mirror of https://github.com/F-Stack/f-stack.git
998 lines
26 KiB
C
998 lines
26 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(C) 2021 Marvell.
|
|
*/
|
|
|
|
#ifndef _CNXK_AE_H_
|
|
#define _CNXK_AE_H_
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_crypto_asym.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#include "roc_api.h"
|
|
#include "cnxk_cryptodev_ops.h"
|
|
|
|
struct cnxk_ae_sess {
|
|
enum rte_crypto_asym_xform_type xfrm_type;
|
|
union {
|
|
struct rte_crypto_rsa_xform rsa_ctx;
|
|
struct rte_crypto_modex_xform mod_ctx;
|
|
struct roc_ae_ec_ctx ec_ctx;
|
|
};
|
|
uint64_t *cnxk_fpm_iova;
|
|
struct roc_ae_ec_group **ec_grp;
|
|
uint64_t cpt_inst_w7;
|
|
uint64_t cpt_inst_w2;
|
|
struct cnxk_cpt_qp *qp;
|
|
};
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_modex_param_normalize(uint8_t **data, size_t *len)
|
|
{
|
|
size_t i;
|
|
|
|
/* Strip leading NUL bytes */
|
|
for (i = 0; i < *len; i++) {
|
|
if ((*data)[i] != 0)
|
|
break;
|
|
}
|
|
*data += i;
|
|
*len -= i;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cnxk_ae_fill_modex_params(struct cnxk_ae_sess *sess,
|
|
struct rte_crypto_asym_xform *xform)
|
|
{
|
|
struct rte_crypto_modex_xform *ctx = &sess->mod_ctx;
|
|
size_t exp_len = xform->modex.exponent.length;
|
|
size_t mod_len = xform->modex.modulus.length;
|
|
uint8_t *exp = xform->modex.exponent.data;
|
|
uint8_t *mod = xform->modex.modulus.data;
|
|
|
|
cnxk_ae_modex_param_normalize(&mod, &mod_len);
|
|
cnxk_ae_modex_param_normalize(&exp, &exp_len);
|
|
|
|
if (unlikely(exp_len == 0 || mod_len == 0))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(exp_len > mod_len))
|
|
return -ENOTSUP;
|
|
|
|
/* Allocate buffer to hold modexp params */
|
|
ctx->modulus.data = rte_malloc(NULL, mod_len + exp_len, 0);
|
|
if (ctx->modulus.data == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Set up modexp prime modulus and private exponent */
|
|
memcpy(ctx->modulus.data, mod, mod_len);
|
|
ctx->exponent.data = ctx->modulus.data + mod_len;
|
|
memcpy(ctx->exponent.data, exp, exp_len);
|
|
|
|
ctx->modulus.length = mod_len;
|
|
ctx->exponent.length = exp_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cnxk_ae_fill_rsa_params(struct cnxk_ae_sess *sess,
|
|
struct rte_crypto_asym_xform *xform)
|
|
{
|
|
struct rte_crypto_rsa_priv_key_qt qt = xform->rsa.qt;
|
|
struct rte_crypto_rsa_xform *xfrm_rsa = &xform->rsa;
|
|
struct rte_crypto_rsa_xform *rsa = &sess->rsa_ctx;
|
|
struct rte_crypto_param_t d = xform->rsa.d;
|
|
size_t mod_len = xfrm_rsa->n.length;
|
|
size_t exp_len = xfrm_rsa->e.length;
|
|
uint64_t total_size;
|
|
size_t len = 0;
|
|
|
|
/* Set private key type */
|
|
rsa->key_type = xfrm_rsa->key_type;
|
|
|
|
if (rsa->key_type == RTE_RSA_KEY_TYPE_QT) {
|
|
if (qt.p.length != 0 && qt.p.data == NULL)
|
|
return -EINVAL;
|
|
|
|
/* Make sure key length used is not more than mod_len/2 */
|
|
if (qt.p.data != NULL)
|
|
len = (((mod_len / 2) < qt.p.length) ? 0 : qt.p.length * 5);
|
|
} else if (rsa->key_type == RTE_RSA_KEY_TYPE_EXP) {
|
|
if (d.length != 0 && d.data == NULL)
|
|
return -EINVAL;
|
|
|
|
len = d.length;
|
|
}
|
|
|
|
/* Total size required for RSA key params(n,e,(q,dQ,p,dP,qInv)) */
|
|
total_size = mod_len + exp_len + len;
|
|
|
|
/* Allocate buffer to hold all RSA keys */
|
|
rsa->n.data = rte_malloc(NULL, total_size, 0);
|
|
if (rsa->n.data == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Set up RSA prime modulus and public key exponent */
|
|
memcpy(rsa->n.data, xfrm_rsa->n.data, mod_len);
|
|
rsa->e.data = rsa->n.data + mod_len;
|
|
memcpy(rsa->e.data, xfrm_rsa->e.data, exp_len);
|
|
|
|
if (rsa->key_type == RTE_RSA_KEY_TYPE_QT) {
|
|
/* Private key in quintuple format */
|
|
rsa->qt.q.data = rsa->e.data + exp_len;
|
|
memcpy(rsa->qt.q.data, qt.q.data, qt.q.length);
|
|
rsa->qt.dQ.data = rsa->qt.q.data + qt.q.length;
|
|
memcpy(rsa->qt.dQ.data, qt.dQ.data, qt.dQ.length);
|
|
rsa->qt.p.data = rsa->qt.dQ.data + qt.dQ.length;
|
|
if (qt.p.data != NULL)
|
|
memcpy(rsa->qt.p.data, qt.p.data, qt.p.length);
|
|
rsa->qt.dP.data = rsa->qt.p.data + qt.p.length;
|
|
memcpy(rsa->qt.dP.data, qt.dP.data, qt.dP.length);
|
|
rsa->qt.qInv.data = rsa->qt.dP.data + qt.dP.length;
|
|
memcpy(rsa->qt.qInv.data, qt.qInv.data, qt.qInv.length);
|
|
|
|
rsa->qt.q.length = qt.q.length;
|
|
rsa->qt.dQ.length = qt.dQ.length;
|
|
rsa->qt.p.length = qt.p.length;
|
|
rsa->qt.dP.length = qt.dP.length;
|
|
rsa->qt.qInv.length = qt.qInv.length;
|
|
} else if (rsa->key_type == RTE_RSA_KEY_TYPE_EXP) {
|
|
/* Private key in exponent format */
|
|
rsa->d.data = rsa->e.data + exp_len;
|
|
memcpy(rsa->d.data, d.data, d.length);
|
|
rsa->d.length = d.length;
|
|
}
|
|
rsa->n.length = mod_len;
|
|
rsa->e.length = exp_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cnxk_ae_fill_ec_params(struct cnxk_ae_sess *sess,
|
|
struct rte_crypto_asym_xform *xform)
|
|
{
|
|
struct roc_ae_ec_ctx *ec = &sess->ec_ctx;
|
|
|
|
switch (xform->ec.curve_id) {
|
|
case RTE_CRYPTO_EC_GROUP_SECP192R1:
|
|
ec->curveid = ROC_AE_EC_ID_P192;
|
|
break;
|
|
case RTE_CRYPTO_EC_GROUP_SECP224R1:
|
|
ec->curveid = ROC_AE_EC_ID_P224;
|
|
break;
|
|
case RTE_CRYPTO_EC_GROUP_SECP256R1:
|
|
ec->curveid = ROC_AE_EC_ID_P256;
|
|
break;
|
|
case RTE_CRYPTO_EC_GROUP_SECP384R1:
|
|
ec->curveid = ROC_AE_EC_ID_P384;
|
|
break;
|
|
case RTE_CRYPTO_EC_GROUP_SECP521R1:
|
|
ec->curveid = ROC_AE_EC_ID_P521;
|
|
break;
|
|
default:
|
|
/* Only NIST curves (FIPS 186-4) are supported */
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cnxk_ae_fill_session_parameters(struct cnxk_ae_sess *sess,
|
|
struct rte_crypto_asym_xform *xform)
|
|
{
|
|
int ret;
|
|
|
|
sess->xfrm_type = xform->xform_type;
|
|
|
|
switch (xform->xform_type) {
|
|
case RTE_CRYPTO_ASYM_XFORM_RSA:
|
|
ret = cnxk_ae_fill_rsa_params(sess, xform);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_MODEX:
|
|
ret = cnxk_ae_fill_modex_params(sess, xform);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_ECDSA:
|
|
/* Fall through */
|
|
case RTE_CRYPTO_ASYM_XFORM_ECPM:
|
|
case RTE_CRYPTO_ASYM_XFORM_ECFPM:
|
|
ret = cnxk_ae_fill_ec_params(sess, xform);
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void
|
|
cnxk_ae_free_session_parameters(struct cnxk_ae_sess *sess)
|
|
{
|
|
struct rte_crypto_modex_xform *mod;
|
|
struct rte_crypto_rsa_xform *rsa;
|
|
|
|
switch (sess->xfrm_type) {
|
|
case RTE_CRYPTO_ASYM_XFORM_RSA:
|
|
rsa = &sess->rsa_ctx;
|
|
rte_free(rsa->n.data);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_MODEX:
|
|
mod = &sess->mod_ctx;
|
|
rte_free(mod->modulus.data);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_ECDSA:
|
|
/* Fall through */
|
|
case RTE_CRYPTO_ASYM_XFORM_ECPM:
|
|
case RTE_CRYPTO_ASYM_XFORM_ECFPM:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cnxk_ae_modex_prep(struct rte_crypto_op *op, struct roc_ae_buf_ptr *meta_buf,
|
|
struct rte_crypto_modex_xform *mod, struct cpt_inst_s *inst)
|
|
{
|
|
uint32_t exp_len = mod->exponent.length;
|
|
uint32_t mod_len = mod->modulus.length;
|
|
struct rte_crypto_mod_op_param mod_op;
|
|
uint64_t total_key_len;
|
|
union cpt_inst_w4 w4;
|
|
uint32_t base_len;
|
|
uint32_t dlen;
|
|
uint8_t *dptr;
|
|
|
|
mod_op = op->asym->modex;
|
|
|
|
base_len = mod_op.base.length;
|
|
if (unlikely(base_len > mod_len)) {
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
total_key_len = mod_len + exp_len;
|
|
|
|
/* Input buffer */
|
|
dptr = meta_buf->vaddr;
|
|
inst->dptr = (uintptr_t)dptr;
|
|
memcpy(dptr, mod->modulus.data, total_key_len);
|
|
dptr += total_key_len;
|
|
memcpy(dptr, mod_op.base.data, base_len);
|
|
dptr += base_len;
|
|
dlen = total_key_len + base_len;
|
|
|
|
/* Setup opcodes */
|
|
w4.s.opcode_major = ROC_AE_MAJOR_OP_MODEX;
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_MODEX;
|
|
|
|
w4.s.param1 = mod_len;
|
|
w4.s.param2 = exp_len;
|
|
w4.s.dlen = dlen;
|
|
|
|
inst->w4.u64 = w4.u64;
|
|
inst->rptr = (uintptr_t)dptr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_rsa_prep(struct rte_crypto_op *op, struct roc_ae_buf_ptr *meta_buf,
|
|
struct rte_crypto_rsa_xform *rsa,
|
|
rte_crypto_param *crypto_param, struct cpt_inst_s *inst)
|
|
{
|
|
struct rte_crypto_rsa_op_param rsa_op;
|
|
uint32_t mod_len = rsa->n.length;
|
|
uint32_t exp_len = rsa->e.length;
|
|
uint64_t total_key_len;
|
|
union cpt_inst_w4 w4;
|
|
uint32_t in_size;
|
|
uint32_t dlen;
|
|
uint8_t *dptr;
|
|
|
|
rsa_op = op->asym->rsa;
|
|
total_key_len = mod_len + exp_len;
|
|
|
|
/* Input buffer */
|
|
dptr = meta_buf->vaddr;
|
|
inst->dptr = (uintptr_t)dptr;
|
|
memcpy(dptr, rsa->n.data, total_key_len);
|
|
dptr += total_key_len;
|
|
|
|
in_size = crypto_param->length;
|
|
memcpy(dptr, crypto_param->data, in_size);
|
|
|
|
dptr += in_size;
|
|
dlen = total_key_len + in_size;
|
|
|
|
if (rsa_op.padding.type == RTE_CRYPTO_RSA_PADDING_NONE) {
|
|
/* Use mod_exp operation for no_padding type */
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_MODEX;
|
|
w4.s.param2 = exp_len;
|
|
} else {
|
|
if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_ENCRYPT) {
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_PKCS_ENC;
|
|
/* Public key encrypt, use BT2*/
|
|
w4.s.param2 = ROC_AE_CPT_BLOCK_TYPE2 |
|
|
((uint16_t)(exp_len) << 1);
|
|
} else if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_VERIFY) {
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_PKCS_DEC;
|
|
/* Public key decrypt, use BT1 */
|
|
w4.s.param2 = ROC_AE_CPT_BLOCK_TYPE1;
|
|
}
|
|
}
|
|
|
|
w4.s.opcode_major = ROC_AE_MAJOR_OP_MODEX;
|
|
|
|
w4.s.param1 = mod_len;
|
|
w4.s.dlen = dlen;
|
|
|
|
inst->w4.u64 = w4.u64;
|
|
inst->rptr = (uintptr_t)dptr;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_rsa_exp_prep(struct rte_crypto_op *op, struct roc_ae_buf_ptr *meta_buf,
|
|
struct rte_crypto_rsa_xform *rsa, rte_crypto_param *crypto_param,
|
|
struct cpt_inst_s *inst)
|
|
{
|
|
struct rte_crypto_rsa_op_param rsa_op;
|
|
uint32_t privkey_len = rsa->d.length;
|
|
uint32_t mod_len = rsa->n.length;
|
|
union cpt_inst_w4 w4;
|
|
uint32_t in_size;
|
|
uint32_t dlen;
|
|
uint8_t *dptr;
|
|
|
|
rsa_op = op->asym->rsa;
|
|
|
|
/* Input buffer */
|
|
dptr = meta_buf->vaddr;
|
|
inst->dptr = (uintptr_t)dptr;
|
|
memcpy(dptr, rsa->n.data, mod_len);
|
|
dptr += mod_len;
|
|
memcpy(dptr, rsa->d.data, privkey_len);
|
|
dptr += privkey_len;
|
|
|
|
in_size = crypto_param->length;
|
|
memcpy(dptr, crypto_param->data, in_size);
|
|
|
|
dptr += in_size;
|
|
dlen = mod_len + privkey_len + in_size;
|
|
|
|
if (rsa_op.padding.type == RTE_CRYPTO_RSA_PADDING_NONE) {
|
|
/* Use mod_exp operation for no_padding type */
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_MODEX;
|
|
w4.s.param2 = privkey_len;
|
|
} else {
|
|
if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_SIGN) {
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_PKCS_ENC;
|
|
/* Private key encrypt (exponent), use BT1*/
|
|
w4.s.param2 = ROC_AE_CPT_BLOCK_TYPE1 | ((uint16_t)(privkey_len) << 1);
|
|
} else if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_DECRYPT) {
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_PKCS_DEC;
|
|
/* Private key decrypt (exponent), use BT2 */
|
|
w4.s.param2 = ROC_AE_CPT_BLOCK_TYPE2;
|
|
}
|
|
}
|
|
|
|
w4.s.opcode_major = ROC_AE_MAJOR_OP_MODEX;
|
|
|
|
w4.s.param1 = mod_len;
|
|
w4.s.dlen = dlen;
|
|
|
|
inst->w4.u64 = w4.u64;
|
|
inst->rptr = (uintptr_t)dptr;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_rsa_crt_prep(struct rte_crypto_op *op, struct roc_ae_buf_ptr *meta_buf,
|
|
struct rte_crypto_rsa_xform *rsa, rte_crypto_param *crypto_param,
|
|
struct cpt_inst_s *inst)
|
|
{
|
|
uint32_t qInv_len = rsa->qt.qInv.length;
|
|
struct rte_crypto_rsa_op_param rsa_op;
|
|
uint32_t dP_len = rsa->qt.dP.length;
|
|
uint32_t dQ_len = rsa->qt.dQ.length;
|
|
uint32_t p_len = rsa->qt.p.length;
|
|
uint32_t q_len = rsa->qt.q.length;
|
|
uint32_t mod_len = rsa->n.length;
|
|
uint64_t total_key_len;
|
|
union cpt_inst_w4 w4;
|
|
uint32_t in_size;
|
|
uint32_t dlen;
|
|
uint8_t *dptr;
|
|
|
|
rsa_op = op->asym->rsa;
|
|
total_key_len = p_len + q_len + dP_len + dQ_len + qInv_len;
|
|
|
|
/* Input buffer */
|
|
dptr = meta_buf->vaddr;
|
|
inst->dptr = (uintptr_t)dptr;
|
|
memcpy(dptr, rsa->qt.q.data, total_key_len);
|
|
dptr += total_key_len;
|
|
|
|
in_size = crypto_param->length;
|
|
memcpy(dptr, crypto_param->data, in_size);
|
|
|
|
dptr += in_size;
|
|
dlen = total_key_len + in_size;
|
|
|
|
if (rsa_op.padding.type == RTE_CRYPTO_RSA_PADDING_NONE) {
|
|
/*Use mod_exp operation for no_padding type */
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_MODEX_CRT;
|
|
} else {
|
|
if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_SIGN) {
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_PKCS_ENC_CRT;
|
|
/* Private encrypt, use BT1 */
|
|
w4.s.param2 = ROC_AE_CPT_BLOCK_TYPE1;
|
|
} else if (rsa_op.op_type == RTE_CRYPTO_ASYM_OP_DECRYPT) {
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_PKCS_DEC_CRT;
|
|
/* Private decrypt, use BT2 */
|
|
w4.s.param2 = ROC_AE_CPT_BLOCK_TYPE2;
|
|
}
|
|
}
|
|
|
|
w4.s.opcode_major = ROC_AE_MAJOR_OP_MODEX;
|
|
|
|
w4.s.param1 = mod_len;
|
|
w4.s.dlen = dlen;
|
|
|
|
inst->w4.u64 = w4.u64;
|
|
inst->rptr = (uintptr_t)dptr;
|
|
}
|
|
|
|
static __rte_always_inline int __rte_hot
|
|
cnxk_ae_enqueue_rsa_op(struct rte_crypto_op *op, struct roc_ae_buf_ptr *meta_buf,
|
|
struct cnxk_ae_sess *sess, struct cpt_inst_s *inst)
|
|
{
|
|
struct rte_crypto_rsa_op_param *rsa = &op->asym->rsa;
|
|
struct rte_crypto_rsa_xform *ctx = &sess->rsa_ctx;
|
|
|
|
switch (rsa->op_type) {
|
|
case RTE_CRYPTO_ASYM_OP_VERIFY:
|
|
cnxk_ae_rsa_prep(op, meta_buf, ctx, &rsa->sign, inst);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_OP_ENCRYPT:
|
|
cnxk_ae_rsa_prep(op, meta_buf, ctx, &rsa->message, inst);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_OP_SIGN:
|
|
if (ctx->key_type == RTE_RSA_KEY_TYPE_QT)
|
|
cnxk_ae_rsa_crt_prep(op, meta_buf, ctx, &rsa->message, inst);
|
|
else
|
|
cnxk_ae_rsa_exp_prep(op, meta_buf, ctx, &rsa->message, inst);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_OP_DECRYPT:
|
|
if (ctx->key_type == RTE_RSA_KEY_TYPE_QT)
|
|
cnxk_ae_rsa_crt_prep(op, meta_buf, ctx, &rsa->cipher, inst);
|
|
else
|
|
cnxk_ae_rsa_exp_prep(op, meta_buf, ctx, &rsa->cipher, inst);
|
|
break;
|
|
default:
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_ecdsa_sign_prep(struct rte_crypto_ecdsa_op_param *ecdsa,
|
|
struct roc_ae_buf_ptr *meta_buf,
|
|
uint64_t fpm_table_iova, struct roc_ae_ec_group *ec_grp,
|
|
uint8_t curveid, struct cpt_inst_s *inst)
|
|
{
|
|
uint16_t message_len = ecdsa->message.length;
|
|
uint16_t pkey_len = ecdsa->pkey.length;
|
|
uint16_t p_align, k_align, m_align;
|
|
uint16_t k_len = ecdsa->k.length;
|
|
uint16_t order_len, prime_len;
|
|
uint16_t o_offset, pk_offset;
|
|
union cpt_inst_w4 w4;
|
|
uint16_t dlen;
|
|
uint8_t *dptr;
|
|
|
|
prime_len = ec_grp->prime.length;
|
|
order_len = ec_grp->order.length;
|
|
|
|
/* Truncate input length to curve prime length */
|
|
if (message_len > prime_len)
|
|
message_len = prime_len;
|
|
m_align = RTE_ALIGN_CEIL(message_len, 8);
|
|
|
|
p_align = RTE_ALIGN_CEIL(prime_len, 8);
|
|
k_align = RTE_ALIGN_CEIL(k_len, 8);
|
|
|
|
/* Set write offset for order and private key */
|
|
o_offset = prime_len - order_len;
|
|
pk_offset = prime_len - pkey_len;
|
|
|
|
/* Input buffer */
|
|
dptr = meta_buf->vaddr;
|
|
inst->dptr = (uintptr_t)dptr;
|
|
|
|
/*
|
|
* Set dlen = sum(sizeof(fpm address), ROUNDUP8(scalar len, input len),
|
|
* ROUNDUP8(priv key len, prime len, order len)).
|
|
* Please note, private key, order cannot exceed prime
|
|
* length i.e 3 * p_align.
|
|
*/
|
|
dlen = sizeof(fpm_table_iova) + k_align + m_align + p_align * 5;
|
|
|
|
memset(dptr, 0, dlen);
|
|
|
|
*(uint64_t *)dptr = fpm_table_iova;
|
|
dptr += sizeof(fpm_table_iova);
|
|
|
|
memcpy(dptr, ecdsa->k.data, k_len);
|
|
dptr += k_align;
|
|
|
|
memcpy(dptr, ec_grp->prime.data, prime_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr + o_offset, ec_grp->order.data, order_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr + pk_offset, ecdsa->pkey.data, pkey_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr, ecdsa->message.data, message_len);
|
|
dptr += m_align;
|
|
|
|
memcpy(dptr, ec_grp->consta.data, prime_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr, ec_grp->constb.data, prime_len);
|
|
dptr += p_align;
|
|
|
|
/* Setup opcodes */
|
|
w4.s.opcode_major = ROC_AE_MAJOR_OP_ECDSA;
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_ECDSA_SIGN;
|
|
|
|
w4.s.param1 = curveid | (message_len << 8);
|
|
w4.s.param2 = (pkey_len << 8) | k_len;
|
|
w4.s.dlen = dlen;
|
|
|
|
inst->w4.u64 = w4.u64;
|
|
inst->rptr = (uintptr_t)dptr;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_ecdsa_verify_prep(struct rte_crypto_ecdsa_op_param *ecdsa,
|
|
struct roc_ae_buf_ptr *meta_buf,
|
|
uint64_t fpm_table_iova,
|
|
struct roc_ae_ec_group *ec_grp, uint8_t curveid,
|
|
struct cpt_inst_s *inst)
|
|
{
|
|
uint32_t message_len = ecdsa->message.length;
|
|
uint16_t o_offset, r_offset, s_offset;
|
|
uint16_t qx_len = ecdsa->q.x.length;
|
|
uint16_t qy_len = ecdsa->q.y.length;
|
|
uint16_t r_len = ecdsa->r.length;
|
|
uint16_t s_len = ecdsa->s.length;
|
|
uint16_t order_len, prime_len;
|
|
uint16_t qx_offset, qy_offset;
|
|
uint16_t p_align, m_align;
|
|
union cpt_inst_w4 w4;
|
|
uint16_t dlen;
|
|
uint8_t *dptr;
|
|
|
|
prime_len = ec_grp->prime.length;
|
|
order_len = ec_grp->order.length;
|
|
|
|
/* Truncate input length to curve prime length */
|
|
if (message_len > prime_len)
|
|
message_len = prime_len;
|
|
|
|
m_align = RTE_ALIGN_CEIL(message_len, 8);
|
|
p_align = RTE_ALIGN_CEIL(prime_len, 8);
|
|
|
|
/* Set write offset for sign, order and public key coordinates */
|
|
o_offset = prime_len - order_len;
|
|
qx_offset = prime_len - qx_len;
|
|
qy_offset = prime_len - qy_len;
|
|
r_offset = prime_len - r_len;
|
|
s_offset = prime_len - s_len;
|
|
|
|
/* Input buffer */
|
|
dptr = meta_buf->vaddr;
|
|
inst->dptr = (uintptr_t)dptr;
|
|
|
|
/*
|
|
* Set dlen = sum(sizeof(fpm address), ROUNDUP8(message len),
|
|
* ROUNDUP8(sign len(r and s), public key len(x and y coordinates),
|
|
* prime len, order len)).
|
|
* Please note sign, public key and order can not exceed prime length
|
|
* i.e. 6 * p_align
|
|
*/
|
|
dlen = sizeof(fpm_table_iova) + m_align + (8 * p_align);
|
|
|
|
memset(dptr, 0, dlen);
|
|
|
|
*(uint64_t *)dptr = fpm_table_iova;
|
|
dptr += sizeof(fpm_table_iova);
|
|
|
|
memcpy(dptr + r_offset, ecdsa->r.data, r_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr + s_offset, ecdsa->s.data, s_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr, ecdsa->message.data, message_len);
|
|
dptr += m_align;
|
|
|
|
memcpy(dptr + o_offset, ec_grp->order.data, order_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr, ec_grp->prime.data, prime_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr + qx_offset, ecdsa->q.x.data, qx_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr + qy_offset, ecdsa->q.y.data, qy_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr, ec_grp->consta.data, prime_len);
|
|
dptr += p_align;
|
|
|
|
memcpy(dptr, ec_grp->constb.data, prime_len);
|
|
dptr += p_align;
|
|
|
|
/* Setup opcodes */
|
|
w4.s.opcode_major = ROC_AE_MAJOR_OP_ECDSA;
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_ECDSA_VERIFY;
|
|
|
|
w4.s.param1 = curveid | (message_len << 8);
|
|
w4.s.param2 = 0;
|
|
w4.s.dlen = dlen;
|
|
|
|
inst->w4.u64 = w4.u64;
|
|
inst->rptr = (uintptr_t)dptr;
|
|
}
|
|
|
|
static __rte_always_inline int __rte_hot
|
|
cnxk_ae_enqueue_ecdsa_op(struct rte_crypto_op *op,
|
|
struct roc_ae_buf_ptr *meta_buf,
|
|
struct cnxk_ae_sess *sess, uint64_t *fpm_iova,
|
|
struct roc_ae_ec_group **ec_grp,
|
|
struct cpt_inst_s *inst)
|
|
{
|
|
struct rte_crypto_ecdsa_op_param *ecdsa = &op->asym->ecdsa;
|
|
uint8_t curveid = sess->ec_ctx.curveid;
|
|
|
|
if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_SIGN)
|
|
cnxk_ae_ecdsa_sign_prep(ecdsa, meta_buf, fpm_iova[curveid],
|
|
ec_grp[curveid], curveid, inst);
|
|
else if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
|
|
cnxk_ae_ecdsa_verify_prep(ecdsa, meta_buf, fpm_iova[curveid],
|
|
ec_grp[curveid], curveid, inst);
|
|
else {
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cnxk_ae_ecfpm_prep(struct rte_crypto_ecpm_op_param *ecpm,
|
|
struct roc_ae_buf_ptr *meta_buf, uint64_t *fpm_iova,
|
|
struct roc_ae_ec_group *ec_grp, uint8_t curveid,
|
|
struct cpt_inst_s *inst)
|
|
{
|
|
uint16_t scalar_align, p_align;
|
|
uint16_t dlen, prime_len;
|
|
uint64_t fpm_table_iova;
|
|
union cpt_inst_w4 w4;
|
|
uint8_t *dptr;
|
|
|
|
prime_len = ec_grp->prime.length;
|
|
fpm_table_iova = (uint64_t)fpm_iova[curveid];
|
|
|
|
/* Input buffer */
|
|
dptr = meta_buf->vaddr;
|
|
inst->dptr = (uintptr_t)dptr;
|
|
|
|
p_align = RTE_ALIGN_CEIL(prime_len, 8);
|
|
scalar_align = RTE_ALIGN_CEIL(ecpm->scalar.length, 8);
|
|
|
|
/*
|
|
* Set dlen = sum(ROUNDUP8(input point(x and y coordinates), prime,
|
|
* scalar length),
|
|
* Please note point length is equivalent to prime of the curve
|
|
*/
|
|
dlen = sizeof(fpm_table_iova) + 3 * p_align + scalar_align;
|
|
|
|
memset(dptr, 0, dlen);
|
|
|
|
*(uint64_t *)dptr = fpm_table_iova;
|
|
dptr += sizeof(fpm_table_iova);
|
|
|
|
/* Copy scalar, prime */
|
|
memcpy(dptr, ecpm->scalar.data, ecpm->scalar.length);
|
|
dptr += scalar_align;
|
|
memcpy(dptr, ec_grp->prime.data, ec_grp->prime.length);
|
|
dptr += p_align;
|
|
memcpy(dptr, ec_grp->consta.data, ec_grp->consta.length);
|
|
dptr += p_align;
|
|
memcpy(dptr, ec_grp->constb.data, ec_grp->constb.length);
|
|
dptr += p_align;
|
|
|
|
/* Setup opcodes */
|
|
w4.s.opcode_major = ROC_AE_MAJOR_OP_ECC;
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_ECC_FPM;
|
|
|
|
w4.s.param1 = curveid | (1 << 8);
|
|
w4.s.param2 = ecpm->scalar.length;
|
|
w4.s.dlen = dlen;
|
|
|
|
inst->w4.u64 = w4.u64;
|
|
inst->rptr = (uintptr_t)dptr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
cnxk_ae_ecpm_prep(struct rte_crypto_ecpm_op_param *ecpm,
|
|
struct roc_ae_buf_ptr *meta_buf,
|
|
struct roc_ae_ec_group *ec_grp, uint8_t curveid,
|
|
struct cpt_inst_s *inst)
|
|
{
|
|
uint16_t x1_len = ecpm->p.x.length;
|
|
uint16_t y1_len = ecpm->p.y.length;
|
|
uint16_t scalar_align, p_align;
|
|
uint16_t x1_offset, y1_offset;
|
|
uint16_t dlen, prime_len;
|
|
union cpt_inst_w4 w4;
|
|
uint8_t *dptr;
|
|
|
|
prime_len = ec_grp->prime.length;
|
|
|
|
/* Input buffer */
|
|
dptr = meta_buf->vaddr;
|
|
inst->dptr = (uintptr_t)dptr;
|
|
|
|
p_align = RTE_ALIGN_CEIL(prime_len, 8);
|
|
scalar_align = RTE_ALIGN_CEIL(ecpm->scalar.length, 8);
|
|
|
|
/*
|
|
* Set dlen = sum(ROUNDUP8(input point(x and y coordinates), prime,
|
|
* scalar length),
|
|
* Please note point length is equivalent to prime of the curve
|
|
*/
|
|
dlen = 5 * p_align + scalar_align;
|
|
|
|
x1_offset = prime_len - x1_len;
|
|
y1_offset = prime_len - y1_len;
|
|
|
|
memset(dptr, 0, dlen);
|
|
|
|
/* Copy input point, scalar, prime */
|
|
memcpy(dptr + x1_offset, ecpm->p.x.data, x1_len);
|
|
dptr += p_align;
|
|
memcpy(dptr + y1_offset, ecpm->p.y.data, y1_len);
|
|
dptr += p_align;
|
|
memcpy(dptr, ecpm->scalar.data, ecpm->scalar.length);
|
|
dptr += scalar_align;
|
|
memcpy(dptr, ec_grp->prime.data, ec_grp->prime.length);
|
|
dptr += p_align;
|
|
memcpy(dptr, ec_grp->consta.data, ec_grp->consta.length);
|
|
dptr += p_align;
|
|
memcpy(dptr, ec_grp->constb.data, ec_grp->constb.length);
|
|
dptr += p_align;
|
|
|
|
/* Setup opcodes */
|
|
w4.s.opcode_major = ROC_AE_MAJOR_OP_ECC;
|
|
w4.s.opcode_minor = ROC_AE_MINOR_OP_ECC_UMP;
|
|
|
|
w4.s.param1 = curveid;
|
|
w4.s.param2 = ecpm->scalar.length;
|
|
w4.s.dlen = dlen;
|
|
|
|
inst->w4.u64 = w4.u64;
|
|
inst->rptr = (uintptr_t)dptr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_dequeue_rsa_op(struct rte_crypto_op *cop, uint8_t *rptr,
|
|
struct rte_crypto_rsa_xform *rsa_ctx)
|
|
{
|
|
struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
|
|
|
|
switch (rsa->op_type) {
|
|
case RTE_CRYPTO_ASYM_OP_ENCRYPT:
|
|
rsa->cipher.length = rsa_ctx->n.length;
|
|
memcpy(rsa->cipher.data, rptr, rsa->cipher.length);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_OP_DECRYPT:
|
|
if (rsa->padding.type == RTE_CRYPTO_RSA_PADDING_NONE) {
|
|
rsa->message.length = rsa_ctx->n.length;
|
|
memcpy(rsa->message.data, rptr, rsa->message.length);
|
|
} else {
|
|
/* Get length of decrypted output */
|
|
rsa->message.length =
|
|
rte_cpu_to_be_16(*((uint16_t *)rptr));
|
|
/*
|
|
* Offset output data pointer by length field
|
|
* (2 bytes) and copy decrypted data.
|
|
*/
|
|
memcpy(rsa->message.data, rptr + 2,
|
|
rsa->message.length);
|
|
}
|
|
break;
|
|
case RTE_CRYPTO_ASYM_OP_SIGN:
|
|
rsa->sign.length = rsa_ctx->n.length;
|
|
memcpy(rsa->sign.data, rptr, rsa->sign.length);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_OP_VERIFY:
|
|
if (rsa->padding.type == RTE_CRYPTO_RSA_PADDING_NONE) {
|
|
rsa->sign.length = rsa_ctx->n.length;
|
|
memcpy(rsa->sign.data, rptr, rsa->sign.length);
|
|
} else {
|
|
/* Get length of signed output */
|
|
rsa->sign.length =
|
|
rte_cpu_to_be_16(*((uint16_t *)rptr));
|
|
/*
|
|
* Offset output data pointer by length field
|
|
* (2 bytes) and copy signed data.
|
|
*/
|
|
memcpy(rsa->sign.data, rptr + 2, rsa->sign.length);
|
|
}
|
|
if (memcmp(rsa->sign.data, rsa->message.data,
|
|
rsa->message.length)) {
|
|
cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
|
|
}
|
|
break;
|
|
default:
|
|
cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa, uint8_t *rptr,
|
|
struct roc_ae_ec_ctx *ec,
|
|
struct roc_ae_ec_group **ec_grp)
|
|
{
|
|
int prime_len = ec_grp[ec->curveid]->prime.length;
|
|
|
|
if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
|
|
return;
|
|
|
|
/* Separate out sign r and s components */
|
|
memcpy(ecdsa->r.data, rptr, prime_len);
|
|
memcpy(ecdsa->s.data, rptr + RTE_ALIGN_CEIL(prime_len, 8), prime_len);
|
|
ecdsa->r.length = prime_len;
|
|
ecdsa->s.length = prime_len;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm, uint8_t *rptr,
|
|
struct roc_ae_ec_ctx *ec,
|
|
struct roc_ae_ec_group **ec_grp)
|
|
{
|
|
int prime_len = ec_grp[ec->curveid]->prime.length;
|
|
|
|
memcpy(ecpm->r.x.data, rptr, prime_len);
|
|
memcpy(ecpm->r.y.data, rptr + RTE_ALIGN_CEIL(prime_len, 8), prime_len);
|
|
ecpm->r.x.length = prime_len;
|
|
ecpm->r.y.length = prime_len;
|
|
}
|
|
|
|
static __rte_always_inline void *
|
|
cnxk_ae_alloc_meta(struct roc_ae_buf_ptr *buf,
|
|
struct rte_mempool *cpt_meta_pool,
|
|
struct cpt_inflight_req *infl_req)
|
|
{
|
|
uint8_t *mdata;
|
|
|
|
if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
|
|
return NULL;
|
|
|
|
buf->vaddr = mdata;
|
|
|
|
infl_req->mdata = mdata;
|
|
infl_req->op_flags |= CPT_OP_FLAGS_METABUF;
|
|
|
|
return mdata;
|
|
}
|
|
|
|
static __rte_always_inline int32_t __rte_hot
|
|
cnxk_ae_enqueue(struct cnxk_cpt_qp *qp, struct rte_crypto_op *op,
|
|
struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst,
|
|
struct cnxk_ae_sess *sess)
|
|
{
|
|
struct cpt_qp_meta_info *minfo = &qp->meta_info;
|
|
struct rte_crypto_asym_op *asym_op = op->asym;
|
|
struct roc_ae_buf_ptr meta_buf;
|
|
uint64_t *mop;
|
|
void *mdata;
|
|
int ret;
|
|
|
|
mdata = cnxk_ae_alloc_meta(&meta_buf, minfo->pool, infl_req);
|
|
if (mdata == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Reserve 8B for RPTR */
|
|
meta_buf.vaddr = PLT_PTR_ADD(mdata, sizeof(uint64_t));
|
|
|
|
switch (sess->xfrm_type) {
|
|
case RTE_CRYPTO_ASYM_XFORM_MODEX:
|
|
ret = cnxk_ae_modex_prep(op, &meta_buf, &sess->mod_ctx, inst);
|
|
if (unlikely(ret))
|
|
goto req_fail;
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_RSA:
|
|
ret = cnxk_ae_enqueue_rsa_op(op, &meta_buf, sess, inst);
|
|
if (unlikely(ret))
|
|
goto req_fail;
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_ECDSA:
|
|
ret = cnxk_ae_enqueue_ecdsa_op(op, &meta_buf, sess,
|
|
sess->cnxk_fpm_iova,
|
|
sess->ec_grp, inst);
|
|
if (unlikely(ret))
|
|
goto req_fail;
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_ECPM:
|
|
ret = cnxk_ae_ecpm_prep(&asym_op->ecpm, &meta_buf,
|
|
sess->ec_grp[sess->ec_ctx.curveid],
|
|
sess->ec_ctx.curveid, inst);
|
|
if (unlikely(ret))
|
|
goto req_fail;
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_ECFPM:
|
|
ret = cnxk_ae_ecfpm_prep(&asym_op->ecpm, &meta_buf,
|
|
sess->cnxk_fpm_iova,
|
|
sess->ec_grp[sess->ec_ctx.curveid],
|
|
sess->ec_ctx.curveid, inst);
|
|
if (unlikely(ret))
|
|
goto req_fail;
|
|
break;
|
|
default:
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
ret = -EINVAL;
|
|
goto req_fail;
|
|
}
|
|
|
|
mop = mdata;
|
|
mop[0] = inst->rptr;
|
|
return 0;
|
|
|
|
req_fail:
|
|
rte_mempool_put(minfo->pool, infl_req->mdata);
|
|
return ret;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
cnxk_ae_post_process(struct rte_crypto_op *cop, struct cnxk_ae_sess *sess,
|
|
uint8_t *rptr)
|
|
{
|
|
struct rte_crypto_asym_op *op = cop->asym;
|
|
|
|
switch (sess->xfrm_type) {
|
|
case RTE_CRYPTO_ASYM_XFORM_RSA:
|
|
cnxk_ae_dequeue_rsa_op(cop, rptr, &sess->rsa_ctx);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_MODEX:
|
|
op->modex.result.length = sess->mod_ctx.modulus.length;
|
|
memcpy(op->modex.result.data, rptr, op->modex.result.length);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_ECDSA:
|
|
cnxk_ae_dequeue_ecdsa_op(&op->ecdsa, rptr, &sess->ec_ctx,
|
|
sess->ec_grp);
|
|
break;
|
|
case RTE_CRYPTO_ASYM_XFORM_ECPM:
|
|
case RTE_CRYPTO_ASYM_XFORM_ECFPM:
|
|
cnxk_ae_dequeue_ecpm_op(&op->ecpm, rptr, &sess->ec_ctx,
|
|
sess->ec_grp);
|
|
break;
|
|
default:
|
|
cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* _CNXK_AE_H_ */
|