f-stack/dpdk/drivers/crypto/uadk/uadk_crypto_pmd.c

1082 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2022-2023 Huawei Technologies Co.,Ltd. All rights reserved.
* Copyright 2022-2023 Linaro ltd.
*/
#include <stdlib.h>
#include <bus_vdev_driver.h>
#include <cryptodev_pmd.h>
#include <rte_bus_vdev.h>
#include <uadk/wd_cipher.h>
#include <uadk/wd_digest.h>
#include <uadk/wd_sched.h>
#include "uadk_crypto_pmd_private.h"
static uint8_t uadk_cryptodev_driver_id;
static const struct rte_cryptodev_capabilities uadk_crypto_v2_capabilities[] = {
{ /* MD5 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_MD5_HMAC,
.block_size = 64,
.key_size = {
.min = 1,
.max = 64,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 16,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* MD5 */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_MD5,
.block_size = 64,
.key_size = {
.min = 0,
.max = 0,
.increment = 0
},
.digest_size = {
.min = 16,
.max = 16,
.increment = 0
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA1 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.block_size = 64,
.key_size = {
.min = 1,
.max = 64,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 20,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA1 */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA1,
.block_size = 64,
.key_size = {
.min = 0,
.max = 0,
.increment = 0
},
.digest_size = {
.min = 20,
.max = 20,
.increment = 0
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA224 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA224_HMAC,
.block_size = 64,
.key_size = {
.min = 1,
.max = 64,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 28,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA224 */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA224,
.block_size = 64,
.key_size = {
.min = 0,
.max = 0,
.increment = 0
},
.digest_size = {
.min = 1,
.max = 28,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA256 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA256_HMAC,
.block_size = 64,
.key_size = {
.min = 1,
.max = 64,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 32,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA256 */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA256,
.block_size = 64,
.key_size = {
.min = 0,
.max = 0,
.increment = 0
},
.digest_size = {
.min = 32,
.max = 32,
.increment = 0
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA384 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA384_HMAC,
.block_size = 128,
.key_size = {
.min = 1,
.max = 128,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 48,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA384 */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA384,
.block_size = 128,
.key_size = {
.min = 0,
.max = 0,
.increment = 0
},
.digest_size = {
.min = 48,
.max = 48,
.increment = 0
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA512 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA512_HMAC,
.block_size = 128,
.key_size = {
.min = 1,
.max = 128,
.increment = 1
},
.digest_size = {
.min = 1,
.max = 64,
.increment = 1
},
.iv_size = { 0 }
}, }
}, }
},
{ /* SHA512 */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA512,
.block_size = 128,
.key_size = {
.min = 0,
.max = 0,
.increment = 0
},
.digest_size = {
.min = 64,
.max = 64,
.increment = 0
},
.iv_size = { 0 }
}, }
}, }
},
{ /* AES ECB */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_ECB,
.block_size = 16,
.key_size = {
.min = 16,
.max = 32,
.increment = 8
},
.iv_size = {
.min = 0,
.max = 0,
.increment = 0
}
}, }
}, }
},
{ /* AES CBC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
.block_size = 16,
.key_size = {
.min = 16,
.max = 32,
.increment = 8
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
}
}, }
}, }
},
{ /* AES XTS */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_XTS,
.block_size = 1,
.key_size = {
.min = 32,
.max = 64,
.increment = 32
},
.iv_size = {
.min = 0,
.max = 0,
.increment = 0
}
}, }
}, }
},
{ /* DES CBC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_DES_CBC,
.block_size = 8,
.key_size = {
.min = 8,
.max = 8,
.increment = 0
},
.iv_size = {
.min = 8,
.max = 8,
.increment = 0
}
}, }
}, }
},
/* End of capabilities */
RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST()
};
/* Configure device */
static int
uadk_crypto_pmd_config(struct rte_cryptodev *dev __rte_unused,
struct rte_cryptodev_config *config __rte_unused)
{
return 0;
}
/* Start device */
static int
uadk_crypto_pmd_start(struct rte_cryptodev *dev __rte_unused)
{
return 0;
}
/* Stop device */
static void
uadk_crypto_pmd_stop(struct rte_cryptodev *dev __rte_unused)
{
}
/* Close device */
static int
uadk_crypto_pmd_close(struct rte_cryptodev *dev)
{
struct uadk_crypto_priv *priv = dev->data->dev_private;
if (priv->env_cipher_init) {
wd_cipher_env_uninit();
priv->env_cipher_init = false;
}
if (priv->env_auth_init) {
wd_digest_env_uninit();
priv->env_auth_init = false;
}
return 0;
}
/* Get device statistics */
static void
uadk_crypto_pmd_stats_get(struct rte_cryptodev *dev,
struct rte_cryptodev_stats *stats)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct uadk_qp *qp = dev->data->queue_pairs[qp_id];
stats->enqueued_count += qp->qp_stats.enqueued_count;
stats->dequeued_count += qp->qp_stats.dequeued_count;
stats->enqueue_err_count += qp->qp_stats.enqueue_err_count;
stats->dequeue_err_count += qp->qp_stats.dequeue_err_count;
}
}
/* Reset device statistics */
static void
uadk_crypto_pmd_stats_reset(struct rte_cryptodev *dev __rte_unused)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct uadk_qp *qp = dev->data->queue_pairs[qp_id];
memset(&qp->qp_stats, 0, sizeof(qp->qp_stats));
}
}
/* Get device info */
static void
uadk_crypto_pmd_info_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *dev_info)
{
struct uadk_crypto_priv *priv = dev->data->dev_private;
if (dev_info != NULL) {
dev_info->driver_id = dev->driver_id;
dev_info->driver_name = dev->device->driver->name;
dev_info->max_nb_queue_pairs = 128;
/* No limit of number of sessions */
dev_info->sym.max_nb_sessions = 0;
dev_info->feature_flags = dev->feature_flags;
if (priv->version == UADK_CRYPTO_V2)
dev_info->capabilities = uadk_crypto_v2_capabilities;
}
}
/* Release queue pair */
static int
uadk_crypto_pmd_qp_release(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct uadk_qp *qp = dev->data->queue_pairs[qp_id];
if (qp) {
rte_ring_free(qp->processed_pkts);
rte_free(qp);
dev->data->queue_pairs[qp_id] = NULL;
}
return 0;
}
/* set a unique name for the queue pair based on its name, dev_id and qp_id */
static int
uadk_pmd_qp_set_unique_name(struct rte_cryptodev *dev,
struct uadk_qp *qp)
{
unsigned int n = snprintf(qp->name, sizeof(qp->name),
"uadk_crypto_pmd_%u_qp_%u",
dev->data->dev_id, qp->id);
if (n >= sizeof(qp->name))
return -EINVAL;
return 0;
}
/* Create a ring to place process packets on */
static struct rte_ring *
uadk_pmd_qp_create_processed_pkts_ring(struct uadk_qp *qp,
unsigned int ring_size, int socket_id)
{
struct rte_ring *r = qp->processed_pkts;
if (r) {
if (rte_ring_get_size(r) >= ring_size) {
UADK_LOG(INFO, "Reusing existing ring %s for processed packets",
qp->name);
return r;
}
UADK_LOG(ERR, "Unable to reuse existing ring %s for processed packets",
qp->name);
return NULL;
}
return rte_ring_create(qp->name, ring_size, socket_id,
RING_F_EXACT_SZ);
}
static int
uadk_crypto_pmd_qp_setup(struct rte_cryptodev *dev, uint16_t qp_id,
const struct rte_cryptodev_qp_conf *qp_conf,
int socket_id)
{
struct uadk_qp *qp;
/* Free memory prior to re-allocation if needed. */
if (dev->data->queue_pairs[qp_id] != NULL)
uadk_crypto_pmd_qp_release(dev, qp_id);
/* Allocate the queue pair data structure. */
qp = rte_zmalloc_socket("uadk PMD Queue Pair", sizeof(*qp),
RTE_CACHE_LINE_SIZE, socket_id);
if (qp == NULL)
return (-ENOMEM);
qp->id = qp_id;
dev->data->queue_pairs[qp_id] = qp;
if (uadk_pmd_qp_set_unique_name(dev, qp))
goto qp_setup_cleanup;
qp->processed_pkts = uadk_pmd_qp_create_processed_pkts_ring(qp,
qp_conf->nb_descriptors, socket_id);
if (qp->processed_pkts == NULL)
goto qp_setup_cleanup;
memset(&qp->qp_stats, 0, sizeof(qp->qp_stats));
return 0;
qp_setup_cleanup:
if (qp) {
rte_free(qp);
qp = NULL;
}
return -EINVAL;
}
static unsigned int
uadk_crypto_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
{
return sizeof(struct uadk_crypto_session);
}
static enum uadk_chain_order
uadk_get_chain_order(const struct rte_crypto_sym_xform *xform)
{
enum uadk_chain_order res = UADK_CHAIN_NOT_SUPPORTED;
if (xform != NULL) {
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (xform->next == NULL)
res = UADK_CHAIN_ONLY_AUTH;
else if (xform->next->type ==
RTE_CRYPTO_SYM_XFORM_CIPHER)
res = UADK_CHAIN_AUTH_CIPHER;
}
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (xform->next == NULL)
res = UADK_CHAIN_ONLY_CIPHER;
else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
res = UADK_CHAIN_CIPHER_AUTH;
}
}
return res;
}
static int
uadk_set_session_cipher_parameters(struct rte_cryptodev *dev,
struct uadk_crypto_session *sess,
struct rte_crypto_sym_xform *xform)
{
struct uadk_crypto_priv *priv = dev->data->dev_private;
struct rte_crypto_cipher_xform *cipher = &xform->cipher;
struct wd_cipher_sess_setup setup = {0};
struct sched_params params = {0};
int ret;
if (!priv->env_cipher_init) {
ret = wd_cipher_env_init(NULL);
if (ret < 0)
return -EINVAL;
priv->env_cipher_init = true;
}
sess->cipher.direction = cipher->op;
sess->iv.offset = cipher->iv.offset;
sess->iv.length = cipher->iv.length;
switch (cipher->algo) {
/* Cover supported cipher algorithms */
case RTE_CRYPTO_CIPHER_AES_CTR:
setup.alg = WD_CIPHER_AES;
setup.mode = WD_CIPHER_CTR;
sess->cipher.req.out_bytes = 64;
break;
case RTE_CRYPTO_CIPHER_AES_ECB:
setup.alg = WD_CIPHER_AES;
setup.mode = WD_CIPHER_ECB;
sess->cipher.req.out_bytes = 16;
break;
case RTE_CRYPTO_CIPHER_AES_CBC:
setup.alg = WD_CIPHER_AES;
setup.mode = WD_CIPHER_CBC;
if (cipher->key.length == 16)
sess->cipher.req.out_bytes = 16;
else
sess->cipher.req.out_bytes = 64;
break;
case RTE_CRYPTO_CIPHER_AES_XTS:
setup.alg = WD_CIPHER_AES;
setup.mode = WD_CIPHER_XTS;
if (cipher->key.length == 16)
sess->cipher.req.out_bytes = 32;
else
sess->cipher.req.out_bytes = 512;
break;
default:
ret = -ENOTSUP;
goto env_uninit;
}
params.numa_id = -1; /* choose nearby numa node */
setup.sched_param = &params;
sess->handle_cipher = wd_cipher_alloc_sess(&setup);
if (!sess->handle_cipher) {
UADK_LOG(ERR, "uadk failed to alloc session!\n");
ret = -EINVAL;
goto env_uninit;
}
ret = wd_cipher_set_key(sess->handle_cipher, cipher->key.data, cipher->key.length);
if (ret) {
wd_cipher_free_sess(sess->handle_cipher);
UADK_LOG(ERR, "uadk failed to set key!\n");
ret = -EINVAL;
goto env_uninit;
}
return 0;
env_uninit:
wd_cipher_env_uninit();
priv->env_cipher_init = false;
return ret;
}
/* Set session auth parameters */
static int
uadk_set_session_auth_parameters(struct rte_cryptodev *dev,
struct uadk_crypto_session *sess,
struct rte_crypto_sym_xform *xform)
{
struct uadk_crypto_priv *priv = dev->data->dev_private;
struct wd_digest_sess_setup setup = {0};
struct sched_params params = {0};
int ret;
if (!priv->env_auth_init) {
ret = wd_digest_env_init(NULL);
if (ret < 0)
return -EINVAL;
priv->env_auth_init = true;
}
sess->auth.operation = xform->auth.op;
sess->auth.digest_length = xform->auth.digest_length;
switch (xform->auth.algo) {
case RTE_CRYPTO_AUTH_MD5:
case RTE_CRYPTO_AUTH_MD5_HMAC:
setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_MD5) ?
WD_DIGEST_NORMAL : WD_DIGEST_HMAC;
setup.alg = WD_DIGEST_MD5;
sess->auth.req.out_buf_bytes = 16;
sess->auth.req.out_bytes = 16;
break;
case RTE_CRYPTO_AUTH_SHA1:
case RTE_CRYPTO_AUTH_SHA1_HMAC:
setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA1) ?
WD_DIGEST_NORMAL : WD_DIGEST_HMAC;
setup.alg = WD_DIGEST_SHA1;
sess->auth.req.out_buf_bytes = 20;
sess->auth.req.out_bytes = 20;
break;
case RTE_CRYPTO_AUTH_SHA224:
case RTE_CRYPTO_AUTH_SHA224_HMAC:
setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA224) ?
WD_DIGEST_NORMAL : WD_DIGEST_HMAC;
setup.alg = WD_DIGEST_SHA224;
sess->auth.req.out_buf_bytes = 28;
sess->auth.req.out_bytes = 28;
break;
case RTE_CRYPTO_AUTH_SHA256:
case RTE_CRYPTO_AUTH_SHA256_HMAC:
setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA256) ?
WD_DIGEST_NORMAL : WD_DIGEST_HMAC;
setup.alg = WD_DIGEST_SHA256;
sess->auth.req.out_buf_bytes = 32;
sess->auth.req.out_bytes = 32;
break;
case RTE_CRYPTO_AUTH_SHA384:
case RTE_CRYPTO_AUTH_SHA384_HMAC:
setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA384) ?
WD_DIGEST_NORMAL : WD_DIGEST_HMAC;
setup.alg = WD_DIGEST_SHA384;
sess->auth.req.out_buf_bytes = 48;
sess->auth.req.out_bytes = 48;
break;
case RTE_CRYPTO_AUTH_SHA512:
case RTE_CRYPTO_AUTH_SHA512_HMAC:
setup.mode = (xform->auth.algo == RTE_CRYPTO_AUTH_SHA512) ?
WD_DIGEST_NORMAL : WD_DIGEST_HMAC;
setup.alg = WD_DIGEST_SHA512;
sess->auth.req.out_buf_bytes = 64;
sess->auth.req.out_bytes = 64;
break;
default:
ret = -ENOTSUP;
goto env_uninit;
}
params.numa_id = -1; /* choose nearby numa node */
setup.sched_param = &params;
sess->handle_digest = wd_digest_alloc_sess(&setup);
if (!sess->handle_digest) {
UADK_LOG(ERR, "uadk failed to alloc session!\n");
ret = -EINVAL;
goto env_uninit;
}
/* if mode is HMAC, should set key */
if (setup.mode == WD_DIGEST_HMAC) {
ret = wd_digest_set_key(sess->handle_digest,
xform->auth.key.data,
xform->auth.key.length);
if (ret) {
UADK_LOG(ERR, "uadk failed to alloc session!\n");
wd_digest_free_sess(sess->handle_digest);
sess->handle_digest = 0;
ret = -EINVAL;
goto env_uninit;
}
}
return 0;
env_uninit:
wd_digest_env_uninit();
priv->env_auth_init = false;
return ret;
}
static int
uadk_crypto_sym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *session)
{
struct rte_crypto_sym_xform *cipher_xform = NULL;
struct rte_crypto_sym_xform *auth_xform = NULL;
struct uadk_crypto_session *sess = CRYPTODEV_GET_SYM_SESS_PRIV(session);
int ret;
if (unlikely(!sess)) {
UADK_LOG(ERR, "Session not available");
return -EINVAL;
}
sess->chain_order = uadk_get_chain_order(xform);
switch (sess->chain_order) {
case UADK_CHAIN_ONLY_CIPHER:
cipher_xform = xform;
break;
case UADK_CHAIN_ONLY_AUTH:
auth_xform = xform;
break;
case UADK_CHAIN_CIPHER_AUTH:
cipher_xform = xform;
auth_xform = xform->next;
break;
case UADK_CHAIN_AUTH_CIPHER:
auth_xform = xform;
cipher_xform = xform->next;
break;
default:
return -ENOTSUP;
}
if (cipher_xform) {
ret = uadk_set_session_cipher_parameters(dev, sess, cipher_xform);
if (ret != 0) {
UADK_LOG(ERR,
"Invalid/unsupported cipher parameters");
return ret;
}
}
if (auth_xform) {
ret = uadk_set_session_auth_parameters(dev, sess, auth_xform);
if (ret != 0) {
UADK_LOG(ERR,
"Invalid/unsupported auth parameters");
return ret;
}
}
return 0;
}
static void
uadk_crypto_sym_session_clear(struct rte_cryptodev *dev __rte_unused,
struct rte_cryptodev_sym_session *session)
{
struct uadk_crypto_session *sess = CRYPTODEV_GET_SYM_SESS_PRIV(session);
if (unlikely(sess == NULL)) {
UADK_LOG(ERR, "Session not available");
return;
}
if (sess->handle_cipher) {
wd_cipher_free_sess(sess->handle_cipher);
sess->handle_cipher = 0;
}
if (sess->handle_digest) {
wd_digest_free_sess(sess->handle_digest);
sess->handle_digest = 0;
}
}
static struct rte_cryptodev_ops uadk_crypto_pmd_ops = {
.dev_configure = uadk_crypto_pmd_config,
.dev_start = uadk_crypto_pmd_start,
.dev_stop = uadk_crypto_pmd_stop,
.dev_close = uadk_crypto_pmd_close,
.stats_get = uadk_crypto_pmd_stats_get,
.stats_reset = uadk_crypto_pmd_stats_reset,
.dev_infos_get = uadk_crypto_pmd_info_get,
.queue_pair_setup = uadk_crypto_pmd_qp_setup,
.queue_pair_release = uadk_crypto_pmd_qp_release,
.sym_session_get_size = uadk_crypto_sym_session_get_size,
.sym_session_configure = uadk_crypto_sym_session_configure,
.sym_session_clear = uadk_crypto_sym_session_clear,
};
static void
uadk_process_cipher_op(struct rte_crypto_op *op,
struct uadk_crypto_session *sess,
struct rte_mbuf *msrc, struct rte_mbuf *mdst)
{
uint32_t off = op->sym->cipher.data.offset;
int ret;
if (!sess) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return;
}
sess->cipher.req.src = rte_pktmbuf_mtod_offset(msrc, uint8_t *, off);
sess->cipher.req.in_bytes = op->sym->cipher.data.length;
sess->cipher.req.dst = rte_pktmbuf_mtod_offset(mdst, uint8_t *, off);
sess->cipher.req.out_buf_bytes = sess->cipher.req.in_bytes;
sess->cipher.req.iv_bytes = sess->iv.length;
sess->cipher.req.iv = rte_crypto_op_ctod_offset(op, uint8_t *,
sess->iv.offset);
if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
sess->cipher.req.op_type = WD_CIPHER_ENCRYPTION;
else
sess->cipher.req.op_type = WD_CIPHER_DECRYPTION;
do {
ret = wd_do_cipher_sync(sess->handle_cipher, &sess->cipher.req);
} while (ret == -WD_EBUSY);
if (ret)
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
static void
uadk_process_auth_op(struct uadk_qp *qp, struct rte_crypto_op *op,
struct uadk_crypto_session *sess,
struct rte_mbuf *msrc, struct rte_mbuf *mdst)
{
uint32_t srclen = op->sym->auth.data.length;
uint32_t off = op->sym->auth.data.offset;
uint8_t *dst = qp->temp_digest;
int ret;
if (!sess) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return;
}
sess->auth.req.in = rte_pktmbuf_mtod_offset(msrc, uint8_t *, off);
sess->auth.req.in_bytes = srclen;
sess->auth.req.out = dst;
do {
ret = wd_do_digest_sync(sess->handle_digest, &sess->auth.req);
} while (ret == -WD_EBUSY);
if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
if (memcmp(dst, op->sym->auth.digest.data,
sess->auth.digest_length) != 0) {
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
}
} else {
uint8_t *auth_dst;
auth_dst = op->sym->auth.digest.data;
if (auth_dst == NULL)
auth_dst = rte_pktmbuf_mtod_offset(mdst, uint8_t *,
op->sym->auth.data.offset +
op->sym->auth.data.length);
memcpy(auth_dst, dst, sess->auth.digest_length);
}
if (ret)
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
static uint16_t
uadk_crypto_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct uadk_qp *qp = queue_pair;
struct uadk_crypto_session *sess = NULL;
struct rte_mbuf *msrc, *mdst;
struct rte_crypto_op *op;
uint16_t enqd = 0;
int i, ret;
for (i = 0; i < nb_ops; i++) {
op = ops[i];
op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
msrc = op->sym->m_src;
mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
if (likely(op->sym->session != NULL))
sess = CRYPTODEV_GET_SYM_SESS_PRIV(
op->sym->session);
}
switch (sess->chain_order) {
case UADK_CHAIN_ONLY_CIPHER:
uadk_process_cipher_op(op, sess, msrc, mdst);
break;
case UADK_CHAIN_ONLY_AUTH:
uadk_process_auth_op(qp, op, sess, msrc, mdst);
break;
case UADK_CHAIN_CIPHER_AUTH:
uadk_process_cipher_op(op, sess, msrc, mdst);
uadk_process_auth_op(qp, op, sess, mdst, mdst);
break;
case UADK_CHAIN_AUTH_CIPHER:
uadk_process_auth_op(qp, op, sess, msrc, mdst);
uadk_process_cipher_op(op, sess, msrc, mdst);
break;
default:
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
break;
}
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
ret = rte_ring_enqueue(qp->processed_pkts, (void *)op);
if (ret < 0)
goto enqueue_err;
qp->qp_stats.enqueued_count++;
enqd++;
} else {
/* increment count if failed to enqueue op */
qp->qp_stats.enqueue_err_count++;
}
}
return enqd;
enqueue_err:
qp->qp_stats.enqueue_err_count++;
return enqd;
}
static uint16_t
uadk_crypto_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct uadk_qp *qp = queue_pair;
unsigned int nb_dequeued;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_pkts,
(void **)ops, nb_ops, NULL);
qp->qp_stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
static int
uadk_cryptodev_probe(struct rte_vdev_device *vdev)
{
struct rte_cryptodev_pmd_init_params init_params = {
.name = "",
.private_data_size = sizeof(struct uadk_crypto_priv),
.max_nb_queue_pairs =
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS,
};
enum uadk_crypto_version version = UADK_CRYPTO_V2;
struct uadk_crypto_priv *priv;
struct rte_cryptodev *dev;
struct uacce_dev *udev;
const char *name;
udev = wd_get_accel_dev("cipher");
if (!udev)
return -ENODEV;
if (!strcmp(udev->api, "hisi_qm_v2"))
version = UADK_CRYPTO_V2;
free(udev);
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
dev = rte_cryptodev_pmd_create(name, &vdev->device, &init_params);
if (dev == NULL) {
UADK_LOG(ERR, "driver %s: create failed", init_params.name);
return -ENODEV;
}
dev->dev_ops = &uadk_crypto_pmd_ops;
dev->driver_id = uadk_cryptodev_driver_id;
dev->dequeue_burst = uadk_crypto_dequeue_burst;
dev->enqueue_burst = uadk_crypto_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_HW_ACCELERATED |
RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO;
priv = dev->data->dev_private;
priv->version = version;
rte_cryptodev_pmd_probing_finish(dev);
return 0;
}
static int
uadk_cryptodev_remove(struct rte_vdev_device *vdev)
{
struct rte_cryptodev *cryptodev;
const char *name;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
cryptodev = rte_cryptodev_pmd_get_named_dev(name);
if (cryptodev == NULL)
return -ENODEV;
return rte_cryptodev_pmd_destroy(cryptodev);
}
static struct rte_vdev_driver uadk_crypto_pmd = {
.probe = uadk_cryptodev_probe,
.remove = uadk_cryptodev_remove,
};
static struct cryptodev_driver uadk_crypto_drv;
#define UADK_CRYPTO_DRIVER_NAME crypto_uadk
RTE_PMD_REGISTER_VDEV(UADK_CRYPTO_DRIVER_NAME, uadk_crypto_pmd);
RTE_PMD_REGISTER_CRYPTO_DRIVER(uadk_crypto_drv, uadk_crypto_pmd.driver,
uadk_cryptodev_driver_id);
RTE_LOG_REGISTER_DEFAULT(uadk_crypto_logtype, INFO);