f-stack/dpdk/drivers/net/af_xdp/rte_eth_af_xdp.c

2122 lines
52 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019-2020 Intel Corporation.
*/
#include <unistd.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <netinet/in.h>
#include <net/if.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <linux/if_ether.h>
#include <linux/if_xdp.h>
#include <linux/if_link.h>
#include <linux/ethtool.h>
#include <linux/sockios.h>
#include "af_xdp_deps.h"
#include <rte_ethdev.h>
#include <ethdev_driver.h>
#include <ethdev_vdev.h>
#include <rte_kvargs.h>
#include <bus_vdev_driver.h>
#include <rte_string_fns.h>
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <dev_driver.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_lcore.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ring.h>
#include <rte_spinlock.h>
#include <rte_power_intrinsics.h>
#include "compat.h"
#ifndef SO_PREFER_BUSY_POLL
#define SO_PREFER_BUSY_POLL 69
#endif
#ifndef SO_BUSY_POLL_BUDGET
#define SO_BUSY_POLL_BUDGET 70
#endif
#ifndef SOL_XDP
#define SOL_XDP 283
#endif
#ifndef AF_XDP
#define AF_XDP 44
#endif
#ifndef PF_XDP
#define PF_XDP AF_XDP
#endif
RTE_LOG_REGISTER_DEFAULT(af_xdp_logtype, NOTICE);
#define AF_XDP_LOG(level, fmt, args...) \
rte_log(RTE_LOG_ ## level, af_xdp_logtype, \
"%s(): " fmt, __func__, ##args)
#define ETH_AF_XDP_FRAME_SIZE 2048
#define ETH_AF_XDP_NUM_BUFFERS 4096
#define ETH_AF_XDP_DFLT_NUM_DESCS XSK_RING_CONS__DEFAULT_NUM_DESCS
#define ETH_AF_XDP_DFLT_START_QUEUE_IDX 0
#define ETH_AF_XDP_DFLT_QUEUE_COUNT 1
#define ETH_AF_XDP_DFLT_BUSY_BUDGET 64
#define ETH_AF_XDP_DFLT_BUSY_TIMEOUT 20
#define ETH_AF_XDP_RX_BATCH_SIZE XSK_RING_CONS__DEFAULT_NUM_DESCS
#define ETH_AF_XDP_TX_BATCH_SIZE XSK_RING_CONS__DEFAULT_NUM_DESCS
#define ETH_AF_XDP_ETH_OVERHEAD (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
#define ETH_AF_XDP_MP_KEY "afxdp_mp_send_fds"
static int afxdp_dev_count;
/* Message header to synchronize fds via IPC */
struct ipc_hdr {
char port_name[RTE_DEV_NAME_MAX_LEN];
/* The file descriptors are in the dedicated part
* of the Unix message to be translated by the kernel.
*/
};
struct xsk_umem_info {
struct xsk_umem *umem;
struct rte_ring *buf_ring;
const struct rte_memzone *mz;
struct rte_mempool *mb_pool;
void *buffer;
uint8_t refcnt;
uint32_t max_xsks;
};
struct rx_stats {
uint64_t rx_pkts;
uint64_t rx_bytes;
uint64_t rx_dropped;
};
struct pkt_rx_queue {
struct xsk_ring_cons rx;
struct xsk_umem_info *umem;
struct xsk_socket *xsk;
struct rte_mempool *mb_pool;
struct rx_stats stats;
struct xsk_ring_prod fq;
struct xsk_ring_cons cq;
struct pkt_tx_queue *pair;
struct pollfd fds[1];
int xsk_queue_idx;
int busy_budget;
};
struct tx_stats {
uint64_t tx_pkts;
uint64_t tx_bytes;
uint64_t tx_dropped;
};
struct pkt_tx_queue {
struct xsk_ring_prod tx;
struct xsk_umem_info *umem;
struct tx_stats stats;
struct pkt_rx_queue *pair;
int xsk_queue_idx;
};
struct pmd_internals {
int if_index;
char if_name[IFNAMSIZ];
int start_queue_idx;
int queue_cnt;
int max_queue_cnt;
int combined_queue_cnt;
bool shared_umem;
char prog_path[PATH_MAX];
bool custom_prog_configured;
bool force_copy;
struct bpf_map *map;
struct rte_ether_addr eth_addr;
struct pkt_rx_queue *rx_queues;
struct pkt_tx_queue *tx_queues;
};
struct pmd_process_private {
int rxq_xsk_fds[RTE_MAX_QUEUES_PER_PORT];
};
#define ETH_AF_XDP_IFACE_ARG "iface"
#define ETH_AF_XDP_START_QUEUE_ARG "start_queue"
#define ETH_AF_XDP_QUEUE_COUNT_ARG "queue_count"
#define ETH_AF_XDP_SHARED_UMEM_ARG "shared_umem"
#define ETH_AF_XDP_PROG_ARG "xdp_prog"
#define ETH_AF_XDP_BUDGET_ARG "busy_budget"
#define ETH_AF_XDP_FORCE_COPY_ARG "force_copy"
static const char * const valid_arguments[] = {
ETH_AF_XDP_IFACE_ARG,
ETH_AF_XDP_START_QUEUE_ARG,
ETH_AF_XDP_QUEUE_COUNT_ARG,
ETH_AF_XDP_SHARED_UMEM_ARG,
ETH_AF_XDP_PROG_ARG,
ETH_AF_XDP_BUDGET_ARG,
ETH_AF_XDP_FORCE_COPY_ARG,
NULL
};
static const struct rte_eth_link pmd_link = {
.link_speed = RTE_ETH_SPEED_NUM_10G,
.link_duplex = RTE_ETH_LINK_FULL_DUPLEX,
.link_status = RTE_ETH_LINK_DOWN,
.link_autoneg = RTE_ETH_LINK_AUTONEG
};
/* List which tracks PMDs to facilitate sharing UMEMs across them. */
struct internal_list {
TAILQ_ENTRY(internal_list) next;
struct rte_eth_dev *eth_dev;
};
TAILQ_HEAD(internal_list_head, internal_list);
static struct internal_list_head internal_list =
TAILQ_HEAD_INITIALIZER(internal_list);
static pthread_mutex_t internal_list_lock = PTHREAD_MUTEX_INITIALIZER;
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
static inline int
reserve_fill_queue_zc(struct xsk_umem_info *umem, uint16_t reserve_size,
struct rte_mbuf **bufs, struct xsk_ring_prod *fq)
{
uint32_t idx;
uint16_t i;
if (unlikely(!xsk_ring_prod__reserve(fq, reserve_size, &idx))) {
for (i = 0; i < reserve_size; i++)
rte_pktmbuf_free(bufs[i]);
AF_XDP_LOG(DEBUG, "Failed to reserve enough fq descs.\n");
return -1;
}
for (i = 0; i < reserve_size; i++) {
__u64 *fq_addr;
uint64_t addr;
fq_addr = xsk_ring_prod__fill_addr(fq, idx++);
addr = (uint64_t)bufs[i] - (uint64_t)umem->buffer -
umem->mb_pool->header_size;
*fq_addr = addr;
}
xsk_ring_prod__submit(fq, reserve_size);
return 0;
}
#else
static inline int
reserve_fill_queue_cp(struct xsk_umem_info *umem, uint16_t reserve_size,
struct rte_mbuf **bufs __rte_unused,
struct xsk_ring_prod *fq)
{
void *addrs[reserve_size];
uint32_t idx;
uint16_t i;
if (rte_ring_dequeue_bulk(umem->buf_ring, addrs, reserve_size, NULL)
!= reserve_size) {
AF_XDP_LOG(DEBUG, "Failed to get enough buffers for fq.\n");
return -1;
}
if (unlikely(!xsk_ring_prod__reserve(fq, reserve_size, &idx))) {
AF_XDP_LOG(DEBUG, "Failed to reserve enough fq descs.\n");
rte_ring_enqueue_bulk(umem->buf_ring, addrs,
reserve_size, NULL);
return -1;
}
for (i = 0; i < reserve_size; i++) {
__u64 *fq_addr;
fq_addr = xsk_ring_prod__fill_addr(fq, idx++);
*fq_addr = (uint64_t)addrs[i];
}
xsk_ring_prod__submit(fq, reserve_size);
return 0;
}
#endif
static inline int
reserve_fill_queue(struct xsk_umem_info *umem, uint16_t reserve_size,
struct rte_mbuf **bufs, struct xsk_ring_prod *fq)
{
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
return reserve_fill_queue_zc(umem, reserve_size, bufs, fq);
#else
return reserve_fill_queue_cp(umem, reserve_size, bufs, fq);
#endif
}
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
static uint16_t
af_xdp_rx_zc(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct pkt_rx_queue *rxq = queue;
struct xsk_ring_cons *rx = &rxq->rx;
struct xsk_ring_prod *fq = &rxq->fq;
struct xsk_umem_info *umem = rxq->umem;
uint32_t idx_rx = 0;
unsigned long rx_bytes = 0;
int i;
struct rte_mbuf *fq_bufs[ETH_AF_XDP_RX_BATCH_SIZE];
nb_pkts = xsk_ring_cons__peek(rx, nb_pkts, &idx_rx);
if (nb_pkts == 0) {
/* we can assume a kernel >= 5.11 is in use if busy polling is
* enabled and thus we can safely use the recvfrom() syscall
* which is only supported for AF_XDP sockets in kernels >=
* 5.11.
*/
if (rxq->busy_budget) {
(void)recvfrom(xsk_socket__fd(rxq->xsk), NULL, 0,
MSG_DONTWAIT, NULL, NULL);
} else if (xsk_ring_prod__needs_wakeup(fq)) {
(void)poll(&rxq->fds[0], 1, 1000);
}
return 0;
}
/* allocate bufs for fill queue replenishment after rx */
if (rte_pktmbuf_alloc_bulk(umem->mb_pool, fq_bufs, nb_pkts)) {
AF_XDP_LOG(DEBUG,
"Failed to get enough buffers for fq.\n");
/* rollback cached_cons which is added by
* xsk_ring_cons__peek
*/
rx->cached_cons -= nb_pkts;
return 0;
}
for (i = 0; i < nb_pkts; i++) {
const struct xdp_desc *desc;
uint64_t addr;
uint32_t len;
uint64_t offset;
desc = xsk_ring_cons__rx_desc(rx, idx_rx++);
addr = desc->addr;
len = desc->len;
offset = xsk_umem__extract_offset(addr);
addr = xsk_umem__extract_addr(addr);
bufs[i] = (struct rte_mbuf *)
xsk_umem__get_data(umem->buffer, addr +
umem->mb_pool->header_size);
bufs[i]->data_off = offset - sizeof(struct rte_mbuf) -
rte_pktmbuf_priv_size(umem->mb_pool) -
umem->mb_pool->header_size;
rte_pktmbuf_pkt_len(bufs[i]) = len;
rte_pktmbuf_data_len(bufs[i]) = len;
rx_bytes += len;
}
xsk_ring_cons__release(rx, nb_pkts);
(void)reserve_fill_queue(umem, nb_pkts, fq_bufs, fq);
/* statistics */
rxq->stats.rx_pkts += nb_pkts;
rxq->stats.rx_bytes += rx_bytes;
return nb_pkts;
}
#else
static uint16_t
af_xdp_rx_cp(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct pkt_rx_queue *rxq = queue;
struct xsk_ring_cons *rx = &rxq->rx;
struct xsk_umem_info *umem = rxq->umem;
struct xsk_ring_prod *fq = &rxq->fq;
uint32_t idx_rx = 0;
unsigned long rx_bytes = 0;
int i;
uint32_t free_thresh = fq->size >> 1;
struct rte_mbuf *mbufs[ETH_AF_XDP_RX_BATCH_SIZE];
if (xsk_prod_nb_free(fq, free_thresh) >= free_thresh)
(void)reserve_fill_queue(umem, nb_pkts, NULL, fq);
nb_pkts = xsk_ring_cons__peek(rx, nb_pkts, &idx_rx);
if (nb_pkts == 0) {
#if defined(XDP_USE_NEED_WAKEUP)
if (xsk_ring_prod__needs_wakeup(fq))
(void)poll(rxq->fds, 1, 1000);
#endif
return 0;
}
if (unlikely(rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, nb_pkts))) {
/* rollback cached_cons which is added by
* xsk_ring_cons__peek
*/
rx->cached_cons -= nb_pkts;
return 0;
}
for (i = 0; i < nb_pkts; i++) {
const struct xdp_desc *desc;
uint64_t addr;
uint32_t len;
void *pkt;
desc = xsk_ring_cons__rx_desc(rx, idx_rx++);
addr = desc->addr;
len = desc->len;
pkt = xsk_umem__get_data(rxq->umem->mz->addr, addr);
rte_memcpy(rte_pktmbuf_mtod(mbufs[i], void *), pkt, len);
rte_ring_enqueue(umem->buf_ring, (void *)addr);
rte_pktmbuf_pkt_len(mbufs[i]) = len;
rte_pktmbuf_data_len(mbufs[i]) = len;
rx_bytes += len;
bufs[i] = mbufs[i];
}
xsk_ring_cons__release(rx, nb_pkts);
/* statistics */
rxq->stats.rx_pkts += nb_pkts;
rxq->stats.rx_bytes += rx_bytes;
return nb_pkts;
}
#endif
static uint16_t
af_xdp_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
return af_xdp_rx_zc(queue, bufs, nb_pkts);
#else
return af_xdp_rx_cp(queue, bufs, nb_pkts);
#endif
}
static uint16_t
eth_af_xdp_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
uint16_t nb_rx;
if (likely(nb_pkts <= ETH_AF_XDP_RX_BATCH_SIZE))
return af_xdp_rx(queue, bufs, nb_pkts);
/* Split larger batch into smaller batches of size
* ETH_AF_XDP_RX_BATCH_SIZE or less.
*/
nb_rx = 0;
while (nb_pkts) {
uint16_t ret, n;
n = (uint16_t)RTE_MIN(nb_pkts, ETH_AF_XDP_RX_BATCH_SIZE);
ret = af_xdp_rx(queue, &bufs[nb_rx], n);
nb_rx = (uint16_t)(nb_rx + ret);
nb_pkts = (uint16_t)(nb_pkts - ret);
if (ret < n)
break;
}
return nb_rx;
}
static void
pull_umem_cq(struct xsk_umem_info *umem, int size, struct xsk_ring_cons *cq)
{
size_t i, n;
uint32_t idx_cq = 0;
n = xsk_ring_cons__peek(cq, size, &idx_cq);
for (i = 0; i < n; i++) {
uint64_t addr;
addr = *xsk_ring_cons__comp_addr(cq, idx_cq++);
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
addr = xsk_umem__extract_addr(addr);
rte_pktmbuf_free((struct rte_mbuf *)
xsk_umem__get_data(umem->buffer,
addr + umem->mb_pool->header_size));
#else
rte_ring_enqueue(umem->buf_ring, (void *)addr);
#endif
}
xsk_ring_cons__release(cq, n);
}
static void
kick_tx(struct pkt_tx_queue *txq, struct xsk_ring_cons *cq)
{
struct xsk_umem_info *umem = txq->umem;
pull_umem_cq(umem, XSK_RING_CONS__DEFAULT_NUM_DESCS, cq);
if (tx_syscall_needed(&txq->tx))
while (send(xsk_socket__fd(txq->pair->xsk), NULL,
0, MSG_DONTWAIT) < 0) {
/* some thing unexpected */
if (errno != EBUSY && errno != EAGAIN && errno != EINTR)
break;
/* pull from completion queue to leave more space */
if (errno == EAGAIN)
pull_umem_cq(umem,
XSK_RING_CONS__DEFAULT_NUM_DESCS,
cq);
}
}
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
static uint16_t
af_xdp_tx_zc(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct pkt_tx_queue *txq = queue;
struct xsk_umem_info *umem = txq->umem;
struct rte_mbuf *mbuf;
unsigned long tx_bytes = 0;
int i;
uint32_t idx_tx;
uint16_t count = 0;
struct xdp_desc *desc;
uint64_t addr, offset;
struct xsk_ring_cons *cq = &txq->pair->cq;
uint32_t free_thresh = cq->size >> 1;
if (xsk_cons_nb_avail(cq, free_thresh) >= free_thresh)
pull_umem_cq(umem, XSK_RING_CONS__DEFAULT_NUM_DESCS, cq);
for (i = 0; i < nb_pkts; i++) {
mbuf = bufs[i];
if (mbuf->pool == umem->mb_pool) {
if (!xsk_ring_prod__reserve(&txq->tx, 1, &idx_tx)) {
kick_tx(txq, cq);
if (!xsk_ring_prod__reserve(&txq->tx, 1,
&idx_tx))
goto out;
}
desc = xsk_ring_prod__tx_desc(&txq->tx, idx_tx);
desc->len = mbuf->pkt_len;
addr = (uint64_t)mbuf - (uint64_t)umem->buffer -
umem->mb_pool->header_size;
offset = rte_pktmbuf_mtod(mbuf, uint64_t) -
(uint64_t)mbuf +
umem->mb_pool->header_size;
offset = offset << XSK_UNALIGNED_BUF_OFFSET_SHIFT;
desc->addr = addr | offset;
count++;
} else {
struct rte_mbuf *local_mbuf =
rte_pktmbuf_alloc(umem->mb_pool);
void *pkt;
if (local_mbuf == NULL)
goto out;
if (!xsk_ring_prod__reserve(&txq->tx, 1, &idx_tx)) {
rte_pktmbuf_free(local_mbuf);
goto out;
}
desc = xsk_ring_prod__tx_desc(&txq->tx, idx_tx);
desc->len = mbuf->pkt_len;
addr = (uint64_t)local_mbuf - (uint64_t)umem->buffer -
umem->mb_pool->header_size;
offset = rte_pktmbuf_mtod(local_mbuf, uint64_t) -
(uint64_t)local_mbuf +
umem->mb_pool->header_size;
pkt = xsk_umem__get_data(umem->buffer, addr + offset);
offset = offset << XSK_UNALIGNED_BUF_OFFSET_SHIFT;
desc->addr = addr | offset;
rte_memcpy(pkt, rte_pktmbuf_mtod(mbuf, void *),
desc->len);
rte_pktmbuf_free(mbuf);
count++;
}
tx_bytes += mbuf->pkt_len;
}
out:
xsk_ring_prod__submit(&txq->tx, count);
kick_tx(txq, cq);
txq->stats.tx_pkts += count;
txq->stats.tx_bytes += tx_bytes;
txq->stats.tx_dropped += nb_pkts - count;
return count;
}
#else
static uint16_t
af_xdp_tx_cp(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
struct pkt_tx_queue *txq = queue;
struct xsk_umem_info *umem = txq->umem;
struct rte_mbuf *mbuf;
void *addrs[ETH_AF_XDP_TX_BATCH_SIZE];
unsigned long tx_bytes = 0;
int i;
uint32_t idx_tx;
struct xsk_ring_cons *cq = &txq->pair->cq;
pull_umem_cq(umem, nb_pkts, cq);
nb_pkts = rte_ring_dequeue_bulk(umem->buf_ring, addrs,
nb_pkts, NULL);
if (nb_pkts == 0)
return 0;
if (xsk_ring_prod__reserve(&txq->tx, nb_pkts, &idx_tx) != nb_pkts) {
kick_tx(txq, cq);
rte_ring_enqueue_bulk(umem->buf_ring, addrs, nb_pkts, NULL);
return 0;
}
for (i = 0; i < nb_pkts; i++) {
struct xdp_desc *desc;
void *pkt;
desc = xsk_ring_prod__tx_desc(&txq->tx, idx_tx + i);
mbuf = bufs[i];
desc->len = mbuf->pkt_len;
desc->addr = (uint64_t)addrs[i];
pkt = xsk_umem__get_data(umem->mz->addr,
desc->addr);
rte_memcpy(pkt, rte_pktmbuf_mtod(mbuf, void *), desc->len);
tx_bytes += mbuf->pkt_len;
rte_pktmbuf_free(mbuf);
}
xsk_ring_prod__submit(&txq->tx, nb_pkts);
kick_tx(txq, cq);
txq->stats.tx_pkts += nb_pkts;
txq->stats.tx_bytes += tx_bytes;
return nb_pkts;
}
static uint16_t
af_xdp_tx_cp_batch(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
uint16_t nb_tx;
if (likely(nb_pkts <= ETH_AF_XDP_TX_BATCH_SIZE))
return af_xdp_tx_cp(queue, bufs, nb_pkts);
nb_tx = 0;
while (nb_pkts) {
uint16_t ret, n;
/* Split larger batch into smaller batches of size
* ETH_AF_XDP_TX_BATCH_SIZE or less.
*/
n = (uint16_t)RTE_MIN(nb_pkts, ETH_AF_XDP_TX_BATCH_SIZE);
ret = af_xdp_tx_cp(queue, &bufs[nb_tx], n);
nb_tx = (uint16_t)(nb_tx + ret);
nb_pkts = (uint16_t)(nb_pkts - ret);
if (ret < n)
break;
}
return nb_tx;
}
#endif
static uint16_t
eth_af_xdp_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
{
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
return af_xdp_tx_zc(queue, bufs, nb_pkts);
#else
return af_xdp_tx_cp_batch(queue, bufs, nb_pkts);
#endif
}
static int
eth_dev_start(struct rte_eth_dev *dev)
{
dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
return 0;
}
/* This function gets called when the current port gets stopped. */
static int
eth_dev_stop(struct rte_eth_dev *dev)
{
dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
return 0;
}
/* Find ethdev in list */
static inline struct internal_list *
find_internal_resource(struct pmd_internals *port_int)
{
int found = 0;
struct internal_list *list = NULL;
if (port_int == NULL)
return NULL;
pthread_mutex_lock(&internal_list_lock);
TAILQ_FOREACH(list, &internal_list, next) {
struct pmd_internals *list_int =
list->eth_dev->data->dev_private;
if (list_int == port_int) {
found = 1;
break;
}
}
pthread_mutex_unlock(&internal_list_lock);
if (!found)
return NULL;
return list;
}
static int
eth_dev_configure(struct rte_eth_dev *dev)
{
struct pmd_internals *internal = dev->data->dev_private;
/* rx/tx must be paired */
if (dev->data->nb_rx_queues != dev->data->nb_tx_queues)
return -EINVAL;
if (internal->shared_umem) {
struct internal_list *list = NULL;
const char *name = dev->device->name;
/* Ensure PMD is not already inserted into the list */
list = find_internal_resource(internal);
if (list)
return 0;
list = rte_zmalloc_socket(name, sizeof(*list), 0,
dev->device->numa_node);
if (list == NULL)
return -1;
list->eth_dev = dev;
pthread_mutex_lock(&internal_list_lock);
TAILQ_INSERT_TAIL(&internal_list, list, next);
pthread_mutex_unlock(&internal_list_lock);
}
return 0;
}
#define CLB_VAL_IDX 0
static int
eth_monitor_callback(const uint64_t value,
const uint64_t opaque[RTE_POWER_MONITOR_OPAQUE_SZ])
{
const uint64_t v = opaque[CLB_VAL_IDX];
const uint64_t m = (uint32_t)~0;
/* if the value has changed, abort entering power optimized state */
return (value & m) == v ? 0 : -1;
}
static int
eth_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
{
struct pkt_rx_queue *rxq = rx_queue;
unsigned int *prod = rxq->rx.producer;
const uint32_t cur_val = rxq->rx.cached_prod; /* use cached value */
/* watch for changes in producer ring */
pmc->addr = (void *)prod;
/* store current value */
pmc->opaque[CLB_VAL_IDX] = cur_val;
pmc->fn = eth_monitor_callback;
/* AF_XDP producer ring index is 32-bit */
pmc->size = sizeof(uint32_t);
return 0;
}
static int
eth_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct pmd_internals *internals = dev->data->dev_private;
dev_info->if_index = internals->if_index;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_queues = internals->queue_cnt;
dev_info->max_tx_queues = internals->queue_cnt;
dev_info->min_mtu = RTE_ETHER_MIN_MTU;
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
dev_info->max_rx_pktlen = getpagesize() -
sizeof(struct rte_mempool_objhdr) -
sizeof(struct rte_mbuf) -
RTE_PKTMBUF_HEADROOM - XDP_PACKET_HEADROOM;
#else
dev_info->max_rx_pktlen = ETH_AF_XDP_FRAME_SIZE - XDP_PACKET_HEADROOM;
#endif
dev_info->max_mtu = dev_info->max_rx_pktlen - ETH_AF_XDP_ETH_OVERHEAD;
dev_info->default_rxportconf.burst_size = ETH_AF_XDP_DFLT_BUSY_BUDGET;
dev_info->default_txportconf.burst_size = ETH_AF_XDP_DFLT_BUSY_BUDGET;
dev_info->default_rxportconf.nb_queues = 1;
dev_info->default_txportconf.nb_queues = 1;
dev_info->default_rxportconf.ring_size = ETH_AF_XDP_DFLT_NUM_DESCS;
dev_info->default_txportconf.ring_size = ETH_AF_XDP_DFLT_NUM_DESCS;
return 0;
}
static int
eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pmd_process_private *process_private = dev->process_private;
struct xdp_statistics xdp_stats;
struct pkt_rx_queue *rxq;
struct pkt_tx_queue *txq;
socklen_t optlen;
int i, ret, fd;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
optlen = sizeof(struct xdp_statistics);
rxq = &internals->rx_queues[i];
txq = rxq->pair;
stats->q_ipackets[i] = rxq->stats.rx_pkts;
stats->q_ibytes[i] = rxq->stats.rx_bytes;
stats->q_opackets[i] = txq->stats.tx_pkts;
stats->q_obytes[i] = txq->stats.tx_bytes;
stats->ipackets += stats->q_ipackets[i];
stats->ibytes += stats->q_ibytes[i];
stats->imissed += rxq->stats.rx_dropped;
stats->oerrors += txq->stats.tx_dropped;
fd = process_private->rxq_xsk_fds[i];
ret = fd >= 0 ? getsockopt(fd, SOL_XDP, XDP_STATISTICS,
&xdp_stats, &optlen) : -1;
if (ret != 0) {
AF_XDP_LOG(ERR, "getsockopt() failed for XDP_STATISTICS.\n");
return -1;
}
stats->imissed += xdp_stats.rx_dropped;
stats->opackets += stats->q_opackets[i];
stats->obytes += stats->q_obytes[i];
}
return 0;
}
static int
eth_stats_reset(struct rte_eth_dev *dev)
{
struct pmd_internals *internals = dev->data->dev_private;
int i;
for (i = 0; i < internals->queue_cnt; i++) {
memset(&internals->rx_queues[i].stats, 0,
sizeof(struct rx_stats));
memset(&internals->tx_queues[i].stats, 0,
sizeof(struct tx_stats));
}
return 0;
}
#ifdef RTE_NET_AF_XDP_LIBBPF_XDP_ATTACH
static int link_xdp_prog_with_dev(int ifindex, int fd, __u32 flags)
{
return bpf_xdp_attach(ifindex, fd, flags, NULL);
}
static int
remove_xdp_program(struct pmd_internals *internals)
{
uint32_t curr_prog_id = 0;
int ret;
ret = bpf_xdp_query_id(internals->if_index, XDP_FLAGS_UPDATE_IF_NOEXIST,
&curr_prog_id);
if (ret != 0) {
AF_XDP_LOG(ERR, "bpf_xdp_query_id failed\n");
return ret;
}
ret = bpf_xdp_detach(internals->if_index, XDP_FLAGS_UPDATE_IF_NOEXIST,
NULL);
if (ret != 0)
AF_XDP_LOG(ERR, "bpf_xdp_detach failed\n");
return ret;
}
#else
static int link_xdp_prog_with_dev(int ifindex, int fd, __u32 flags)
{
return bpf_set_link_xdp_fd(ifindex, fd, flags);
}
static int
remove_xdp_program(struct pmd_internals *internals)
{
uint32_t curr_prog_id = 0;
int ret;
ret = bpf_get_link_xdp_id(internals->if_index, &curr_prog_id,
XDP_FLAGS_UPDATE_IF_NOEXIST);
if (ret != 0) {
AF_XDP_LOG(ERR, "bpf_get_link_xdp_id failed\n");
return ret;
}
ret = bpf_set_link_xdp_fd(internals->if_index, -1,
XDP_FLAGS_UPDATE_IF_NOEXIST);
if (ret != 0)
AF_XDP_LOG(ERR, "bpf_set_link_xdp_fd failed\n");
return ret;
}
#endif
static void
xdp_umem_destroy(struct xsk_umem_info *umem)
{
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
umem->mb_pool = NULL;
#else
rte_memzone_free(umem->mz);
umem->mz = NULL;
rte_ring_free(umem->buf_ring);
umem->buf_ring = NULL;
#endif
rte_free(umem);
}
static int
eth_dev_close(struct rte_eth_dev *dev)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pkt_rx_queue *rxq;
int i;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
goto out;
AF_XDP_LOG(INFO, "Closing AF_XDP ethdev on numa socket %u\n",
rte_socket_id());
for (i = 0; i < internals->queue_cnt; i++) {
rxq = &internals->rx_queues[i];
if (rxq->umem == NULL)
break;
xsk_socket__delete(rxq->xsk);
if (__atomic_sub_fetch(&rxq->umem->refcnt, 1, __ATOMIC_ACQUIRE)
== 0) {
(void)xsk_umem__delete(rxq->umem->umem);
xdp_umem_destroy(rxq->umem);
}
/* free pkt_tx_queue */
rte_free(rxq->pair);
rte_free(rxq);
}
/*
* MAC is not allocated dynamically, setting it to NULL would prevent
* from releasing it in rte_eth_dev_release_port.
*/
dev->data->mac_addrs = NULL;
if (remove_xdp_program(internals) != 0)
AF_XDP_LOG(ERR, "Error while removing XDP program.\n");
if (internals->shared_umem) {
struct internal_list *list;
/* Remove ethdev from list used to track and share UMEMs */
list = find_internal_resource(internals);
if (list) {
pthread_mutex_lock(&internal_list_lock);
TAILQ_REMOVE(&internal_list, list, next);
pthread_mutex_unlock(&internal_list_lock);
rte_free(list);
}
}
out:
rte_free(dev->process_private);
return 0;
}
static int
eth_link_update(struct rte_eth_dev *dev __rte_unused,
int wait_to_complete __rte_unused)
{
return 0;
}
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
static inline uintptr_t get_base_addr(struct rte_mempool *mp, uint64_t *align)
{
struct rte_mempool_memhdr *memhdr;
uintptr_t memhdr_addr, aligned_addr;
memhdr = STAILQ_FIRST(&mp->mem_list);
memhdr_addr = (uintptr_t)memhdr->addr;
aligned_addr = memhdr_addr & ~(getpagesize() - 1);
*align = memhdr_addr - aligned_addr;
return aligned_addr;
}
/* Check if the netdev,qid context already exists */
static inline bool
ctx_exists(struct pkt_rx_queue *rxq, const char *ifname,
struct pkt_rx_queue *list_rxq, const char *list_ifname)
{
bool exists = false;
if (rxq->xsk_queue_idx == list_rxq->xsk_queue_idx &&
!strncmp(ifname, list_ifname, IFNAMSIZ)) {
AF_XDP_LOG(ERR, "ctx %s,%i already exists, cannot share umem\n",
ifname, rxq->xsk_queue_idx);
exists = true;
}
return exists;
}
/* Get a pointer to an existing UMEM which overlays the rxq's mb_pool */
static inline int
get_shared_umem(struct pkt_rx_queue *rxq, const char *ifname,
struct xsk_umem_info **umem)
{
struct internal_list *list;
struct pmd_internals *internals;
int i = 0, ret = 0;
struct rte_mempool *mb_pool = rxq->mb_pool;
if (mb_pool == NULL)
return ret;
pthread_mutex_lock(&internal_list_lock);
TAILQ_FOREACH(list, &internal_list, next) {
internals = list->eth_dev->data->dev_private;
for (i = 0; i < internals->queue_cnt; i++) {
struct pkt_rx_queue *list_rxq =
&internals->rx_queues[i];
if (rxq == list_rxq)
continue;
if (mb_pool == internals->rx_queues[i].mb_pool) {
if (ctx_exists(rxq, ifname, list_rxq,
internals->if_name)) {
ret = -1;
goto out;
}
if (__atomic_load_n(&internals->rx_queues[i].umem->refcnt,
__ATOMIC_ACQUIRE)) {
*umem = internals->rx_queues[i].umem;
goto out;
}
}
}
}
out:
pthread_mutex_unlock(&internal_list_lock);
return ret;
}
static struct
xsk_umem_info *xdp_umem_configure(struct pmd_internals *internals,
struct pkt_rx_queue *rxq)
{
struct xsk_umem_info *umem = NULL;
int ret;
struct xsk_umem_config usr_config = {
.fill_size = ETH_AF_XDP_DFLT_NUM_DESCS * 2,
.comp_size = ETH_AF_XDP_DFLT_NUM_DESCS,
.flags = XDP_UMEM_UNALIGNED_CHUNK_FLAG};
void *base_addr = NULL;
struct rte_mempool *mb_pool = rxq->mb_pool;
uint64_t umem_size, align = 0;
if (internals->shared_umem) {
if (get_shared_umem(rxq, internals->if_name, &umem) < 0)
return NULL;
if (umem != NULL &&
__atomic_load_n(&umem->refcnt, __ATOMIC_ACQUIRE) <
umem->max_xsks) {
AF_XDP_LOG(INFO, "%s,qid%i sharing UMEM\n",
internals->if_name, rxq->xsk_queue_idx);
__atomic_fetch_add(&umem->refcnt, 1, __ATOMIC_ACQUIRE);
}
}
if (umem == NULL) {
usr_config.frame_size =
rte_mempool_calc_obj_size(mb_pool->elt_size,
mb_pool->flags, NULL);
usr_config.frame_headroom = mb_pool->header_size +
sizeof(struct rte_mbuf) +
rte_pktmbuf_priv_size(mb_pool) +
RTE_PKTMBUF_HEADROOM;
umem = rte_zmalloc_socket("umem", sizeof(*umem), 0,
rte_socket_id());
if (umem == NULL) {
AF_XDP_LOG(ERR, "Failed to allocate umem info\n");
return NULL;
}
umem->mb_pool = mb_pool;
base_addr = (void *)get_base_addr(mb_pool, &align);
umem_size = (uint64_t)mb_pool->populated_size *
(uint64_t)usr_config.frame_size +
align;
ret = xsk_umem__create(&umem->umem, base_addr, umem_size,
&rxq->fq, &rxq->cq, &usr_config);
if (ret) {
AF_XDP_LOG(ERR, "Failed to create umem\n");
goto err;
}
umem->buffer = base_addr;
if (internals->shared_umem) {
umem->max_xsks = mb_pool->populated_size /
ETH_AF_XDP_NUM_BUFFERS;
AF_XDP_LOG(INFO, "Max xsks for UMEM %s: %u\n",
mb_pool->name, umem->max_xsks);
}
__atomic_store_n(&umem->refcnt, 1, __ATOMIC_RELEASE);
}
return umem;
err:
xdp_umem_destroy(umem);
return NULL;
}
#else
static struct
xsk_umem_info *xdp_umem_configure(struct pmd_internals *internals,
struct pkt_rx_queue *rxq)
{
struct xsk_umem_info *umem;
const struct rte_memzone *mz;
struct xsk_umem_config usr_config = {
.fill_size = ETH_AF_XDP_DFLT_NUM_DESCS,
.comp_size = ETH_AF_XDP_DFLT_NUM_DESCS,
.frame_size = ETH_AF_XDP_FRAME_SIZE,
.frame_headroom = 0 };
char ring_name[RTE_RING_NAMESIZE];
char mz_name[RTE_MEMZONE_NAMESIZE];
int ret;
uint64_t i;
umem = rte_zmalloc_socket("umem", sizeof(*umem), 0, rte_socket_id());
if (umem == NULL) {
AF_XDP_LOG(ERR, "Failed to allocate umem info\n");
return NULL;
}
snprintf(ring_name, sizeof(ring_name), "af_xdp_ring_%s_%u",
internals->if_name, rxq->xsk_queue_idx);
umem->buf_ring = rte_ring_create(ring_name,
ETH_AF_XDP_NUM_BUFFERS,
rte_socket_id(),
0x0);
if (umem->buf_ring == NULL) {
AF_XDP_LOG(ERR, "Failed to create rte_ring\n");
goto err;
}
for (i = 0; i < ETH_AF_XDP_NUM_BUFFERS; i++)
rte_ring_enqueue(umem->buf_ring,
(void *)(i * ETH_AF_XDP_FRAME_SIZE));
snprintf(mz_name, sizeof(mz_name), "af_xdp_umem_%s_%u",
internals->if_name, rxq->xsk_queue_idx);
mz = rte_memzone_reserve_aligned(mz_name,
ETH_AF_XDP_NUM_BUFFERS * ETH_AF_XDP_FRAME_SIZE,
rte_socket_id(), RTE_MEMZONE_IOVA_CONTIG,
getpagesize());
if (mz == NULL) {
AF_XDP_LOG(ERR, "Failed to reserve memzone for af_xdp umem.\n");
goto err;
}
ret = xsk_umem__create(&umem->umem, mz->addr,
ETH_AF_XDP_NUM_BUFFERS * ETH_AF_XDP_FRAME_SIZE,
&rxq->fq, &rxq->cq,
&usr_config);
if (ret) {
AF_XDP_LOG(ERR, "Failed to create umem\n");
goto err;
}
umem->mz = mz;
return umem;
err:
xdp_umem_destroy(umem);
return NULL;
}
#endif
static int
load_custom_xdp_prog(const char *prog_path, int if_index, struct bpf_map **map)
{
int ret, prog_fd;
struct bpf_object *obj;
prog_fd = load_program(prog_path, &obj);
if (prog_fd < 0) {
AF_XDP_LOG(ERR, "Failed to load program %s\n", prog_path);
return -1;
}
/*
* The loaded program must provision for a map of xsks, such that some
* traffic can be redirected to userspace.
*/
*map = bpf_object__find_map_by_name(obj, "xsks_map");
if (!*map) {
AF_XDP_LOG(ERR, "Failed to find xsks_map in %s\n", prog_path);
return -1;
}
/* Link the program with the given network device */
ret = link_xdp_prog_with_dev(if_index, prog_fd,
XDP_FLAGS_UPDATE_IF_NOEXIST);
if (ret) {
AF_XDP_LOG(ERR, "Failed to set prog fd %d on interface\n",
prog_fd);
return -1;
}
AF_XDP_LOG(INFO, "Successfully loaded XDP program %s with fd %d\n",
prog_path, prog_fd);
return 0;
}
/* Detect support for busy polling through setsockopt(). */
static int
configure_preferred_busy_poll(struct pkt_rx_queue *rxq)
{
int sock_opt = 1;
int fd = xsk_socket__fd(rxq->xsk);
int ret = 0;
ret = setsockopt(fd, SOL_SOCKET, SO_PREFER_BUSY_POLL,
(void *)&sock_opt, sizeof(sock_opt));
if (ret < 0) {
AF_XDP_LOG(DEBUG, "Failed to set SO_PREFER_BUSY_POLL\n");
goto err_prefer;
}
sock_opt = ETH_AF_XDP_DFLT_BUSY_TIMEOUT;
ret = setsockopt(fd, SOL_SOCKET, SO_BUSY_POLL, (void *)&sock_opt,
sizeof(sock_opt));
if (ret < 0) {
AF_XDP_LOG(DEBUG, "Failed to set SO_BUSY_POLL\n");
goto err_timeout;
}
sock_opt = rxq->busy_budget;
ret = setsockopt(fd, SOL_SOCKET, SO_BUSY_POLL_BUDGET,
(void *)&sock_opt, sizeof(sock_opt));
if (ret < 0) {
AF_XDP_LOG(DEBUG, "Failed to set SO_BUSY_POLL_BUDGET\n");
} else {
AF_XDP_LOG(INFO, "Busy polling budget set to: %u\n",
rxq->busy_budget);
return 0;
}
/* setsockopt failure - attempt to restore xsk to default state and
* proceed without busy polling support.
*/
sock_opt = 0;
ret = setsockopt(fd, SOL_SOCKET, SO_BUSY_POLL, (void *)&sock_opt,
sizeof(sock_opt));
if (ret < 0) {
AF_XDP_LOG(ERR, "Failed to unset SO_BUSY_POLL\n");
return -1;
}
err_timeout:
sock_opt = 0;
ret = setsockopt(fd, SOL_SOCKET, SO_PREFER_BUSY_POLL,
(void *)&sock_opt, sizeof(sock_opt));
if (ret < 0) {
AF_XDP_LOG(ERR, "Failed to unset SO_PREFER_BUSY_POLL\n");
return -1;
}
err_prefer:
rxq->busy_budget = 0;
return 0;
}
static int
xsk_configure(struct pmd_internals *internals, struct pkt_rx_queue *rxq,
int ring_size)
{
struct xsk_socket_config cfg;
struct pkt_tx_queue *txq = rxq->pair;
int ret = 0;
int reserve_size = ETH_AF_XDP_DFLT_NUM_DESCS;
struct rte_mbuf *fq_bufs[reserve_size];
bool reserve_before;
rxq->umem = xdp_umem_configure(internals, rxq);
if (rxq->umem == NULL)
return -ENOMEM;
txq->umem = rxq->umem;
reserve_before = __atomic_load_n(&rxq->umem->refcnt, __ATOMIC_ACQUIRE) <= 1;
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
ret = rte_pktmbuf_alloc_bulk(rxq->umem->mb_pool, fq_bufs, reserve_size);
if (ret) {
AF_XDP_LOG(DEBUG, "Failed to get enough buffers for fq.\n");
goto out_umem;
}
#endif
/* reserve fill queue of queues not (yet) sharing UMEM */
if (reserve_before) {
ret = reserve_fill_queue(rxq->umem, reserve_size, fq_bufs, &rxq->fq);
if (ret) {
AF_XDP_LOG(ERR, "Failed to reserve fill queue.\n");
goto out_umem;
}
}
cfg.rx_size = ring_size;
cfg.tx_size = ring_size;
cfg.libbpf_flags = 0;
cfg.xdp_flags = XDP_FLAGS_UPDATE_IF_NOEXIST;
cfg.bind_flags = 0;
/* Force AF_XDP socket into copy mode when users want it */
if (internals->force_copy)
cfg.bind_flags |= XDP_COPY;
#if defined(XDP_USE_NEED_WAKEUP)
cfg.bind_flags |= XDP_USE_NEED_WAKEUP;
#endif
if (strnlen(internals->prog_path, PATH_MAX)) {
if (!internals->custom_prog_configured) {
ret = load_custom_xdp_prog(internals->prog_path,
internals->if_index,
&internals->map);
if (ret) {
AF_XDP_LOG(ERR, "Failed to load custom XDP program %s\n",
internals->prog_path);
goto out_umem;
}
internals->custom_prog_configured = 1;
}
cfg.libbpf_flags |= XSK_LIBBPF_FLAGS__INHIBIT_PROG_LOAD;
}
if (internals->shared_umem)
ret = create_shared_socket(&rxq->xsk, internals->if_name,
rxq->xsk_queue_idx, rxq->umem->umem, &rxq->rx,
&txq->tx, &rxq->fq, &rxq->cq, &cfg);
else
ret = xsk_socket__create(&rxq->xsk, internals->if_name,
rxq->xsk_queue_idx, rxq->umem->umem, &rxq->rx,
&txq->tx, &cfg);
if (ret) {
AF_XDP_LOG(ERR, "Failed to create xsk socket.\n");
goto out_umem;
}
if (!reserve_before) {
/* reserve fill queue of queues sharing UMEM */
ret = reserve_fill_queue(rxq->umem, reserve_size, fq_bufs, &rxq->fq);
if (ret) {
AF_XDP_LOG(ERR, "Failed to reserve fill queue.\n");
goto out_xsk;
}
}
/* insert the xsk into the xsks_map */
if (internals->custom_prog_configured) {
int err, fd;
fd = xsk_socket__fd(rxq->xsk);
err = bpf_map_update_elem(bpf_map__fd(internals->map),
&rxq->xsk_queue_idx, &fd, 0);
if (err) {
AF_XDP_LOG(ERR, "Failed to insert xsk in map.\n");
goto out_xsk;
}
}
if (rxq->busy_budget) {
ret = configure_preferred_busy_poll(rxq);
if (ret) {
AF_XDP_LOG(ERR, "Failed configure busy polling.\n");
goto out_xsk;
}
}
return 0;
out_xsk:
xsk_socket__delete(rxq->xsk);
out_umem:
if (__atomic_sub_fetch(&rxq->umem->refcnt, 1, __ATOMIC_ACQUIRE) == 0)
xdp_umem_destroy(rxq->umem);
return ret;
}
static int
eth_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mb_pool)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pmd_process_private *process_private = dev->process_private;
struct pkt_rx_queue *rxq;
int ret;
rxq = &internals->rx_queues[rx_queue_id];
AF_XDP_LOG(INFO, "Set up rx queue, rx queue id: %d, xsk queue id: %d\n",
rx_queue_id, rxq->xsk_queue_idx);
#ifndef XDP_UMEM_UNALIGNED_CHUNK_FLAG
uint32_t buf_size, data_size;
/* Now get the space available for data in the mbuf */
buf_size = rte_pktmbuf_data_room_size(mb_pool) -
RTE_PKTMBUF_HEADROOM;
data_size = ETH_AF_XDP_FRAME_SIZE;
if (data_size > buf_size) {
AF_XDP_LOG(ERR, "%s: %d bytes will not fit in mbuf (%d bytes)\n",
dev->device->name, data_size, buf_size);
ret = -ENOMEM;
goto err;
}
#endif
rxq->mb_pool = mb_pool;
if (xsk_configure(internals, rxq, nb_rx_desc)) {
AF_XDP_LOG(ERR, "Failed to configure xdp socket\n");
ret = -EINVAL;
goto err;
}
if (!rxq->busy_budget)
AF_XDP_LOG(DEBUG, "Preferred busy polling not enabled\n");
rxq->fds[0].fd = xsk_socket__fd(rxq->xsk);
rxq->fds[0].events = POLLIN;
process_private->rxq_xsk_fds[rx_queue_id] = rxq->fds[0].fd;
dev->data->rx_queues[rx_queue_id] = rxq;
return 0;
err:
return ret;
}
static int
eth_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pkt_tx_queue *txq;
txq = &internals->tx_queues[tx_queue_id];
dev->data->tx_queues[tx_queue_id] = txq;
return 0;
}
static int
eth_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct pmd_internals *internals = dev->data->dev_private;
struct ifreq ifr = { .ifr_mtu = mtu };
int ret;
int s;
s = socket(PF_INET, SOCK_DGRAM, 0);
if (s < 0)
return -EINVAL;
strlcpy(ifr.ifr_name, internals->if_name, IFNAMSIZ);
ret = ioctl(s, SIOCSIFMTU, &ifr);
close(s);
return (ret < 0) ? -errno : 0;
}
static int
eth_dev_change_flags(char *if_name, uint32_t flags, uint32_t mask)
{
struct ifreq ifr;
int ret = 0;
int s;
s = socket(PF_INET, SOCK_DGRAM, 0);
if (s < 0)
return -errno;
strlcpy(ifr.ifr_name, if_name, IFNAMSIZ);
if (ioctl(s, SIOCGIFFLAGS, &ifr) < 0) {
ret = -errno;
goto out;
}
ifr.ifr_flags &= mask;
ifr.ifr_flags |= flags;
if (ioctl(s, SIOCSIFFLAGS, &ifr) < 0) {
ret = -errno;
goto out;
}
out:
close(s);
return ret;
}
static int
eth_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct pmd_internals *internals = dev->data->dev_private;
return eth_dev_change_flags(internals->if_name, IFF_PROMISC, ~0);
}
static int
eth_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct pmd_internals *internals = dev->data->dev_private;
return eth_dev_change_flags(internals->if_name, 0, ~IFF_PROMISC);
}
static const struct eth_dev_ops ops = {
.dev_start = eth_dev_start,
.dev_stop = eth_dev_stop,
.dev_close = eth_dev_close,
.dev_configure = eth_dev_configure,
.dev_infos_get = eth_dev_info,
.mtu_set = eth_dev_mtu_set,
.promiscuous_enable = eth_dev_promiscuous_enable,
.promiscuous_disable = eth_dev_promiscuous_disable,
.rx_queue_setup = eth_rx_queue_setup,
.tx_queue_setup = eth_tx_queue_setup,
.link_update = eth_link_update,
.stats_get = eth_stats_get,
.stats_reset = eth_stats_reset,
.get_monitor_addr = eth_get_monitor_addr,
};
/** parse busy_budget argument */
static int
parse_budget_arg(const char *key __rte_unused,
const char *value, void *extra_args)
{
int *i = (int *)extra_args;
char *end;
*i = strtol(value, &end, 10);
if (*i < 0 || *i > UINT16_MAX) {
AF_XDP_LOG(ERR, "Invalid busy_budget %i, must be >= 0 and <= %u\n",
*i, UINT16_MAX);
return -EINVAL;
}
return 0;
}
/** parse integer from integer argument */
static int
parse_integer_arg(const char *key __rte_unused,
const char *value, void *extra_args)
{
int *i = (int *)extra_args;
char *end;
*i = strtol(value, &end, 10);
if (*i < 0) {
AF_XDP_LOG(ERR, "Argument has to be positive.\n");
return -EINVAL;
}
return 0;
}
/** parse name argument */
static int
parse_name_arg(const char *key __rte_unused,
const char *value, void *extra_args)
{
char *name = extra_args;
if (strnlen(value, IFNAMSIZ) > IFNAMSIZ - 1) {
AF_XDP_LOG(ERR, "Invalid name %s, should be less than %u bytes.\n",
value, IFNAMSIZ);
return -EINVAL;
}
strlcpy(name, value, IFNAMSIZ);
return 0;
}
/** parse xdp prog argument */
static int
parse_prog_arg(const char *key __rte_unused,
const char *value, void *extra_args)
{
char *path = extra_args;
if (strnlen(value, PATH_MAX) == PATH_MAX) {
AF_XDP_LOG(ERR, "Invalid path %s, should be less than %u bytes.\n",
value, PATH_MAX);
return -EINVAL;
}
if (access(value, F_OK) != 0) {
AF_XDP_LOG(ERR, "Error accessing %s: %s\n",
value, strerror(errno));
return -EINVAL;
}
strlcpy(path, value, PATH_MAX);
return 0;
}
static int
xdp_get_channels_info(const char *if_name, int *max_queues,
int *combined_queues)
{
struct ethtool_channels channels;
struct ifreq ifr;
int fd, ret;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0)
return -1;
channels.cmd = ETHTOOL_GCHANNELS;
ifr.ifr_data = (void *)&channels;
strlcpy(ifr.ifr_name, if_name, IFNAMSIZ);
ret = ioctl(fd, SIOCETHTOOL, &ifr);
if (ret) {
if (errno == EOPNOTSUPP) {
ret = 0;
} else {
ret = -errno;
goto out;
}
}
if (channels.max_combined == 0 || errno == EOPNOTSUPP) {
/* If the device says it has no channels, then all traffic
* is sent to a single stream, so max queues = 1.
*/
*max_queues = 1;
*combined_queues = 1;
} else {
*max_queues = channels.max_combined;
*combined_queues = channels.combined_count;
}
out:
close(fd);
return ret;
}
static int
parse_parameters(struct rte_kvargs *kvlist, char *if_name, int *start_queue,
int *queue_cnt, int *shared_umem, char *prog_path,
int *busy_budget, int *force_copy)
{
int ret;
ret = rte_kvargs_process(kvlist, ETH_AF_XDP_IFACE_ARG,
&parse_name_arg, if_name);
if (ret < 0)
goto free_kvlist;
ret = rte_kvargs_process(kvlist, ETH_AF_XDP_START_QUEUE_ARG,
&parse_integer_arg, start_queue);
if (ret < 0)
goto free_kvlist;
ret = rte_kvargs_process(kvlist, ETH_AF_XDP_QUEUE_COUNT_ARG,
&parse_integer_arg, queue_cnt);
if (ret < 0 || *queue_cnt <= 0) {
ret = -EINVAL;
goto free_kvlist;
}
ret = rte_kvargs_process(kvlist, ETH_AF_XDP_SHARED_UMEM_ARG,
&parse_integer_arg, shared_umem);
if (ret < 0)
goto free_kvlist;
ret = rte_kvargs_process(kvlist, ETH_AF_XDP_PROG_ARG,
&parse_prog_arg, prog_path);
if (ret < 0)
goto free_kvlist;
ret = rte_kvargs_process(kvlist, ETH_AF_XDP_BUDGET_ARG,
&parse_budget_arg, busy_budget);
if (ret < 0)
goto free_kvlist;
ret = rte_kvargs_process(kvlist, ETH_AF_XDP_FORCE_COPY_ARG,
&parse_integer_arg, force_copy);
if (ret < 0)
goto free_kvlist;
free_kvlist:
rte_kvargs_free(kvlist);
return ret;
}
static int
get_iface_info(const char *if_name,
struct rte_ether_addr *eth_addr,
int *if_index)
{
struct ifreq ifr;
int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
if (sock < 0)
return -1;
strlcpy(ifr.ifr_name, if_name, IFNAMSIZ);
if (ioctl(sock, SIOCGIFINDEX, &ifr))
goto error;
*if_index = ifr.ifr_ifindex;
if (ioctl(sock, SIOCGIFHWADDR, &ifr))
goto error;
rte_memcpy(eth_addr, ifr.ifr_hwaddr.sa_data, RTE_ETHER_ADDR_LEN);
close(sock);
return 0;
error:
close(sock);
return -1;
}
static struct rte_eth_dev *
init_internals(struct rte_vdev_device *dev, const char *if_name,
int start_queue_idx, int queue_cnt, int shared_umem,
const char *prog_path, int busy_budget, int force_copy)
{
const char *name = rte_vdev_device_name(dev);
const unsigned int numa_node = dev->device.numa_node;
struct pmd_process_private *process_private;
struct pmd_internals *internals;
struct rte_eth_dev *eth_dev;
int ret;
int i;
internals = rte_zmalloc_socket(name, sizeof(*internals), 0, numa_node);
if (internals == NULL)
return NULL;
internals->start_queue_idx = start_queue_idx;
internals->queue_cnt = queue_cnt;
strlcpy(internals->if_name, if_name, IFNAMSIZ);
strlcpy(internals->prog_path, prog_path, PATH_MAX);
internals->custom_prog_configured = 0;
#ifndef ETH_AF_XDP_SHARED_UMEM
if (shared_umem) {
AF_XDP_LOG(ERR, "Shared UMEM feature not available. "
"Check kernel and libbpf version\n");
goto err_free_internals;
}
#endif
internals->shared_umem = shared_umem;
internals->force_copy = force_copy;
if (xdp_get_channels_info(if_name, &internals->max_queue_cnt,
&internals->combined_queue_cnt)) {
AF_XDP_LOG(ERR, "Failed to get channel info of interface: %s\n",
if_name);
goto err_free_internals;
}
if (queue_cnt > internals->combined_queue_cnt) {
AF_XDP_LOG(ERR, "Specified queue count %d is larger than combined queue count %d.\n",
queue_cnt, internals->combined_queue_cnt);
goto err_free_internals;
}
internals->rx_queues = rte_zmalloc_socket(NULL,
sizeof(struct pkt_rx_queue) * queue_cnt,
0, numa_node);
if (internals->rx_queues == NULL) {
AF_XDP_LOG(ERR, "Failed to allocate memory for rx queues.\n");
goto err_free_internals;
}
internals->tx_queues = rte_zmalloc_socket(NULL,
sizeof(struct pkt_tx_queue) * queue_cnt,
0, numa_node);
if (internals->tx_queues == NULL) {
AF_XDP_LOG(ERR, "Failed to allocate memory for tx queues.\n");
goto err_free_rx;
}
for (i = 0; i < queue_cnt; i++) {
internals->tx_queues[i].pair = &internals->rx_queues[i];
internals->rx_queues[i].pair = &internals->tx_queues[i];
internals->rx_queues[i].xsk_queue_idx = start_queue_idx + i;
internals->tx_queues[i].xsk_queue_idx = start_queue_idx + i;
internals->rx_queues[i].busy_budget = busy_budget;
}
ret = get_iface_info(if_name, &internals->eth_addr,
&internals->if_index);
if (ret)
goto err_free_tx;
process_private = (struct pmd_process_private *)
rte_zmalloc_socket(name, sizeof(struct pmd_process_private),
RTE_CACHE_LINE_SIZE, numa_node);
if (process_private == NULL) {
AF_XDP_LOG(ERR, "Failed to alloc memory for process private\n");
goto err_free_tx;
}
eth_dev = rte_eth_vdev_allocate(dev, 0);
if (eth_dev == NULL)
goto err_free_pp;
eth_dev->data->dev_private = internals;
eth_dev->data->dev_link = pmd_link;
eth_dev->data->mac_addrs = &internals->eth_addr;
eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
eth_dev->dev_ops = &ops;
eth_dev->rx_pkt_burst = eth_af_xdp_rx;
eth_dev->tx_pkt_burst = eth_af_xdp_tx;
eth_dev->process_private = process_private;
for (i = 0; i < queue_cnt; i++)
process_private->rxq_xsk_fds[i] = -1;
#if defined(XDP_UMEM_UNALIGNED_CHUNK_FLAG)
AF_XDP_LOG(INFO, "Zero copy between umem and mbuf enabled.\n");
#endif
return eth_dev;
err_free_pp:
rte_free(process_private);
err_free_tx:
rte_free(internals->tx_queues);
err_free_rx:
rte_free(internals->rx_queues);
err_free_internals:
rte_free(internals);
return NULL;
}
/* Secondary process requests rxq fds from primary. */
static int
afxdp_mp_request_fds(const char *name, struct rte_eth_dev *dev)
{
struct pmd_process_private *process_private = dev->process_private;
struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
struct rte_mp_msg request, *reply;
struct rte_mp_reply replies;
struct ipc_hdr *request_param = (struct ipc_hdr *)request.param;
int i, ret;
/* Prepare the request */
memset(&request, 0, sizeof(request));
strlcpy(request.name, ETH_AF_XDP_MP_KEY, sizeof(request.name));
strlcpy(request_param->port_name, name,
sizeof(request_param->port_name));
request.len_param = sizeof(*request_param);
/* Send the request and receive the reply */
AF_XDP_LOG(DEBUG, "Sending multi-process IPC request for %s\n", name);
ret = rte_mp_request_sync(&request, &replies, &timeout);
if (ret < 0 || replies.nb_received != 1) {
AF_XDP_LOG(ERR, "Failed to request fds from primary: %d\n",
rte_errno);
return -1;
}
reply = replies.msgs;
AF_XDP_LOG(DEBUG, "Received multi-process IPC reply for %s\n", name);
if (dev->data->nb_rx_queues != reply->num_fds) {
AF_XDP_LOG(ERR, "Incorrect number of fds received: %d != %d\n",
reply->num_fds, dev->data->nb_rx_queues);
return -EINVAL;
}
for (i = 0; i < reply->num_fds; i++)
process_private->rxq_xsk_fds[i] = reply->fds[i];
free(reply);
return 0;
}
/* Primary process sends rxq fds to secondary. */
static int
afxdp_mp_send_fds(const struct rte_mp_msg *request, const void *peer)
{
struct rte_eth_dev *dev;
struct pmd_process_private *process_private;
struct rte_mp_msg reply;
const struct ipc_hdr *request_param =
(const struct ipc_hdr *)request->param;
struct ipc_hdr *reply_param =
(struct ipc_hdr *)reply.param;
const char *request_name = request_param->port_name;
int i;
AF_XDP_LOG(DEBUG, "Received multi-process IPC request for %s\n",
request_name);
/* Find the requested port */
dev = rte_eth_dev_get_by_name(request_name);
if (!dev) {
AF_XDP_LOG(ERR, "Failed to get port id for %s\n", request_name);
return -1;
}
process_private = dev->process_private;
/* Populate the reply with the xsk fd for each queue */
reply.num_fds = 0;
if (dev->data->nb_rx_queues > RTE_MP_MAX_FD_NUM) {
AF_XDP_LOG(ERR, "Number of rx queues (%d) exceeds max number of fds (%d)\n",
dev->data->nb_rx_queues, RTE_MP_MAX_FD_NUM);
return -EINVAL;
}
for (i = 0; i < dev->data->nb_rx_queues; i++)
reply.fds[reply.num_fds++] = process_private->rxq_xsk_fds[i];
/* Send the reply */
strlcpy(reply.name, request->name, sizeof(reply.name));
strlcpy(reply_param->port_name, request_name,
sizeof(reply_param->port_name));
reply.len_param = sizeof(*reply_param);
AF_XDP_LOG(DEBUG, "Sending multi-process IPC reply for %s\n",
reply_param->port_name);
if (rte_mp_reply(&reply, peer) < 0) {
AF_XDP_LOG(ERR, "Failed to reply to multi-process IPC request\n");
return -1;
}
return 0;
}
static int
rte_pmd_af_xdp_probe(struct rte_vdev_device *dev)
{
struct rte_kvargs *kvlist;
char if_name[IFNAMSIZ] = {'\0'};
int xsk_start_queue_idx = ETH_AF_XDP_DFLT_START_QUEUE_IDX;
int xsk_queue_cnt = ETH_AF_XDP_DFLT_QUEUE_COUNT;
int shared_umem = 0;
char prog_path[PATH_MAX] = {'\0'};
int busy_budget = -1, ret;
int force_copy = 0;
struct rte_eth_dev *eth_dev = NULL;
const char *name = rte_vdev_device_name(dev);
AF_XDP_LOG(INFO, "Initializing pmd_af_xdp for %s\n", name);
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
eth_dev = rte_eth_dev_attach_secondary(name);
if (eth_dev == NULL) {
AF_XDP_LOG(ERR, "Failed to probe %s\n", name);
return -EINVAL;
}
eth_dev->dev_ops = &ops;
eth_dev->device = &dev->device;
eth_dev->rx_pkt_burst = rte_eth_pkt_burst_dummy;
eth_dev->tx_pkt_burst = rte_eth_pkt_burst_dummy;
eth_dev->process_private = (struct pmd_process_private *)
rte_zmalloc_socket(name,
sizeof(struct pmd_process_private),
RTE_CACHE_LINE_SIZE,
eth_dev->device->numa_node);
if (eth_dev->process_private == NULL) {
AF_XDP_LOG(ERR,
"Failed to alloc memory for process private\n");
return -ENOMEM;
}
/* Obtain the xsk fds from the primary process. */
if (afxdp_mp_request_fds(name, eth_dev))
return -1;
rte_eth_dev_probing_finish(eth_dev);
return 0;
}
kvlist = rte_kvargs_parse(rte_vdev_device_args(dev), valid_arguments);
if (kvlist == NULL) {
AF_XDP_LOG(ERR, "Invalid kvargs key\n");
return -EINVAL;
}
if (dev->device.numa_node == SOCKET_ID_ANY)
dev->device.numa_node = rte_socket_id();
if (parse_parameters(kvlist, if_name, &xsk_start_queue_idx,
&xsk_queue_cnt, &shared_umem, prog_path,
&busy_budget, &force_copy) < 0) {
AF_XDP_LOG(ERR, "Invalid kvargs value\n");
return -EINVAL;
}
if (strlen(if_name) == 0) {
AF_XDP_LOG(ERR, "Network interface must be specified\n");
return -EINVAL;
}
busy_budget = busy_budget == -1 ? ETH_AF_XDP_DFLT_BUSY_BUDGET :
busy_budget;
eth_dev = init_internals(dev, if_name, xsk_start_queue_idx,
xsk_queue_cnt, shared_umem, prog_path,
busy_budget, force_copy);
if (eth_dev == NULL) {
AF_XDP_LOG(ERR, "Failed to init internals\n");
return -1;
}
/* Register IPC callback which shares xsk fds from primary to secondary */
if (!afxdp_dev_count) {
ret = rte_mp_action_register(ETH_AF_XDP_MP_KEY, afxdp_mp_send_fds);
if (ret < 0 && rte_errno != ENOTSUP) {
AF_XDP_LOG(ERR, "%s: Failed to register multi-process IPC callback: %s\n",
name, strerror(rte_errno));
return -1;
}
}
afxdp_dev_count++;
rte_eth_dev_probing_finish(eth_dev);
return 0;
}
static int
rte_pmd_af_xdp_remove(struct rte_vdev_device *dev)
{
struct rte_eth_dev *eth_dev = NULL;
AF_XDP_LOG(INFO, "Removing AF_XDP ethdev on numa socket %u\n",
rte_socket_id());
if (dev == NULL)
return -1;
/* find the ethdev entry */
eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
if (eth_dev == NULL)
return 0;
eth_dev_close(eth_dev);
if (afxdp_dev_count == 1)
rte_mp_action_unregister(ETH_AF_XDP_MP_KEY);
afxdp_dev_count--;
rte_eth_dev_release_port(eth_dev);
return 0;
}
static struct rte_vdev_driver pmd_af_xdp_drv = {
.probe = rte_pmd_af_xdp_probe,
.remove = rte_pmd_af_xdp_remove,
};
RTE_PMD_REGISTER_VDEV(net_af_xdp, pmd_af_xdp_drv);
RTE_PMD_REGISTER_PARAM_STRING(net_af_xdp,
"iface=<string> "
"start_queue=<int> "
"queue_count=<int> "
"shared_umem=<int> "
"xdp_prog=<string> "
"busy_budget=<int> "
"force_copy=<int> ");