f-stack/dpdk/drivers/net/iavf/iavf_ipsec_crypto.c

1956 lines
53 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <rte_cryptodev.h>
#include <rte_ethdev.h>
#include <rte_security_driver.h>
#include <rte_security.h>
#include "iavf.h"
#include "iavf_rxtx.h"
#include "iavf_log.h"
#include "iavf_generic_flow.h"
#include "iavf_ipsec_crypto.h"
#include "iavf_ipsec_crypto_capabilities.h"
/**
* iAVF IPsec Crypto Security Context
*/
struct iavf_security_ctx {
struct iavf_adapter *adapter;
int pkt_md_offset;
struct rte_cryptodev_capabilities *crypto_capabilities;
};
/**
* iAVF IPsec Crypto Security Session Parameters
*/
struct iavf_security_session {
struct iavf_adapter *adapter;
enum rte_security_ipsec_sa_mode mode;
enum rte_security_ipsec_tunnel_type type;
enum rte_security_ipsec_sa_direction direction;
struct {
uint32_t spi; /* Security Parameter Index */
uint32_t hw_idx; /* SA Index in hardware table */
} sa;
struct {
uint8_t enabled :1;
union {
uint64_t value;
struct {
uint32_t hi;
uint32_t low;
};
};
} esn;
struct {
uint8_t enabled :1;
} udp_encap;
size_t iv_sz;
size_t icv_sz;
size_t block_sz;
struct iavf_ipsec_crypto_pkt_metadata pkt_metadata_template;
};
/**
* IV Length field in IPsec Tx Desc uses the following encoding:
*
* 0B - 0
* 4B - 1
* 8B - 2
* 16B - 3
*
* but we also need the IV Length for TSO to correctly calculate the total
* header length so placing it in the upper 6-bits here for easier retrieval.
*/
static inline uint8_t
calc_ipsec_desc_iv_len_field(uint16_t iv_sz)
{
uint8_t iv_length = IAVF_IPSEC_IV_LEN_NONE;
switch (iv_sz) {
case 4:
iv_length = IAVF_IPSEC_IV_LEN_DW;
break;
case 8:
iv_length = IAVF_IPSEC_IV_LEN_DDW;
break;
case 16:
iv_length = IAVF_IPSEC_IV_LEN_QDW;
break;
}
return (iv_sz << 2) | iv_length;
}
static unsigned int
iavf_ipsec_crypto_session_size_get(void *device __rte_unused)
{
return sizeof(struct iavf_security_session);
}
static const struct rte_cryptodev_symmetric_capability *
get_capability(struct iavf_security_ctx *iavf_sctx,
uint32_t algo, uint32_t type)
{
const struct rte_cryptodev_capabilities *capability;
int i = 0;
capability = &iavf_sctx->crypto_capabilities[i];
while (capability->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
if (capability->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
(uint32_t)capability->sym.xform_type == type &&
(uint32_t)capability->sym.cipher.algo == algo)
return &capability->sym;
/** try next capability */
capability = &iavf_crypto_capabilities[i++];
}
return NULL;
}
static const struct rte_cryptodev_symmetric_capability *
get_auth_capability(struct iavf_security_ctx *iavf_sctx,
enum rte_crypto_auth_algorithm algo)
{
return get_capability(iavf_sctx, algo, RTE_CRYPTO_SYM_XFORM_AUTH);
}
static const struct rte_cryptodev_symmetric_capability *
get_cipher_capability(struct iavf_security_ctx *iavf_sctx,
enum rte_crypto_cipher_algorithm algo)
{
return get_capability(iavf_sctx, algo, RTE_CRYPTO_SYM_XFORM_CIPHER);
}
static const struct rte_cryptodev_symmetric_capability *
get_aead_capability(struct iavf_security_ctx *iavf_sctx,
enum rte_crypto_aead_algorithm algo)
{
return get_capability(iavf_sctx, algo, RTE_CRYPTO_SYM_XFORM_AEAD);
}
static uint16_t
get_cipher_blocksize(struct iavf_security_ctx *iavf_sctx,
enum rte_crypto_cipher_algorithm algo)
{
const struct rte_cryptodev_symmetric_capability *capability;
capability = get_cipher_capability(iavf_sctx, algo);
if (capability == NULL)
return 0;
return capability->cipher.block_size;
}
static uint16_t
get_aead_blocksize(struct iavf_security_ctx *iavf_sctx,
enum rte_crypto_aead_algorithm algo)
{
const struct rte_cryptodev_symmetric_capability *capability;
capability = get_aead_capability(iavf_sctx, algo);
if (capability == NULL)
return 0;
return capability->cipher.block_size;
}
static uint16_t
get_auth_blocksize(struct iavf_security_ctx *iavf_sctx,
enum rte_crypto_auth_algorithm algo)
{
const struct rte_cryptodev_symmetric_capability *capability;
capability = get_auth_capability(iavf_sctx, algo);
if (capability == NULL)
return 0;
return capability->auth.block_size;
}
static uint8_t
calc_context_desc_cipherblock_sz(size_t len)
{
switch (len) {
case 8:
return 0x2;
case 16:
return 0x3;
default:
return 0x0;
}
}
static int
valid_length(uint32_t len, uint32_t min, uint32_t max, uint32_t increment)
{
if (len < min || len > max)
return false;
if (increment == 0)
return true;
if ((len - min) % increment)
return false;
/* make sure it fits in the key array */
if (len > VIRTCHNL_IPSEC_MAX_KEY_LEN)
return false;
return true;
}
static int
valid_auth_xform(struct iavf_security_ctx *iavf_sctx,
struct rte_crypto_auth_xform *auth)
{
const struct rte_cryptodev_symmetric_capability *capability;
capability = get_auth_capability(iavf_sctx, auth->algo);
if (capability == NULL)
return false;
/* verify key size */
if (!valid_length(auth->key.length,
capability->auth.key_size.min,
capability->auth.key_size.max,
capability->aead.key_size.increment))
return false;
return true;
}
static int
valid_cipher_xform(struct iavf_security_ctx *iavf_sctx,
struct rte_crypto_cipher_xform *cipher)
{
const struct rte_cryptodev_symmetric_capability *capability;
capability = get_cipher_capability(iavf_sctx, cipher->algo);
if (capability == NULL)
return false;
/* verify key size */
if (!valid_length(cipher->key.length,
capability->cipher.key_size.min,
capability->cipher.key_size.max,
capability->cipher.key_size.increment))
return false;
return true;
}
static int
valid_aead_xform(struct iavf_security_ctx *iavf_sctx,
struct rte_crypto_aead_xform *aead)
{
const struct rte_cryptodev_symmetric_capability *capability;
capability = get_aead_capability(iavf_sctx, aead->algo);
if (capability == NULL)
return false;
/* verify key size */
if (!valid_length(aead->key.length,
capability->aead.key_size.min,
capability->aead.key_size.max,
capability->aead.key_size.increment))
return false;
return true;
}
static int
iavf_ipsec_crypto_session_validate_conf(struct iavf_security_ctx *iavf_sctx,
struct rte_security_session_conf *conf)
{
/** validate security action/protocol selection */
if (conf->action_type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
conf->protocol != RTE_SECURITY_PROTOCOL_IPSEC) {
PMD_DRV_LOG(ERR, "Invalid action / protocol specified");
return -EINVAL;
}
/** validate IPsec protocol selection */
if (conf->ipsec.proto != RTE_SECURITY_IPSEC_SA_PROTO_ESP) {
PMD_DRV_LOG(ERR, "Invalid IPsec protocol specified");
return -EINVAL;
}
/** validate selected options */
if (conf->ipsec.options.copy_dscp ||
conf->ipsec.options.copy_flabel ||
conf->ipsec.options.copy_df ||
conf->ipsec.options.dec_ttl ||
conf->ipsec.options.ecn ||
conf->ipsec.options.stats) {
PMD_DRV_LOG(ERR, "Invalid IPsec option specified");
return -EINVAL;
}
/**
* Validate crypto xforms parameters.
*
* AEAD transforms can be used for either inbound/outbound IPsec SAs,
* for non-AEAD crypto transforms we explicitly only support CIPHER/AUTH
* for outbound and AUTH/CIPHER chained transforms for inbound IPsec.
*/
if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
if (!valid_aead_xform(iavf_sctx, &conf->crypto_xform->aead)) {
PMD_DRV_LOG(ERR, "Invalid IPsec option specified");
return -EINVAL;
}
} else if (conf->ipsec.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS &&
conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
conf->crypto_xform->next &&
conf->crypto_xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (!valid_cipher_xform(iavf_sctx,
&conf->crypto_xform->cipher)) {
PMD_DRV_LOG(ERR, "Invalid IPsec option specified");
return -EINVAL;
}
if (!valid_auth_xform(iavf_sctx,
&conf->crypto_xform->next->auth)) {
PMD_DRV_LOG(ERR, "Invalid IPsec option specified");
return -EINVAL;
}
} else if (conf->ipsec.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS &&
conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
conf->crypto_xform->next &&
conf->crypto_xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (!valid_auth_xform(iavf_sctx, &conf->crypto_xform->auth)) {
PMD_DRV_LOG(ERR, "Invalid IPsec option specified");
return -EINVAL;
}
if (!valid_cipher_xform(iavf_sctx,
&conf->crypto_xform->next->cipher)) {
PMD_DRV_LOG(ERR, "Invalid IPsec option specified");
return -EINVAL;
}
}
return 0;
}
static void
sa_add_set_aead_params(struct virtchnl_ipsec_crypto_cfg_item *cfg,
struct rte_crypto_aead_xform *aead, uint32_t salt)
{
cfg->crypto_type = VIRTCHNL_AEAD;
switch (aead->algo) {
case RTE_CRYPTO_AEAD_AES_CCM:
cfg->algo_type = VIRTCHNL_AES_CCM; break;
case RTE_CRYPTO_AEAD_AES_GCM:
cfg->algo_type = VIRTCHNL_AES_GCM; break;
case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
cfg->algo_type = VIRTCHNL_CHACHA20_POLY1305; break;
default:
PMD_DRV_LOG(ERR, "Invalid AEAD parameters");
break;
}
cfg->key_len = aead->key.length;
cfg->iv_len = sizeof(uint64_t); /* iv.length includes salt len */
cfg->digest_len = aead->digest_length;
cfg->salt = salt;
memcpy(cfg->key_data, aead->key.data, cfg->key_len);
}
static void
sa_add_set_cipher_params(struct virtchnl_ipsec_crypto_cfg_item *cfg,
struct rte_crypto_cipher_xform *cipher, uint32_t salt)
{
cfg->crypto_type = VIRTCHNL_CIPHER;
switch (cipher->algo) {
case RTE_CRYPTO_CIPHER_AES_CBC:
cfg->algo_type = VIRTCHNL_AES_CBC; break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
cfg->algo_type = VIRTCHNL_3DES_CBC; break;
case RTE_CRYPTO_CIPHER_NULL:
cfg->algo_type = VIRTCHNL_CIPHER_NO_ALG; break;
case RTE_CRYPTO_CIPHER_AES_CTR:
cfg->algo_type = VIRTCHNL_AES_CTR;
cfg->salt = salt;
break;
default:
PMD_DRV_LOG(ERR, "Invalid cipher parameters");
break;
}
cfg->key_len = cipher->key.length;
cfg->iv_len = cipher->iv.length;
cfg->salt = salt;
memcpy(cfg->key_data, cipher->key.data, cfg->key_len);
}
static void
sa_add_set_auth_params(struct virtchnl_ipsec_crypto_cfg_item *cfg,
struct rte_crypto_auth_xform *auth, uint32_t salt)
{
cfg->crypto_type = VIRTCHNL_AUTH;
switch (auth->algo) {
case RTE_CRYPTO_AUTH_NULL:
cfg->algo_type = VIRTCHNL_HASH_NO_ALG; break;
case RTE_CRYPTO_AUTH_AES_CBC_MAC:
cfg->algo_type = VIRTCHNL_AES_CBC_MAC; break;
case RTE_CRYPTO_AUTH_AES_CMAC:
cfg->algo_type = VIRTCHNL_AES_CMAC; break;
case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
cfg->algo_type = VIRTCHNL_AES_XCBC_MAC; break;
case RTE_CRYPTO_AUTH_MD5_HMAC:
cfg->algo_type = VIRTCHNL_MD5_HMAC; break;
case RTE_CRYPTO_AUTH_SHA1_HMAC:
cfg->algo_type = VIRTCHNL_SHA1_HMAC; break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
cfg->algo_type = VIRTCHNL_SHA224_HMAC; break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
cfg->algo_type = VIRTCHNL_SHA256_HMAC; break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
cfg->algo_type = VIRTCHNL_SHA384_HMAC; break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
cfg->algo_type = VIRTCHNL_SHA512_HMAC; break;
case RTE_CRYPTO_AUTH_AES_GMAC:
cfg->algo_type = VIRTCHNL_AES_GMAC;
cfg->salt = salt;
break;
default:
PMD_DRV_LOG(ERR, "Invalid auth parameters");
break;
}
cfg->key_len = auth->key.length;
/* special case for RTE_CRYPTO_AUTH_AES_GMAC */
if (auth->algo == RTE_CRYPTO_AUTH_AES_GMAC)
cfg->iv_len = sizeof(uint64_t); /* iv.length includes salt */
else
cfg->iv_len = auth->iv.length;
cfg->digest_len = auth->digest_length;
memcpy(cfg->key_data, auth->key.data, cfg->key_len);
}
/**
* Send SA add virtual channel request to Inline IPsec driver.
*
* Inline IPsec driver expects SPI and destination IP address to be in host
* order, but DPDK APIs are network order, therefore we need to do a htonl
* conversion of these parameters.
*/
static uint32_t
iavf_ipsec_crypto_security_association_add(struct iavf_adapter *adapter,
struct rte_security_session_conf *conf)
{
struct inline_ipsec_msg *request = NULL, *response = NULL;
struct virtchnl_ipsec_sa_cfg *sa_cfg;
size_t request_len, response_len;
int rc;
request_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_sa_cfg);
request = rte_malloc("iavf-sad-add-request", request_len, 0);
if (request == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
response_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_sa_cfg_resp);
response = rte_malloc("iavf-sad-add-response", response_len, 0);
if (response == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
/* set msg header params */
request->ipsec_opcode = INLINE_IPSEC_OP_SA_CREATE;
request->req_id = (uint16_t)0xDEADBEEF;
/* set SA configuration params */
sa_cfg = (struct virtchnl_ipsec_sa_cfg *)(request + 1);
sa_cfg->spi = conf->ipsec.spi;
sa_cfg->virtchnl_protocol_type = VIRTCHNL_PROTO_ESP;
sa_cfg->virtchnl_direction =
conf->ipsec.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS ?
VIRTCHNL_DIR_INGRESS : VIRTCHNL_DIR_EGRESS;
if (conf->ipsec.options.esn) {
sa_cfg->esn_enabled = 1;
sa_cfg->esn_hi = conf->ipsec.esn.hi;
sa_cfg->esn_low = conf->ipsec.esn.low;
}
if (conf->ipsec.options.udp_encap)
sa_cfg->udp_encap_enabled = 1;
/* Set outer IP params */
if (conf->ipsec.tunnel.type == RTE_SECURITY_IPSEC_TUNNEL_IPV4) {
sa_cfg->virtchnl_ip_type = VIRTCHNL_IPV4;
*((uint32_t *)sa_cfg->dst_addr) =
htonl(conf->ipsec.tunnel.ipv4.dst_ip.s_addr);
} else {
uint32_t *v6_dst_addr =
(uint32_t *)conf->ipsec.tunnel.ipv6.dst_addr.s6_addr;
sa_cfg->virtchnl_ip_type = VIRTCHNL_IPV6;
((uint32_t *)sa_cfg->dst_addr)[0] = htonl(v6_dst_addr[0]);
((uint32_t *)sa_cfg->dst_addr)[1] = htonl(v6_dst_addr[1]);
((uint32_t *)sa_cfg->dst_addr)[2] = htonl(v6_dst_addr[2]);
((uint32_t *)sa_cfg->dst_addr)[3] = htonl(v6_dst_addr[3]);
}
/* set crypto params */
if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
sa_add_set_aead_params(&sa_cfg->crypto_cfg.items[0],
&conf->crypto_xform->aead, conf->ipsec.salt);
} else if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
sa_add_set_cipher_params(&sa_cfg->crypto_cfg.items[0],
&conf->crypto_xform->cipher, conf->ipsec.salt);
sa_add_set_auth_params(&sa_cfg->crypto_cfg.items[1],
&conf->crypto_xform->next->auth, conf->ipsec.salt);
} else if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
sa_add_set_auth_params(&sa_cfg->crypto_cfg.items[0],
&conf->crypto_xform->auth, conf->ipsec.salt);
if (conf->crypto_xform->auth.algo != RTE_CRYPTO_AUTH_AES_GMAC)
sa_add_set_cipher_params(&sa_cfg->crypto_cfg.items[1],
&conf->crypto_xform->next->cipher, conf->ipsec.salt);
}
/* send virtual channel request to add SA to hardware database */
rc = iavf_ipsec_crypto_request(adapter,
(uint8_t *)request, request_len,
(uint8_t *)response, response_len);
if (rc)
goto update_cleanup;
/* verify response id */
if (response->ipsec_opcode != request->ipsec_opcode ||
response->req_id != request->req_id)
rc = -EFAULT;
else
rc = response->ipsec_data.sa_cfg_resp->sa_handle;
update_cleanup:
rte_free(response);
rte_free(request);
return rc;
}
static void
set_pkt_metadata_template(struct iavf_ipsec_crypto_pkt_metadata *template,
struct iavf_security_session *sess)
{
template->sa_idx = sess->sa.hw_idx;
if (sess->udp_encap.enabled)
template->ol_flags = IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT;
if (sess->esn.enabled)
template->ol_flags = IAVF_IPSEC_CRYPTO_OL_FLAGS_ESN;
template->len_iv = calc_ipsec_desc_iv_len_field(sess->iv_sz);
template->ctx_desc_ipsec_params =
calc_context_desc_cipherblock_sz(sess->block_sz) |
((uint8_t)(sess->icv_sz >> 2) << 3);
}
static void
set_session_parameter(struct iavf_security_ctx *iavf_sctx,
struct iavf_security_session *sess,
struct rte_security_session_conf *conf, uint32_t sa_idx)
{
sess->adapter = iavf_sctx->adapter;
sess->mode = conf->ipsec.mode;
sess->direction = conf->ipsec.direction;
if (sess->mode == RTE_SECURITY_IPSEC_SA_MODE_TUNNEL)
sess->type = conf->ipsec.tunnel.type;
sess->sa.spi = conf->ipsec.spi;
sess->sa.hw_idx = sa_idx;
if (conf->ipsec.options.esn) {
sess->esn.enabled = 1;
sess->esn.value = conf->ipsec.esn.value;
}
if (conf->ipsec.options.udp_encap)
sess->udp_encap.enabled = 1;
if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
sess->block_sz = get_aead_blocksize(iavf_sctx,
conf->crypto_xform->aead.algo);
sess->iv_sz = sizeof(uint64_t); /* iv.length includes salt */
sess->icv_sz = conf->crypto_xform->aead.digest_length;
} else if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
sess->block_sz = get_cipher_blocksize(iavf_sctx,
conf->crypto_xform->cipher.algo);
sess->iv_sz = conf->crypto_xform->cipher.iv.length;
sess->icv_sz = conf->crypto_xform->next->auth.digest_length;
} else if (conf->crypto_xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (conf->crypto_xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
sess->block_sz = get_auth_blocksize(iavf_sctx,
conf->crypto_xform->auth.algo);
sess->iv_sz = sizeof(uint64_t); /* iv len inc. salt */
sess->icv_sz = conf->crypto_xform->auth.digest_length;
} else {
sess->block_sz = get_cipher_blocksize(iavf_sctx,
conf->crypto_xform->next->cipher.algo);
sess->iv_sz =
conf->crypto_xform->next->cipher.iv.length;
sess->icv_sz = conf->crypto_xform->auth.digest_length;
}
}
set_pkt_metadata_template(&sess->pkt_metadata_template, sess);
}
/**
* Create IPsec Security Association for inline IPsec Crypto offload.
*
* 1. validate session configuration parameters
* 2. allocate session memory from mempool
* 3. add SA to hardware database
* 4. set session parameters
* 5. create packet metadata template for datapath
*/
static int
iavf_ipsec_crypto_session_create(void *device,
struct rte_security_session_conf *conf,
struct rte_security_session *session)
{
struct rte_eth_dev *ethdev = device;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(ethdev->data->dev_private);
struct iavf_security_ctx *iavf_sctx = adapter->security_ctx;
struct iavf_security_session *iavf_session = SECURITY_GET_SESS_PRIV(session);
int sa_idx;
int ret = 0;
/* validate that all SA parameters are valid for device */
ret = iavf_ipsec_crypto_session_validate_conf(iavf_sctx, conf);
if (ret)
return ret;
/* add SA to hardware database */
sa_idx = iavf_ipsec_crypto_security_association_add(adapter, conf);
if (sa_idx < 0) {
PMD_DRV_LOG(ERR,
"Failed to add SA (spi: %d, mode: %s, direction: %s)",
conf->ipsec.spi,
conf->ipsec.mode ==
RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT ?
"transport" : "tunnel",
conf->ipsec.direction ==
RTE_SECURITY_IPSEC_SA_DIR_INGRESS ?
"inbound" : "outbound");
return -EFAULT;
}
/* save data plane required session parameters */
set_session_parameter(iavf_sctx, iavf_session, conf, sa_idx);
return 0;
}
/**
* Check if valid ipsec crypto action.
* SPI must be non-zero and SPI in session must match SPI value
* passed into function.
*
* returns: 0 if invalid session or SPI value equal zero
* returns: 1 if valid
*/
uint32_t
iavf_ipsec_crypto_action_valid(struct rte_eth_dev *ethdev,
const struct rte_security_session *session, uint32_t spi)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(ethdev->data->dev_private);
const struct iavf_security_session *sess = (const void *)session->driver_priv_data;
/* verify we have a valid session and that it belong to this adapter */
if (unlikely(sess == NULL || sess->adapter != adapter))
return false;
/* SPI value must be non-zero and must match flow SPI*/
if (spi == 0 || (htonl(sess->sa.spi) != spi))
return false;
return true;
}
/**
* Send virtual channel security policy add request to IES driver.
*
* IES driver expects SPI and destination IP address to be in host
* order, but DPDK APIs are network order, therefore we need to do a htonl
* conversion of these parameters.
*/
int
iavf_ipsec_crypto_inbound_security_policy_add(struct iavf_adapter *adapter,
uint32_t esp_spi,
uint8_t is_v4,
rte_be32_t v4_dst_addr,
uint8_t *v6_dst_addr,
uint8_t drop,
bool is_udp,
uint16_t udp_port)
{
struct inline_ipsec_msg *request = NULL, *response = NULL;
size_t request_len, response_len;
int rc = 0;
request_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_sp_cfg);
request = rte_malloc("iavf-inbound-security-policy-add-request",
request_len, 0);
if (request == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
/* set msg header params */
request->ipsec_opcode = INLINE_IPSEC_OP_SP_CREATE;
request->req_id = (uint16_t)0xDEADBEEF;
/* ESP SPI */
request->ipsec_data.sp_cfg->spi = htonl(esp_spi);
/* Destination IP */
if (is_v4) {
request->ipsec_data.sp_cfg->table_id =
VIRTCHNL_IPSEC_INBOUND_SPD_TBL_IPV4;
request->ipsec_data.sp_cfg->dip[0] = htonl(v4_dst_addr);
} else {
request->ipsec_data.sp_cfg->table_id =
VIRTCHNL_IPSEC_INBOUND_SPD_TBL_IPV6;
request->ipsec_data.sp_cfg->dip[0] =
htonl(((uint32_t *)v6_dst_addr)[0]);
request->ipsec_data.sp_cfg->dip[1] =
htonl(((uint32_t *)v6_dst_addr)[1]);
request->ipsec_data.sp_cfg->dip[2] =
htonl(((uint32_t *)v6_dst_addr)[2]);
request->ipsec_data.sp_cfg->dip[3] =
htonl(((uint32_t *)v6_dst_addr)[3]);
}
request->ipsec_data.sp_cfg->drop = drop;
/** Traffic Class/Congestion Domain currently not support */
request->ipsec_data.sp_cfg->set_tc = 0;
request->ipsec_data.sp_cfg->cgd = 0;
request->ipsec_data.sp_cfg->is_udp = is_udp;
request->ipsec_data.sp_cfg->udp_port = htons(udp_port);
response_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_sp_cfg_resp);
response = rte_malloc("iavf-inbound-security-policy-add-response",
response_len, 0);
if (response == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
/* send virtual channel request to add SA to hardware database */
rc = iavf_ipsec_crypto_request(adapter,
(uint8_t *)request, request_len,
(uint8_t *)response, response_len);
if (rc)
goto update_cleanup;
/* verify response */
if (response->ipsec_opcode != request->ipsec_opcode ||
response->req_id != request->req_id)
rc = -EFAULT;
else
rc = response->ipsec_data.sp_cfg_resp->rule_id;
update_cleanup:
rte_free(request);
rte_free(response);
return rc;
}
static uint32_t
iavf_ipsec_crypto_sa_update_esn(struct iavf_adapter *adapter,
struct iavf_security_session *sess)
{
struct inline_ipsec_msg *request = NULL, *response = NULL;
size_t request_len, response_len;
int rc = 0;
request_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_sa_update);
request = rte_malloc("iavf-sa-update-request", request_len, 0);
if (request == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
response_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_resp);
response = rte_malloc("iavf-sa-update-response", response_len, 0);
if (response == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
/* set msg header params */
request->ipsec_opcode = INLINE_IPSEC_OP_SA_UPDATE;
request->req_id = (uint16_t)0xDEADBEEF;
/* set request params */
request->ipsec_data.sa_update->sa_index = sess->sa.hw_idx;
request->ipsec_data.sa_update->esn_hi = sess->esn.hi;
/* send virtual channel request to add SA to hardware database */
rc = iavf_ipsec_crypto_request(adapter,
(uint8_t *)request, request_len,
(uint8_t *)response, response_len);
if (rc)
goto update_cleanup;
/* verify response */
if (response->ipsec_opcode != request->ipsec_opcode ||
response->req_id != request->req_id)
rc = -EFAULT;
else
rc = response->ipsec_data.ipsec_resp->resp;
update_cleanup:
rte_free(request);
rte_free(response);
return rc;
}
static int
iavf_ipsec_crypto_session_update(void *device,
struct rte_security_session *session,
struct rte_security_session_conf *conf)
{
struct iavf_adapter *adapter = NULL;
struct iavf_security_session *iavf_sess = NULL;
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)device;
int rc = 0;
adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
iavf_sess = SECURITY_GET_SESS_PRIV(session);
/* verify we have a valid session and that it belong to this adapter */
if (unlikely(iavf_sess == NULL || iavf_sess->adapter != adapter))
return -EINVAL;
/* update esn hi 32-bits */
if (iavf_sess->esn.enabled && conf->ipsec.options.esn) {
/**
* Update ESN in hardware for inbound SA. Store in
* iavf_security_session for outbound SA for use
* in *iavf_ipsec_crypto_pkt_metadata_set* function.
*/
iavf_sess->esn.hi = conf->ipsec.esn.hi;
iavf_sess->esn.low = conf->ipsec.esn.low;
if (iavf_sess->direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS)
rc = iavf_ipsec_crypto_sa_update_esn(adapter,
iavf_sess);
}
return rc;
}
static int
iavf_ipsec_crypto_session_stats_get(void *device __rte_unused,
struct rte_security_session *session __rte_unused,
struct rte_security_stats *stats __rte_unused)
{
return -EOPNOTSUPP;
}
int
iavf_ipsec_crypto_security_policy_delete(struct iavf_adapter *adapter,
uint8_t is_v4, uint32_t flow_id)
{
struct inline_ipsec_msg *request = NULL, *response = NULL;
size_t request_len, response_len;
int rc = 0;
request_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_sp_destroy);
request = rte_malloc("iavf-sp-del-request", request_len, 0);
if (request == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
response_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_resp);
response = rte_malloc("iavf-sp-del-response", response_len, 0);
if (response == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
/* set msg header params */
request->ipsec_opcode = INLINE_IPSEC_OP_SP_DESTROY;
request->req_id = (uint16_t)0xDEADBEEF;
/* set security policy params */
request->ipsec_data.sp_destroy->table_id = is_v4 ?
VIRTCHNL_IPSEC_INBOUND_SPD_TBL_IPV4 :
VIRTCHNL_IPSEC_INBOUND_SPD_TBL_IPV6;
request->ipsec_data.sp_destroy->rule_id = flow_id;
/* send virtual channel request to add SA to hardware database */
rc = iavf_ipsec_crypto_request(adapter,
(uint8_t *)request, request_len,
(uint8_t *)response, response_len);
if (rc)
goto update_cleanup;
/* verify response */
if (response->ipsec_opcode != request->ipsec_opcode ||
response->req_id != request->req_id)
rc = -EFAULT;
else
return response->ipsec_data.ipsec_status->status;
update_cleanup:
rte_free(request);
rte_free(response);
return rc;
}
static uint32_t
iavf_ipsec_crypto_sa_del(struct iavf_adapter *adapter,
struct iavf_security_session *sess)
{
struct inline_ipsec_msg *request = NULL, *response = NULL;
size_t request_len, response_len;
int rc = 0;
request_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_sa_destroy);
request = rte_malloc("iavf-sa-del-request", request_len, 0);
if (request == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
response_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_resp);
response = rte_malloc("iavf-sa-del-response", response_len, 0);
if (response == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
/* set msg header params */
request->ipsec_opcode = INLINE_IPSEC_OP_SA_DESTROY;
request->req_id = (uint16_t)0xDEADBEEF;
/**
* SA delete supports deletion of 1-8 specified SA's or if the flag
* field is zero, all SA's associated with VF will be deleted.
*/
if (sess) {
request->ipsec_data.sa_destroy->flag = 0x1;
request->ipsec_data.sa_destroy->sa_index[0] = sess->sa.hw_idx;
} else {
request->ipsec_data.sa_destroy->flag = 0x0;
}
/* send virtual channel request to add SA to hardware database */
rc = iavf_ipsec_crypto_request(adapter,
(uint8_t *)request, request_len,
(uint8_t *)response, response_len);
if (rc)
goto update_cleanup;
/* verify response */
if (response->ipsec_opcode != request->ipsec_opcode ||
response->req_id != request->req_id)
rc = -EFAULT;
/**
* Delete status will be the same bitmask as sa_destroy request flag if
* deletes successful
*/
if (request->ipsec_data.sa_destroy->flag !=
response->ipsec_data.ipsec_status->status)
rc = -EFAULT;
update_cleanup:
rte_free(response);
rte_free(request);
return rc;
}
static int
iavf_ipsec_crypto_session_destroy(void *device,
struct rte_security_session *session)
{
struct iavf_adapter *adapter = NULL;
struct iavf_security_session *iavf_sess = NULL;
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)device;
int ret;
adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
iavf_sess = SECURITY_GET_SESS_PRIV(session);
/* verify we have a valid session and that it belong to this adapter */
if (unlikely(iavf_sess == NULL || iavf_sess->adapter != adapter))
return -EINVAL;
ret = iavf_ipsec_crypto_sa_del(adapter, iavf_sess);
memset(iavf_sess, 0, sizeof(struct iavf_security_session));
return ret;
}
/**
* Get ESP trailer from packet as well as calculate the total ESP trailer
* length, which include padding, ESP trailer footer and the ICV
*/
static inline struct rte_esp_tail *
iavf_ipsec_crypto_get_esp_trailer(struct rte_mbuf *m,
struct iavf_security_session *s, uint16_t *esp_trailer_length)
{
struct rte_esp_tail *esp_trailer;
uint16_t length = sizeof(struct rte_esp_tail) + s->icv_sz;
uint16_t offset = 0;
/**
* The ICV will not be present in TSO packets as this is appended by
* hardware during segment generation
*/
if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
length -= s->icv_sz;
*esp_trailer_length = length;
/**
* Calculate offset in packet to ESP trailer header, this should be
* total packet length less the size of the ESP trailer plus the ICV
* length if it is present
*/
offset = rte_pktmbuf_pkt_len(m) - length;
if (m->nb_segs > 1) {
/* find segment which esp trailer is located */
while (m->data_len < offset) {
offset -= m->data_len;
m = m->next;
}
}
esp_trailer = rte_pktmbuf_mtod_offset(m, struct rte_esp_tail *, offset);
*esp_trailer_length += esp_trailer->pad_len;
return esp_trailer;
}
static inline uint16_t
iavf_ipsec_crypto_compute_l4_payload_length(struct rte_mbuf *m,
struct iavf_security_session *s, uint16_t esp_tlen)
{
uint16_t ol2_len = m->l2_len; /* MAC + VLAN */
uint16_t ol3_len = 0; /* ipv4/6 + ext hdrs */
uint16_t ol4_len = 0; /* UDP NATT */
uint16_t l3_len = 0; /* IPv4/6 + ext hdrs */
uint16_t l4_len = 0; /* TCP/UDP/STCP hdrs */
uint16_t esp_hlen = sizeof(struct rte_esp_hdr) + s->iv_sz;
if (s->mode == RTE_SECURITY_IPSEC_SA_MODE_TUNNEL)
ol3_len = m->outer_l3_len;
/**<
* application provided l3len assumed to include length of
* ipv4/6 hdr + ext hdrs
*/
if (s->udp_encap.enabled) {
ol4_len = sizeof(struct rte_udp_hdr);
l3_len = m->l3_len - ol4_len;
l4_len = l3_len;
} else {
l3_len = m->l3_len;
l4_len = m->l4_len;
}
return rte_pktmbuf_pkt_len(m) - (ol2_len + ol3_len + ol4_len +
esp_hlen + l3_len + l4_len + esp_tlen);
}
static int
iavf_ipsec_crypto_pkt_metadata_set(void *device,
struct rte_security_session *session,
struct rte_mbuf *m, void *params)
{
struct rte_eth_dev *ethdev = device;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(ethdev->data->dev_private);
struct iavf_security_ctx *iavf_sctx = adapter->security_ctx;
struct iavf_security_session *iavf_sess = SECURITY_GET_SESS_PRIV(session);
struct iavf_ipsec_crypto_pkt_metadata *md;
struct rte_esp_tail *esp_tail;
uint64_t *sqn = params;
uint16_t esp_trailer_length;
/* Check we have valid session and is associated with this device */
if (unlikely(iavf_sess == NULL || iavf_sess->adapter != adapter))
return -EINVAL;
/* Get dynamic metadata location from mbuf */
md = RTE_MBUF_DYNFIELD(m, iavf_sctx->pkt_md_offset,
struct iavf_ipsec_crypto_pkt_metadata *);
/* Set immutable metadata values from session template */
memcpy(md, &iavf_sess->pkt_metadata_template,
sizeof(struct iavf_ipsec_crypto_pkt_metadata));
esp_tail = iavf_ipsec_crypto_get_esp_trailer(m, iavf_sess,
&esp_trailer_length);
/* Set per packet mutable metadata values */
md->esp_trailer_len = esp_trailer_length;
md->l4_payload_len = iavf_ipsec_crypto_compute_l4_payload_length(m,
iavf_sess, esp_trailer_length);
md->next_proto = esp_tail->next_proto;
/* If Extended SN in use set the upper 32-bits in metadata */
if (iavf_sess->esn.enabled && sqn != NULL)
md->esn = (uint32_t)(*sqn >> 32);
return 0;
}
static int
iavf_ipsec_crypto_device_capabilities_get(struct iavf_adapter *adapter,
struct virtchnl_ipsec_cap *capability)
{
/* Perform pf-vf comms */
struct inline_ipsec_msg *request = NULL, *response = NULL;
size_t request_len, response_len;
int rc;
request_len = sizeof(struct inline_ipsec_msg);
request = rte_malloc("iavf-device-capability-request", request_len, 0);
if (request == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
response_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_cap);
response = rte_malloc("iavf-device-capability-response",
response_len, 0);
if (response == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
/* set msg header params */
request->ipsec_opcode = INLINE_IPSEC_OP_GET_CAP;
request->req_id = (uint16_t)0xDEADBEEF;
/* send virtual channel request to add SA to hardware database */
rc = iavf_ipsec_crypto_request(adapter,
(uint8_t *)request, request_len,
(uint8_t *)response, response_len);
if (rc)
goto update_cleanup;
/* verify response id */
if (response->ipsec_opcode != request->ipsec_opcode ||
response->req_id != request->req_id){
rc = -EFAULT;
goto update_cleanup;
}
memcpy(capability, response->ipsec_data.ipsec_cap, sizeof(*capability));
update_cleanup:
rte_free(response);
rte_free(request);
return rc;
}
enum rte_crypto_auth_algorithm auth_maptbl[] = {
/* Hash Algorithm */
[VIRTCHNL_HASH_NO_ALG] = RTE_CRYPTO_AUTH_NULL,
[VIRTCHNL_AES_CBC_MAC] = RTE_CRYPTO_AUTH_AES_CBC_MAC,
[VIRTCHNL_AES_CMAC] = RTE_CRYPTO_AUTH_AES_CMAC,
[VIRTCHNL_AES_GMAC] = RTE_CRYPTO_AUTH_AES_GMAC,
[VIRTCHNL_AES_XCBC_MAC] = RTE_CRYPTO_AUTH_AES_XCBC_MAC,
[VIRTCHNL_MD5_HMAC] = RTE_CRYPTO_AUTH_MD5_HMAC,
[VIRTCHNL_SHA1_HMAC] = RTE_CRYPTO_AUTH_SHA1_HMAC,
[VIRTCHNL_SHA224_HMAC] = RTE_CRYPTO_AUTH_SHA224_HMAC,
[VIRTCHNL_SHA256_HMAC] = RTE_CRYPTO_AUTH_SHA256_HMAC,
[VIRTCHNL_SHA384_HMAC] = RTE_CRYPTO_AUTH_SHA384_HMAC,
[VIRTCHNL_SHA512_HMAC] = RTE_CRYPTO_AUTH_SHA512_HMAC,
[VIRTCHNL_SHA3_224_HMAC] = RTE_CRYPTO_AUTH_SHA3_224_HMAC,
[VIRTCHNL_SHA3_256_HMAC] = RTE_CRYPTO_AUTH_SHA3_256_HMAC,
[VIRTCHNL_SHA3_384_HMAC] = RTE_CRYPTO_AUTH_SHA3_384_HMAC,
[VIRTCHNL_SHA3_512_HMAC] = RTE_CRYPTO_AUTH_SHA3_512_HMAC,
};
static void
update_auth_capabilities(struct rte_cryptodev_capabilities *scap,
struct virtchnl_algo_cap *acap)
{
struct rte_cryptodev_symmetric_capability *capability = &scap->sym;
scap->op = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
capability->xform_type = RTE_CRYPTO_SYM_XFORM_AUTH;
capability->auth.algo = auth_maptbl[acap->algo_type];
capability->auth.block_size = acap->block_size;
capability->auth.key_size.min = acap->min_key_size;
capability->auth.key_size.max = acap->max_key_size;
capability->auth.key_size.increment = acap->inc_key_size;
capability->auth.digest_size.min = acap->min_digest_size;
capability->auth.digest_size.max = acap->max_digest_size;
capability->auth.digest_size.increment = acap->inc_digest_size;
}
enum rte_crypto_cipher_algorithm cipher_maptbl[] = {
/* Cipher Algorithm */
[VIRTCHNL_CIPHER_NO_ALG] = RTE_CRYPTO_CIPHER_NULL,
[VIRTCHNL_3DES_CBC] = RTE_CRYPTO_CIPHER_3DES_CBC,
[VIRTCHNL_AES_CBC] = RTE_CRYPTO_CIPHER_AES_CBC,
[VIRTCHNL_AES_CTR] = RTE_CRYPTO_CIPHER_AES_CTR,
};
static void
update_cipher_capabilities(struct rte_cryptodev_capabilities *scap,
struct virtchnl_algo_cap *acap)
{
struct rte_cryptodev_symmetric_capability *capability = &scap->sym;
scap->op = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
capability->xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER;
capability->cipher.algo = cipher_maptbl[acap->algo_type];
capability->cipher.block_size = acap->block_size;
capability->cipher.key_size.min = acap->min_key_size;
capability->cipher.key_size.max = acap->max_key_size;
capability->cipher.key_size.increment = acap->inc_key_size;
capability->cipher.iv_size.min = acap->min_iv_size;
capability->cipher.iv_size.max = acap->max_iv_size;
capability->cipher.iv_size.increment = acap->inc_iv_size;
}
enum rte_crypto_aead_algorithm aead_maptbl[] = {
/* AEAD Algorithm */
[VIRTCHNL_AES_CCM] = RTE_CRYPTO_AEAD_AES_CCM,
[VIRTCHNL_AES_GCM] = RTE_CRYPTO_AEAD_AES_GCM,
[VIRTCHNL_CHACHA20_POLY1305] = RTE_CRYPTO_AEAD_CHACHA20_POLY1305,
};
static void
update_aead_capabilities(struct rte_cryptodev_capabilities *scap,
struct virtchnl_algo_cap *acap)
{
struct rte_cryptodev_symmetric_capability *capability = &scap->sym;
scap->op = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
capability->xform_type = RTE_CRYPTO_SYM_XFORM_AEAD;
capability->aead.algo = aead_maptbl[acap->algo_type];
capability->aead.block_size = acap->block_size;
capability->aead.key_size.min = acap->min_key_size;
capability->aead.key_size.max = acap->max_key_size;
capability->aead.key_size.increment = acap->inc_key_size;
capability->aead.aad_size.min = acap->min_aad_size;
capability->aead.aad_size.max = acap->max_aad_size;
capability->aead.aad_size.increment = acap->inc_aad_size;
capability->aead.iv_size.min = acap->min_iv_size;
capability->aead.iv_size.max = acap->max_iv_size;
capability->aead.iv_size.increment = acap->inc_iv_size;
capability->aead.digest_size.min = acap->min_digest_size;
capability->aead.digest_size.max = acap->max_digest_size;
capability->aead.digest_size.increment = acap->inc_digest_size;
}
/**
* Dynamically set crypto capabilities based on virtchannel IPsec
* capabilities structure.
*/
int
iavf_ipsec_crypto_set_security_capabililites(struct iavf_security_ctx
*iavf_sctx, struct virtchnl_ipsec_cap *vch_cap)
{
struct rte_cryptodev_capabilities *capabilities;
int i, j, number_of_capabilities = 0, ci = 0;
/* Count the total number of crypto algorithms supported */
for (i = 0; i < VIRTCHNL_IPSEC_MAX_CRYPTO_CAP_NUM; i++)
number_of_capabilities += vch_cap->cap[i].algo_cap_num;
/**
* Allocate cryptodev capabilities structure for
* *number_of_capabilities* items plus one item to null terminate the
* array
*/
capabilities = rte_zmalloc("crypto_cap",
sizeof(struct rte_cryptodev_capabilities) *
(number_of_capabilities + 1), 0);
if (!capabilities)
return -ENOMEM;
capabilities[number_of_capabilities].op = RTE_CRYPTO_OP_TYPE_UNDEFINED;
/**
* Iterate over each virtchnl crypto capability by crypto type and
* algorithm.
*/
for (i = 0; i < VIRTCHNL_IPSEC_MAX_CRYPTO_CAP_NUM; i++) {
for (j = 0; j < vch_cap->cap[i].algo_cap_num; j++, ci++) {
switch (vch_cap->cap[i].crypto_type) {
case VIRTCHNL_AUTH:
update_auth_capabilities(&capabilities[ci],
&vch_cap->cap[i].algo_cap_list[j]);
break;
case VIRTCHNL_CIPHER:
update_cipher_capabilities(&capabilities[ci],
&vch_cap->cap[i].algo_cap_list[j]);
break;
case VIRTCHNL_AEAD:
update_aead_capabilities(&capabilities[ci],
&vch_cap->cap[i].algo_cap_list[j]);
break;
default:
capabilities[ci].op =
RTE_CRYPTO_OP_TYPE_UNDEFINED;
break;
}
}
}
iavf_sctx->crypto_capabilities = capabilities;
return 0;
}
/**
* Get security capabilities for device
*/
static const struct rte_security_capability *
iavf_ipsec_crypto_capabilities_get(void *device)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)device;
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
struct iavf_security_ctx *iavf_sctx = adapter->security_ctx;
unsigned int i;
static struct rte_security_capability iavf_security_capabilities[] = {
{ /* IPsec Inline Crypto ESP Tunnel Egress */
.action = RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
.direction = RTE_SECURITY_IPSEC_SA_DIR_EGRESS,
.options = { .udp_encap = 1,
.stats = 1, .esn = 1 },
},
.ol_flags = RTE_SECURITY_TX_OLOAD_NEED_MDATA
},
{ /* IPsec Inline Crypto ESP Tunnel Ingress */
.action = RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
.options = { .udp_encap = 1,
.stats = 1, .esn = 1 },
},
.ol_flags = 0
},
{ /* IPsec Inline Crypto ESP Transport Egress */
.action = RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT,
.direction = RTE_SECURITY_IPSEC_SA_DIR_EGRESS,
.options = { .udp_encap = 1, .stats = 1,
.esn = 1 },
},
.ol_flags = RTE_SECURITY_TX_OLOAD_NEED_MDATA
},
{ /* IPsec Inline Crypto ESP Transport Ingress */
.action = RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT,
.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
.options = { .udp_encap = 1, .stats = 1,
.esn = 1 }
},
.ol_flags = 0
},
{
.action = RTE_SECURITY_ACTION_TYPE_NONE
}
};
/**
* Update the security capabilities struct with the runtime discovered
* crypto capabilities, except for last element of the array which is
* the null termination
*/
for (i = 0; i < ((sizeof(iavf_security_capabilities) /
sizeof(iavf_security_capabilities[0])) - 1); i++) {
iavf_security_capabilities[i].crypto_capabilities =
iavf_sctx->crypto_capabilities;
}
return iavf_security_capabilities;
}
static struct rte_security_ops iavf_ipsec_crypto_ops = {
.session_get_size = iavf_ipsec_crypto_session_size_get,
.session_create = iavf_ipsec_crypto_session_create,
.session_update = iavf_ipsec_crypto_session_update,
.session_stats_get = iavf_ipsec_crypto_session_stats_get,
.session_destroy = iavf_ipsec_crypto_session_destroy,
.set_pkt_metadata = iavf_ipsec_crypto_pkt_metadata_set,
.capabilities_get = iavf_ipsec_crypto_capabilities_get,
};
int
iavf_security_ctx_create(struct iavf_adapter *adapter)
{
struct rte_security_ctx *sctx;
sctx = rte_malloc("security_ctx", sizeof(struct rte_security_ctx), 0);
if (sctx == NULL)
return -ENOMEM;
sctx->device = adapter->vf.eth_dev;
sctx->ops = &iavf_ipsec_crypto_ops;
sctx->sess_cnt = 0;
adapter->vf.eth_dev->security_ctx = sctx;
if (adapter->security_ctx == NULL) {
adapter->security_ctx = rte_malloc("iavf_security_ctx",
sizeof(struct iavf_security_ctx), 0);
if (adapter->security_ctx == NULL)
return -ENOMEM;
}
return 0;
}
int
iavf_security_init(struct iavf_adapter *adapter)
{
struct iavf_security_ctx *iavf_sctx = adapter->security_ctx;
struct rte_mbuf_dynfield pkt_md_dynfield = {
.name = "iavf_ipsec_crypto_pkt_metadata",
.size = sizeof(struct iavf_ipsec_crypto_pkt_metadata),
.align = __alignof__(struct iavf_ipsec_crypto_pkt_metadata)
};
struct virtchnl_ipsec_cap capabilities;
int rc;
iavf_sctx->adapter = adapter;
iavf_sctx->pkt_md_offset = rte_mbuf_dynfield_register(&pkt_md_dynfield);
if (iavf_sctx->pkt_md_offset < 0)
return iavf_sctx->pkt_md_offset;
/* Get device capabilities from Inline IPsec driver over PF-VF comms */
rc = iavf_ipsec_crypto_device_capabilities_get(adapter, &capabilities);
if (rc)
return rc;
return iavf_ipsec_crypto_set_security_capabililites(iavf_sctx,
&capabilities);
}
int
iavf_security_get_pkt_md_offset(struct iavf_adapter *adapter)
{
struct iavf_security_ctx *iavf_sctx = adapter->security_ctx;
return iavf_sctx->pkt_md_offset;
}
int
iavf_security_ctx_destroy(struct iavf_adapter *adapter)
{
struct rte_security_ctx *sctx = adapter->vf.eth_dev->security_ctx;
struct iavf_security_ctx *iavf_sctx = adapter->security_ctx;
if (iavf_sctx == NULL)
return -ENODEV;
/* free and reset security data structures */
rte_free(iavf_sctx);
rte_free(sctx);
adapter->security_ctx = NULL;
adapter->vf.eth_dev->security_ctx = NULL;
return 0;
}
static int
iavf_ipsec_crypto_status_get(struct iavf_adapter *adapter,
struct virtchnl_ipsec_status *status)
{
/* Perform pf-vf comms */
struct inline_ipsec_msg *request = NULL, *response = NULL;
size_t request_len, response_len;
int rc;
request_len = sizeof(struct inline_ipsec_msg);
request = rte_malloc("iavf-device-status-request", request_len, 0);
if (request == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
response_len = sizeof(struct inline_ipsec_msg) +
sizeof(struct virtchnl_ipsec_cap);
response = rte_malloc("iavf-device-status-response",
response_len, 0);
if (response == NULL) {
rc = -ENOMEM;
goto update_cleanup;
}
/* set msg header params */
request->ipsec_opcode = INLINE_IPSEC_OP_GET_STATUS;
request->req_id = (uint16_t)0xDEADBEEF;
/* send virtual channel request to add SA to hardware database */
rc = iavf_ipsec_crypto_request(adapter,
(uint8_t *)request, request_len,
(uint8_t *)response, response_len);
if (rc)
goto update_cleanup;
/* verify response id */
if (response->ipsec_opcode != request->ipsec_opcode ||
response->req_id != request->req_id){
rc = -EFAULT;
goto update_cleanup;
}
memcpy(status, response->ipsec_data.ipsec_status, sizeof(*status));
update_cleanup:
rte_free(response);
rte_free(request);
return rc;
}
int
iavf_ipsec_crypto_supported(struct iavf_adapter *adapter)
{
struct virtchnl_vf_resource *resources = adapter->vf.vf_res;
int crypto_supported = false;
/** Capability check for IPsec Crypto */
if (resources && (resources->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_INLINE_IPSEC_CRYPTO)) {
struct virtchnl_ipsec_status status;
int rc = iavf_ipsec_crypto_status_get(adapter, &status);
if (rc == 0 && status.status == INLINE_IPSEC_STATUS_AVAILABLE)
crypto_supported = true;
}
/* Clear the VF flag to return faster next call */
if (resources && !crypto_supported)
resources->vf_cap_flags &=
~(VIRTCHNL_VF_OFFLOAD_INLINE_IPSEC_CRYPTO);
return crypto_supported;
}
#define IAVF_IPSEC_INSET_ESP (\
IAVF_INSET_ESP_SPI)
#define IAVF_IPSEC_INSET_AH (\
IAVF_INSET_AH_SPI)
#define IAVF_IPSEC_INSET_IPV4_NATT_ESP (\
IAVF_INSET_IPV4_SRC | IAVF_INSET_IPV4_DST | \
IAVF_INSET_ESP_SPI)
#define IAVF_IPSEC_INSET_IPV6_NATT_ESP (\
IAVF_INSET_IPV6_SRC | IAVF_INSET_IPV6_DST | \
IAVF_INSET_ESP_SPI)
enum iavf_ipsec_flow_pt_type {
IAVF_PATTERN_ESP = 1,
IAVF_PATTERN_AH,
IAVF_PATTERN_UDP_ESP,
};
enum iavf_ipsec_flow_pt_ip_ver {
IAVF_PATTERN_IPV4 = 1,
IAVF_PATTERN_IPV6,
};
#define IAVF_PATTERN(t, ipt) ((void *)((t) | ((ipt) << 4)))
#define IAVF_PATTERN_TYPE(pt) ((pt) & 0x0F)
#define IAVF_PATTERN_IP_V(pt) ((pt) >> 4)
static struct iavf_pattern_match_item iavf_ipsec_flow_pattern[] = {
{iavf_pattern_eth_ipv4_esp, IAVF_IPSEC_INSET_ESP,
IAVF_PATTERN(IAVF_PATTERN_ESP, IAVF_PATTERN_IPV4)},
{iavf_pattern_eth_ipv6_esp, IAVF_IPSEC_INSET_ESP,
IAVF_PATTERN(IAVF_PATTERN_ESP, IAVF_PATTERN_IPV6)},
{iavf_pattern_eth_ipv4_ah, IAVF_IPSEC_INSET_AH,
IAVF_PATTERN(IAVF_PATTERN_AH, IAVF_PATTERN_IPV4)},
{iavf_pattern_eth_ipv6_ah, IAVF_IPSEC_INSET_AH,
IAVF_PATTERN(IAVF_PATTERN_AH, IAVF_PATTERN_IPV6)},
{iavf_pattern_eth_ipv4_udp_esp, IAVF_IPSEC_INSET_IPV4_NATT_ESP,
IAVF_PATTERN(IAVF_PATTERN_UDP_ESP, IAVF_PATTERN_IPV4)},
{iavf_pattern_eth_ipv6_udp_esp, IAVF_IPSEC_INSET_IPV6_NATT_ESP,
IAVF_PATTERN(IAVF_PATTERN_UDP_ESP, IAVF_PATTERN_IPV6)},
};
struct iavf_ipsec_flow_item {
uint64_t id;
uint8_t is_ipv4;
uint32_t spi;
struct rte_ether_hdr eth_hdr;
union {
struct rte_ipv4_hdr ipv4_hdr;
struct rte_ipv6_hdr ipv6_hdr;
};
struct rte_udp_hdr udp_hdr;
uint8_t is_udp;
};
static void
parse_eth_item(const struct rte_flow_item_eth *item,
struct rte_ether_hdr *eth)
{
memcpy(eth->src_addr.addr_bytes,
item->src.addr_bytes, sizeof(eth->src_addr));
memcpy(eth->dst_addr.addr_bytes,
item->dst.addr_bytes, sizeof(eth->dst_addr));
}
static void
parse_ipv4_item(const struct rte_flow_item_ipv4 *item,
struct rte_ipv4_hdr *ipv4)
{
ipv4->src_addr = item->hdr.src_addr;
ipv4->dst_addr = item->hdr.dst_addr;
}
static void
parse_ipv6_item(const struct rte_flow_item_ipv6 *item,
struct rte_ipv6_hdr *ipv6)
{
memcpy(ipv6->src_addr, item->hdr.src_addr, 16);
memcpy(ipv6->dst_addr, item->hdr.dst_addr, 16);
}
static void
parse_udp_item(const struct rte_flow_item_udp *item, struct rte_udp_hdr *udp)
{
udp->dst_port = item->hdr.dst_port;
udp->src_port = item->hdr.src_port;
}
static int
has_security_action(const struct rte_flow_action actions[],
const void **session)
{
/* only {SECURITY; END} supported */
if (actions[0].type == RTE_FLOW_ACTION_TYPE_SECURITY &&
actions[1].type == RTE_FLOW_ACTION_TYPE_END) {
*session = actions[0].conf;
return true;
}
return false;
}
static struct iavf_ipsec_flow_item *
iavf_ipsec_flow_item_parse(struct rte_eth_dev *ethdev,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
uint32_t type)
{
const void *session;
struct iavf_ipsec_flow_item
*ipsec_flow = rte_malloc("security-flow-rule",
sizeof(struct iavf_ipsec_flow_item), 0);
enum iavf_ipsec_flow_pt_type p_type = IAVF_PATTERN_TYPE(type);
enum iavf_ipsec_flow_pt_ip_ver p_ip_type = IAVF_PATTERN_IP_V(type);
if (ipsec_flow == NULL)
return NULL;
ipsec_flow->is_ipv4 = (p_ip_type == IAVF_PATTERN_IPV4);
if (pattern[0].spec)
parse_eth_item((const struct rte_flow_item_eth *)
pattern[0].spec, &ipsec_flow->eth_hdr);
switch (p_type) {
case IAVF_PATTERN_ESP:
if (ipsec_flow->is_ipv4) {
parse_ipv4_item((const struct rte_flow_item_ipv4 *)
pattern[1].spec,
&ipsec_flow->ipv4_hdr);
} else {
parse_ipv6_item((const struct rte_flow_item_ipv6 *)
pattern[1].spec,
&ipsec_flow->ipv6_hdr);
}
ipsec_flow->spi =
((const struct rte_flow_item_esp *)
pattern[2].spec)->hdr.spi;
break;
case IAVF_PATTERN_AH:
if (ipsec_flow->is_ipv4) {
parse_ipv4_item((const struct rte_flow_item_ipv4 *)
pattern[1].spec,
&ipsec_flow->ipv4_hdr);
} else {
parse_ipv6_item((const struct rte_flow_item_ipv6 *)
pattern[1].spec,
&ipsec_flow->ipv6_hdr);
}
ipsec_flow->spi =
((const struct rte_flow_item_ah *)
pattern[2].spec)->spi;
break;
case IAVF_PATTERN_UDP_ESP:
if (ipsec_flow->is_ipv4) {
parse_ipv4_item((const struct rte_flow_item_ipv4 *)
pattern[1].spec,
&ipsec_flow->ipv4_hdr);
} else {
parse_ipv6_item((const struct rte_flow_item_ipv6 *)
pattern[1].spec,
&ipsec_flow->ipv6_hdr);
}
parse_udp_item((const struct rte_flow_item_udp *)
pattern[2].spec,
&ipsec_flow->udp_hdr);
ipsec_flow->is_udp = true;
ipsec_flow->spi =
((const struct rte_flow_item_esp *)
pattern[3].spec)->hdr.spi;
break;
default:
goto flow_cleanup;
}
if (!has_security_action(actions, &session))
goto flow_cleanup;
if (!iavf_ipsec_crypto_action_valid(ethdev, session,
ipsec_flow->spi))
goto flow_cleanup;
return ipsec_flow;
flow_cleanup:
rte_free(ipsec_flow);
return NULL;
}
static struct iavf_flow_parser iavf_ipsec_flow_parser;
static int
iavf_ipsec_flow_init(struct iavf_adapter *ad)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
struct iavf_flow_parser *parser;
if (!vf->vf_res)
return -EINVAL;
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_INLINE_IPSEC_CRYPTO)
parser = &iavf_ipsec_flow_parser;
else
return -ENOTSUP;
return iavf_register_parser(parser, ad);
}
static void
iavf_ipsec_flow_uninit(struct iavf_adapter *ad)
{
iavf_unregister_parser(&iavf_ipsec_flow_parser, ad);
}
static int
iavf_ipsec_flow_create(struct iavf_adapter *ad,
struct rte_flow *flow,
void *meta,
struct rte_flow_error *error)
{
struct iavf_ipsec_flow_item *ipsec_flow = meta;
int flow_id = -1;
if (!ipsec_flow) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"NULL rule.");
return -rte_errno;
}
if (ipsec_flow->is_ipv4) {
flow_id = iavf_ipsec_crypto_inbound_security_policy_add(ad,
ipsec_flow->spi,
1,
ipsec_flow->ipv4_hdr.dst_addr,
NULL,
0,
ipsec_flow->is_udp,
ipsec_flow->udp_hdr.dst_port);
} else {
flow_id = iavf_ipsec_crypto_inbound_security_policy_add(ad,
ipsec_flow->spi,
0,
0,
ipsec_flow->ipv6_hdr.dst_addr,
0,
ipsec_flow->is_udp,
ipsec_flow->udp_hdr.dst_port);
}
if (flow_id < 1) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Failed to add SA.");
return -rte_errno;
}
ipsec_flow->id = flow_id;
flow->rule = ipsec_flow;
return 0;
}
static int
iavf_ipsec_flow_destroy(struct iavf_adapter *ad,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct iavf_ipsec_flow_item *ipsec_flow = flow->rule;
if (!ipsec_flow) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"NULL rule.");
return -rte_errno;
}
iavf_ipsec_crypto_security_policy_delete(ad,
ipsec_flow->is_ipv4, ipsec_flow->id);
rte_free(ipsec_flow);
return 0;
}
static struct iavf_flow_engine iavf_ipsec_flow_engine = {
.init = iavf_ipsec_flow_init,
.uninit = iavf_ipsec_flow_uninit,
.create = iavf_ipsec_flow_create,
.destroy = iavf_ipsec_flow_destroy,
.type = IAVF_FLOW_ENGINE_IPSEC_CRYPTO,
};
static int
iavf_ipsec_flow_parse(struct iavf_adapter *ad,
struct iavf_pattern_match_item *array,
uint32_t array_len,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
uint32_t priority,
void **meta,
struct rte_flow_error *error)
{
struct iavf_pattern_match_item *item = NULL;
int ret = -1;
if (priority >= 1)
return -rte_errno;
item = iavf_search_pattern_match_item(pattern, array, array_len, error);
if (item && item->meta) {
uint32_t type = (uint64_t)(item->meta);
struct iavf_ipsec_flow_item *fi =
iavf_ipsec_flow_item_parse(ad->vf.eth_dev,
pattern, actions, type);
if (fi && meta) {
*meta = fi;
ret = 0;
}
}
return ret;
}
static struct iavf_flow_parser iavf_ipsec_flow_parser = {
.engine = &iavf_ipsec_flow_engine,
.array = iavf_ipsec_flow_pattern,
.array_len = RTE_DIM(iavf_ipsec_flow_pattern),
.parse_pattern_action = iavf_ipsec_flow_parse,
.stage = IAVF_FLOW_STAGE_IPSEC_CRYPTO,
};
RTE_INIT(iavf_ipsec_flow_engine_register)
{
iavf_register_flow_engine(&iavf_ipsec_flow_engine);
}