_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
lut[i] = reta_conf[idx].reta[shift];
}
rte_memcpy(hw->rss_lut, lut, reta_size);
/* send virtchnnl ops to configure rss*/
ret = ice_dcf_configure_rss_lut(hw);
if (ret) /* revert back */
rte_memcpy(hw->rss_lut, lut, reta_size);
rte_free(lut);
return ret;
}
static int
ice_dcf_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
uint16_t i, idx, shift;
if (!(hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
if (reta_size != hw->vf_res->rss_lut_size) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, hw->vf_res->rss_lut_size);
return -EINVAL;
}
for (i = 0; i < reta_size; i++) {
idx = i / RTE_ETH_RETA_GROUP_SIZE;
shift = i % RTE_ETH_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
reta_conf[idx].reta[shift] = hw->rss_lut[i];
}
return 0;
}
static int
ice_dcf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
if (!(hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
/* HENA setting, it is enabled by default, no change */
if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
PMD_DRV_LOG(DEBUG, "No key to be configured");
return 0;
} else if (rss_conf->rss_key_len != hw->vf_res->rss_key_size) {
PMD_DRV_LOG(ERR, "The size of hash key configured "
"(%d) doesn't match the size of hardware can "
"support (%d)", rss_conf->rss_key_len,
hw->vf_res->rss_key_size);
return -EINVAL;
}
rte_memcpy(hw->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
return ice_dcf_configure_rss_key(hw);
}
static int
ice_dcf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
if (!(hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
return -ENOTSUP;
/* Just set it to default value now. */
rss_conf->rss_hf = ICE_RSS_OFFLOAD_ALL;
if (!rss_conf->rss_key)
return 0;
rss_conf->rss_key_len = hw->vf_res->rss_key_size;
rte_memcpy(rss_conf->rss_key, hw->rss_key, rss_conf->rss_key_len);
return 0;
}
#define ICE_DCF_32_BIT_WIDTH (CHAR_BIT * 4)
#define ICE_DCF_48_BIT_WIDTH (CHAR_BIT * 6)
#define ICE_DCF_48_BIT_MASK RTE_LEN2MASK(ICE_DCF_48_BIT_WIDTH, uint64_t)
static void
ice_dcf_stat_update_48(uint64_t *offset, uint64_t *stat)
{
if (*stat >= *offset)
*stat = *stat - *offset;
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << ICE_DCF_48_BIT_WIDTH)) - *offset);
*stat &= ICE_DCF_48_BIT_MASK;
}
static void
ice_dcf_stat_update_32(uint64_t *offset, uint64_t *stat)
{
if (*stat >= *offset)
*stat = (uint64_t)(*stat - *offset);
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << ICE_DCF_32_BIT_WIDTH)) - *offset);
}
static void
ice_dcf_update_stats(struct virtchnl_eth_stats *oes,
struct virtchnl_eth_stats *nes)
{
ice_dcf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
ice_dcf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
ice_dcf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
ice_dcf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
ice_dcf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
ice_dcf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
ice_dcf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
ice_dcf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
ice_dcf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
ice_dcf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
ice_dcf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
}
static int
ice_dcf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct virtchnl_eth_stats pstats;
int ret;
if (hw->resetting) {
PMD_DRV_LOG(ERR,
"The DCF has been reset by PF, please reinit first");
return -EIO;
}
ret = ice_dcf_query_stats(hw, &pstats);
if (ret == 0) {
ice_dcf_update_stats(&hw->eth_stats_offset, &pstats);
stats->ipackets = pstats.rx_unicast + pstats.rx_multicast +
pstats.rx_broadcast - pstats.rx_discards;
stats->opackets = pstats.tx_broadcast + pstats.tx_multicast +
pstats.tx_unicast;
stats->imissed = pstats.rx_discards;
stats->oerrors = pstats.tx_errors + pstats.tx_discards;
stats->ibytes = pstats.rx_bytes;
stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
stats->obytes = pstats.tx_bytes;
} else {
PMD_DRV_LOG(ERR, "Get statistics failed");
}
return ret;
}
static int
ice_dcf_stats_reset(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct virtchnl_eth_stats pstats;
int ret;
if (hw->resetting)
return 0;
/* read stat values to clear hardware registers */
ret = ice_dcf_query_stats(hw, &pstats);
if (ret != 0)
return ret;
/* set stats offset base on current values */
hw->eth_stats_offset = pstats;
return 0;
}
static int ice_dcf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned int limit)
{
unsigned int i;
if (xstats_names != NULL)
for (i = 0; i < ICE_DCF_NB_XSTATS; i++) {
snprintf(xstats_names[i].name,
sizeof(xstats_names[i].name),
"%s", rte_ice_dcf_stats_strings[i].name);
}
return ICE_DCF_NB_XSTATS;
}
static int ice_dcf_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned int n)
{
int ret;
unsigned int i;
struct ice_dcf_adapter *adapter =
ICE_DCF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct ice_dcf_hw *hw = &adapter->real_hw;
struct virtchnl_eth_stats *postats = &hw->eth_stats_offset;
struct virtchnl_eth_stats pnstats;
if (n < ICE_DCF_NB_XSTATS)
return ICE_DCF_NB_XSTATS;
ret = ice_dcf_query_stats(hw, &pnstats);
if (ret != 0)
return 0;
if (!xstats)
return 0;
ice_dcf_update_stats(postats, &pnstats);
/* loop over xstats array and values from pstats */
for (i = 0; i < ICE_DCF_NB_XSTATS; i++) {
xstats[i].id = i;
xstats[i].value = *(uint64_t *)(((char *)&pnstats) +
rte_ice_dcf_stats_strings[i].offset);
}
return ICE_DCF_NB_XSTATS;
}
static void
ice_dcf_free_repr_info(struct ice_dcf_adapter *dcf_adapter)
{
if (dcf_adapter->repr_infos) {
rte_free(dcf_adapter->repr_infos);
dcf_adapter->repr_infos = NULL;
}
}
static int
ice_dcf_init_repr_info(struct ice_dcf_adapter *dcf_adapter)
{
dcf_adapter->repr_infos =
rte_calloc("ice_dcf_rep_info",
dcf_adapter->real_hw.num_vfs,
sizeof(dcf_adapter->repr_infos[0]), 0);
if (!dcf_adapter->repr_infos) {
PMD_DRV_LOG(ERR, "Failed to alloc memory for VF representors\n");
return -ENOMEM;
}
return 0;
}
static int
ice_dcf_dev_close(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
(void)ice_dcf_dev_stop(dev);
ice_free_queues(dev);
ice_dcf_free_repr_info(adapter);
ice_dcf_uninit_parent_adapter(dev);
ice_dcf_uninit_hw(dev, &adapter->real_hw);
return 0;
}
int
ice_dcf_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct rte_eth_link new_link;
memset(&new_link, 0, sizeof(new_link));
/* Only read status info stored in VF, and the info is updated
* when receive LINK_CHANGE event from PF by virtchnl.
*/
switch (hw->link_speed) {
case 10:
new_link.link_speed = RTE_ETH_SPEED_NUM_10M;
break;
case 100:
new_link.link_speed = RTE_ETH_SPEED_NUM_100M;
break;
case 1000:
new_link.link_speed = RTE_ETH_SPEED_NUM_1G;
break;
case 10000:
new_link.link_speed = RTE_ETH_SPEED_NUM_10G;
break;
case 20000:
new_link.link_speed = RTE_ETH_SPEED_NUM_20G;
break;
case 25000:
new_link.link_speed = RTE_ETH_SPEED_NUM_25G;
break;
case 40000:
new_link.link_speed = RTE_ETH_SPEED_NUM_40G;
break;
case 50000:
new_link.link_speed = RTE_ETH_SPEED_NUM_50G;
break;
case 100000:
new_link.link_speed = RTE_ETH_SPEED_NUM_100G;
break;
default:
new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
break;
}
new_link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
new_link.link_status = hw->link_up ? RTE_ETH_LINK_UP :
RTE_ETH_LINK_DOWN;
new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
RTE_ETH_LINK_SPEED_FIXED);
return rte_eth_linkstatus_set(dev, &new_link);
}
static int
ice_dcf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu __rte_unused)
{
/* mtu setting is forbidden if port is start */
if (dev->data->dev_started != 0) {
PMD_DRV_LOG(ERR, "port %d must be stopped before configuration",
dev->data->port_id);
return -EBUSY;
}
return 0;
}
bool
ice_dcf_adminq_need_retry(struct ice_adapter *ad)
{
return ad->hw.dcf_enabled &&
!__atomic_load_n(&ad->dcf_state_on, __ATOMIC_RELAXED);
}
/* Add UDP tunneling port */
static int
ice_dcf_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_adapter *parent_adapter = &adapter->parent;
struct ice_hw *parent_hw = &parent_adapter->hw;
int ret = 0;
if (!udp_tunnel)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_ETH_TUNNEL_TYPE_VXLAN:
ret = ice_create_tunnel(parent_hw, TNL_VXLAN,
udp_tunnel->udp_port);
break;
case RTE_ETH_TUNNEL_TYPE_ECPRI:
ret = ice_create_tunnel(parent_hw, TNL_ECPRI,
udp_tunnel->udp_port);
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -EINVAL;
break;
}
return ret;
}
/* Delete UDP tunneling port */
static int
ice_dcf_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_adapter *parent_adapter = &adapter->parent;
struct ice_hw *parent_hw = &parent_adapter->hw;
int ret = 0;
if (!udp_tunnel)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_ETH_TUNNEL_TYPE_VXLAN:
case RTE_ETH_TUNNEL_TYPE_ECPRI:
ret = ice_destroy_tunnel(parent_hw, udp_tunnel->udp_port, 0);
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -EINVAL;
break;
}
return ret;
}
static int
ice_dcf_tm_ops_get(struct rte_eth_dev *dev __rte_unused,
void *arg)
{
if (!arg)
return -EINVAL;
*(const void **)arg = &ice_dcf_tm_ops;
return 0;
}
static inline void
ice_dcf_reset_hw(struct rte_eth_dev *eth_dev, struct ice_dcf_hw *hw)
{
ice_dcf_uninit_hw(eth_dev, hw);
ice_dcf_init_hw(eth_dev, hw);
}
/* Check if reset has been triggered by PF */
static inline bool
ice_dcf_is_reset(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct iavf_hw *hw = &ad->real_hw.avf;
return !(IAVF_READ_REG(hw, IAVF_VF_ARQLEN1) &
IAVF_VF_ARQLEN1_ARQENABLE_MASK);
}
static int
ice_dcf_dev_reset(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
int ret;
if (ice_dcf_is_reset(dev)) {
if (!ad->real_hw.resetting)
ad->real_hw.resetting = true;
PMD_DRV_LOG(ERR, "The DCF has been reset by PF");
/*
* Simply reset hw to trigger an additional DCF enable/disable
* cycle which help to workaround the issue that kernel driver
* may not clean up resource during previous reset.
*/
ice_dcf_reset_hw(dev, hw);
}
ret = ice_dcf_dev_uninit(dev);
if (ret)
return ret;
ret = ice_dcf_dev_init(dev);
return ret;
}
static const uint32_t *
ice_dcf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_NONFRAG,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_UNKNOWN
};
return ptypes;
}
static const struct eth_dev_ops ice_dcf_eth_dev_ops = {
.dev_start = ice_dcf_dev_start,
.dev_stop = ice_dcf_dev_stop,
.dev_close = ice_dcf_dev_close,
.dev_reset = ice_dcf_dev_reset,
.dev_configure = ice_dcf_dev_configure,
.dev_infos_get = ice_dcf_dev_info_get,
.dev_supported_ptypes_get = ice_dcf_dev_supported_ptypes_get,
.rx_queue_setup = ice_rx_queue_setup,
.tx_queue_setup = ice_tx_queue_setup,
.rx_queue_release = ice_dev_rx_queue_release,
.tx_queue_release = ice_dev_tx_queue_release,
.rx_queue_start = ice_dcf_rx_queue_start,
.tx_queue_start = ice_dcf_tx_queue_start,
.rx_queue_stop = ice_dcf_rx_queue_stop,
.tx_queue_stop = ice_dcf_tx_queue_stop,
.rxq_info_get = ice_rxq_info_get,
.txq_info_get = ice_txq_info_get,
.get_monitor_addr = ice_get_monitor_addr,
.link_update = ice_dcf_link_update,
.stats_get = ice_dcf_stats_get,
.stats_reset = ice_dcf_stats_reset,
.xstats_get = ice_dcf_xstats_get,
.xstats_get_names = ice_dcf_xstats_get_names,
.xstats_reset = ice_dcf_stats_reset,
.promiscuous_enable = ice_dcf_dev_promiscuous_enable,
.promiscuous_disable = ice_dcf_dev_promiscuous_disable,
.allmulticast_enable = ice_dcf_dev_allmulticast_enable,
.allmulticast_disable = ice_dcf_dev_allmulticast_disable,
.mac_addr_add = dcf_dev_add_mac_addr,
.mac_addr_remove = dcf_dev_del_mac_addr,
.set_mc_addr_list = dcf_set_mc_addr_list,
.mac_addr_set = dcf_dev_set_default_mac_addr,
.vlan_filter_set = dcf_dev_vlan_filter_set,
.vlan_offload_set = dcf_dev_vlan_offload_set,
.flow_ops_get = ice_dcf_dev_flow_ops_get,
.udp_tunnel_port_add = ice_dcf_dev_udp_tunnel_port_add,
.udp_tunnel_port_del = ice_dcf_dev_udp_tunnel_port_del,
.tm_ops_get = ice_dcf_tm_ops_get,
.reta_update = ice_dcf_dev_rss_reta_update,
.reta_query = ice_dcf_dev_rss_reta_query,
.rss_hash_update = ice_dcf_dev_rss_hash_update,
.rss_hash_conf_get = ice_dcf_dev_rss_hash_conf_get,
.tx_done_cleanup = ice_tx_done_cleanup,
.mtu_set = ice_dcf_dev_mtu_set,
};
static int
ice_dcf_dev_init(struct rte_eth_dev *eth_dev)
{
struct ice_dcf_adapter *adapter = eth_dev->data->dev_private;
struct ice_adapter *parent_adapter = &adapter->parent;
eth_dev->dev_ops = &ice_dcf_eth_dev_ops;
eth_dev->rx_pkt_burst = ice_dcf_recv_pkts;
eth_dev->tx_pkt_burst = ice_dcf_xmit_pkts;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
adapter->real_hw.vc_event_msg_cb = ice_dcf_handle_pf_event_msg;
if (ice_dcf_init_hw(eth_dev, &adapter->real_hw) != 0) {
PMD_INIT_LOG(ERR, "Failed to init DCF hardware");
__atomic_store_n(&parent_adapter->dcf_state_on, false,
__ATOMIC_RELAXED);
return -1;
}
__atomic_store_n(&parent_adapter->dcf_state_on, true, __ATOMIC_RELAXED);
if (ice_dcf_init_parent_adapter(eth_dev) != 0) {
PMD_INIT_LOG(ERR, "Failed to init DCF parent adapter");
ice_dcf_uninit_hw(eth_dev, &adapter->real_hw);
return -1;
}
dcf_config_promisc(adapter, false, false);
return 0;
}
static int
ice_dcf_dev_uninit(struct rte_eth_dev *eth_dev)
{
ice_dcf_dev_close(eth_dev);
return 0;
}
static int
ice_dcf_engine_disabled_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque)
{
if (strcmp(value, "off"))
return -1;
return 0;
}
static int
ice_dcf_cap_check_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque)
{
if (strcmp(value, "dcf"))
return -1;
return 0;
}
int
ice_devargs_check(struct rte_devargs *devargs, enum ice_dcf_devrarg devarg_type)
{
struct rte_kvargs *kvlist;
unsigned int i = 0;
int ret = 0;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL)
return 0;
for (i = 0; i < ARRAY_SIZE(ice_devargs_table); i++) {
if (devarg_type == ice_devargs_table[i].type) {
if (!rte_kvargs_count(kvlist, ice_devargs_table[i].key))
goto exit;
if (rte_kvargs_process(kvlist, ice_devargs_table[i].key,
ice_devargs_table[i].handler, NULL) < 0)
goto exit;
ret = 1;
break;
}
}
exit:
rte_kvargs_free(kvlist);
return ret;
}
static int
eth_ice_dcf_pci_probe(__rte_unused struct rte_pci_driver *pci_drv,
struct rte_pci_device *pci_dev)
{
struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
struct ice_dcf_vf_repr_param repr_param;
char repr_name[RTE_ETH_NAME_MAX_LEN];
struct ice_dcf_adapter *dcf_adapter;
struct rte_eth_dev *dcf_ethdev;
uint16_t dcf_vsi_id;
int i, ret;
if (!ice_devargs_check(pci_dev->device.devargs, ICE_DCF_DEVARG_CAP))
return 1;
ret = rte_eth_devargs_parse(pci_dev->device.devargs->args, &eth_da);
if (ret)
return ret;
ret = rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct ice_dcf_adapter),
ice_dcf_dev_init);
if (ret || !eth_da.nb_representor_ports)
return ret;
if (eth_da.type != RTE_ETH_REPRESENTOR_VF)
return -ENOTSUP;
dcf_ethdev = rte_eth_dev_allocated(pci_dev->device.name);
if (dcf_ethdev == NULL)
return -ENODEV;
dcf_adapter = dcf_ethdev->data->dev_private;
ret = ice_dcf_init_repr_info(dcf_adapter);
if (ret)
return ret;
if (eth_da.nb_representor_ports > dcf_adapter->real_hw.num_vfs ||
eth_da.nb_representor_ports >= RTE_MAX_ETHPORTS) {
PMD_DRV_LOG(ERR, "the number of port representors is too large: %u",
eth_da.nb_representor_ports);
ice_dcf_free_repr_info(dcf_adapter);
return -EINVAL;
}
dcf_vsi_id = dcf_adapter->real_hw.vsi_id | VIRTCHNL_DCF_VF_VSI_VALID;
repr_param.dcf_eth_dev = dcf_ethdev;
repr_param.switch_domain_id = 0;
for (i = 0; i < eth_da.nb_representor_ports; i++) {
uint16_t vf_id = eth_da.representor_ports[i];
struct rte_eth_dev *vf_rep_eth_dev;
if (vf_id >= dcf_adapter->real_hw.num_vfs) {
PMD_DRV_LOG(ERR, "VF ID %u is out of range (0 ~ %u)",
vf_id, dcf_adapter->real_hw.num_vfs - 1);
ret = -EINVAL;
break;
}
if (dcf_adapter->real_hw.vf_vsi_map[vf_id] == dcf_vsi_id) {
PMD_DRV_LOG(ERR, "VF ID %u is DCF's ID.\n", vf_id);
ret = -EINVAL;
break;
}
repr_param.vf_id = vf_id;
snprintf(repr_name, sizeof(repr_name), "net_%s_representor_%u",
pci_dev->device.name, vf_id);
ret = rte_eth_dev_create(&pci_dev->device, repr_name,
sizeof(struct ice_dcf_vf_repr),
NULL, NULL, ice_dcf_vf_repr_init,
&repr_param);
if (ret) {
PMD_DRV_LOG(ERR, "failed to create DCF VF representor %s",
repr_name);
break;
}
vf_rep_eth_dev = rte_eth_dev_allocated(repr_name);
if (!vf_rep_eth_dev) {
PMD_DRV_LOG(ERR,
"Failed to find the ethdev for DCF VF representor: %s",
repr_name);
ret = -ENODEV;
break;
}
dcf_adapter->repr_infos[vf_id].vf_rep_eth_dev = vf_rep_eth_dev;
dcf_adapter->num_reprs++;
}
return ret;
}
static int
eth_ice_dcf_pci_remove(struct rte_pci_device *pci_dev)
{
struct rte_eth_dev *eth_dev;
eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
if (!eth_dev)
return 0;
if (eth_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
return rte_eth_dev_pci_generic_remove(pci_dev,
ice_dcf_vf_repr_uninit);
else
return rte_eth_dev_pci_generic_remove(pci_dev,
ice_dcf_dev_uninit);
}
static const struct rte_pci_id pci_id_ice_dcf_map[] = {
{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
static struct rte_pci_driver rte_ice_dcf_pmd = {
.id_table = pci_id_ice_dcf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = eth_ice_dcf_pci_probe,
.remove = eth_ice_dcf_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_ice_dcf, rte_ice_dcf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_ice_dcf, pci_id_ice_dcf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_ice_dcf, "* igb_uio | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_ice_dcf, "cap=dcf");