f-stack/dpdk/drivers/net/hns3/hns3_rxtx.h

780 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 HiSilicon Limited.
*/
#ifndef HNS3_RXTX_H
#define HNS3_RXTX_H
#include <stdint.h>
#include <ethdev_driver.h>
#include <rte_mbuf_core.h>
#include <rte_ethdev.h>
#include <rte_ethdev_core.h>
#include <rte_io.h>
#include <rte_mempool.h>
#include <rte_memzone.h>
#include "hns3_ethdev.h"
#define HNS3_MIN_RING_DESC 64
#define HNS3_MAX_RING_DESC 32768
#define HNS3_DEFAULT_RING_DESC 1024
#define HNS3_ALIGN_RING_DESC 32
#define HNS3_RING_BASE_ALIGN 128
#define HNS3_BULK_ALLOC_MBUF_NUM 32
#define HNS3_DEFAULT_RX_FREE_THRESH 32
#define HNS3_DEFAULT_TX_FREE_THRESH 32
#define HNS3_DEFAULT_TX_RS_THRESH 32
#define HNS3_TX_FAST_FREE_AHEAD 64
#define HNS3_DEFAULT_RX_BURST 64
#if (HNS3_DEFAULT_RX_BURST > 64)
#error "PMD HNS3: HNS3_DEFAULT_RX_BURST must <= 64\n"
#endif
#define HNS3_DEFAULT_DESCS_PER_LOOP 4
#define HNS3_SVE_DEFAULT_DESCS_PER_LOOP 8
#if (HNS3_DEFAULT_DESCS_PER_LOOP > HNS3_SVE_DEFAULT_DESCS_PER_LOOP)
#define HNS3_VECTOR_RX_OFFSET_TABLE_LEN HNS3_DEFAULT_DESCS_PER_LOOP
#else
#define HNS3_VECTOR_RX_OFFSET_TABLE_LEN HNS3_SVE_DEFAULT_DESCS_PER_LOOP
#endif
#define HNS3_DEFAULT_RXQ_REARM_THRESH 64
#define HNS3_UINT8_BIT 8
#define HNS3_UINT16_BIT 16
#define HNS3_UINT32_BIT 32
#define HNS3_512_BD_BUF_SIZE 512
#define HNS3_1K_BD_BUF_SIZE 1024
#define HNS3_2K_BD_BUF_SIZE 2048
#define HNS3_4K_BD_BUF_SIZE 4096
#define HNS3_MIN_BD_BUF_SIZE HNS3_512_BD_BUF_SIZE
#define HNS3_MAX_BD_BUF_SIZE HNS3_4K_BD_BUF_SIZE
#define HNS3_BD_SIZE_512_TYPE 0
#define HNS3_BD_SIZE_1024_TYPE 1
#define HNS3_BD_SIZE_2048_TYPE 2
#define HNS3_BD_SIZE_4096_TYPE 3
#define HNS3_RX_FLAG_VLAN_PRESENT 0x1
#define HNS3_RX_FLAG_L3ID_IPV4 0x0
#define HNS3_RX_FLAG_L3ID_IPV6 0x1
#define HNS3_RX_FLAG_L4ID_UDP 0x0
#define HNS3_RX_FLAG_L4ID_TCP 0x1
#define HNS3_RXD_DMAC_S 0
#define HNS3_RXD_DMAC_M (0x3 << HNS3_RXD_DMAC_S)
#define HNS3_RXD_VLAN_S 2
#define HNS3_RXD_VLAN_M (0x3 << HNS3_RXD_VLAN_S)
#define HNS3_RXD_L3ID_S 4
#define HNS3_RXD_L3ID_M (0xf << HNS3_RXD_L3ID_S)
#define HNS3_RXD_L4ID_S 8
#define HNS3_RXD_L4ID_M (0xf << HNS3_RXD_L4ID_S)
#define HNS3_RXD_FRAG_B 12
#define HNS3_RXD_STRP_TAGP_S 13
#define HNS3_RXD_STRP_TAGP_M (0x3 << HNS3_RXD_STRP_TAGP_S)
#define HNS3_RXD_L2E_B 16
#define HNS3_RXD_L3E_B 17
#define HNS3_RXD_L4E_B 18
#define HNS3_RXD_TRUNCATE_B 19
#define HNS3_RXD_HOI_B 20
#define HNS3_RXD_DOI_B 21
#define HNS3_RXD_OL3E_B 22
#define HNS3_RXD_OL4E_B 23
#define HNS3_RXD_GRO_COUNT_S 24
#define HNS3_RXD_GRO_COUNT_M (0x3f << HNS3_RXD_GRO_COUNT_S)
#define HNS3_RXD_GRO_FIXID_B 30
#define HNS3_RXD_GRO_ECN_B 31
#define HNS3_RXD_ODMAC_S 0
#define HNS3_RXD_ODMAC_M (0x3 << HNS3_RXD_ODMAC_S)
#define HNS3_RXD_OVLAN_S 2
#define HNS3_RXD_OVLAN_M (0x3 << HNS3_RXD_OVLAN_S)
#define HNS3_RXD_OL3ID_S 4
#define HNS3_RXD_OL3ID_M (0xf << HNS3_RXD_OL3ID_S)
#define HNS3_RXD_OL4ID_S 8
#define HNS3_RXD_OL4ID_M (0xf << HNS3_RXD_OL4ID_S)
#define HNS3_RXD_PTYPE_S 4
#define HNS3_RXD_PTYPE_M (0xff << HNS3_RXD_PTYPE_S)
#define HNS3_RXD_FBHI_S 12
#define HNS3_RXD_FBHI_M (0x3 << HNS3_RXD_FBHI_S)
#define HNS3_RXD_FBLI_S 14
#define HNS3_RXD_FBLI_M (0x3 << HNS3_RXD_FBLI_S)
#define HNS3_RXD_BDTYPE_S 0
#define HNS3_RXD_BDTYPE_M (0xf << HNS3_RXD_BDTYPE_S)
#define HNS3_RXD_VLD_B 4
#define HNS3_RXD_UDP0_B 5
#define HNS3_RXD_EXTEND_B 7
#define HNS3_RXD_FE_B 8
#define HNS3_RXD_LUM_B 9
#define HNS3_RXD_CRCP_B 10
#define HNS3_RXD_L3L4P_B 11
#define HNS3_RXD_TS_VLD_B 14
#define HNS3_RXD_GRO_SIZE_S 16
#define HNS3_RXD_GRO_SIZE_M (0x3fff << HNS3_RXD_GRO_SIZE_S)
#define HNS3_TXD_L3T_S 0
#define HNS3_TXD_L3T_M (0x3 << HNS3_TXD_L3T_S)
#define HNS3_TXD_L4T_S 2
#define HNS3_TXD_L4T_M (0x3 << HNS3_TXD_L4T_S)
#define HNS3_TXD_L3CS_B 4
#define HNS3_TXD_L4CS_B 5
#define HNS3_TXD_VLAN_B 6
#define HNS3_TXD_TSO_B 7
#define HNS3_TXD_L2LEN_S 8
#define HNS3_TXD_L2LEN_M (0xff << HNS3_TXD_L2LEN_S)
#define HNS3_TXD_L3LEN_S 16
#define HNS3_TXD_L3LEN_M (0xff << HNS3_TXD_L3LEN_S)
#define HNS3_TXD_L4LEN_S 24
#define HNS3_TXD_L4LEN_M (0xffUL << HNS3_TXD_L4LEN_S)
#define HNS3_TXD_OL3T_S 0
#define HNS3_TXD_OL3T_M (0x3 << HNS3_TXD_OL3T_S)
#define HNS3_TXD_OVLAN_B 2
#define HNS3_TXD_MACSEC_B 3
#define HNS3_TXD_TUNTYPE_S 4
#define HNS3_TXD_TUNTYPE_M (0xf << HNS3_TXD_TUNTYPE_S)
#define HNS3_TXD_BDTYPE_S 0
#define HNS3_TXD_BDTYPE_M (0xf << HNS3_TXD_BDTYPE_S)
#define HNS3_TXD_FE_B 4
#define HNS3_TXD_SC_S 5
#define HNS3_TXD_SC_M (0x3 << HNS3_TXD_SC_S)
#define HNS3_TXD_EXTEND_B 7
#define HNS3_TXD_VLD_B 8
#define HNS3_TXD_RI_B 9
#define HNS3_TXD_RA_B 10
#define HNS3_TXD_TSYN_B 11
#define HNS3_TXD_DECTTL_S 12
#define HNS3_TXD_DECTTL_M (0xf << HNS3_TXD_DECTTL_S)
#define HNS3_TXD_MSS_S 0
#define HNS3_TXD_MSS_M (0x3fff << HNS3_TXD_MSS_S)
#define HNS3_TXD_OL4CS_B 22
#define HNS3_L2_LEN_UNIT 1UL
#define HNS3_L3_LEN_UNIT 2UL
#define HNS3_L4_LEN_UNIT 2UL
#define HNS3_TXD_DEFAULT_BDTYPE 0
#define HNS3_TXD_VLD_CMD (0x1 << HNS3_TXD_VLD_B)
#define HNS3_TXD_FE_CMD (0x1 << HNS3_TXD_FE_B)
#define HNS3_TXD_DEFAULT_VLD_FE_BDTYPE \
(HNS3_TXD_VLD_CMD | HNS3_TXD_FE_CMD | HNS3_TXD_DEFAULT_BDTYPE)
#define HNS3_TXD_SEND_SIZE_SHIFT 16
enum hns3_pkt_l2t_type {
HNS3_L2_TYPE_UNICAST,
HNS3_L2_TYPE_MULTICAST,
HNS3_L2_TYPE_BROADCAST,
HNS3_L2_TYPE_INVALID,
};
enum hns3_pkt_l3t_type {
HNS3_L3T_NONE,
HNS3_L3T_IPV6,
HNS3_L3T_IPV4,
HNS3_L3T_RESERVED
};
enum hns3_pkt_l4t_type {
HNS3_L4T_UNKNOWN,
HNS3_L4T_TCP,
HNS3_L4T_UDP,
HNS3_L4T_SCTP
};
enum hns3_pkt_ol3t_type {
HNS3_OL3T_NONE,
HNS3_OL3T_IPV6,
HNS3_OL3T_IPV4_NO_CSUM,
HNS3_OL3T_IPV4_CSUM
};
enum hns3_pkt_tun_type {
HNS3_TUN_NONE,
HNS3_TUN_MAC_IN_UDP,
HNS3_TUN_NVGRE,
HNS3_TUN_OTHER
};
/* hardware spec ring buffer format */
struct hns3_desc {
union {
uint64_t addr;
uint64_t timestamp;
struct {
uint32_t addr0;
uint32_t addr1;
};
};
union {
struct {
uint16_t vlan_tag;
uint16_t send_size;
union {
/*
* L3T | L4T | L3CS | L4CS | VLAN | TSO |
* L2_LEN
*/
uint32_t type_cs_vlan_tso_len;
struct {
uint8_t type_cs_vlan_tso;
uint8_t l2_len;
uint8_t l3_len;
uint8_t l4_len;
};
};
uint16_t outer_vlan_tag;
uint16_t tv;
union {
/* OL3T | OVALAN | MACSEC */
uint32_t ol_type_vlan_len_msec;
struct {
uint8_t ol_type_vlan_msec;
uint8_t ol2_len;
uint8_t ol3_len;
uint8_t ol4_len;
};
};
uint32_t paylen_fd_dop_ol4cs;
uint16_t tp_fe_sc_vld_ra_ri;
uint16_t mss;
} tx;
struct {
uint32_t l234_info;
uint16_t pkt_len;
uint16_t size;
uint32_t rss_hash;
uint16_t fd_id;
uint16_t vlan_tag;
union {
uint32_t ol_info;
struct {
uint16_t o_dm_vlan_id_fb;
uint16_t ot_vlan_tag;
};
};
union {
uint32_t bd_base_info;
struct {
uint16_t bdtype_vld_udp0;
uint16_t fe_lum_crcp_l3l4p;
};
};
} rx;
};
} __rte_packed;
struct hns3_entry {
struct rte_mbuf *mbuf;
};
struct hns3_rx_basic_stats {
uint64_t packets;
uint64_t bytes;
uint64_t errors;
};
struct hns3_rx_dfx_stats {
uint64_t l3_csum_errors;
uint64_t l4_csum_errors;
uint64_t ol3_csum_errors;
uint64_t ol4_csum_errors;
};
struct hns3_rx_bd_errors_stats {
uint64_t l2_errors;
uint64_t pkt_len_errors;
};
struct hns3_rx_queue {
volatile void *io_head_reg;
struct hns3_ptype_table *ptype_tbl;
struct rte_mempool *mb_pool;
struct hns3_desc *rx_ring;
struct hns3_entry *sw_ring;
uint16_t port_id;
uint16_t nb_rx_desc;
/*
* threshold for the number of BDs waited to passed to hardware. If the
* number exceeds the threshold, driver will pass these BDs to hardware.
*/
uint16_t rx_free_thresh;
uint16_t next_to_use; /* index of next BD to be polled */
uint16_t rx_free_hold; /* num of BDs waited to passed to hardware */
uint16_t rx_rearm_start; /* index of BD that driver re-arming from */
uint16_t rx_rearm_nb; /* number of remaining BDs to be re-armed */
/* 4 if RTE_ETH_RX_OFFLOAD_KEEP_CRC offload set, 0 otherwise */
uint8_t crc_len;
/*
* Indicate whether ignore the outer VLAN field in the Rx BD reported
* by the Hardware. Because the outer VLAN is the PVID if the PVID is
* set for some version of hardware network engine whose vlan mode is
* HNS3_SW_SHIFT_AND_DISCARD_MODE, such as kunpeng 920. And this VLAN
* should not be transitted to the upper-layer application. For hardware
* network engine whose vlan mode is HNS3_HW_SHIFT_AND_DISCARD_MODE,
* such as kunpeng 930, PVID will not be reported to the BDs. So, PMD
* does not need to perform PVID-related operation in Rx. At this
* point, the pvid_sw_discard_en will be false.
*/
uint8_t pvid_sw_discard_en:1;
uint8_t ptype_en:1; /* indicate if the ptype field enabled */
uint64_t mbuf_initializer; /* value to init mbufs used with vector rx */
/* offset_table: used for vector, to solve execute re-order problem */
uint8_t offset_table[HNS3_VECTOR_RX_OFFSET_TABLE_LEN + 1];
uint16_t bulk_mbuf_num; /* indicate bulk_mbuf valid nums */
struct hns3_rx_basic_stats basic_stats;
struct rte_mbuf *pkt_first_seg;
struct rte_mbuf *pkt_last_seg;
struct rte_mbuf *bulk_mbuf[HNS3_BULK_ALLOC_MBUF_NUM];
/* DFX statistics that driver does not need to discard packets */
struct hns3_rx_dfx_stats dfx_stats;
/* Error statistics that driver needs to discard packets */
struct hns3_rx_bd_errors_stats err_stats;
struct rte_mbuf fake_mbuf; /* fake mbuf used with vector rx */
/*
* The following fields are not accessed in the I/O path, so they are
* placed at the end.
*/
void *io_base __rte_cache_aligned;
struct hns3_adapter *hns;
uint64_t rx_ring_phys_addr; /* RX ring DMA address */
const struct rte_memzone *mz;
uint16_t queue_id;
uint16_t rx_buf_len;
bool configured; /* indicate if rx queue has been configured */
bool rx_deferred_start; /* don't start this queue in dev start */
bool enabled; /* indicate if Rx queue has been enabled */
};
struct hns3_tx_basic_stats {
uint64_t packets;
uint64_t bytes;
};
/*
* The following items are used for the abnormal errors statistics in
* the Tx datapath. When upper level application calls the
* rte_eth_tx_burst API function to send multiple packets at a time with
* burst mode based on hns3 network engine, there are some abnormal
* conditions that cause the driver to fail to operate the hardware to
* send packets correctly.
* Note: When using burst mode to call the rte_eth_tx_burst API function
* to send multiple packets at a time. When the first abnormal error is
* detected, add one to the relevant error statistics item, and then
* exit the loop of sending multiple packets of the function. That is to
* say, even if there are multiple packets in which abnormal errors may
* be detected in the burst, the relevant error statistics in the driver
* will only be increased by one.
* The detail description of the Tx abnormal errors statistic items as
* below:
* - over_length_pkt_cnt
* Total number of greater than HNS3_MAX_FRAME_LEN the driver
* supported.
*
* - exceed_limit_bd_pkt_cnt
* Total number of exceeding the hardware limited bd which process
* a packet needed bd numbers.
*
* - exceed_limit_bd_reassem_fail
* Total number of exceeding the hardware limited bd fail which
* process a packet needed bd numbers and reassemble fail.
*
* - unsupported_tunnel_pkt_cnt
* Total number of unsupported tunnel packet. The unsupported tunnel
* type: vxlan_gpe, gtp, ipip and MPLSINUDP, MPLSINUDP is a packet
* with MPLS-in-UDP RFC 7510 header.
*
* - queue_full_cnt
* Total count which the available bd numbers in current bd queue is
* less than the bd numbers with the pkt process needed.
*
* - pkt_padding_fail_cnt
* Total count which the packet length is less than minimum packet
* length(struct hns3_tx_queue::min_tx_pkt_len) supported by
* hardware in Tx direction and fail to be appended with 0.
*/
struct hns3_tx_dfx_stats {
uint64_t over_length_pkt_cnt;
uint64_t exceed_limit_bd_pkt_cnt;
uint64_t exceed_limit_bd_reassem_fail;
uint64_t unsupported_tunnel_pkt_cnt;
uint64_t queue_full_cnt;
uint64_t pkt_padding_fail_cnt;
};
struct hns3_tx_queue {
/* The io_tail_reg is write-only if working in tx push mode */
volatile void *io_tail_reg;
struct hns3_desc *tx_ring;
struct hns3_entry *sw_ring;
uint16_t nb_tx_desc;
/*
* index of next BD whose corresponding rte_mbuf can be released by
* driver.
*/
uint16_t next_to_clean;
/* index of next BD to be filled by driver to send packet */
uint16_t next_to_use;
/* num of remaining BDs ready to be filled by driver to send packet */
uint16_t tx_bd_ready;
/* threshold for free tx buffer if available BDs less than this value */
uint16_t tx_free_thresh;
/*
* The minimum length of the packet supported by hardware in the Tx
* direction.
*/
uint8_t min_tx_pkt_len;
uint8_t max_non_tso_bd_num; /* max BD number of one non-TSO packet */
/*
* tso mode.
* value range:
* HNS3_TSO_SW_CAL_PSEUDO_H_CSUM/HNS3_TSO_HW_CAL_PSEUDO_H_CSUM
*
* - HNS3_TSO_SW_CAL_PSEUDO_H_CSUM
* In this mode, because of the hardware constraint, network driver
* software need erase the L4 len value of the TCP pseudo header
* and recalculate the TCP pseudo header checksum of packets that
* need TSO.
*
* - HNS3_TSO_HW_CAL_PSEUDO_H_CSUM
* In this mode, hardware support recalculate the TCP pseudo header
* checksum of packets that need TSO, so network driver software
* not need to recalculate it.
*/
uint16_t tso_mode:1;
/*
* udp checksum mode.
* value range:
* HNS3_SPECIAL_PORT_HW_CKSUM_MODE/HNS3_SPECIAL_PORT_SW_CKSUM_MODE
*
* - HNS3_SPECIAL_PORT_SW_CKSUM_MODE
* In this mode, HW can not do checksum for special UDP port like
* 4789, 4790, 6081 for non-tunnel UDP packets and UDP tunnel
* packets without the RTE_MBUF_F_TX_TUNEL_MASK in the mbuf. So, PMD need
* do the checksum for these packets to avoid a checksum error.
*
* - HNS3_SPECIAL_PORT_HW_CKSUM_MODE
* In this mode, HW does not have the preceding problems and can
* directly calculate the checksum of these UDP packets.
*/
uint16_t udp_cksum_mode:1;
uint16_t simple_bd_enable:1;
uint16_t tx_push_enable:1; /* check whether the tx push is enabled */
/*
* Indicate whether add the vlan_tci of the mbuf to the inner VLAN field
* of Tx BD. Because the outer VLAN will always be the PVID when the
* PVID is set and for some version of hardware network engine whose
* vlan mode is HNS3_SW_SHIFT_AND_DISCARD_MODE, such as kunpeng 920, the
* PVID will overwrite the outer VLAN field of Tx BD. For the hardware
* network engine whose vlan mode is HNS3_HW_SHIFT_AND_DISCARD_MODE,
* such as kunpeng 930, if the PVID is set, the hardware will shift the
* VLAN field automatically. So, PMD does not need to do
* PVID-related operations in Tx. And pvid_sw_shift_en will be false at
* this point.
*/
uint16_t pvid_sw_shift_en:1;
/* check whether the mbuf fast free offload is enabled */
uint16_t mbuf_fast_free_en:1;
/*
* For better performance in tx datapath, releasing mbuf in batches is
* required.
* Only checking the VLD bit of the last descriptor in a batch of the
* thresh descriptors does not mean that these descriptors are all sent
* by hardware successfully. So we need to check that the VLD bits of
* all descriptors are cleared. and then free all mbufs in the batch.
* - tx_rs_thresh
* Number of mbufs released at a time.
*
* - free
* Tx mbuf free array used for preserving temporarily address of mbuf
* released back to mempool, when releasing mbuf in batches.
*/
uint16_t tx_rs_thresh;
struct rte_mbuf **free;
struct hns3_tx_basic_stats basic_stats;
struct hns3_tx_dfx_stats dfx_stats;
/*
* The following fields are not accessed in the I/O path, so they are
* placed at the end.
*/
void *io_base __rte_cache_aligned;
struct hns3_adapter *hns;
uint64_t tx_ring_phys_addr; /* TX ring DMA address */
const struct rte_memzone *mz;
uint16_t port_id;
uint16_t queue_id;
bool configured; /* indicate if tx queue has been configured */
bool tx_deferred_start; /* don't start this queue in dev start */
bool enabled; /* indicate if Tx queue has been enabled */
};
#define HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) \
((txq)->nb_tx_desc - 1 - (txq)->tx_bd_ready)
struct hns3_queue_info {
const char *type; /* point to queue memory name */
const char *ring_name; /* point to hardware ring name */
uint16_t idx;
uint16_t nb_desc;
unsigned int socket_id;
};
#define HNS3_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_OUTER_UDP_CKSUM | \
RTE_MBUF_F_TX_OUTER_IP_CKSUM | \
RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_TCP_SEG | \
RTE_MBUF_F_TX_L4_MASK)
enum hns3_cksum_status {
HNS3_CKSUM_NONE = 0,
HNS3_L3_CKSUM_ERR = 1,
HNS3_L4_CKSUM_ERR = 2,
HNS3_OUTER_L3_CKSUM_ERR = 4,
HNS3_OUTER_L4_CKSUM_ERR = 8
};
extern uint64_t hns3_timestamp_rx_dynflag;
extern int hns3_timestamp_dynfield_offset;
static inline void
hns3_rx_set_cksum_flag(struct hns3_rx_queue *rxq,
struct rte_mbuf *rxm,
uint32_t l234_info)
{
#define HNS3_RXD_CKSUM_ERR_MASK (BIT(HNS3_RXD_L3E_B) | \
BIT(HNS3_RXD_L4E_B) | \
BIT(HNS3_RXD_OL3E_B) | \
BIT(HNS3_RXD_OL4E_B))
if (likely((l234_info & HNS3_RXD_CKSUM_ERR_MASK) == 0)) {
rxm->ol_flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
return;
}
if (unlikely(l234_info & BIT(HNS3_RXD_L3E_B))) {
rxm->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
rxq->dfx_stats.l3_csum_errors++;
} else {
rxm->ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
}
if (unlikely(l234_info & BIT(HNS3_RXD_L4E_B))) {
rxm->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
rxq->dfx_stats.l4_csum_errors++;
} else {
rxm->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
}
if (unlikely(l234_info & BIT(HNS3_RXD_OL3E_B)))
rxq->dfx_stats.ol3_csum_errors++;
if (unlikely(l234_info & BIT(HNS3_RXD_OL4E_B))) {
rxm->ol_flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
rxq->dfx_stats.ol4_csum_errors++;
}
}
static inline int
hns3_handle_bdinfo(struct hns3_rx_queue *rxq, struct rte_mbuf *rxm,
uint32_t bd_base_info, uint32_t l234_info)
{
#define L2E_TRUNC_ERR_FLAG (BIT(HNS3_RXD_L2E_B) | \
BIT(HNS3_RXD_TRUNCATE_B))
/*
* If packet len bigger than mtu when recv with no-scattered algorithm,
* the first n bd will without FE bit, we need process this situation.
* Note: we don't need add statistic counter because latest BD which
* with FE bit will mark HNS3_RXD_L2E_B bit.
*/
if (unlikely((bd_base_info & BIT(HNS3_RXD_FE_B)) == 0))
return -EINVAL;
if (unlikely((l234_info & L2E_TRUNC_ERR_FLAG) || rxm->pkt_len == 0)) {
if (l234_info & BIT(HNS3_RXD_L2E_B))
rxq->err_stats.l2_errors++;
else
rxq->err_stats.pkt_len_errors++;
return -EINVAL;
}
if (bd_base_info & BIT(HNS3_RXD_L3L4P_B))
hns3_rx_set_cksum_flag(rxq, rxm, l234_info);
return 0;
}
static inline uint32_t
hns3_rx_calc_ptype(struct hns3_rx_queue *rxq, const uint32_t l234_info,
const uint32_t ol_info)
{
const struct hns3_ptype_table * const ptype_tbl = rxq->ptype_tbl;
uint32_t ol3id, ol4id;
uint32_t l3id, l4id;
uint32_t ptype;
if (rxq->ptype_en) {
ptype = hns3_get_field(ol_info, HNS3_RXD_PTYPE_M,
HNS3_RXD_PTYPE_S);
return ptype_tbl->ptype[ptype];
}
ol4id = hns3_get_field(ol_info, HNS3_RXD_OL4ID_M, HNS3_RXD_OL4ID_S);
ol3id = hns3_get_field(ol_info, HNS3_RXD_OL3ID_M, HNS3_RXD_OL3ID_S);
l3id = hns3_get_field(l234_info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
l4id = hns3_get_field(l234_info, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S);
if (unlikely(ptype_tbl->ol4table[ol4id]))
return ptype_tbl->inner_l3table[l3id] |
ptype_tbl->inner_l4table[l4id] |
ptype_tbl->ol3table[ol3id] |
ptype_tbl->ol4table[ol4id];
else
return ptype_tbl->l3table[l3id] | ptype_tbl->l4table[l4id];
}
/*
* If enable using Tx push feature and also device support it, then use quick
* doorbell (bar45) to inform the hardware.
*
* The other cases (such as: device don't support or user don't enable using)
* then use normal doorbell (bar23) to inform the hardware.
*/
static inline void
hns3_write_txq_tail_reg(struct hns3_tx_queue *txq, uint32_t value)
{
rte_io_wmb();
if (txq->tx_push_enable)
rte_write64_relaxed(rte_cpu_to_le_32(value), txq->io_tail_reg);
else
rte_write32_relaxed(rte_cpu_to_le_32(value), txq->io_tail_reg);
}
void hns3_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t queue_id);
void hns3_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t queue_id);
void hns3_free_all_queues(struct rte_eth_dev *dev);
int hns3_reset_all_tqps(struct hns3_adapter *hns);
void hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en);
int hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
int hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
void hns3_enable_all_queues(struct hns3_hw *hw, bool en);
int hns3_init_queues(struct hns3_adapter *hns, bool reset_queue);
void hns3_start_tqps(struct hns3_hw *hw);
void hns3_stop_tqps(struct hns3_hw *hw);
int hns3_rxq_iterate(struct rte_eth_dev *dev,
int (*callback)(struct hns3_rx_queue *, void *), void *arg);
void hns3_dev_release_mbufs(struct hns3_adapter *hns);
int hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *conf,
struct rte_mempool *mp);
int hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *conf);
uint32_t hns3_rx_queue_count(void *rx_queue);
int hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id);
int hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id);
int hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id);
int hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id);
uint16_t hns3_recv_pkts_simple(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t hns3_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t hns3_recv_pkts_vec(void *__restrict rx_queue,
struct rte_mbuf **__restrict rx_pkts,
uint16_t nb_pkts);
uint16_t hns3_recv_pkts_vec_sve(void *__restrict rx_queue,
struct rte_mbuf **__restrict rx_pkts,
uint16_t nb_pkts);
int hns3_rx_burst_mode_get(struct rte_eth_dev *dev,
__rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode);
uint16_t hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t hns3_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t hns3_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t hns3_xmit_pkts_vec_sve(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
int hns3_tx_burst_mode_get(struct rte_eth_dev *dev,
__rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode);
const uint32_t *hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev);
void hns3_init_rx_ptype_tble(struct rte_eth_dev *dev);
void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev);
uint32_t hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id);
void hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id,
uint8_t gl_idx, uint16_t gl_value);
void hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id,
uint16_t rl_value);
void hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id,
uint16_t ql_value);
int hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q,
uint16_t nb_tx_q);
int hns3_config_gro(struct hns3_hw *hw, bool en);
int hns3_restore_gro_conf(struct hns3_hw *hw);
void hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw);
void hns3_rx_scattered_reset(struct rte_eth_dev *dev);
void hns3_rx_scattered_calc(struct rte_eth_dev *dev);
int hns3_rx_check_vec_support(struct rte_eth_dev *dev);
int hns3_tx_check_vec_support(struct rte_eth_dev *dev);
void hns3_rxq_vec_setup(struct hns3_rx_queue *rxq);
void hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo);
void hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo);
uint32_t hns3_get_tqp_reg_offset(uint16_t queue_id);
int hns3_start_all_txqs(struct rte_eth_dev *dev);
int hns3_start_all_rxqs(struct rte_eth_dev *dev);
void hns3_stop_all_txqs(struct rte_eth_dev *dev);
void hns3_restore_tqp_enable_state(struct hns3_hw *hw);
int hns3_tx_done_cleanup(void *txq, uint32_t free_cnt);
void hns3_enable_rxd_adv_layout(struct hns3_hw *hw);
int hns3_dev_rx_descriptor_status(void *rx_queue, uint16_t offset);
int hns3_dev_tx_descriptor_status(void *tx_queue, uint16_t offset);
void hns3_tx_push_init(struct rte_eth_dev *dev);
void hns3_stop_tx_datapath(struct rte_eth_dev *dev);
void hns3_start_tx_datapath(struct rte_eth_dev *dev);
void hns3_stop_rxtx_datapath(struct rte_eth_dev *dev);
void hns3_start_rxtx_datapath(struct rte_eth_dev *dev);
#endif /* HNS3_RXTX_H */