f-stack/dpdk/drivers/crypto/ipsec_mb/pmd_aesni_mb.c

2352 lines
65 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2021 Intel Corporation
*/
#include "pmd_aesni_mb_priv.h"
struct aesni_mb_op_buf_data {
struct rte_mbuf *m;
uint32_t offset;
};
/**
* Calculate the authentication pre-computes
*
* @param one_block_hash Function pointer
* to calculate digest on ipad/opad
* @param ipad Inner pad output byte array
* @param opad Outer pad output byte array
* @param hkey Authentication key
* @param hkey_len Authentication key length
* @param blocksize Block size of selected hash algo
*/
static void
calculate_auth_precomputes(hash_one_block_t one_block_hash,
uint8_t *ipad, uint8_t *opad,
const uint8_t *hkey, uint16_t hkey_len,
uint16_t blocksize)
{
uint32_t i, length;
uint8_t ipad_buf[blocksize] __rte_aligned(16);
uint8_t opad_buf[blocksize] __rte_aligned(16);
/* Setup inner and outer pads */
memset(ipad_buf, HMAC_IPAD_VALUE, blocksize);
memset(opad_buf, HMAC_OPAD_VALUE, blocksize);
/* XOR hash key with inner and outer pads */
length = hkey_len > blocksize ? blocksize : hkey_len;
for (i = 0; i < length; i++) {
ipad_buf[i] ^= hkey[i];
opad_buf[i] ^= hkey[i];
}
/* Compute partial hashes */
(*one_block_hash)(ipad_buf, ipad);
(*one_block_hash)(opad_buf, opad);
/* Clean up stack */
memset(ipad_buf, 0, blocksize);
memset(opad_buf, 0, blocksize);
}
static inline int
is_aead_algo(IMB_HASH_ALG hash_alg, IMB_CIPHER_MODE cipher_mode)
{
return (hash_alg == IMB_AUTH_CHACHA20_POLY1305 ||
hash_alg == IMB_AUTH_AES_CCM ||
(hash_alg == IMB_AUTH_AES_GMAC &&
cipher_mode == IMB_CIPHER_GCM));
}
/** Set session authentication parameters */
static int
aesni_mb_set_session_auth_parameters(const IMB_MGR *mb_mgr,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
hash_one_block_t hash_oneblock_fn = NULL;
unsigned int key_larger_block_size = 0;
uint8_t hashed_key[HMAC_MAX_BLOCK_SIZE] = { 0 };
uint32_t auth_precompute = 1;
if (xform == NULL) {
sess->auth.algo = IMB_AUTH_NULL;
return 0;
}
if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) {
IPSEC_MB_LOG(ERR, "Crypto xform struct not of type auth");
return -1;
}
/* Set IV parameters */
sess->auth_iv.offset = xform->auth.iv.offset;
sess->auth_iv.length = xform->auth.iv.length;
/* Set the request digest size */
sess->auth.req_digest_len = xform->auth.digest_length;
/* Select auth generate/verify */
sess->auth.operation = xform->auth.op;
/* Set Authentication Parameters */
if (xform->auth.algo == RTE_CRYPTO_AUTH_NULL) {
sess->auth.algo = IMB_AUTH_NULL;
sess->auth.gen_digest_len = 0;
return 0;
}
if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) {
sess->auth.algo = IMB_AUTH_AES_XCBC;
uint16_t xcbc_mac_digest_len =
get_truncated_digest_byte_length(IMB_AUTH_AES_XCBC);
if (sess->auth.req_digest_len != xcbc_mac_digest_len) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
sess->auth.gen_digest_len = sess->auth.req_digest_len;
IMB_AES_XCBC_KEYEXP(mb_mgr, xform->auth.key.data,
sess->auth.xcbc.k1_expanded,
sess->auth.xcbc.k2, sess->auth.xcbc.k3);
return 0;
}
if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) {
uint32_t dust[4*15];
sess->auth.algo = IMB_AUTH_AES_CMAC;
uint16_t cmac_digest_len =
get_digest_byte_length(IMB_AUTH_AES_CMAC);
if (sess->auth.req_digest_len > cmac_digest_len) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
/*
* Multi-buffer lib supports digest sizes from 4 to 16 bytes
* in version 0.50 and sizes of 12 and 16 bytes,
* in version 0.49.
* If size requested is different, generate the full digest
* (16 bytes) in a temporary location and then memcpy
* the requested number of bytes.
*/
if (sess->auth.req_digest_len < 4)
sess->auth.gen_digest_len = cmac_digest_len;
else
sess->auth.gen_digest_len = sess->auth.req_digest_len;
IMB_AES_KEYEXP_128(mb_mgr, xform->auth.key.data,
sess->auth.cmac.expkey, dust);
IMB_AES_CMAC_SUBKEY_GEN_128(mb_mgr, sess->auth.cmac.expkey,
sess->auth.cmac.skey1, sess->auth.cmac.skey2);
return 0;
}
if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
if (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) {
sess->cipher.direction = IMB_DIR_ENCRYPT;
sess->chain_order = IMB_ORDER_CIPHER_HASH;
} else
sess->cipher.direction = IMB_DIR_DECRYPT;
sess->auth.algo = IMB_AUTH_AES_GMAC;
if (sess->auth.req_digest_len >
get_digest_byte_length(IMB_AUTH_AES_GMAC)) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
sess->auth.gen_digest_len = sess->auth.req_digest_len;
sess->iv.length = xform->auth.iv.length;
sess->iv.offset = xform->auth.iv.offset;
switch (xform->auth.key.length) {
case IMB_KEY_128_BYTES:
IMB_AES128_GCM_PRE(mb_mgr, xform->auth.key.data,
&sess->cipher.gcm_key);
sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES;
break;
case IMB_KEY_192_BYTES:
IMB_AES192_GCM_PRE(mb_mgr, xform->auth.key.data,
&sess->cipher.gcm_key);
sess->cipher.key_length_in_bytes = IMB_KEY_192_BYTES;
break;
case IMB_KEY_256_BYTES:
IMB_AES256_GCM_PRE(mb_mgr, xform->auth.key.data,
&sess->cipher.gcm_key);
sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES;
break;
default:
IPSEC_MB_LOG(ERR, "Invalid authentication key length\n");
return -EINVAL;
}
return 0;
}
if (xform->auth.algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
if (xform->auth.key.length == 16) {
sess->auth.algo = IMB_AUTH_ZUC_EIA3_BITLEN;
if (sess->auth.req_digest_len != 4) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
} else if (xform->auth.key.length == 32) {
sess->auth.algo = IMB_AUTH_ZUC256_EIA3_BITLEN;
#if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
if (sess->auth.req_digest_len != 4 &&
sess->auth.req_digest_len != 8 &&
sess->auth.req_digest_len != 16) {
#else
if (sess->auth.req_digest_len != 4) {
#endif
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
} else {
IPSEC_MB_LOG(ERR, "Invalid authentication key length\n");
return -EINVAL;
}
sess->auth.gen_digest_len = sess->auth.req_digest_len;
memcpy(sess->auth.zuc_auth_key, xform->auth.key.data,
xform->auth.key.length);
return 0;
} else if (xform->auth.algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2) {
sess->auth.algo = IMB_AUTH_SNOW3G_UIA2_BITLEN;
uint16_t snow3g_uia2_digest_len =
get_truncated_digest_byte_length(
IMB_AUTH_SNOW3G_UIA2_BITLEN);
if (sess->auth.req_digest_len != snow3g_uia2_digest_len) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
sess->auth.gen_digest_len = sess->auth.req_digest_len;
IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->auth.key.data,
&sess->auth.pKeySched_snow3g_auth);
return 0;
} else if (xform->auth.algo == RTE_CRYPTO_AUTH_KASUMI_F9) {
sess->auth.algo = IMB_AUTH_KASUMI_UIA1;
uint16_t kasumi_f9_digest_len =
get_truncated_digest_byte_length(IMB_AUTH_KASUMI_UIA1);
if (sess->auth.req_digest_len != kasumi_f9_digest_len) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
sess->auth.gen_digest_len = sess->auth.req_digest_len;
IMB_KASUMI_INIT_F9_KEY_SCHED(mb_mgr, xform->auth.key.data,
&sess->auth.pKeySched_kasumi_auth);
return 0;
}
switch (xform->auth.algo) {
case RTE_CRYPTO_AUTH_MD5_HMAC:
sess->auth.algo = IMB_AUTH_MD5;
hash_oneblock_fn = mb_mgr->md5_one_block;
break;
case RTE_CRYPTO_AUTH_SHA1_HMAC:
sess->auth.algo = IMB_AUTH_HMAC_SHA_1;
hash_oneblock_fn = mb_mgr->sha1_one_block;
if (xform->auth.key.length > get_auth_algo_blocksize(
IMB_AUTH_HMAC_SHA_1)) {
IMB_SHA1(mb_mgr,
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
break;
case RTE_CRYPTO_AUTH_SHA1:
sess->auth.algo = IMB_AUTH_SHA_1;
auth_precompute = 0;
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
sess->auth.algo = IMB_AUTH_HMAC_SHA_224;
hash_oneblock_fn = mb_mgr->sha224_one_block;
if (xform->auth.key.length > get_auth_algo_blocksize(
IMB_AUTH_HMAC_SHA_224)) {
IMB_SHA224(mb_mgr,
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
break;
case RTE_CRYPTO_AUTH_SHA224:
sess->auth.algo = IMB_AUTH_SHA_224;
auth_precompute = 0;
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
sess->auth.algo = IMB_AUTH_HMAC_SHA_256;
hash_oneblock_fn = mb_mgr->sha256_one_block;
if (xform->auth.key.length > get_auth_algo_blocksize(
IMB_AUTH_HMAC_SHA_256)) {
IMB_SHA256(mb_mgr,
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
break;
case RTE_CRYPTO_AUTH_SHA256:
sess->auth.algo = IMB_AUTH_SHA_256;
auth_precompute = 0;
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
sess->auth.algo = IMB_AUTH_HMAC_SHA_384;
hash_oneblock_fn = mb_mgr->sha384_one_block;
if (xform->auth.key.length > get_auth_algo_blocksize(
IMB_AUTH_HMAC_SHA_384)) {
IMB_SHA384(mb_mgr,
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
break;
case RTE_CRYPTO_AUTH_SHA384:
sess->auth.algo = IMB_AUTH_SHA_384;
auth_precompute = 0;
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
sess->auth.algo = IMB_AUTH_HMAC_SHA_512;
hash_oneblock_fn = mb_mgr->sha512_one_block;
if (xform->auth.key.length > get_auth_algo_blocksize(
IMB_AUTH_HMAC_SHA_512)) {
IMB_SHA512(mb_mgr,
xform->auth.key.data,
xform->auth.key.length,
hashed_key);
key_larger_block_size = 1;
}
break;
case RTE_CRYPTO_AUTH_SHA512:
sess->auth.algo = IMB_AUTH_SHA_512;
auth_precompute = 0;
break;
default:
IPSEC_MB_LOG(ERR,
"Unsupported authentication algorithm selection");
return -ENOTSUP;
}
uint16_t trunc_digest_size =
get_truncated_digest_byte_length(sess->auth.algo);
uint16_t full_digest_size =
get_digest_byte_length(sess->auth.algo);
if (sess->auth.req_digest_len > full_digest_size ||
sess->auth.req_digest_len == 0) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
if (sess->auth.req_digest_len != trunc_digest_size &&
sess->auth.req_digest_len != full_digest_size)
sess->auth.gen_digest_len = full_digest_size;
else
sess->auth.gen_digest_len = sess->auth.req_digest_len;
/* Plain SHA does not require precompute key */
if (auth_precompute == 0)
return 0;
/* Calculate Authentication precomputes */
if (key_larger_block_size) {
calculate_auth_precomputes(hash_oneblock_fn,
sess->auth.pads.inner, sess->auth.pads.outer,
hashed_key,
xform->auth.key.length,
get_auth_algo_blocksize(sess->auth.algo));
} else {
calculate_auth_precomputes(hash_oneblock_fn,
sess->auth.pads.inner, sess->auth.pads.outer,
xform->auth.key.data,
xform->auth.key.length,
get_auth_algo_blocksize(sess->auth.algo));
}
return 0;
}
/** Set session cipher parameters */
static int
aesni_mb_set_session_cipher_parameters(const IMB_MGR *mb_mgr,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
uint8_t is_aes = 0;
uint8_t is_3DES = 0;
uint8_t is_docsis = 0;
uint8_t is_zuc = 0;
uint8_t is_snow3g = 0;
uint8_t is_kasumi = 0;
if (xform == NULL) {
sess->cipher.mode = IMB_CIPHER_NULL;
return 0;
}
if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) {
IPSEC_MB_LOG(ERR, "Crypto xform struct not of type cipher");
return -EINVAL;
}
/* Select cipher direction */
switch (xform->cipher.op) {
case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
sess->cipher.direction = IMB_DIR_ENCRYPT;
break;
case RTE_CRYPTO_CIPHER_OP_DECRYPT:
sess->cipher.direction = IMB_DIR_DECRYPT;
break;
default:
IPSEC_MB_LOG(ERR, "Invalid cipher operation parameter");
return -EINVAL;
}
/* Select cipher mode */
switch (xform->cipher.algo) {
case RTE_CRYPTO_CIPHER_AES_CBC:
sess->cipher.mode = IMB_CIPHER_CBC;
is_aes = 1;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
sess->cipher.mode = IMB_CIPHER_CNTR;
is_aes = 1;
break;
case RTE_CRYPTO_CIPHER_AES_DOCSISBPI:
sess->cipher.mode = IMB_CIPHER_DOCSIS_SEC_BPI;
is_docsis = 1;
break;
case RTE_CRYPTO_CIPHER_DES_CBC:
sess->cipher.mode = IMB_CIPHER_DES;
break;
case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
sess->cipher.mode = IMB_CIPHER_DOCSIS_DES;
break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
sess->cipher.mode = IMB_CIPHER_DES3;
is_3DES = 1;
break;
case RTE_CRYPTO_CIPHER_AES_ECB:
sess->cipher.mode = IMB_CIPHER_ECB;
is_aes = 1;
break;
case RTE_CRYPTO_CIPHER_ZUC_EEA3:
sess->cipher.mode = IMB_CIPHER_ZUC_EEA3;
is_zuc = 1;
break;
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
sess->cipher.mode = IMB_CIPHER_SNOW3G_UEA2_BITLEN;
is_snow3g = 1;
break;
case RTE_CRYPTO_CIPHER_KASUMI_F8:
sess->cipher.mode = IMB_CIPHER_KASUMI_UEA1_BITLEN;
is_kasumi = 1;
break;
case RTE_CRYPTO_CIPHER_NULL:
sess->cipher.mode = IMB_CIPHER_NULL;
sess->cipher.key_length_in_bytes = 0;
sess->iv.offset = xform->cipher.iv.offset;
sess->iv.length = xform->cipher.iv.length;
return 0;
default:
IPSEC_MB_LOG(ERR, "Unsupported cipher mode parameter");
return -ENOTSUP;
}
/* Set IV parameters */
sess->iv.offset = xform->cipher.iv.offset;
sess->iv.length = xform->cipher.iv.length;
/* Check key length and choose key expansion function for AES */
if (is_aes) {
switch (xform->cipher.key.length) {
case IMB_KEY_128_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES;
IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
break;
case IMB_KEY_192_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_192_BYTES;
IMB_AES_KEYEXP_192(mb_mgr, xform->cipher.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
break;
case IMB_KEY_256_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES;
IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
break;
default:
IPSEC_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
} else if (is_docsis) {
switch (xform->cipher.key.length) {
case IMB_KEY_128_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES;
IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
break;
case IMB_KEY_256_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES;
IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
break;
default:
IPSEC_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
} else if (is_3DES) {
uint64_t *keys[3] = {sess->cipher.exp_3des_keys.key[0],
sess->cipher.exp_3des_keys.key[1],
sess->cipher.exp_3des_keys.key[2]};
switch (xform->cipher.key.length) {
case 24:
IMB_DES_KEYSCHED(mb_mgr, keys[0],
xform->cipher.key.data);
IMB_DES_KEYSCHED(mb_mgr, keys[1],
xform->cipher.key.data + 8);
IMB_DES_KEYSCHED(mb_mgr, keys[2],
xform->cipher.key.data + 16);
/* Initialize keys - 24 bytes: [K1-K2-K3] */
sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
sess->cipher.exp_3des_keys.ks_ptr[2] = keys[2];
break;
case 16:
IMB_DES_KEYSCHED(mb_mgr, keys[0],
xform->cipher.key.data);
IMB_DES_KEYSCHED(mb_mgr, keys[1],
xform->cipher.key.data + 8);
/* Initialize keys - 16 bytes: [K1=K1,K2=K2,K3=K1] */
sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
break;
case 8:
IMB_DES_KEYSCHED(mb_mgr, keys[0],
xform->cipher.key.data);
/* Initialize keys - 8 bytes: [K1 = K2 = K3] */
sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
sess->cipher.exp_3des_keys.ks_ptr[1] = keys[0];
sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
break;
default:
IPSEC_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
sess->cipher.key_length_in_bytes = 24;
} else if (is_zuc) {
if (xform->cipher.key.length != 16 &&
xform->cipher.key.length != 32) {
IPSEC_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
sess->cipher.key_length_in_bytes = xform->cipher.key.length;
memcpy(sess->cipher.zuc_cipher_key, xform->cipher.key.data,
xform->cipher.key.length);
} else if (is_snow3g) {
if (xform->cipher.key.length != 16) {
IPSEC_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
sess->cipher.key_length_in_bytes = 16;
IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->cipher.key.data,
&sess->cipher.pKeySched_snow3g_cipher);
} else if (is_kasumi) {
if (xform->cipher.key.length != 16) {
IPSEC_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
sess->cipher.key_length_in_bytes = 16;
IMB_KASUMI_INIT_F8_KEY_SCHED(mb_mgr, xform->cipher.key.data,
&sess->cipher.pKeySched_kasumi_cipher);
} else {
if (xform->cipher.key.length != 8) {
IPSEC_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
sess->cipher.key_length_in_bytes = 8;
IMB_DES_KEYSCHED(mb_mgr,
(uint64_t *)sess->cipher.expanded_aes_keys.encode,
xform->cipher.key.data);
IMB_DES_KEYSCHED(mb_mgr,
(uint64_t *)sess->cipher.expanded_aes_keys.decode,
xform->cipher.key.data);
}
return 0;
}
static int
aesni_mb_set_session_aead_parameters(const IMB_MGR *mb_mgr,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
switch (xform->aead.op) {
case RTE_CRYPTO_AEAD_OP_ENCRYPT:
sess->cipher.direction = IMB_DIR_ENCRYPT;
sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
break;
case RTE_CRYPTO_AEAD_OP_DECRYPT:
sess->cipher.direction = IMB_DIR_DECRYPT;
sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
break;
default:
IPSEC_MB_LOG(ERR, "Invalid aead operation parameter");
return -EINVAL;
}
/* Set IV parameters */
sess->iv.offset = xform->aead.iv.offset;
sess->iv.length = xform->aead.iv.length;
/* Set digest sizes */
sess->auth.req_digest_len = xform->aead.digest_length;
sess->auth.gen_digest_len = sess->auth.req_digest_len;
switch (xform->aead.algo) {
case RTE_CRYPTO_AEAD_AES_CCM:
sess->cipher.mode = IMB_CIPHER_CCM;
sess->auth.algo = IMB_AUTH_AES_CCM;
/* Check key length and choose key expansion function for AES */
switch (xform->aead.key.length) {
case IMB_KEY_128_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES;
IMB_AES_KEYEXP_128(mb_mgr, xform->aead.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
break;
case IMB_KEY_256_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES;
IMB_AES_KEYEXP_256(mb_mgr, xform->aead.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
break;
default:
IPSEC_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
/* CCM digests must be between 4 and 16 and an even number */
if (sess->auth.req_digest_len < AES_CCM_DIGEST_MIN_LEN ||
sess->auth.req_digest_len > AES_CCM_DIGEST_MAX_LEN ||
(sess->auth.req_digest_len & 1) == 1) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
break;
case RTE_CRYPTO_AEAD_AES_GCM:
sess->cipher.mode = IMB_CIPHER_GCM;
sess->auth.algo = IMB_AUTH_AES_GMAC;
switch (xform->aead.key.length) {
case IMB_KEY_128_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_128_BYTES;
IMB_AES128_GCM_PRE(mb_mgr, xform->aead.key.data,
&sess->cipher.gcm_key);
break;
case IMB_KEY_192_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_192_BYTES;
IMB_AES192_GCM_PRE(mb_mgr, xform->aead.key.data,
&sess->cipher.gcm_key);
break;
case IMB_KEY_256_BYTES:
sess->cipher.key_length_in_bytes = IMB_KEY_256_BYTES;
IMB_AES256_GCM_PRE(mb_mgr, xform->aead.key.data,
&sess->cipher.gcm_key);
break;
default:
IPSEC_MB_LOG(ERR, "Invalid cipher key length");
return -EINVAL;
}
/* GCM digest size must be between 1 and 16 */
if (sess->auth.req_digest_len == 0 ||
sess->auth.req_digest_len > 16) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
break;
case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
sess->cipher.mode = IMB_CIPHER_CHACHA20_POLY1305;
sess->auth.algo = IMB_AUTH_CHACHA20_POLY1305;
if (xform->aead.key.length != 32) {
IPSEC_MB_LOG(ERR, "Invalid key length");
return -EINVAL;
}
sess->cipher.key_length_in_bytes = 32;
memcpy(sess->cipher.expanded_aes_keys.encode,
xform->aead.key.data, 32);
if (sess->auth.req_digest_len != 16) {
IPSEC_MB_LOG(ERR, "Invalid digest size\n");
return -EINVAL;
}
break;
default:
IPSEC_MB_LOG(ERR, "Unsupported aead mode parameter");
return -ENOTSUP;
}
return 0;
}
/** Configure a aesni multi-buffer session from a crypto xform chain */
static int
aesni_mb_session_configure(IMB_MGR *mb_mgr,
void *priv_sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *auth_xform = NULL;
const struct rte_crypto_sym_xform *cipher_xform = NULL;
const struct rte_crypto_sym_xform *aead_xform = NULL;
enum ipsec_mb_operation mode;
struct aesni_mb_session *sess = (struct aesni_mb_session *) priv_sess;
int ret;
ret = ipsec_mb_parse_xform(xform, &mode, &auth_xform,
&cipher_xform, &aead_xform);
if (ret)
return ret;
/* Select Crypto operation - hash then cipher / cipher then hash */
switch (mode) {
case IPSEC_MB_OP_HASH_VERIFY_THEN_DECRYPT:
sess->chain_order = IMB_ORDER_HASH_CIPHER;
break;
case IPSEC_MB_OP_ENCRYPT_THEN_HASH_GEN:
case IPSEC_MB_OP_DECRYPT_THEN_HASH_VERIFY:
sess->chain_order = IMB_ORDER_CIPHER_HASH;
break;
case IPSEC_MB_OP_HASH_GEN_ONLY:
case IPSEC_MB_OP_HASH_VERIFY_ONLY:
case IPSEC_MB_OP_HASH_GEN_THEN_ENCRYPT:
sess->chain_order = IMB_ORDER_HASH_CIPHER;
break;
/*
* Multi buffer library operates only at two modes,
* IMB_ORDER_CIPHER_HASH and IMB_ORDER_HASH_CIPHER.
* When doing ciphering only, chain order depends
* on cipher operation: encryption is always
* the first operation and decryption the last one.
*/
case IPSEC_MB_OP_ENCRYPT_ONLY:
sess->chain_order = IMB_ORDER_CIPHER_HASH;
break;
case IPSEC_MB_OP_DECRYPT_ONLY:
sess->chain_order = IMB_ORDER_HASH_CIPHER;
break;
case IPSEC_MB_OP_AEAD_AUTHENTICATED_ENCRYPT:
sess->chain_order = IMB_ORDER_CIPHER_HASH;
sess->aead.aad_len = xform->aead.aad_length;
break;
case IPSEC_MB_OP_AEAD_AUTHENTICATED_DECRYPT:
sess->chain_order = IMB_ORDER_HASH_CIPHER;
sess->aead.aad_len = xform->aead.aad_length;
break;
case IPSEC_MB_OP_NOT_SUPPORTED:
default:
IPSEC_MB_LOG(ERR,
"Unsupported operation chain order parameter");
return -ENOTSUP;
}
/* Default IV length = 0 */
sess->iv.length = 0;
sess->auth_iv.length = 0;
ret = aesni_mb_set_session_auth_parameters(mb_mgr, sess, auth_xform);
if (ret != 0) {
IPSEC_MB_LOG(ERR,
"Invalid/unsupported authentication parameters");
return ret;
}
ret = aesni_mb_set_session_cipher_parameters(mb_mgr, sess,
cipher_xform);
if (ret != 0) {
IPSEC_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
return ret;
}
if (aead_xform) {
ret = aesni_mb_set_session_aead_parameters(mb_mgr, sess,
aead_xform);
if (ret != 0) {
IPSEC_MB_LOG(ERR,
"Invalid/unsupported aead parameters");
return ret;
}
}
return 0;
}
#ifdef AESNI_MB_DOCSIS_SEC_ENABLED
/** Check DOCSIS security session configuration is valid */
static int
check_docsis_sec_session(struct rte_security_session_conf *conf)
{
struct rte_crypto_sym_xform *crypto_sym = conf->crypto_xform;
struct rte_security_docsis_xform *docsis = &conf->docsis;
/* Downlink: CRC generate -> Cipher encrypt */
if (docsis->direction == RTE_SECURITY_DOCSIS_DOWNLINK) {
if (crypto_sym != NULL &&
crypto_sym->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
crypto_sym->cipher.algo ==
RTE_CRYPTO_CIPHER_AES_DOCSISBPI &&
(crypto_sym->cipher.key.length == IMB_KEY_128_BYTES ||
crypto_sym->cipher.key.length == IMB_KEY_256_BYTES) &&
crypto_sym->cipher.iv.length == IMB_AES_BLOCK_SIZE &&
crypto_sym->next == NULL) {
return 0;
}
/* Uplink: Cipher decrypt -> CRC verify */
} else if (docsis->direction == RTE_SECURITY_DOCSIS_UPLINK) {
if (crypto_sym != NULL &&
crypto_sym->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
crypto_sym->cipher.algo ==
RTE_CRYPTO_CIPHER_AES_DOCSISBPI &&
(crypto_sym->cipher.key.length == IMB_KEY_128_BYTES ||
crypto_sym->cipher.key.length == IMB_KEY_256_BYTES) &&
crypto_sym->cipher.iv.length == IMB_AES_BLOCK_SIZE &&
crypto_sym->next == NULL) {
return 0;
}
}
return -EINVAL;
}
/** Set DOCSIS security session auth (CRC) parameters */
static int
aesni_mb_set_docsis_sec_session_auth_parameters(struct aesni_mb_session *sess,
struct rte_security_docsis_xform *xform)
{
if (xform == NULL) {
IPSEC_MB_LOG(ERR, "Invalid DOCSIS xform");
return -EINVAL;
}
/* Select CRC generate/verify */
if (xform->direction == RTE_SECURITY_DOCSIS_UPLINK) {
sess->auth.algo = IMB_AUTH_DOCSIS_CRC32;
sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
} else if (xform->direction == RTE_SECURITY_DOCSIS_DOWNLINK) {
sess->auth.algo = IMB_AUTH_DOCSIS_CRC32;
sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
} else {
IPSEC_MB_LOG(ERR, "Unsupported DOCSIS direction");
return -ENOTSUP;
}
sess->auth.req_digest_len = RTE_ETHER_CRC_LEN;
sess->auth.gen_digest_len = RTE_ETHER_CRC_LEN;
return 0;
}
/**
* Parse DOCSIS security session configuration and set private session
* parameters
*/
static int
aesni_mb_set_docsis_sec_session_parameters(
__rte_unused struct rte_cryptodev *dev,
struct rte_security_session_conf *conf,
void *sess)
{
IMB_MGR *mb_mgr = alloc_init_mb_mgr();
struct rte_security_docsis_xform *docsis_xform;
struct rte_crypto_sym_xform *cipher_xform;
struct aesni_mb_session *ipsec_sess = sess;
int ret = 0;
if (!mb_mgr)
return -ENOMEM;
ret = check_docsis_sec_session(conf);
if (ret) {
IPSEC_MB_LOG(ERR, "Unsupported DOCSIS security configuration");
goto error_exit;
}
switch (conf->docsis.direction) {
case RTE_SECURITY_DOCSIS_UPLINK:
ipsec_sess->chain_order = IMB_ORDER_CIPHER_HASH;
docsis_xform = &conf->docsis;
cipher_xform = conf->crypto_xform;
break;
case RTE_SECURITY_DOCSIS_DOWNLINK:
ipsec_sess->chain_order = IMB_ORDER_HASH_CIPHER;
cipher_xform = conf->crypto_xform;
docsis_xform = &conf->docsis;
break;
default:
IPSEC_MB_LOG(ERR, "Unsupported DOCSIS security configuration");
ret = -EINVAL;
goto error_exit;
}
/* Default IV length = 0 */
ipsec_sess->iv.length = 0;
ret = aesni_mb_set_docsis_sec_session_auth_parameters(ipsec_sess,
docsis_xform);
if (ret != 0) {
IPSEC_MB_LOG(ERR, "Invalid/unsupported DOCSIS parameters");
goto error_exit;
}
ret = aesni_mb_set_session_cipher_parameters(mb_mgr,
ipsec_sess, cipher_xform);
if (ret != 0) {
IPSEC_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
goto error_exit;
}
error_exit:
free_mb_mgr(mb_mgr);
return ret;
}
#endif
static inline uint64_t
auth_start_offset(struct rte_crypto_op *op, struct aesni_mb_session *session,
uint32_t oop, const uint32_t auth_offset,
const uint32_t cipher_offset, const uint32_t auth_length,
const uint32_t cipher_length, uint8_t lb_sgl)
{
struct rte_mbuf *m_src, *m_dst;
uint8_t *p_src, *p_dst;
uintptr_t u_src, u_dst;
uint32_t cipher_end, auth_end;
/* Only cipher then hash needs special calculation. */
if (!oop || session->chain_order != IMB_ORDER_CIPHER_HASH || lb_sgl)
return auth_offset;
m_src = op->sym->m_src;
m_dst = op->sym->m_dst;
p_src = rte_pktmbuf_mtod(m_src, uint8_t *);
p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *);
u_src = (uintptr_t)p_src;
u_dst = (uintptr_t)p_dst + auth_offset;
/**
* Copy the content between cipher offset and auth offset for generating
* correct digest.
*/
if (cipher_offset > auth_offset)
memcpy(p_dst + auth_offset,
p_src + auth_offset,
cipher_offset -
auth_offset);
/**
* Copy the content between (cipher offset + length) and (auth offset +
* length) for generating correct digest
*/
cipher_end = cipher_offset + cipher_length;
auth_end = auth_offset + auth_length;
if (cipher_end < auth_end)
memcpy(p_dst + cipher_end, p_src + cipher_end,
auth_end - cipher_end);
/**
* Since intel-ipsec-mb only supports positive values,
* we need to deduct the correct offset between src and dst.
*/
return u_src < u_dst ? (u_dst - u_src) :
(UINT64_MAX - u_src + u_dst + 1);
}
static inline void
set_cpu_mb_job_params(IMB_JOB *job, struct aesni_mb_session *session,
union rte_crypto_sym_ofs sofs, void *buf, uint32_t len,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *aad, void *digest, void *udata)
{
/* Set crypto operation */
job->chain_order = session->chain_order;
/* Set cipher parameters */
job->cipher_direction = session->cipher.direction;
job->cipher_mode = session->cipher.mode;
job->key_len_in_bytes = session->cipher.key_length_in_bytes;
/* Set authentication parameters */
job->hash_alg = session->auth.algo;
job->iv = iv->va;
switch (job->hash_alg) {
case IMB_AUTH_AES_XCBC:
job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded;
job->u.XCBC._k2 = session->auth.xcbc.k2;
job->u.XCBC._k3 = session->auth.xcbc.k3;
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.decode;
break;
case IMB_AUTH_AES_CCM:
job->u.CCM.aad = (uint8_t *)aad->va + 18;
job->u.CCM.aad_len_in_bytes = session->aead.aad_len;
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.decode;
job->iv++;
break;
case IMB_AUTH_AES_CMAC:
job->u.CMAC._key_expanded = session->auth.cmac.expkey;
job->u.CMAC._skey1 = session->auth.cmac.skey1;
job->u.CMAC._skey2 = session->auth.cmac.skey2;
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.decode;
break;
case IMB_AUTH_AES_GMAC:
if (session->cipher.mode == IMB_CIPHER_GCM) {
job->u.GCM.aad = aad->va;
job->u.GCM.aad_len_in_bytes = session->aead.aad_len;
} else {
/* For GMAC */
job->u.GCM.aad = buf;
job->u.GCM.aad_len_in_bytes = len;
job->cipher_mode = IMB_CIPHER_GCM;
}
job->enc_keys = &session->cipher.gcm_key;
job->dec_keys = &session->cipher.gcm_key;
break;
case IMB_AUTH_CHACHA20_POLY1305:
job->u.CHACHA20_POLY1305.aad = aad->va;
job->u.CHACHA20_POLY1305.aad_len_in_bytes =
session->aead.aad_len;
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.encode;
break;
default:
job->u.HMAC._hashed_auth_key_xor_ipad =
session->auth.pads.inner;
job->u.HMAC._hashed_auth_key_xor_opad =
session->auth.pads.outer;
if (job->cipher_mode == IMB_CIPHER_DES3) {
job->enc_keys = session->cipher.exp_3des_keys.ks_ptr;
job->dec_keys = session->cipher.exp_3des_keys.ks_ptr;
} else {
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.decode;
}
}
/*
* Multi-buffer library current only support returning a truncated
* digest length as specified in the relevant IPsec RFCs
*/
/* Set digest location and length */
job->auth_tag_output = digest;
job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len;
/* Set IV parameters */
job->iv_len_in_bytes = session->iv.length;
/* Data Parameters */
job->src = buf;
job->dst = (uint8_t *)buf + sofs.ofs.cipher.head;
job->cipher_start_src_offset_in_bytes = sofs.ofs.cipher.head;
job->hash_start_src_offset_in_bytes = sofs.ofs.auth.head;
if (job->hash_alg == IMB_AUTH_AES_GMAC &&
session->cipher.mode != IMB_CIPHER_GCM) {
job->msg_len_to_hash_in_bytes = 0;
job->msg_len_to_cipher_in_bytes = 0;
} else {
job->msg_len_to_hash_in_bytes = len - sofs.ofs.auth.head -
sofs.ofs.auth.tail;
job->msg_len_to_cipher_in_bytes = len - sofs.ofs.cipher.head -
sofs.ofs.cipher.tail;
}
job->user_data = udata;
}
static int
handle_aead_sgl_job(IMB_JOB *job, IMB_MGR *mb_mgr,
uint32_t *total_len,
struct aesni_mb_op_buf_data *src_data,
struct aesni_mb_op_buf_data *dst_data)
{
uint32_t data_len, part_len;
if (*total_len == 0) {
job->sgl_state = IMB_SGL_COMPLETE;
return 0;
}
if (src_data->m == NULL) {
IPSEC_MB_LOG(ERR, "Invalid source buffer");
return -EINVAL;
}
job->sgl_state = IMB_SGL_UPDATE;
data_len = src_data->m->data_len - src_data->offset;
job->src = rte_pktmbuf_mtod_offset(src_data->m, uint8_t *,
src_data->offset);
if (dst_data->m != NULL) {
if (dst_data->m->data_len - dst_data->offset == 0) {
dst_data->m = dst_data->m->next;
if (dst_data->m == NULL) {
IPSEC_MB_LOG(ERR, "Invalid destination buffer");
return -EINVAL;
}
dst_data->offset = 0;
}
part_len = RTE_MIN(data_len, (dst_data->m->data_len -
dst_data->offset));
job->dst = rte_pktmbuf_mtod_offset(dst_data->m,
uint8_t *, dst_data->offset);
dst_data->offset += part_len;
} else {
part_len = RTE_MIN(data_len, *total_len);
job->dst = rte_pktmbuf_mtod_offset(src_data->m, uint8_t *,
src_data->offset);
}
job->msg_len_to_cipher_in_bytes = part_len;
job->msg_len_to_hash_in_bytes = part_len;
job = IMB_SUBMIT_JOB(mb_mgr);
*total_len -= part_len;
if (part_len != data_len) {
src_data->offset += part_len;
} else {
src_data->m = src_data->m->next;
src_data->offset = 0;
}
return 0;
}
static uint64_t
sgl_linear_cipher_auth_len(IMB_JOB *job, uint64_t *auth_len)
{
uint64_t cipher_len;
if (job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN ||
job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN)
cipher_len = (job->msg_len_to_cipher_in_bits >> 3) +
(job->cipher_start_src_offset_in_bits >> 3);
else
cipher_len = job->msg_len_to_cipher_in_bytes +
job->cipher_start_src_offset_in_bytes;
if (job->hash_alg == IMB_AUTH_SNOW3G_UIA2_BITLEN ||
job->hash_alg == IMB_AUTH_ZUC_EIA3_BITLEN)
*auth_len = (job->msg_len_to_hash_in_bits >> 3) +
job->hash_start_src_offset_in_bytes;
else if (job->hash_alg == IMB_AUTH_AES_GMAC)
*auth_len = job->u.GCM.aad_len_in_bytes;
else
*auth_len = job->msg_len_to_hash_in_bytes +
job->hash_start_src_offset_in_bytes;
return RTE_MAX(*auth_len, cipher_len);
}
static int
handle_sgl_linear(IMB_JOB *job, struct rte_crypto_op *op, uint32_t dst_offset,
struct aesni_mb_session *session)
{
uint64_t auth_len, total_len;
uint8_t *src, *linear_buf = NULL;
int lb_offset = 0;
struct rte_mbuf *src_seg;
uint16_t src_len;
total_len = sgl_linear_cipher_auth_len(job, &auth_len);
linear_buf = rte_zmalloc(NULL, total_len + job->auth_tag_output_len_in_bytes, 0);
if (linear_buf == NULL) {
IPSEC_MB_LOG(ERR, "Error allocating memory for SGL Linear Buffer\n");
return -1;
}
for (src_seg = op->sym->m_src; (src_seg != NULL) &&
(total_len - lb_offset > 0);
src_seg = src_seg->next) {
src = rte_pktmbuf_mtod(src_seg, uint8_t *);
src_len = RTE_MIN(src_seg->data_len, total_len - lb_offset);
rte_memcpy(linear_buf + lb_offset, src, src_len);
lb_offset += src_len;
}
job->src = linear_buf;
job->dst = linear_buf + dst_offset;
job->user_data2 = linear_buf;
if (job->hash_alg == IMB_AUTH_AES_GMAC)
job->u.GCM.aad = linear_buf;
if (session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY)
job->auth_tag_output = linear_buf + lb_offset;
else
job->auth_tag_output = linear_buf + auth_len;
return 0;
}
static inline int
imb_lib_support_sgl_algo(IMB_CIPHER_MODE alg)
{
if (alg == IMB_CIPHER_CHACHA20_POLY1305
|| alg == IMB_CIPHER_GCM)
return 1;
return 0;
}
/**
* Process a crypto operation and complete a IMB_JOB job structure for
* submission to the multi buffer library for processing.
*
* @param qp queue pair
* @param job IMB_JOB structure to fill
* @param op crypto op to process
* @param digest_idx ID for digest to use
*
* @return
* - 0 on success, the IMB_JOB will be filled
* - -1 if invalid session or errors allocationg SGL linear buffer,
* IMB_JOB will not be filled
*/
static inline int
set_mb_job_params(IMB_JOB *job, struct ipsec_mb_qp *qp,
struct rte_crypto_op *op, uint8_t *digest_idx,
IMB_MGR *mb_mgr)
{
struct rte_mbuf *m_src = op->sym->m_src, *m_dst;
struct aesni_mb_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp);
struct aesni_mb_op_buf_data src_sgl = {0};
struct aesni_mb_op_buf_data dst_sgl = {0};
struct aesni_mb_session *session;
uint32_t m_offset, oop;
uint32_t auth_off_in_bytes;
uint32_t ciph_off_in_bytes;
uint32_t auth_len_in_bytes;
uint32_t ciph_len_in_bytes;
uint32_t total_len;
IMB_JOB base_job;
uint8_t sgl = 0;
uint8_t lb_sgl = 0;
int ret;
session = ipsec_mb_get_session_private(qp, op);
if (session == NULL) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
return -1;
}
/* Set crypto operation */
job->chain_order = session->chain_order;
/* Set cipher parameters */
job->cipher_direction = session->cipher.direction;
job->cipher_mode = session->cipher.mode;
job->key_len_in_bytes = session->cipher.key_length_in_bytes;
/* Set authentication parameters */
job->hash_alg = session->auth.algo;
const int aead = is_aead_algo(job->hash_alg, job->cipher_mode);
if (job->cipher_mode == IMB_CIPHER_DES3) {
job->enc_keys = session->cipher.exp_3des_keys.ks_ptr;
job->dec_keys = session->cipher.exp_3des_keys.ks_ptr;
} else {
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.decode;
}
if (!op->sym->m_dst) {
/* in-place operation */
m_dst = m_src;
oop = 0;
} else if (op->sym->m_dst == op->sym->m_src) {
/* in-place operation */
m_dst = m_src;
oop = 0;
} else {
/* out-of-place operation */
m_dst = op->sym->m_dst;
oop = 1;
}
if (m_src->nb_segs > 1 || m_dst->nb_segs > 1) {
sgl = 1;
if (!imb_lib_support_sgl_algo(session->cipher.mode))
lb_sgl = 1;
}
switch (job->hash_alg) {
case IMB_AUTH_AES_XCBC:
job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded;
job->u.XCBC._k2 = session->auth.xcbc.k2;
job->u.XCBC._k3 = session->auth.xcbc.k3;
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.decode;
break;
case IMB_AUTH_AES_CCM:
job->u.CCM.aad = op->sym->aead.aad.data + 18;
job->u.CCM.aad_len_in_bytes = session->aead.aad_len;
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.decode;
break;
case IMB_AUTH_AES_CMAC:
job->u.CMAC._key_expanded = session->auth.cmac.expkey;
job->u.CMAC._skey1 = session->auth.cmac.skey1;
job->u.CMAC._skey2 = session->auth.cmac.skey2;
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.decode;
break;
case IMB_AUTH_AES_GMAC:
if (session->cipher.mode == IMB_CIPHER_GCM) {
job->u.GCM.aad = op->sym->aead.aad.data;
job->u.GCM.aad_len_in_bytes = session->aead.aad_len;
if (sgl) {
job->u.GCM.ctx = &qp_data->gcm_sgl_ctx;
job->cipher_mode = IMB_CIPHER_GCM_SGL;
job->hash_alg = IMB_AUTH_GCM_SGL;
}
} else {
/* For GMAC */
job->u.GCM.aad = rte_pktmbuf_mtod_offset(m_src,
uint8_t *, op->sym->auth.data.offset);
job->u.GCM.aad_len_in_bytes = op->sym->auth.data.length;
job->cipher_mode = IMB_CIPHER_GCM;
}
job->enc_keys = &session->cipher.gcm_key;
job->dec_keys = &session->cipher.gcm_key;
break;
case IMB_AUTH_ZUC_EIA3_BITLEN:
case IMB_AUTH_ZUC256_EIA3_BITLEN:
job->u.ZUC_EIA3._key = session->auth.zuc_auth_key;
job->u.ZUC_EIA3._iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->auth_iv.offset);
break;
case IMB_AUTH_SNOW3G_UIA2_BITLEN:
job->u.SNOW3G_UIA2._key = (void *)
&session->auth.pKeySched_snow3g_auth;
job->u.SNOW3G_UIA2._iv =
rte_crypto_op_ctod_offset(op, uint8_t *,
session->auth_iv.offset);
break;
case IMB_AUTH_KASUMI_UIA1:
job->u.KASUMI_UIA1._key = (void *)
&session->auth.pKeySched_kasumi_auth;
break;
case IMB_AUTH_CHACHA20_POLY1305:
job->u.CHACHA20_POLY1305.aad = op->sym->aead.aad.data;
job->u.CHACHA20_POLY1305.aad_len_in_bytes =
session->aead.aad_len;
if (sgl) {
job->u.CHACHA20_POLY1305.ctx = &qp_data->chacha_sgl_ctx;
job->cipher_mode = IMB_CIPHER_CHACHA20_POLY1305_SGL;
job->hash_alg = IMB_AUTH_CHACHA20_POLY1305_SGL;
}
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.encode;
break;
default:
job->u.HMAC._hashed_auth_key_xor_ipad =
session->auth.pads.inner;
job->u.HMAC._hashed_auth_key_xor_opad =
session->auth.pads.outer;
}
if (aead)
m_offset = op->sym->aead.data.offset;
else
m_offset = op->sym->cipher.data.offset;
if (job->cipher_mode == IMB_CIPHER_ZUC_EEA3) {
job->enc_keys = session->cipher.zuc_cipher_key;
job->dec_keys = session->cipher.zuc_cipher_key;
m_offset >>= 3;
} else if (job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN) {
job->enc_keys = &session->cipher.pKeySched_snow3g_cipher;
m_offset = 0;
} else if (job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN) {
job->enc_keys = &session->cipher.pKeySched_kasumi_cipher;
m_offset = 0;
}
/* Set digest output location */
if (job->hash_alg != IMB_AUTH_NULL &&
session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
job->auth_tag_output = qp_data->temp_digests[*digest_idx];
*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
} else {
if (aead)
job->auth_tag_output = op->sym->aead.digest.data;
else
job->auth_tag_output = op->sym->auth.digest.data;
if (session->auth.req_digest_len !=
session->auth.gen_digest_len) {
job->auth_tag_output =
qp_data->temp_digests[*digest_idx];
*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
}
}
/*
* Multi-buffer library current only support returning a truncated
* digest length as specified in the relevant IPsec RFCs
*/
/* Set digest length */
job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len;
/* Set IV parameters */
job->iv_len_in_bytes = session->iv.length;
/* Data Parameters */
if (sgl) {
job->src = NULL;
job->dst = NULL;
} else {
job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
}
switch (job->hash_alg) {
case IMB_AUTH_AES_CCM:
job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset;
job->msg_len_to_hash_in_bytes = op->sym->aead.data.length;
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset + 1);
break;
case IMB_AUTH_AES_GMAC:
if (session->cipher.mode == IMB_CIPHER_GCM) {
job->hash_start_src_offset_in_bytes =
op->sym->aead.data.offset;
job->msg_len_to_hash_in_bytes =
op->sym->aead.data.length;
} else { /* AES-GMAC only, only AAD used */
job->msg_len_to_hash_in_bytes = 0;
job->hash_start_src_offset_in_bytes = 0;
}
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset);
break;
case IMB_AUTH_GCM_SGL:
case IMB_AUTH_CHACHA20_POLY1305_SGL:
job->hash_start_src_offset_in_bytes = 0;
job->msg_len_to_hash_in_bytes = 0;
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset);
break;
case IMB_AUTH_CHACHA20_POLY1305:
job->hash_start_src_offset_in_bytes =
op->sym->aead.data.offset;
job->msg_len_to_hash_in_bytes =
op->sym->aead.data.length;
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset);
break;
/* ZUC and SNOW3G require length in bits and offset in bytes */
case IMB_AUTH_ZUC_EIA3_BITLEN:
case IMB_AUTH_ZUC256_EIA3_BITLEN:
case IMB_AUTH_SNOW3G_UIA2_BITLEN:
auth_off_in_bytes = op->sym->auth.data.offset >> 3;
ciph_off_in_bytes = op->sym->cipher.data.offset >> 3;
auth_len_in_bytes = op->sym->auth.data.length >> 3;
ciph_len_in_bytes = op->sym->cipher.data.length >> 3;
job->hash_start_src_offset_in_bytes = auth_start_offset(op,
session, oop, auth_off_in_bytes,
ciph_off_in_bytes, auth_len_in_bytes,
ciph_len_in_bytes, lb_sgl);
job->msg_len_to_hash_in_bits = op->sym->auth.data.length;
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset);
break;
/* KASUMI requires lengths and offset in bytes */
case IMB_AUTH_KASUMI_UIA1:
auth_off_in_bytes = op->sym->auth.data.offset >> 3;
ciph_off_in_bytes = op->sym->cipher.data.offset >> 3;
auth_len_in_bytes = op->sym->auth.data.length >> 3;
ciph_len_in_bytes = op->sym->cipher.data.length >> 3;
job->hash_start_src_offset_in_bytes = auth_start_offset(op,
session, oop, auth_off_in_bytes,
ciph_off_in_bytes, auth_len_in_bytes,
ciph_len_in_bytes, lb_sgl);
job->msg_len_to_hash_in_bytes = auth_len_in_bytes;
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset);
break;
default:
job->hash_start_src_offset_in_bytes = auth_start_offset(op,
session, oop, op->sym->auth.data.offset,
op->sym->cipher.data.offset,
op->sym->auth.data.length,
op->sym->cipher.data.length, lb_sgl);
job->msg_len_to_hash_in_bytes = op->sym->auth.data.length;
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
session->iv.offset);
}
switch (job->cipher_mode) {
/* ZUC requires length and offset in bytes */
case IMB_CIPHER_ZUC_EEA3:
job->cipher_start_src_offset_in_bytes =
op->sym->cipher.data.offset >> 3;
job->msg_len_to_cipher_in_bytes =
op->sym->cipher.data.length >> 3;
break;
/* ZUC and SNOW3G require length and offset in bits */
case IMB_CIPHER_SNOW3G_UEA2_BITLEN:
case IMB_CIPHER_KASUMI_UEA1_BITLEN:
job->cipher_start_src_offset_in_bits =
op->sym->cipher.data.offset;
job->msg_len_to_cipher_in_bits =
op->sym->cipher.data.length;
break;
case IMB_CIPHER_GCM:
if (session->cipher.mode == IMB_CIPHER_NULL) {
/* AES-GMAC only (only AAD used) */
job->msg_len_to_cipher_in_bytes = 0;
job->cipher_start_src_offset_in_bytes = 0;
} else {
job->cipher_start_src_offset_in_bytes =
op->sym->aead.data.offset;
job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
}
break;
case IMB_CIPHER_CCM:
case IMB_CIPHER_CHACHA20_POLY1305:
job->cipher_start_src_offset_in_bytes =
op->sym->aead.data.offset;
job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
break;
case IMB_CIPHER_GCM_SGL:
case IMB_CIPHER_CHACHA20_POLY1305_SGL:
job->msg_len_to_cipher_in_bytes = 0;
job->cipher_start_src_offset_in_bytes = 0;
break;
default:
job->cipher_start_src_offset_in_bytes =
op->sym->cipher.data.offset;
job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length;
}
if (job->cipher_mode == IMB_CIPHER_NULL && oop) {
memcpy(job->dst + job->cipher_start_src_offset_in_bytes,
job->src + job->cipher_start_src_offset_in_bytes,
job->msg_len_to_cipher_in_bytes);
}
/* Set user data to be crypto operation data struct */
job->user_data = op;
if (sgl) {
if (lb_sgl)
return handle_sgl_linear(job, op, m_offset, session);
base_job = *job;
job->sgl_state = IMB_SGL_INIT;
job = IMB_SUBMIT_JOB(mb_mgr);
total_len = op->sym->aead.data.length;
src_sgl.m = m_src;
src_sgl.offset = m_offset;
while (src_sgl.offset >= src_sgl.m->data_len) {
src_sgl.offset -= src_sgl.m->data_len;
src_sgl.m = src_sgl.m->next;
RTE_ASSERT(src_sgl.m != NULL);
}
if (oop) {
dst_sgl.m = m_dst;
dst_sgl.offset = m_offset;
while (dst_sgl.offset >= dst_sgl.m->data_len) {
dst_sgl.offset -= dst_sgl.m->data_len;
dst_sgl.m = dst_sgl.m->next;
RTE_ASSERT(dst_sgl.m != NULL);
}
}
while (job->sgl_state != IMB_SGL_COMPLETE) {
job = IMB_GET_NEXT_JOB(mb_mgr);
*job = base_job;
ret = handle_aead_sgl_job(job, mb_mgr, &total_len,
&src_sgl, &dst_sgl);
if (ret < 0)
return ret;
}
}
return 0;
}
#ifdef AESNI_MB_DOCSIS_SEC_ENABLED
/**
* Process a crypto operation containing a security op and complete a
* IMB_JOB job structure for submission to the multi buffer library for
* processing.
*/
static inline int
set_sec_mb_job_params(IMB_JOB *job, struct ipsec_mb_qp *qp,
struct rte_crypto_op *op, uint8_t *digest_idx)
{
struct aesni_mb_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp);
struct rte_mbuf *m_src, *m_dst;
struct rte_crypto_sym_op *sym;
struct aesni_mb_session *session = NULL;
if (unlikely(op->sess_type != RTE_CRYPTO_OP_SECURITY_SESSION)) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
return -1;
}
session = SECURITY_GET_SESS_PRIV(op->sym->session);
if (unlikely(session == NULL)) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
return -1;
}
/* Only DOCSIS protocol operations supported now */
if (session->cipher.mode != IMB_CIPHER_DOCSIS_SEC_BPI ||
session->auth.algo != IMB_AUTH_DOCSIS_CRC32) {
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
return -1;
}
sym = op->sym;
m_src = sym->m_src;
if (likely(sym->m_dst == NULL || sym->m_dst == m_src)) {
/* in-place operation */
m_dst = m_src;
} else {
/* out-of-place operation not supported */
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
return -ENOTSUP;
}
/* Set crypto operation */
job->chain_order = session->chain_order;
/* Set cipher parameters */
job->cipher_direction = session->cipher.direction;
job->cipher_mode = session->cipher.mode;
job->key_len_in_bytes = session->cipher.key_length_in_bytes;
job->enc_keys = session->cipher.expanded_aes_keys.encode;
job->dec_keys = session->cipher.expanded_aes_keys.decode;
/* Set IV parameters */
job->iv_len_in_bytes = session->iv.length;
job->iv = (uint8_t *)op + session->iv.offset;
/* Set authentication parameters */
job->hash_alg = session->auth.algo;
/* Set digest output location */
job->auth_tag_output = qp_data->temp_digests[*digest_idx];
*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
/* Set digest length */
job->auth_tag_output_len_in_bytes = session->auth.gen_digest_len;
/* Set data parameters */
job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *,
sym->cipher.data.offset);
job->cipher_start_src_offset_in_bytes = sym->cipher.data.offset;
job->msg_len_to_cipher_in_bytes = sym->cipher.data.length;
job->hash_start_src_offset_in_bytes = sym->auth.data.offset;
job->msg_len_to_hash_in_bytes = sym->auth.data.length;
job->user_data = op;
return 0;
}
static inline void
verify_docsis_sec_crc(IMB_JOB *job, uint8_t *status)
{
uint16_t crc_offset;
uint8_t *crc;
if (!job->msg_len_to_hash_in_bytes)
return;
crc_offset = job->hash_start_src_offset_in_bytes +
job->msg_len_to_hash_in_bytes -
job->cipher_start_src_offset_in_bytes;
crc = job->dst + crc_offset;
/* Verify CRC (at the end of the message) */
if (memcmp(job->auth_tag_output, crc, RTE_ETHER_CRC_LEN) != 0)
*status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
}
#endif
static inline void
verify_digest(IMB_JOB *job, void *digest, uint16_t len, uint8_t *status)
{
/* Verify digest if required */
if (memcmp(job->auth_tag_output, digest, len) != 0)
*status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
}
static inline void
generate_digest(IMB_JOB *job, struct rte_crypto_op *op,
struct aesni_mb_session *sess)
{
/* No extra copy needed */
if (likely(sess->auth.req_digest_len == sess->auth.gen_digest_len))
return;
/*
* This can only happen for HMAC, so only digest
* for authentication algos is required
*/
memcpy(op->sym->auth.digest.data, job->auth_tag_output,
sess->auth.req_digest_len);
}
static void
post_process_sgl_linear(struct rte_crypto_op *op, IMB_JOB *job,
struct aesni_mb_session *sess, uint8_t *linear_buf)
{
int lb_offset = 0;
struct rte_mbuf *m_dst = op->sym->m_dst == NULL ?
op->sym->m_src : op->sym->m_dst;
uint16_t total_len, dst_len;
uint64_t auth_len;
uint8_t *dst;
total_len = sgl_linear_cipher_auth_len(job, &auth_len);
if (sess->auth.operation != RTE_CRYPTO_AUTH_OP_VERIFY)
total_len += job->auth_tag_output_len_in_bytes;
for (; (m_dst != NULL) && (total_len - lb_offset > 0); m_dst = m_dst->next) {
dst = rte_pktmbuf_mtod(m_dst, uint8_t *);
dst_len = RTE_MIN(m_dst->data_len, total_len - lb_offset);
rte_memcpy(dst, linear_buf + lb_offset, dst_len);
lb_offset += dst_len;
}
}
/**
* Process a completed job and return rte_mbuf which job processed
*
* @param qp Queue Pair to process
* @param job IMB_JOB job to process
*
* @return
* - Returns processed crypto operation.
* - Returns NULL on invalid job
*/
static inline struct rte_crypto_op *
post_process_mb_job(struct ipsec_mb_qp *qp, IMB_JOB *job)
{
struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data;
struct aesni_mb_session *sess = NULL;
uint8_t *linear_buf = NULL;
#ifdef AESNI_MB_DOCSIS_SEC_ENABLED
uint8_t is_docsis_sec = 0;
if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
/*
* Assuming at this point that if it's a security type op, that
* this is for DOCSIS
*/
is_docsis_sec = 1;
sess = SECURITY_GET_SESS_PRIV(op->sym->session);
} else
#endif
sess = CRYPTODEV_GET_SYM_SESS_PRIV(op->sym->session);
if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) {
switch (job->status) {
case IMB_STATUS_COMPLETED:
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
if ((op->sym->m_src->nb_segs > 1 ||
(op->sym->m_dst != NULL &&
op->sym->m_dst->nb_segs > 1)) &&
!imb_lib_support_sgl_algo(sess->cipher.mode)) {
linear_buf = (uint8_t *) job->user_data2;
post_process_sgl_linear(op, job, sess, linear_buf);
}
if (job->hash_alg == IMB_AUTH_NULL)
break;
if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
if (is_aead_algo(job->hash_alg,
sess->cipher.mode))
verify_digest(job,
op->sym->aead.digest.data,
sess->auth.req_digest_len,
&op->status);
#ifdef AESNI_MB_DOCSIS_SEC_ENABLED
else if (is_docsis_sec)
verify_docsis_sec_crc(job,
&op->status);
#endif
else
verify_digest(job,
op->sym->auth.digest.data,
sess->auth.req_digest_len,
&op->status);
} else
generate_digest(job, op, sess);
break;
default:
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
rte_free(linear_buf);
}
/* Free session if a session-less crypto op */
if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(sess, 0, sizeof(struct aesni_mb_session));
rte_mempool_put(qp->sess_mp, op->sym->session);
op->sym->session = NULL;
}
return op;
}
static inline void
post_process_mb_sync_job(IMB_JOB *job)
{
uint32_t *st;
st = job->user_data;
st[0] = (job->status == IMB_STATUS_COMPLETED) ? 0 : EBADMSG;
}
/**
* Process a completed IMB_JOB job and keep processing jobs until
* get_completed_job return NULL
*
* @param qp Queue Pair to process
* @param mb_mgr IMB_MGR to use
* @param job IMB_JOB job
* @param ops crypto ops to fill
* @param nb_ops number of crypto ops
*
* @return
* - Number of processed jobs
*/
static unsigned
handle_completed_jobs(struct ipsec_mb_qp *qp, IMB_MGR *mb_mgr,
IMB_JOB *job, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_crypto_op *op = NULL;
uint16_t processed_jobs = 0;
while (job != NULL) {
op = post_process_mb_job(qp, job);
if (op) {
ops[processed_jobs++] = op;
qp->stats.dequeued_count++;
} else {
qp->stats.dequeue_err_count++;
break;
}
if (processed_jobs == nb_ops)
break;
job = IMB_GET_COMPLETED_JOB(mb_mgr);
}
return processed_jobs;
}
static inline uint32_t
handle_completed_sync_jobs(IMB_JOB *job, IMB_MGR *mb_mgr)
{
uint32_t i;
for (i = 0; job != NULL; i++, job = IMB_GET_COMPLETED_JOB(mb_mgr))
post_process_mb_sync_job(job);
return i;
}
static inline uint32_t
flush_mb_sync_mgr(IMB_MGR *mb_mgr)
{
IMB_JOB *job;
job = IMB_FLUSH_JOB(mb_mgr);
return handle_completed_sync_jobs(job, mb_mgr);
}
static inline uint16_t
flush_mb_mgr(struct ipsec_mb_qp *qp, IMB_MGR *mb_mgr,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
int processed_ops = 0;
/* Flush the remaining jobs */
IMB_JOB *job = IMB_FLUSH_JOB(mb_mgr);
if (job)
processed_ops += handle_completed_jobs(qp, mb_mgr, job,
&ops[processed_ops], nb_ops - processed_ops);
return processed_ops;
}
static inline IMB_JOB *
set_job_null_op(IMB_JOB *job, struct rte_crypto_op *op)
{
job->chain_order = IMB_ORDER_HASH_CIPHER;
job->cipher_mode = IMB_CIPHER_NULL;
job->hash_alg = IMB_AUTH_NULL;
job->cipher_direction = IMB_DIR_DECRYPT;
/* Set user data to be crypto operation data struct */
job->user_data = op;
return job;
}
static uint16_t
aesni_mb_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct ipsec_mb_qp *qp = queue_pair;
IMB_MGR *mb_mgr = qp->mb_mgr;
struct rte_crypto_op *op;
IMB_JOB *job;
int retval, processed_jobs = 0;
if (unlikely(nb_ops == 0 || mb_mgr == NULL))
return 0;
uint8_t digest_idx = qp->digest_idx;
do {
/* Get next free mb job struct from mb manager */
job = IMB_GET_NEXT_JOB(mb_mgr);
if (unlikely(job == NULL)) {
/* if no free mb job structs we need to flush mb_mgr */
processed_jobs += flush_mb_mgr(qp, mb_mgr,
&ops[processed_jobs],
nb_ops - processed_jobs);
if (nb_ops == processed_jobs)
break;
job = IMB_GET_NEXT_JOB(mb_mgr);
}
/*
* Get next operation to process from ingress queue.
* There is no need to return the job to the IMB_MGR
* if there are no more operations to process, since the IMB_MGR
* can use that pointer again in next get_next calls.
*/
retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op);
if (retval < 0)
break;
#ifdef AESNI_MB_DOCSIS_SEC_ENABLED
if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION)
retval = set_sec_mb_job_params(job, qp, op,
&digest_idx);
else
#endif
retval = set_mb_job_params(job, qp, op,
&digest_idx, mb_mgr);
if (unlikely(retval != 0)) {
qp->stats.dequeue_err_count++;
set_job_null_op(job, op);
}
/* Submit job to multi-buffer for processing */
#ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
job = IMB_SUBMIT_JOB(mb_mgr);
#else
job = IMB_SUBMIT_JOB_NOCHECK(mb_mgr);
#endif
/*
* If submit returns a processed job then handle it,
* before submitting subsequent jobs
*/
if (job)
processed_jobs += handle_completed_jobs(qp, mb_mgr,
job, &ops[processed_jobs],
nb_ops - processed_jobs);
} while (processed_jobs < nb_ops);
qp->digest_idx = digest_idx;
if (processed_jobs < 1)
processed_jobs += flush_mb_mgr(qp, mb_mgr,
&ops[processed_jobs],
nb_ops - processed_jobs);
return processed_jobs;
}
static inline int
check_crypto_sgl(union rte_crypto_sym_ofs so, const struct rte_crypto_sgl *sgl)
{
/* no multi-seg support with current AESNI-MB PMD */
if (sgl->num != 1)
return -ENOTSUP;
else if (so.ofs.cipher.head + so.ofs.cipher.tail > sgl->vec[0].len)
return -EINVAL;
return 0;
}
static inline IMB_JOB *
submit_sync_job(IMB_MGR *mb_mgr)
{
#ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
return IMB_SUBMIT_JOB(mb_mgr);
#else
return IMB_SUBMIT_JOB_NOCHECK(mb_mgr);
#endif
}
static inline uint32_t
generate_sync_dgst(struct rte_crypto_sym_vec *vec,
const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len)
{
uint32_t i, k;
for (i = 0, k = 0; i != vec->num; i++) {
if (vec->status[i] == 0) {
memcpy(vec->digest[i].va, dgst[i], len);
k++;
}
}
return k;
}
static inline uint32_t
verify_sync_dgst(struct rte_crypto_sym_vec *vec,
const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len)
{
uint32_t i, k;
for (i = 0, k = 0; i != vec->num; i++) {
if (vec->status[i] == 0) {
if (memcmp(vec->digest[i].va, dgst[i], len) != 0)
vec->status[i] = EBADMSG;
else
k++;
}
}
return k;
}
static uint32_t
aesni_mb_process_bulk(struct rte_cryptodev *dev __rte_unused,
struct rte_cryptodev_sym_session *sess, union rte_crypto_sym_ofs sofs,
struct rte_crypto_sym_vec *vec)
{
int32_t ret;
uint32_t i, j, k, len;
void *buf;
IMB_JOB *job;
IMB_MGR *mb_mgr;
struct aesni_mb_session *s = CRYPTODEV_GET_SYM_SESS_PRIV(sess);
uint8_t tmp_dgst[vec->num][DIGEST_LENGTH_MAX];
/* get per-thread MB MGR, create one if needed */
mb_mgr = get_per_thread_mb_mgr();
if (unlikely(mb_mgr == NULL))
return 0;
for (i = 0, j = 0, k = 0; i != vec->num; i++) {
ret = check_crypto_sgl(sofs, vec->src_sgl + i);
if (ret != 0) {
vec->status[i] = ret;
continue;
}
buf = vec->src_sgl[i].vec[0].base;
len = vec->src_sgl[i].vec[0].len;
job = IMB_GET_NEXT_JOB(mb_mgr);
if (job == NULL) {
k += flush_mb_sync_mgr(mb_mgr);
job = IMB_GET_NEXT_JOB(mb_mgr);
RTE_ASSERT(job != NULL);
}
/* Submit job for processing */
set_cpu_mb_job_params(job, s, sofs, buf, len, &vec->iv[i],
&vec->aad[i], tmp_dgst[i], &vec->status[i]);
job = submit_sync_job(mb_mgr);
j++;
/* handle completed jobs */
k += handle_completed_sync_jobs(job, mb_mgr);
}
/* flush remaining jobs */
while (k != j)
k += flush_mb_sync_mgr(mb_mgr);
/* finish processing for successful jobs: check/update digest */
if (k != 0) {
if (s->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY)
k = verify_sync_dgst(vec,
(const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst,
s->auth.req_digest_len);
else
k = generate_sync_dgst(vec,
(const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst,
s->auth.req_digest_len);
}
return k;
}
struct rte_cryptodev_ops aesni_mb_pmd_ops = {
.dev_configure = ipsec_mb_config,
.dev_start = ipsec_mb_start,
.dev_stop = ipsec_mb_stop,
.dev_close = ipsec_mb_close,
.stats_get = ipsec_mb_stats_get,
.stats_reset = ipsec_mb_stats_reset,
.dev_infos_get = ipsec_mb_info_get,
.queue_pair_setup = ipsec_mb_qp_setup,
.queue_pair_release = ipsec_mb_qp_release,
.sym_cpu_process = aesni_mb_process_bulk,
.sym_session_get_size = ipsec_mb_sym_session_get_size,
.sym_session_configure = ipsec_mb_sym_session_configure,
.sym_session_clear = ipsec_mb_sym_session_clear
};
#ifdef AESNI_MB_DOCSIS_SEC_ENABLED
/**
* Configure a aesni multi-buffer session from a security session
* configuration
*/
static int
aesni_mb_pmd_sec_sess_create(void *dev, struct rte_security_session_conf *conf,
struct rte_security_session *sess)
{
void *sess_private_data = SECURITY_GET_SESS_PRIV(sess);
struct rte_cryptodev *cdev = (struct rte_cryptodev *)dev;
int ret;
if (conf->action_type != RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL ||
conf->protocol != RTE_SECURITY_PROTOCOL_DOCSIS) {
IPSEC_MB_LOG(ERR, "Invalid security protocol");
return -EINVAL;
}
ret = aesni_mb_set_docsis_sec_session_parameters(cdev, conf,
sess_private_data);
if (ret != 0) {
IPSEC_MB_LOG(ERR, "Failed to configure session parameters");
return ret;
}
return ret;
}
/** Clear the memory of session so it does not leave key material behind */
static int
aesni_mb_pmd_sec_sess_destroy(void *dev __rte_unused,
struct rte_security_session *sess)
{
void *sess_priv = SECURITY_GET_SESS_PRIV(sess);
if (sess_priv) {
memset(sess_priv, 0, sizeof(struct aesni_mb_session));
}
return 0;
}
static unsigned int
aesni_mb_pmd_sec_sess_get_size(void *device __rte_unused)
{
return sizeof(struct aesni_mb_session);
}
/** Get security capabilities for aesni multi-buffer */
static const struct rte_security_capability *
aesni_mb_pmd_sec_capa_get(void *device __rte_unused)
{
return aesni_mb_pmd_security_cap;
}
static struct rte_security_ops aesni_mb_pmd_sec_ops = {
.session_create = aesni_mb_pmd_sec_sess_create,
.session_update = NULL,
.session_get_size = aesni_mb_pmd_sec_sess_get_size,
.session_stats_get = NULL,
.session_destroy = aesni_mb_pmd_sec_sess_destroy,
.set_pkt_metadata = NULL,
.capabilities_get = aesni_mb_pmd_sec_capa_get
};
struct rte_security_ops *rte_aesni_mb_pmd_sec_ops = &aesni_mb_pmd_sec_ops;
static int
aesni_mb_configure_dev(struct rte_cryptodev *dev)
{
struct rte_security_ctx *security_instance;
security_instance = rte_malloc("aesni_mb_sec",
sizeof(struct rte_security_ctx),
RTE_CACHE_LINE_SIZE);
if (security_instance != NULL) {
security_instance->device = (void *)dev;
security_instance->ops = rte_aesni_mb_pmd_sec_ops;
security_instance->sess_cnt = 0;
dev->security_ctx = security_instance;
return 0;
}
return -ENOMEM;
}
#endif
static int
aesni_mb_probe(struct rte_vdev_device *vdev)
{
return ipsec_mb_create(vdev, IPSEC_MB_PMD_TYPE_AESNI_MB);
}
static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = {
.probe = aesni_mb_probe,
.remove = ipsec_mb_remove
};
static struct cryptodev_driver aesni_mb_crypto_drv;
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD,
cryptodev_aesni_mb_pmd_drv);
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd);
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD,
"max_nb_queue_pairs=<int> socket_id=<int>");
RTE_PMD_REGISTER_CRYPTO_DRIVER(
aesni_mb_crypto_drv,
cryptodev_aesni_mb_pmd_drv.driver,
pmd_driver_id_aesni_mb);
/* Constructor function to register aesni-mb PMD */
RTE_INIT(ipsec_mb_register_aesni_mb)
{
struct ipsec_mb_internals *aesni_mb_data =
&ipsec_mb_pmds[IPSEC_MB_PMD_TYPE_AESNI_MB];
aesni_mb_data->caps = aesni_mb_capabilities;
aesni_mb_data->dequeue_burst = aesni_mb_dequeue_burst;
aesni_mb_data->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO |
RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA |
RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
RTE_CRYPTODEV_FF_IN_PLACE_SGL |
RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT;
aesni_mb_data->internals_priv_size = 0;
aesni_mb_data->ops = &aesni_mb_pmd_ops;
aesni_mb_data->qp_priv_size = sizeof(struct aesni_mb_qp_data);
aesni_mb_data->queue_pair_configure = NULL;
#ifdef AESNI_MB_DOCSIS_SEC_ENABLED
aesni_mb_data->security_ops = &aesni_mb_pmd_sec_ops;
aesni_mb_data->dev_config = aesni_mb_configure_dev;
aesni_mb_data->feature_flags |= RTE_CRYPTODEV_FF_SECURITY;
#endif
aesni_mb_data->session_configure = aesni_mb_session_configure;
aesni_mb_data->session_priv_size = sizeof(struct aesni_mb_session);
}