f-stack/dpdk/drivers/crypto/caam_jr/caam_jr.c

2469 lines
67 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017-2019 NXP
*/
#include <fcntl.h>
#include <unistd.h>
#include <sched.h>
#include <net/if.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <cryptodev_pmd.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include <bus_vdev_driver.h>
#include <rte_malloc.h>
#include <rte_security_driver.h>
#include <rte_hexdump.h>
#include <caam_jr_capabilities.h>
#include <caam_jr_config.h>
#include <caam_jr_hw_specific.h>
#include <caam_jr_pvt.h>
#include <caam_jr_desc.h>
#include <caam_jr_log.h>
/* RTA header files */
#include <desc/common.h>
#include <desc/algo.h>
#include <dpaa_of.h>
#ifdef RTE_LIBRTE_PMD_CAAM_JR_DEBUG
#define CAAM_JR_DBG 1
#else
#define CAAM_JR_DBG 0
#endif
#define CRYPTODEV_NAME_CAAM_JR_PMD crypto_caam_jr
static uint8_t cryptodev_driver_id;
/* Lists the states possible for the SEC user space driver. */
enum sec_driver_state_e {
SEC_DRIVER_STATE_IDLE, /* Driver not initialized */
SEC_DRIVER_STATE_STARTED, /* Driver initialized and can be used*/
SEC_DRIVER_STATE_RELEASE, /* Driver release is in progress */
};
/* Job rings used for communication with SEC HW */
static struct sec_job_ring_t g_job_rings[MAX_SEC_JOB_RINGS];
/* The current state of SEC user space driver */
static enum sec_driver_state_e g_driver_state = SEC_DRIVER_STATE_IDLE;
/* The number of job rings used by SEC user space driver */
static int g_job_rings_no;
static int g_job_rings_max;
struct sec_outring_entry {
phys_addr_t desc; /* Pointer to completed descriptor */
uint32_t status; /* Status for completed descriptor */
} __rte_packed;
/* virtual address conversin when mempool support is available for ctx */
static inline phys_addr_t
caam_jr_vtop_ctx(struct caam_jr_op_ctx *ctx, void *vaddr)
{
return (size_t)vaddr - ctx->vtop_offset;
}
static inline void
caam_jr_op_ending(struct caam_jr_op_ctx *ctx)
{
/* report op status to sym->op and then free the ctx memory */
rte_mempool_put(ctx->ctx_pool, (void *)ctx);
}
static inline struct caam_jr_op_ctx *
caam_jr_alloc_ctx(struct caam_jr_session *ses)
{
struct caam_jr_op_ctx *ctx;
int ret;
ret = rte_mempool_get(ses->ctx_pool, (void **)(&ctx));
if (!ctx || ret) {
CAAM_JR_DP_WARN("Alloc sec descriptor failed!");
return NULL;
}
/*
* Clear SG memory. There are 16 SG entries of 16 Bytes each.
* one call to dcbz_64() clear 64 bytes, hence calling it 4 times
* to clear all the SG entries. caam_jr_alloc_ctx() is called for
* each packet, memset is costlier than dcbz_64().
*/
dcbz_64(&ctx->sg[SG_CACHELINE_0]);
dcbz_64(&ctx->sg[SG_CACHELINE_1]);
dcbz_64(&ctx->sg[SG_CACHELINE_2]);
dcbz_64(&ctx->sg[SG_CACHELINE_3]);
ctx->ctx_pool = ses->ctx_pool;
ctx->vtop_offset = (size_t) ctx - rte_mempool_virt2iova(ctx);
return ctx;
}
static
void caam_jr_stats_get(struct rte_cryptodev *dev,
struct rte_cryptodev_stats *stats)
{
struct caam_jr_qp **qp = (struct caam_jr_qp **)
dev->data->queue_pairs;
int i;
PMD_INIT_FUNC_TRACE();
if (stats == NULL) {
CAAM_JR_ERR("Invalid stats ptr NULL");
return;
}
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
if (qp[i] == NULL) {
CAAM_JR_WARN("Uninitialised queue pair");
continue;
}
stats->enqueued_count += qp[i]->tx_pkts;
stats->dequeued_count += qp[i]->rx_pkts;
stats->enqueue_err_count += qp[i]->tx_errs;
stats->dequeue_err_count += qp[i]->rx_errs;
CAAM_JR_INFO("extra stats:\n\tRX Poll ERR = %" PRIu64
"\n\tTX Ring Full = %" PRIu64,
qp[i]->rx_poll_err,
qp[i]->tx_ring_full);
}
}
static
void caam_jr_stats_reset(struct rte_cryptodev *dev)
{
int i;
struct caam_jr_qp **qp = (struct caam_jr_qp **)
(dev->data->queue_pairs);
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
if (qp[i] == NULL) {
CAAM_JR_WARN("Uninitialised queue pair");
continue;
}
qp[i]->rx_pkts = 0;
qp[i]->rx_errs = 0;
qp[i]->rx_poll_err = 0;
qp[i]->tx_pkts = 0;
qp[i]->tx_errs = 0;
qp[i]->tx_ring_full = 0;
}
}
static inline int
is_cipher_only(struct caam_jr_session *ses)
{
return ((ses->cipher_alg != RTE_CRYPTO_CIPHER_NULL) &&
(ses->auth_alg == RTE_CRYPTO_AUTH_NULL));
}
static inline int
is_auth_only(struct caam_jr_session *ses)
{
return ((ses->cipher_alg == RTE_CRYPTO_CIPHER_NULL) &&
(ses->auth_alg != RTE_CRYPTO_AUTH_NULL));
}
static inline int
is_aead(struct caam_jr_session *ses)
{
return ((ses->cipher_alg == 0) &&
(ses->auth_alg == 0) &&
(ses->aead_alg != 0));
}
static inline int
is_auth_cipher(struct caam_jr_session *ses)
{
return ((ses->cipher_alg != RTE_CRYPTO_CIPHER_NULL) &&
(ses->auth_alg != RTE_CRYPTO_AUTH_NULL) &&
(ses->proto_alg != RTE_SECURITY_PROTOCOL_IPSEC));
}
static inline int
is_proto_ipsec(struct caam_jr_session *ses)
{
return (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC);
}
static inline int
is_encode(struct caam_jr_session *ses)
{
return ses->dir == DIR_ENC;
}
static inline int
is_decode(struct caam_jr_session *ses)
{
return ses->dir == DIR_DEC;
}
static inline void
caam_auth_alg(struct caam_jr_session *ses, struct alginfo *alginfo_a)
{
switch (ses->auth_alg) {
case RTE_CRYPTO_AUTH_NULL:
ses->digest_length = 0;
break;
case RTE_CRYPTO_AUTH_MD5_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_MD5_96 : OP_ALG_ALGSEL_MD5;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA1_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA1_96 : OP_ALG_ALGSEL_SHA1;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA1_160 : OP_ALG_ALGSEL_SHA224;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA2_256_128 : OP_ALG_ALGSEL_SHA256;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA2_384_192 : OP_ALG_ALGSEL_SHA384;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA2_512_256 : OP_ALG_ALGSEL_SHA512;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
default:
CAAM_JR_DEBUG("unsupported auth alg %u", ses->auth_alg);
}
}
static inline void
caam_cipher_alg(struct caam_jr_session *ses, struct alginfo *alginfo_c)
{
switch (ses->cipher_alg) {
case RTE_CRYPTO_CIPHER_NULL:
break;
case RTE_CRYPTO_CIPHER_AES_CBC:
alginfo_c->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_AES_CBC : OP_ALG_ALGSEL_AES;
alginfo_c->algmode = OP_ALG_AAI_CBC;
break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
alginfo_c->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_3DES : OP_ALG_ALGSEL_3DES;
alginfo_c->algmode = OP_ALG_AAI_CBC;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
alginfo_c->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_AES_CTR : OP_ALG_ALGSEL_AES;
alginfo_c->algmode = OP_ALG_AAI_CTR;
break;
default:
CAAM_JR_DEBUG("unsupported cipher alg %d", ses->cipher_alg);
}
}
static inline void
caam_aead_alg(struct caam_jr_session *ses, struct alginfo *alginfo)
{
switch (ses->aead_alg) {
case RTE_CRYPTO_AEAD_AES_GCM:
alginfo->algtype = OP_ALG_ALGSEL_AES;
alginfo->algmode = OP_ALG_AAI_GCM;
break;
default:
CAAM_JR_DEBUG("unsupported AEAD alg %d", ses->aead_alg);
}
}
/* prepare command block of the session */
static int
caam_jr_prep_cdb(struct caam_jr_session *ses)
{
struct alginfo alginfo_c = {0}, alginfo_a = {0}, alginfo = {0};
int32_t shared_desc_len = 0;
struct sec_cdb *cdb;
int err;
#if CAAM_BYTE_ORDER == CORE_BYTE_ORDER
int swap = false;
#else
int swap = true;
#endif
if (ses->cdb)
caam_jr_dma_free(ses->cdb);
cdb = caam_jr_dma_mem_alloc(L1_CACHE_BYTES, sizeof(struct sec_cdb));
if (!cdb) {
CAAM_JR_ERR("failed to allocate memory for cdb\n");
return -1;
}
ses->cdb = cdb;
memset(cdb, 0, sizeof(struct sec_cdb));
if (is_cipher_only(ses)) {
caam_cipher_alg(ses, &alginfo_c);
if (alginfo_c.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) {
CAAM_JR_ERR("not supported cipher alg");
rte_free(cdb);
return -ENOTSUP;
}
alginfo_c.key = (size_t)ses->cipher_key.data;
alginfo_c.keylen = ses->cipher_key.length;
alginfo_c.key_enc_flags = 0;
alginfo_c.key_type = RTA_DATA_IMM;
shared_desc_len = cnstr_shdsc_blkcipher(
cdb->sh_desc, true,
swap, SHR_NEVER, &alginfo_c,
ses->iv.length,
ses->dir);
} else if (is_auth_only(ses)) {
caam_auth_alg(ses, &alginfo_a);
if (alginfo_a.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) {
CAAM_JR_ERR("not supported auth alg");
rte_free(cdb);
return -ENOTSUP;
}
alginfo_a.key = (size_t)ses->auth_key.data;
alginfo_a.keylen = ses->auth_key.length;
alginfo_a.key_enc_flags = 0;
alginfo_a.key_type = RTA_DATA_IMM;
shared_desc_len = cnstr_shdsc_hmac(cdb->sh_desc, true,
swap, SHR_NEVER, &alginfo_a,
!ses->dir,
ses->digest_length);
} else if (is_aead(ses)) {
caam_aead_alg(ses, &alginfo);
if (alginfo.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) {
CAAM_JR_ERR("not supported aead alg");
rte_free(cdb);
return -ENOTSUP;
}
alginfo.key = (size_t)ses->aead_key.data;
alginfo.keylen = ses->aead_key.length;
alginfo.key_enc_flags = 0;
alginfo.key_type = RTA_DATA_IMM;
if (ses->dir == DIR_ENC)
shared_desc_len = cnstr_shdsc_gcm_encap(
cdb->sh_desc, true, swap,
SHR_NEVER, &alginfo,
ses->iv.length,
ses->digest_length);
else
shared_desc_len = cnstr_shdsc_gcm_decap(
cdb->sh_desc, true, swap,
SHR_NEVER, &alginfo,
ses->iv.length,
ses->digest_length);
} else {
caam_cipher_alg(ses, &alginfo_c);
if (alginfo_c.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) {
CAAM_JR_ERR("not supported cipher alg");
rte_free(cdb);
return -ENOTSUP;
}
alginfo_c.key = (size_t)ses->cipher_key.data;
alginfo_c.keylen = ses->cipher_key.length;
alginfo_c.key_enc_flags = 0;
alginfo_c.key_type = RTA_DATA_IMM;
caam_auth_alg(ses, &alginfo_a);
if (alginfo_a.algtype == (unsigned int)CAAM_JR_ALG_UNSUPPORT) {
CAAM_JR_ERR("not supported auth alg");
rte_free(cdb);
return -ENOTSUP;
}
alginfo_a.key = (size_t)ses->auth_key.data;
alginfo_a.keylen = ses->auth_key.length;
alginfo_a.key_enc_flags = 0;
alginfo_a.key_type = RTA_DATA_IMM;
cdb->sh_desc[0] = alginfo_c.keylen;
cdb->sh_desc[1] = alginfo_a.keylen;
err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN,
MIN_JOB_DESC_SIZE,
(unsigned int *)cdb->sh_desc,
&cdb->sh_desc[2], 2);
if (err < 0) {
CAAM_JR_ERR("Crypto: Incorrect key lengths");
rte_free(cdb);
return err;
}
if (cdb->sh_desc[2] & 1)
alginfo_c.key_type = RTA_DATA_IMM;
else {
alginfo_c.key = (size_t)caam_jr_mem_vtop(
(void *)(size_t)alginfo_c.key);
alginfo_c.key_type = RTA_DATA_PTR;
}
if (cdb->sh_desc[2] & (1<<1))
alginfo_a.key_type = RTA_DATA_IMM;
else {
alginfo_a.key = (size_t)caam_jr_mem_vtop(
(void *)(size_t)alginfo_a.key);
alginfo_a.key_type = RTA_DATA_PTR;
}
cdb->sh_desc[0] = 0;
cdb->sh_desc[1] = 0;
cdb->sh_desc[2] = 0;
if (is_proto_ipsec(ses)) {
if (ses->dir == DIR_ENC) {
shared_desc_len = cnstr_shdsc_ipsec_new_encap(
cdb->sh_desc,
true, swap, SHR_SERIAL,
&ses->encap_pdb,
(uint8_t *)&ses->ip4_hdr,
&alginfo_c, &alginfo_a);
} else if (ses->dir == DIR_DEC) {
shared_desc_len = cnstr_shdsc_ipsec_new_decap(
cdb->sh_desc,
true, swap, SHR_SERIAL,
&ses->decap_pdb,
&alginfo_c, &alginfo_a);
}
} else {
/* Auth_only_len is overwritten in fd for each job */
shared_desc_len = cnstr_shdsc_authenc(cdb->sh_desc,
true, swap, SHR_SERIAL,
&alginfo_c, &alginfo_a,
ses->iv.length,
ses->digest_length, ses->dir);
}
}
if (shared_desc_len < 0) {
CAAM_JR_ERR("error in preparing command block");
return shared_desc_len;
}
#if CAAM_JR_DBG
SEC_DUMP_DESC(cdb->sh_desc);
#endif
cdb->sh_hdr.hi.field.idlen = shared_desc_len;
return 0;
}
/* @brief Poll the HW for already processed jobs in the JR
* and silently discard the available jobs or notify them to UA
* with indicated error code.
*
* @param [in,out] job_ring The job ring to poll.
* @param [in] do_notify Can be #TRUE or #FALSE. Indicates if
* descriptors are to be discarded
* or notified to UA with given error_code.
* @param [out] notified_descs Number of notified descriptors. Can be NULL
* if do_notify is #FALSE
*/
static void
hw_flush_job_ring(struct sec_job_ring_t *job_ring,
uint32_t do_notify,
uint32_t *notified_descs)
{
int32_t jobs_no_to_discard = 0;
int32_t discarded_descs_no = 0;
CAAM_JR_DEBUG("Jr[%p] pi[%d] ci[%d].Flushing jr notify desc=[%d]",
job_ring, job_ring->pidx, job_ring->cidx, do_notify);
jobs_no_to_discard = hw_get_no_finished_jobs(job_ring);
/* Discard all jobs */
CAAM_JR_DEBUG("Jr[%p] pi[%d] ci[%d].Discarding %d descs",
job_ring, job_ring->pidx, job_ring->cidx,
jobs_no_to_discard);
while (jobs_no_to_discard > discarded_descs_no) {
discarded_descs_no++;
/* Now increment the consumer index for the current job ring,
* AFTER saving job in temporary location!
* Increment the consumer index for the current job ring
*/
job_ring->cidx = SEC_CIRCULAR_COUNTER(job_ring->cidx,
SEC_JOB_RING_SIZE);
hw_remove_entries(job_ring, 1);
}
if (do_notify == true) {
ASSERT(notified_descs != NULL);
*notified_descs = discarded_descs_no;
}
}
/* @brief Poll the HW for already processed jobs in the JR
* and notify the available jobs to UA.
*
* @param [in] job_ring The job ring to poll.
* @param [in] limit The maximum number of jobs to notify.
* If set to negative value, all available jobs are
* notified.
*
* @retval >=0 for No of jobs notified to UA.
* @retval -1 for error
*/
static int
hw_poll_job_ring(struct sec_job_ring_t *job_ring,
struct rte_crypto_op **ops, int32_t limit,
struct caam_jr_qp *jr_qp)
{
int32_t jobs_no_to_notify = 0; /* the number of done jobs to notify*/
int32_t number_of_jobs_available = 0;
int32_t notified_descs_no = 0;
uint32_t sec_error_code = 0;
struct job_descriptor *current_desc;
phys_addr_t current_desc_addr;
phys_addr_t *temp_addr;
struct caam_jr_op_ctx *ctx;
/* TODO check for ops have memory*/
/* check here if any JR error that cannot be written
* in the output status word has occurred
*/
if (JR_REG_JRINT_JRE_EXTRACT(GET_JR_REG(JRINT, job_ring))) {
CAAM_JR_INFO("err received");
sec_error_code = JR_REG_JRINT_ERR_TYPE_EXTRACT(
GET_JR_REG(JRINT, job_ring));
if (unlikely(sec_error_code)) {
hw_job_ring_error_print(job_ring, sec_error_code);
return -1;
}
}
/* compute the number of jobs available in the job ring based on the
* producer and consumer index values.
*/
number_of_jobs_available = hw_get_no_finished_jobs(job_ring);
/* Compute the number of notifications that need to be raised to UA
* If limit > total number of done jobs -> notify all done jobs
* If limit = 0 -> error
* If limit < total number of done jobs -> notify a number
* of done jobs equal with limit
*/
jobs_no_to_notify = (limit > number_of_jobs_available) ?
number_of_jobs_available : limit;
CAAM_JR_DP_DEBUG(
"Jr[%p] pi[%d] ci[%d].limit =%d Available=%d.Jobs to notify=%d",
job_ring, job_ring->pidx, job_ring->cidx,
limit, number_of_jobs_available, jobs_no_to_notify);
rte_smp_rmb();
while (jobs_no_to_notify > notified_descs_no) {
static uint64_t false_alarm;
static uint64_t real_poll;
/* Get job status here */
sec_error_code = job_ring->output_ring[job_ring->cidx].status;
/* Get completed descriptor */
temp_addr = &(job_ring->output_ring[job_ring->cidx].desc);
current_desc_addr = (phys_addr_t)sec_read_addr(temp_addr);
real_poll++;
/* todo check if it is false alarm no desc present */
if (!current_desc_addr) {
false_alarm++;
printf("false alarm %" PRIu64 "real %" PRIu64
" sec_err =0x%x cidx Index =0%d\n",
false_alarm, real_poll,
sec_error_code, job_ring->cidx);
rte_panic("CAAM JR descriptor NULL");
return notified_descs_no;
}
current_desc = (struct job_descriptor *)
caam_jr_dma_ptov(current_desc_addr);
/* now increment the consumer index for the current job ring,
* AFTER saving job in temporary location!
*/
job_ring->cidx = SEC_CIRCULAR_COUNTER(job_ring->cidx,
SEC_JOB_RING_SIZE);
/* Signal that the job has been processed and the slot is free*/
hw_remove_entries(job_ring, 1);
/*TODO for multiple ops, packets*/
ctx = container_of(current_desc, struct caam_jr_op_ctx, jobdes);
if (unlikely(sec_error_code)) {
CAAM_JR_ERR("desc at cidx %d generated error 0x%x\n",
job_ring->cidx, sec_error_code);
hw_handle_job_ring_error(job_ring, sec_error_code);
//todo improve with exact errors
ctx->op->status = RTE_CRYPTO_OP_STATUS_ERROR;
jr_qp->rx_errs++;
} else {
ctx->op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
#if CAAM_JR_DBG
if (ctx->op->sym->m_dst) {
rte_hexdump(stdout, "PROCESSED",
rte_pktmbuf_mtod(ctx->op->sym->m_dst, void *),
rte_pktmbuf_data_len(ctx->op->sym->m_dst));
} else {
rte_hexdump(stdout, "PROCESSED",
rte_pktmbuf_mtod(ctx->op->sym->m_src, void *),
rte_pktmbuf_data_len(ctx->op->sym->m_src));
}
#endif
}
if (ctx->op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
struct ip *ip4_hdr;
if (ctx->op->sym->m_dst) {
/*TODO check for ip header or other*/
ip4_hdr = (struct ip *)
rte_pktmbuf_mtod(ctx->op->sym->m_dst, char*);
ctx->op->sym->m_dst->pkt_len =
rte_be_to_cpu_16(ip4_hdr->ip_len);
ctx->op->sym->m_dst->data_len =
rte_be_to_cpu_16(ip4_hdr->ip_len);
} else {
ip4_hdr = (struct ip *)
rte_pktmbuf_mtod(ctx->op->sym->m_src, char*);
ctx->op->sym->m_src->pkt_len =
rte_be_to_cpu_16(ip4_hdr->ip_len);
ctx->op->sym->m_src->data_len =
rte_be_to_cpu_16(ip4_hdr->ip_len);
}
}
*ops = ctx->op;
caam_jr_op_ending(ctx);
ops++;
notified_descs_no++;
}
return notified_descs_no;
}
static uint16_t
caam_jr_dequeue_burst(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct caam_jr_qp *jr_qp = (struct caam_jr_qp *)qp;
struct sec_job_ring_t *ring = jr_qp->ring;
int num_rx;
int ret;
CAAM_JR_DP_DEBUG("Jr[%p]Polling. limit[%d]", ring, nb_ops);
/* Poll job ring
* If nb_ops < 0 -> poll JR until no more notifications are available.
* If nb_ops > 0 -> poll JR until limit is reached.
*/
/* Run hw poll job ring */
num_rx = hw_poll_job_ring(ring, ops, nb_ops, jr_qp);
if (num_rx < 0) {
CAAM_JR_ERR("Error polling SEC engine (%d)", num_rx);
return 0;
}
CAAM_JR_DP_DEBUG("Jr[%p].Jobs notified[%d]. ", ring, num_rx);
if (ring->jr_mode == SEC_NOTIFICATION_TYPE_NAPI) {
if (num_rx < nb_ops) {
ret = caam_jr_enable_irqs(ring->irq_fd);
SEC_ASSERT(ret == 0, ret,
"Failed to enable irqs for job ring %p", ring);
}
} else if (ring->jr_mode == SEC_NOTIFICATION_TYPE_IRQ) {
/* Always enable IRQ generation when in pure IRQ mode */
ret = caam_jr_enable_irqs(ring->irq_fd);
SEC_ASSERT(ret == 0, ret,
"Failed to enable irqs for job ring %p", ring);
}
jr_qp->rx_pkts += num_rx;
return num_rx;
}
/**
* packet looks like:
* |<----data_len------->|
* |ip_header|ah_header|icv|payload|
* ^
* |
* mbuf->pkt.data
*/
static inline struct caam_jr_op_ctx *
build_auth_only_sg(struct rte_crypto_op *op, struct caam_jr_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct rte_mbuf *mbuf = sym->m_src;
struct caam_jr_op_ctx *ctx;
struct sec4_sg_entry *sg;
int length;
struct sec_cdb *cdb;
uint64_t sdesc_offset;
struct sec_job_descriptor_t *jobdescr;
uint8_t extra_segs;
if (is_decode(ses))
extra_segs = 2;
else
extra_segs = 1;
if ((mbuf->nb_segs + extra_segs) > MAX_SG_ENTRIES) {
CAAM_JR_DP_ERR("Auth: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = caam_jr_alloc_ctx(ses);
if (!ctx)
return NULL;
ctx->op = op;
cdb = ses->cdb;
sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb);
jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc;
SEC_JD_INIT(jobdescr);
SEC_JD_SET_SD(jobdescr,
(phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset,
cdb->sh_hdr.hi.field.idlen);
/* output */
SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)sym->auth.digest.phys_addr,
0, ses->digest_length);
/*input */
sg = &ctx->sg[0];
length = sym->auth.data.length;
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf) + sym->auth.data.offset);
sg->len = cpu_to_caam32(mbuf->data_len - sym->auth.data.offset);
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
sg++;
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf));
sg->len = cpu_to_caam32(mbuf->data_len);
mbuf = mbuf->next;
}
if (is_decode(ses)) {
/* digest verification case */
sg++;
/* hash result or digest, save digest first */
rte_memcpy(ctx->digest, sym->auth.digest.data,
ses->digest_length);
#if CAAM_JR_DBG
rte_hexdump(stdout, "ICV", ctx->digest, ses->digest_length);
#endif
sg->ptr = cpu_to_caam64(caam_jr_vtop_ctx(ctx, ctx->digest));
sg->len = cpu_to_caam32(ses->digest_length);
length += ses->digest_length;
} else {
sg->len -= ses->digest_length;
}
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
SEC_JD_SET_IN_PTR(jobdescr,
(uint64_t)caam_jr_vtop_ctx(ctx, &ctx->sg[0]), 0, length);
/* enabling sg list */
(jobdescr)->seq_in.command.word |= 0x01000000;
return ctx;
}
static inline struct caam_jr_op_ctx *
build_auth_only(struct rte_crypto_op *op, struct caam_jr_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct caam_jr_op_ctx *ctx;
struct sec4_sg_entry *sg;
rte_iova_t start_addr;
struct sec_cdb *cdb;
uint64_t sdesc_offset;
struct sec_job_descriptor_t *jobdescr;
ctx = caam_jr_alloc_ctx(ses);
if (!ctx)
return NULL;
ctx->op = op;
cdb = ses->cdb;
sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb);
start_addr = rte_pktmbuf_iova(sym->m_src);
jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc;
SEC_JD_INIT(jobdescr);
SEC_JD_SET_SD(jobdescr,
(phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset,
cdb->sh_hdr.hi.field.idlen);
/* output */
SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)sym->auth.digest.phys_addr,
0, ses->digest_length);
/*input */
if (is_decode(ses)) {
sg = &ctx->sg[0];
SEC_JD_SET_IN_PTR(jobdescr,
(uint64_t)caam_jr_vtop_ctx(ctx, sg), 0,
(sym->auth.data.length + ses->digest_length));
/* enabling sg list */
(jobdescr)->seq_in.command.word |= 0x01000000;
/* hash result or digest, save digest first */
rte_memcpy(ctx->digest, sym->auth.digest.data,
ses->digest_length);
sg->ptr = cpu_to_caam64(start_addr + sym->auth.data.offset);
sg->len = cpu_to_caam32(sym->auth.data.length);
#if CAAM_JR_DBG
rte_hexdump(stdout, "ICV", ctx->digest, ses->digest_length);
#endif
/* let's check digest by hw */
sg++;
sg->ptr = cpu_to_caam64(caam_jr_vtop_ctx(ctx, ctx->digest));
sg->len = cpu_to_caam32(ses->digest_length);
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
} else {
SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)start_addr,
sym->auth.data.offset, sym->auth.data.length);
}
return ctx;
}
static inline struct caam_jr_op_ctx *
build_cipher_only_sg(struct rte_crypto_op *op, struct caam_jr_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct rte_mbuf *mbuf = sym->m_src;
struct caam_jr_op_ctx *ctx;
struct sec4_sg_entry *sg, *in_sg;
int length;
struct sec_cdb *cdb;
uint64_t sdesc_offset;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
struct sec_job_descriptor_t *jobdescr;
uint8_t reg_segs;
if (sym->m_dst) {
mbuf = sym->m_dst;
reg_segs = mbuf->nb_segs + sym->m_src->nb_segs + 2;
} else {
mbuf = sym->m_src;
reg_segs = mbuf->nb_segs * 2 + 2;
}
if (reg_segs > MAX_SG_ENTRIES) {
CAAM_JR_DP_ERR("Cipher: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = caam_jr_alloc_ctx(ses);
if (!ctx)
return NULL;
ctx->op = op;
cdb = ses->cdb;
sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb);
jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc;
SEC_JD_INIT(jobdescr);
SEC_JD_SET_SD(jobdescr,
(phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset,
cdb->sh_hdr.hi.field.idlen);
#if CAAM_JR_DBG
CAAM_JR_INFO("mbuf offset =%d, cipher offset = %d, length =%d+%d",
sym->m_src->data_off, sym->cipher.data.offset,
sym->cipher.data.length, ses->iv.length);
#endif
/* output */
if (sym->m_dst)
mbuf = sym->m_dst;
else
mbuf = sym->m_src;
sg = &ctx->sg[0];
length = sym->cipher.data.length;
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf)
+ sym->cipher.data.offset);
sg->len = cpu_to_caam32(mbuf->data_len - sym->cipher.data.offset);
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
sg++;
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf));
sg->len = cpu_to_caam32(mbuf->data_len);
mbuf = mbuf->next;
}
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
SEC_JD_SET_OUT_PTR(jobdescr,
(uint64_t)caam_jr_vtop_ctx(ctx, &ctx->sg[0]), 0,
length);
/*enabling sg bit */
(jobdescr)->seq_out.command.word |= 0x01000000;
/*input */
sg++;
mbuf = sym->m_src;
in_sg = sg;
length = sym->cipher.data.length + ses->iv.length;
/* IV */
sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr));
sg->len = cpu_to_caam32(ses->iv.length);
/* 1st seg */
sg++;
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf)
+ sym->cipher.data.offset);
sg->len = cpu_to_caam32(mbuf->data_len - sym->cipher.data.offset);
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
sg++;
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf));
sg->len = cpu_to_caam32(mbuf->data_len);
mbuf = mbuf->next;
}
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_vtop_ctx(ctx, in_sg), 0,
length);
/*enabling sg bit */
(jobdescr)->seq_in.command.word |= 0x01000000;
return ctx;
}
static inline struct caam_jr_op_ctx *
build_cipher_only(struct rte_crypto_op *op, struct caam_jr_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct caam_jr_op_ctx *ctx;
struct sec4_sg_entry *sg;
rte_iova_t src_start_addr, dst_start_addr;
struct sec_cdb *cdb;
uint64_t sdesc_offset;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
struct sec_job_descriptor_t *jobdescr;
ctx = caam_jr_alloc_ctx(ses);
if (!ctx)
return NULL;
ctx->op = op;
cdb = ses->cdb;
sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb);
src_start_addr = rte_pktmbuf_iova(sym->m_src);
if (sym->m_dst)
dst_start_addr = rte_pktmbuf_iova(sym->m_dst);
else
dst_start_addr = src_start_addr;
jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc;
SEC_JD_INIT(jobdescr);
SEC_JD_SET_SD(jobdescr,
(phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset,
cdb->sh_hdr.hi.field.idlen);
#if CAAM_JR_DBG
CAAM_JR_INFO("mbuf offset =%d, cipher offset = %d, length =%d+%d",
sym->m_src->data_off, sym->cipher.data.offset,
sym->cipher.data.length, ses->iv.length);
#endif
/* output */
SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)dst_start_addr,
sym->cipher.data.offset,
sym->cipher.data.length + ses->iv.length);
/*input */
sg = &ctx->sg[0];
SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_vtop_ctx(ctx, sg), 0,
sym->cipher.data.length + ses->iv.length);
/*enabling sg bit */
(jobdescr)->seq_in.command.word |= 0x01000000;
sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr));
sg->len = cpu_to_caam32(ses->iv.length);
sg = &ctx->sg[1];
sg->ptr = cpu_to_caam64(src_start_addr + sym->cipher.data.offset);
sg->len = cpu_to_caam32(sym->cipher.data.length);
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
return ctx;
}
/* For decapsulation:
* Input:
* +----+----------------+--------------------------------+-----+
* | IV | Auth-only data | Authenticated & Encrypted data | ICV |
* +----+----------------+--------------------------------+-----+
* Output:
* +----+--------------------------+
* | Decrypted & authenticated data |
* +----+--------------------------+
*/
static inline struct caam_jr_op_ctx *
build_cipher_auth_sg(struct rte_crypto_op *op, struct caam_jr_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct caam_jr_op_ctx *ctx;
struct sec4_sg_entry *sg, *out_sg, *in_sg;
struct rte_mbuf *mbuf;
uint32_t length = 0;
struct sec_cdb *cdb;
uint64_t sdesc_offset;
uint8_t req_segs;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
struct sec_job_descriptor_t *jobdescr;
uint16_t auth_hdr_len = sym->cipher.data.offset -
sym->auth.data.offset;
uint16_t auth_tail_len = sym->auth.data.length -
sym->cipher.data.length - auth_hdr_len;
uint32_t auth_only_len = (auth_tail_len << 16) | auth_hdr_len;
if (sym->m_dst) {
mbuf = sym->m_dst;
req_segs = mbuf->nb_segs + sym->m_src->nb_segs + 3;
} else {
mbuf = sym->m_src;
req_segs = mbuf->nb_segs * 2 + 3;
}
if (req_segs > MAX_SG_ENTRIES) {
CAAM_JR_DP_ERR("Cipher-Auth: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = caam_jr_alloc_ctx(ses);
if (!ctx)
return NULL;
ctx->op = op;
cdb = ses->cdb;
sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb);
jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc;
SEC_JD_INIT(jobdescr);
SEC_JD_SET_SD(jobdescr,
(phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset,
cdb->sh_hdr.hi.field.idlen);
/* output */
if (sym->m_dst)
mbuf = sym->m_dst;
else
mbuf = sym->m_src;
out_sg = &ctx->sg[0];
if (is_encode(ses))
length = sym->auth.data.length + ses->digest_length;
else
length = sym->auth.data.length;
sg = &ctx->sg[0];
/* 1st seg */
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf)
+ sym->auth.data.offset);
sg->len = cpu_to_caam32(mbuf->data_len - sym->auth.data.offset);
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
sg++;
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf));
sg->len = cpu_to_caam32(mbuf->data_len);
mbuf = mbuf->next;
}
if (is_encode(ses)) {
/* set auth output */
sg++;
sg->ptr = cpu_to_caam64(sym->auth.digest.phys_addr);
sg->len = cpu_to_caam32(ses->digest_length);
}
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
SEC_JD_SET_OUT_PTR(jobdescr,
(uint64_t)caam_jr_dma_vtop(out_sg), 0, length);
/* set sg bit */
(jobdescr)->seq_out.command.word |= 0x01000000;
/* input */
sg++;
mbuf = sym->m_src;
in_sg = sg;
if (is_encode(ses))
length = ses->iv.length + sym->auth.data.length;
else
length = ses->iv.length + sym->auth.data.length
+ ses->digest_length;
sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr));
sg->len = cpu_to_caam32(ses->iv.length);
sg++;
/* 1st seg */
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf)
+ sym->auth.data.offset);
sg->len = cpu_to_caam32(mbuf->data_len - sym->auth.data.offset);
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
sg++;
sg->ptr = cpu_to_caam64(rte_pktmbuf_iova(mbuf));
sg->len = cpu_to_caam32(mbuf->data_len);
mbuf = mbuf->next;
}
if (is_decode(ses)) {
sg++;
rte_memcpy(ctx->digest, sym->auth.digest.data,
ses->digest_length);
sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(ctx->digest));
sg->len = cpu_to_caam32(ses->digest_length);
}
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_dma_vtop(in_sg), 0,
length);
/* set sg bit */
(jobdescr)->seq_in.command.word |= 0x01000000;
/* Auth_only_len is set as 0 in descriptor and it is
* overwritten here in the jd which will update
* the DPOVRD reg.
*/
if (auth_only_len)
/* set sg bit */
(jobdescr)->dpovrd = 0x80000000 | auth_only_len;
return ctx;
}
static inline struct caam_jr_op_ctx *
build_cipher_auth(struct rte_crypto_op *op, struct caam_jr_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct caam_jr_op_ctx *ctx;
struct sec4_sg_entry *sg;
rte_iova_t src_start_addr, dst_start_addr;
uint32_t length = 0;
struct sec_cdb *cdb;
uint64_t sdesc_offset;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
struct sec_job_descriptor_t *jobdescr;
uint16_t auth_hdr_len = sym->cipher.data.offset -
sym->auth.data.offset;
uint16_t auth_tail_len = sym->auth.data.length -
sym->cipher.data.length - auth_hdr_len;
uint32_t auth_only_len = (auth_tail_len << 16) | auth_hdr_len;
src_start_addr = rte_pktmbuf_iova(sym->m_src);
if (sym->m_dst)
dst_start_addr = rte_pktmbuf_iova(sym->m_dst);
else
dst_start_addr = src_start_addr;
ctx = caam_jr_alloc_ctx(ses);
if (!ctx)
return NULL;
ctx->op = op;
cdb = ses->cdb;
sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb);
jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc;
SEC_JD_INIT(jobdescr);
SEC_JD_SET_SD(jobdescr,
(phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset,
cdb->sh_hdr.hi.field.idlen);
/* input */
sg = &ctx->sg[0];
if (is_encode(ses)) {
sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr));
sg->len = cpu_to_caam32(ses->iv.length);
length += ses->iv.length;
sg++;
sg->ptr = cpu_to_caam64(src_start_addr + sym->auth.data.offset);
sg->len = cpu_to_caam32(sym->auth.data.length);
length += sym->auth.data.length;
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
} else {
sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(IV_ptr));
sg->len = cpu_to_caam32(ses->iv.length);
length += ses->iv.length;
sg++;
sg->ptr = cpu_to_caam64(src_start_addr + sym->auth.data.offset);
sg->len = cpu_to_caam32(sym->auth.data.length);
length += sym->auth.data.length;
rte_memcpy(ctx->digest, sym->auth.digest.data,
ses->digest_length);
sg++;
sg->ptr = cpu_to_caam64(caam_jr_dma_vtop(ctx->digest));
sg->len = cpu_to_caam32(ses->digest_length);
length += ses->digest_length;
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
}
SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)caam_jr_dma_vtop(&ctx->sg[0]), 0,
length);
/* set sg bit */
(jobdescr)->seq_in.command.word |= 0x01000000;
/* output */
sg = &ctx->sg[6];
sg->ptr = cpu_to_caam64(dst_start_addr + sym->cipher.data.offset);
sg->len = cpu_to_caam32(sym->cipher.data.length);
length = sym->cipher.data.length;
if (is_encode(ses)) {
/* set auth output */
sg++;
sg->ptr = cpu_to_caam64(sym->auth.digest.phys_addr);
sg->len = cpu_to_caam32(ses->digest_length);
length += ses->digest_length;
}
/* last element*/
sg->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
SEC_JD_SET_OUT_PTR(jobdescr,
(uint64_t)caam_jr_dma_vtop(&ctx->sg[6]), 0, length);
/* set sg bit */
(jobdescr)->seq_out.command.word |= 0x01000000;
/* Auth_only_len is set as 0 in descriptor and it is
* overwritten here in the jd which will update
* the DPOVRD reg.
*/
if (auth_only_len)
/* set sg bit */
(jobdescr)->dpovrd = 0x80000000 | auth_only_len;
return ctx;
}
static inline struct caam_jr_op_ctx *
build_proto(struct rte_crypto_op *op, struct caam_jr_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct caam_jr_op_ctx *ctx = NULL;
phys_addr_t src_start_addr, dst_start_addr;
struct sec_cdb *cdb;
uint64_t sdesc_offset;
struct sec_job_descriptor_t *jobdescr;
ctx = caam_jr_alloc_ctx(ses);
if (!ctx)
return NULL;
ctx->op = op;
src_start_addr = rte_pktmbuf_iova(sym->m_src);
if (sym->m_dst)
dst_start_addr = rte_pktmbuf_iova(sym->m_dst);
else
dst_start_addr = src_start_addr;
cdb = ses->cdb;
sdesc_offset = (size_t) ((char *)&cdb->sh_desc - (char *)cdb);
jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc;
SEC_JD_INIT(jobdescr);
SEC_JD_SET_SD(jobdescr,
(phys_addr_t)(caam_jr_dma_vtop(cdb)) + sdesc_offset,
cdb->sh_hdr.hi.field.idlen);
/* output */
SEC_JD_SET_OUT_PTR(jobdescr, (uint64_t)dst_start_addr, 0,
sym->m_src->buf_len - sym->m_src->data_off);
/* input */
SEC_JD_SET_IN_PTR(jobdescr, (uint64_t)src_start_addr, 0,
sym->m_src->pkt_len);
sym->m_src->packet_type &= ~RTE_PTYPE_L4_MASK;
return ctx;
}
static int
caam_jr_enqueue_op(struct rte_crypto_op *op, struct caam_jr_qp *qp)
{
struct sec_job_ring_t *ring = qp->ring;
struct caam_jr_session *ses;
struct caam_jr_op_ctx *ctx = NULL;
struct sec_job_descriptor_t *jobdescr __rte_unused;
#if CAAM_JR_DBG
int i;
#endif
switch (op->sess_type) {
case RTE_CRYPTO_OP_WITH_SESSION:
ses = CRYPTODEV_GET_SYM_SESS_PRIV(op->sym->session);
break;
case RTE_CRYPTO_OP_SECURITY_SESSION:
ses = SECURITY_GET_SESS_PRIV(op->sym->session);
break;
default:
CAAM_JR_DP_ERR("sessionless crypto op not supported");
qp->tx_errs++;
return -1;
}
if (unlikely(!ses->qp || ses->qp != qp)) {
CAAM_JR_DP_DEBUG("Old:sess->qp=%p New qp = %p\n", ses->qp, qp);
ses->qp = qp;
caam_jr_prep_cdb(ses);
}
if (rte_pktmbuf_is_contiguous(op->sym->m_src)) {
if (is_auth_cipher(ses))
ctx = build_cipher_auth(op, ses);
else if (is_aead(ses))
goto err1;
else if (is_auth_only(ses))
ctx = build_auth_only(op, ses);
else if (is_cipher_only(ses))
ctx = build_cipher_only(op, ses);
else if (is_proto_ipsec(ses))
ctx = build_proto(op, ses);
} else {
if (is_auth_cipher(ses))
ctx = build_cipher_auth_sg(op, ses);
else if (is_aead(ses))
goto err1;
else if (is_auth_only(ses))
ctx = build_auth_only_sg(op, ses);
else if (is_cipher_only(ses))
ctx = build_cipher_only_sg(op, ses);
}
err1:
if (unlikely(!ctx)) {
qp->tx_errs++;
CAAM_JR_ERR("not supported sec op");
return -1;
}
#if CAAM_JR_DBG
if (is_decode(ses))
rte_hexdump(stdout, "DECODE",
rte_pktmbuf_mtod(op->sym->m_src, void *),
rte_pktmbuf_data_len(op->sym->m_src));
else
rte_hexdump(stdout, "ENCODE",
rte_pktmbuf_mtod(op->sym->m_src, void *),
rte_pktmbuf_data_len(op->sym->m_src));
printf("\n JD before conversion\n");
for (i = 0; i < 12; i++)
printf("\n 0x%08x", ctx->jobdes.desc[i]);
#endif
CAAM_JR_DP_DEBUG("Jr[%p] pi[%d] ci[%d].Before sending desc",
ring, ring->pidx, ring->cidx);
/* todo - do we want to retry */
if (SEC_JOB_RING_IS_FULL(ring->pidx, ring->cidx,
SEC_JOB_RING_SIZE, SEC_JOB_RING_SIZE)) {
CAAM_JR_DP_DEBUG("Ring FULL Jr[%p] pi[%d] ci[%d].Size = %d",
ring, ring->pidx, ring->cidx, SEC_JOB_RING_SIZE);
caam_jr_op_ending(ctx);
qp->tx_ring_full++;
return -EBUSY;
}
#if CORE_BYTE_ORDER != CAAM_BYTE_ORDER
jobdescr = (struct sec_job_descriptor_t *) ctx->jobdes.desc;
jobdescr->deschdr.command.word =
cpu_to_caam32(jobdescr->deschdr.command.word);
jobdescr->sd_ptr = cpu_to_caam64(jobdescr->sd_ptr);
jobdescr->seq_out.command.word =
cpu_to_caam32(jobdescr->seq_out.command.word);
jobdescr->seq_out_ptr = cpu_to_caam64(jobdescr->seq_out_ptr);
jobdescr->out_ext_length = cpu_to_caam32(jobdescr->out_ext_length);
jobdescr->seq_in.command.word =
cpu_to_caam32(jobdescr->seq_in.command.word);
jobdescr->seq_in_ptr = cpu_to_caam64(jobdescr->seq_in_ptr);
jobdescr->in_ext_length = cpu_to_caam32(jobdescr->in_ext_length);
jobdescr->load_dpovrd.command.word =
cpu_to_caam32(jobdescr->load_dpovrd.command.word);
jobdescr->dpovrd = cpu_to_caam32(jobdescr->dpovrd);
#endif
/* Set ptr in input ring to current descriptor */
sec_write_addr(&ring->input_ring[ring->pidx],
(phys_addr_t)caam_jr_vtop_ctx(ctx, ctx->jobdes.desc));
rte_smp_wmb();
/* Notify HW that a new job is enqueued */
hw_enqueue_desc_on_job_ring(ring);
/* increment the producer index for the current job ring */
ring->pidx = SEC_CIRCULAR_COUNTER(ring->pidx, SEC_JOB_RING_SIZE);
return 0;
}
static uint16_t
caam_jr_enqueue_burst(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
/* Function to transmit the frames to given device and queuepair */
uint32_t loop;
int32_t ret;
struct caam_jr_qp *jr_qp = (struct caam_jr_qp *)qp;
uint16_t num_tx = 0;
/*Prepare each packet which is to be sent*/
for (loop = 0; loop < nb_ops; loop++) {
ret = caam_jr_enqueue_op(ops[loop], jr_qp);
if (!ret)
num_tx++;
}
jr_qp->tx_pkts += num_tx;
return num_tx;
}
/* Release queue pair */
static int
caam_jr_queue_pair_release(struct rte_cryptodev *dev,
uint16_t qp_id)
{
struct sec_job_ring_t *internals;
struct caam_jr_qp *qp = NULL;
PMD_INIT_FUNC_TRACE();
CAAM_JR_DEBUG("dev =%p, queue =%d", dev, qp_id);
internals = dev->data->dev_private;
if (qp_id >= internals->max_nb_queue_pairs) {
CAAM_JR_ERR("Max supported qpid %d",
internals->max_nb_queue_pairs);
return -EINVAL;
}
qp = &internals->qps[qp_id];
qp->ring = NULL;
dev->data->queue_pairs[qp_id] = NULL;
return 0;
}
/* Setup a queue pair */
static int
caam_jr_queue_pair_setup(
struct rte_cryptodev *dev, uint16_t qp_id,
__rte_unused const struct rte_cryptodev_qp_conf *qp_conf,
__rte_unused int socket_id)
{
struct sec_job_ring_t *internals;
struct caam_jr_qp *qp = NULL;
PMD_INIT_FUNC_TRACE();
CAAM_JR_DEBUG("dev =%p, queue =%d, conf =%p", dev, qp_id, qp_conf);
internals = dev->data->dev_private;
if (qp_id >= internals->max_nb_queue_pairs) {
CAAM_JR_ERR("Max supported qpid %d",
internals->max_nb_queue_pairs);
return -EINVAL;
}
qp = &internals->qps[qp_id];
qp->ring = internals;
dev->data->queue_pairs[qp_id] = qp;
return 0;
}
/* Returns the size of the aesni gcm session structure */
static unsigned int
caam_jr_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
{
PMD_INIT_FUNC_TRACE();
return sizeof(struct caam_jr_session);
}
static int
caam_jr_cipher_init(struct rte_cryptodev *dev __rte_unused,
struct rte_crypto_sym_xform *xform,
struct caam_jr_session *session)
{
session->cipher_alg = xform->cipher.algo;
session->iv.length = xform->cipher.iv.length;
session->iv.offset = xform->cipher.iv.offset;
session->cipher_key.data = rte_zmalloc(NULL, xform->cipher.key.length,
RTE_CACHE_LINE_SIZE);
if (session->cipher_key.data == NULL && xform->cipher.key.length > 0) {
CAAM_JR_ERR("No Memory for cipher key\n");
return -ENOMEM;
}
session->cipher_key.length = xform->cipher.key.length;
memcpy(session->cipher_key.data, xform->cipher.key.data,
xform->cipher.key.length);
session->dir = (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
return 0;
}
static int
caam_jr_auth_init(struct rte_cryptodev *dev __rte_unused,
struct rte_crypto_sym_xform *xform,
struct caam_jr_session *session)
{
session->auth_alg = xform->auth.algo;
session->auth_key.data = rte_zmalloc(NULL, xform->auth.key.length,
RTE_CACHE_LINE_SIZE);
if (session->auth_key.data == NULL && xform->auth.key.length > 0) {
CAAM_JR_ERR("No Memory for auth key\n");
return -ENOMEM;
}
session->auth_key.length = xform->auth.key.length;
session->digest_length = xform->auth.digest_length;
memcpy(session->auth_key.data, xform->auth.key.data,
xform->auth.key.length);
session->dir = (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) ?
DIR_ENC : DIR_DEC;
return 0;
}
static int
caam_jr_aead_init(struct rte_cryptodev *dev __rte_unused,
struct rte_crypto_sym_xform *xform,
struct caam_jr_session *session)
{
session->aead_alg = xform->aead.algo;
session->iv.length = xform->aead.iv.length;
session->iv.offset = xform->aead.iv.offset;
session->auth_only_len = xform->aead.aad_length;
session->aead_key.data = rte_zmalloc(NULL, xform->aead.key.length,
RTE_CACHE_LINE_SIZE);
if (session->aead_key.data == NULL && xform->aead.key.length > 0) {
CAAM_JR_ERR("No Memory for aead key\n");
return -ENOMEM;
}
session->aead_key.length = xform->aead.key.length;
session->digest_length = xform->aead.digest_length;
memcpy(session->aead_key.data, xform->aead.key.data,
xform->aead.key.length);
session->dir = (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
return 0;
}
static int
caam_jr_set_session_parameters(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform, void *sess)
{
struct sec_job_ring_t *internals = dev->data->dev_private;
struct caam_jr_session *session = sess;
PMD_INIT_FUNC_TRACE();
if (unlikely(sess == NULL)) {
CAAM_JR_ERR("invalid session struct");
return -EINVAL;
}
/* Default IV length = 0 */
session->iv.length = 0;
/* Cipher Only */
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next == NULL) {
session->auth_alg = RTE_CRYPTO_AUTH_NULL;
caam_jr_cipher_init(dev, xform, session);
/* Authentication Only */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
xform->next == NULL) {
session->cipher_alg = RTE_CRYPTO_CIPHER_NULL;
caam_jr_auth_init(dev, xform, session);
/* Cipher then Authenticate */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
caam_jr_cipher_init(dev, xform, session);
caam_jr_auth_init(dev, xform->next, session);
} else {
CAAM_JR_ERR("Not supported: Auth then Cipher");
goto err1;
}
/* Authenticate then Cipher */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT) {
caam_jr_auth_init(dev, xform, session);
caam_jr_cipher_init(dev, xform->next, session);
} else {
CAAM_JR_ERR("Not supported: Auth then Cipher");
goto err1;
}
/* AEAD operation for AES-GCM kind of Algorithms */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD &&
xform->next == NULL) {
caam_jr_aead_init(dev, xform, session);
} else {
CAAM_JR_ERR("Invalid crypto type");
return -EINVAL;
}
session->ctx_pool = internals->ctx_pool;
return 0;
err1:
rte_free(session->cipher_key.data);
rte_free(session->auth_key.data);
memset(session, 0, sizeof(struct caam_jr_session));
return -EINVAL;
}
static int
caam_jr_sym_session_configure(struct rte_cryptodev *dev __rte_unused,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *sess)
{
void *sess_private_data;
int ret;
PMD_INIT_FUNC_TRACE();
sess_private_data = CRYPTODEV_GET_SYM_SESS_PRIV(sess);
memset(sess_private_data, 0, sizeof(struct caam_jr_session));
ret = caam_jr_set_session_parameters(dev, xform, sess_private_data);
if (ret != 0) {
CAAM_JR_ERR("failed to configure session parameters");
/* Return session to mempool */
return ret;
}
return 0;
}
/* Clear the memory of session so it doesn't leave key material behind */
static void
caam_jr_sym_session_clear(struct rte_cryptodev *dev __rte_unused,
struct rte_cryptodev_sym_session *sess)
{
struct caam_jr_session *s = CRYPTODEV_GET_SYM_SESS_PRIV(sess);
PMD_INIT_FUNC_TRACE();
if (s) {
rte_free(s->cipher_key.data);
rte_free(s->auth_key.data);
}
}
static int
caam_jr_set_ipsec_session(__rte_unused struct rte_cryptodev *dev,
struct rte_security_session_conf *conf,
void *sess)
{
struct sec_job_ring_t *internals = dev->data->dev_private;
struct rte_security_ipsec_xform *ipsec_xform = &conf->ipsec;
struct rte_crypto_auth_xform *auth_xform;
struct rte_crypto_cipher_xform *cipher_xform;
struct caam_jr_session *session = (struct caam_jr_session *)sess;
PMD_INIT_FUNC_TRACE();
if (ipsec_xform->life.bytes_hard_limit != 0 ||
ipsec_xform->life.bytes_soft_limit != 0 ||
ipsec_xform->life.packets_hard_limit != 0 ||
ipsec_xform->life.packets_soft_limit != 0)
return -ENOTSUP;
if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
cipher_xform = &conf->crypto_xform->cipher;
auth_xform = &conf->crypto_xform->next->auth;
} else {
auth_xform = &conf->crypto_xform->auth;
cipher_xform = &conf->crypto_xform->next->cipher;
}
session->proto_alg = conf->protocol;
session->cipher_key.data = rte_zmalloc(NULL,
cipher_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->cipher_key.data == NULL &&
cipher_xform->key.length > 0) {
CAAM_JR_ERR("No Memory for cipher key\n");
return -ENOMEM;
}
session->cipher_key.length = cipher_xform->key.length;
session->auth_key.data = rte_zmalloc(NULL,
auth_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->auth_key.data == NULL &&
auth_xform->key.length > 0) {
CAAM_JR_ERR("No Memory for auth key\n");
rte_free(session->cipher_key.data);
return -ENOMEM;
}
session->auth_key.length = auth_xform->key.length;
memcpy(session->cipher_key.data, cipher_xform->key.data,
cipher_xform->key.length);
memcpy(session->auth_key.data, auth_xform->key.data,
auth_xform->key.length);
switch (auth_xform->algo) {
case RTE_CRYPTO_AUTH_SHA1_HMAC:
session->auth_alg = RTE_CRYPTO_AUTH_SHA1_HMAC;
break;
case RTE_CRYPTO_AUTH_MD5_HMAC:
session->auth_alg = RTE_CRYPTO_AUTH_MD5_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
session->auth_alg = RTE_CRYPTO_AUTH_SHA256_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
session->auth_alg = RTE_CRYPTO_AUTH_SHA384_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
session->auth_alg = RTE_CRYPTO_AUTH_SHA512_HMAC;
break;
case RTE_CRYPTO_AUTH_AES_CMAC:
session->auth_alg = RTE_CRYPTO_AUTH_AES_CMAC;
break;
case RTE_CRYPTO_AUTH_NULL:
session->auth_alg = RTE_CRYPTO_AUTH_NULL;
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
case RTE_CRYPTO_AUTH_SHA1:
case RTE_CRYPTO_AUTH_SHA256:
case RTE_CRYPTO_AUTH_SHA512:
case RTE_CRYPTO_AUTH_SHA224:
case RTE_CRYPTO_AUTH_SHA384:
case RTE_CRYPTO_AUTH_MD5:
case RTE_CRYPTO_AUTH_AES_GMAC:
case RTE_CRYPTO_AUTH_KASUMI_F9:
case RTE_CRYPTO_AUTH_AES_CBC_MAC:
case RTE_CRYPTO_AUTH_ZUC_EIA3:
CAAM_JR_ERR("Crypto: Unsupported auth alg %u\n",
auth_xform->algo);
goto out;
default:
CAAM_JR_ERR("Crypto: Undefined Auth specified %u\n",
auth_xform->algo);
goto out;
}
switch (cipher_xform->algo) {
case RTE_CRYPTO_CIPHER_AES_CBC:
session->cipher_alg = RTE_CRYPTO_CIPHER_AES_CBC;
break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
session->cipher_alg = RTE_CRYPTO_CIPHER_3DES_CBC;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
session->cipher_alg = RTE_CRYPTO_CIPHER_AES_CTR;
break;
case RTE_CRYPTO_CIPHER_NULL:
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
case RTE_CRYPTO_CIPHER_3DES_ECB:
case RTE_CRYPTO_CIPHER_AES_ECB:
case RTE_CRYPTO_CIPHER_KASUMI_F8:
CAAM_JR_ERR("Crypto: Unsupported Cipher alg %u\n",
cipher_xform->algo);
goto out;
default:
CAAM_JR_ERR("Crypto: Undefined Cipher specified %u\n",
cipher_xform->algo);
goto out;
}
if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
memset(&session->encap_pdb, 0, sizeof(struct ipsec_encap_pdb) +
sizeof(session->ip4_hdr));
session->ip4_hdr.ip_v = IPVERSION;
session->ip4_hdr.ip_hl = 5;
session->ip4_hdr.ip_len = rte_cpu_to_be_16(
sizeof(session->ip4_hdr));
session->ip4_hdr.ip_tos = ipsec_xform->tunnel.ipv4.dscp;
session->ip4_hdr.ip_id = 0;
session->ip4_hdr.ip_off = 0;
session->ip4_hdr.ip_ttl = ipsec_xform->tunnel.ipv4.ttl;
session->ip4_hdr.ip_p = (ipsec_xform->proto ==
RTE_SECURITY_IPSEC_SA_PROTO_ESP) ? IPPROTO_ESP
: IPPROTO_AH;
session->ip4_hdr.ip_sum = 0;
session->ip4_hdr.ip_src = ipsec_xform->tunnel.ipv4.src_ip;
session->ip4_hdr.ip_dst = ipsec_xform->tunnel.ipv4.dst_ip;
session->ip4_hdr.ip_sum = calc_chksum((uint16_t *)
(void *)&session->ip4_hdr,
sizeof(struct ip));
session->encap_pdb.options =
(IPVERSION << PDBNH_ESP_ENCAP_SHIFT) |
PDBOPTS_ESP_OIHI_PDB_INL |
PDBOPTS_ESP_IVSRC;
if (ipsec_xform->options.dec_ttl)
session->encap_pdb.options |= PDBHMO_ESP_ENCAP_DTTL;
if (ipsec_xform->options.esn)
session->encap_pdb.options |= PDBOPTS_ESP_ESN;
session->encap_pdb.spi = ipsec_xform->spi;
session->encap_pdb.ip_hdr_len = sizeof(struct ip);
session->dir = DIR_ENC;
} else if (ipsec_xform->direction ==
RTE_SECURITY_IPSEC_SA_DIR_INGRESS) {
memset(&session->decap_pdb, 0, sizeof(struct ipsec_decap_pdb));
session->decap_pdb.options = sizeof(struct ip) << 16;
if (ipsec_xform->options.esn)
session->decap_pdb.options |= PDBOPTS_ESP_ESN;
session->dir = DIR_DEC;
} else
goto out;
session->ctx_pool = internals->ctx_pool;
return 0;
out:
rte_free(session->auth_key.data);
rte_free(session->cipher_key.data);
memset(session, 0, sizeof(struct caam_jr_session));
return -1;
}
static int
caam_jr_security_session_create(void *dev,
struct rte_security_session_conf *conf,
struct rte_security_session *sess)
{
void *sess_private_data = SECURITY_GET_SESS_PRIV(sess);
struct rte_cryptodev *cdev = (struct rte_cryptodev *)dev;
int ret;
switch (conf->protocol) {
case RTE_SECURITY_PROTOCOL_IPSEC:
ret = caam_jr_set_ipsec_session(cdev, conf,
sess_private_data);
break;
case RTE_SECURITY_PROTOCOL_MACSEC:
return -ENOTSUP;
default:
return -EINVAL;
}
if (ret != 0) {
CAAM_JR_ERR("failed to configure session parameters");
}
return ret;
}
/* Clear the memory of session so it doesn't leave key material behind */
static int
caam_jr_security_session_destroy(void *dev __rte_unused,
struct rte_security_session *sess)
{
PMD_INIT_FUNC_TRACE();
struct caam_jr_session *s = SECURITY_GET_SESS_PRIV(sess);
if (s) {
rte_free(s->cipher_key.data);
rte_free(s->auth_key.data);
memset(s, 0, sizeof(struct caam_jr_session));
}
return 0;
}
static unsigned int
caam_jr_security_session_get_size(void *device __rte_unused)
{
return sizeof(struct caam_jr_session);
}
static int
caam_jr_dev_configure(struct rte_cryptodev *dev,
struct rte_cryptodev_config *config __rte_unused)
{
char str[20];
struct sec_job_ring_t *internals;
PMD_INIT_FUNC_TRACE();
internals = dev->data->dev_private;
snprintf(str, sizeof(str), "ctx_pool_%d", dev->data->dev_id);
if (!internals->ctx_pool) {
internals->ctx_pool = rte_mempool_create((const char *)str,
CTX_POOL_NUM_BUFS,
sizeof(struct caam_jr_op_ctx),
CTX_POOL_CACHE_SIZE, 0,
NULL, NULL, NULL, NULL,
SOCKET_ID_ANY, 0);
if (!internals->ctx_pool) {
CAAM_JR_ERR("%s create failed\n", str);
return -ENOMEM;
}
} else
CAAM_JR_INFO("mempool already created for dev_id : %d",
dev->data->dev_id);
return 0;
}
static int
caam_jr_dev_start(struct rte_cryptodev *dev __rte_unused)
{
PMD_INIT_FUNC_TRACE();
return 0;
}
static void
caam_jr_dev_stop(struct rte_cryptodev *dev __rte_unused)
{
PMD_INIT_FUNC_TRACE();
}
static int
caam_jr_dev_close(struct rte_cryptodev *dev)
{
struct sec_job_ring_t *internals;
PMD_INIT_FUNC_TRACE();
if (dev == NULL)
return -ENOMEM;
internals = dev->data->dev_private;
rte_mempool_free(internals->ctx_pool);
internals->ctx_pool = NULL;
return 0;
}
static void
caam_jr_dev_infos_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *info)
{
struct sec_job_ring_t *internals = dev->data->dev_private;
PMD_INIT_FUNC_TRACE();
if (info != NULL) {
info->max_nb_queue_pairs = internals->max_nb_queue_pairs;
info->feature_flags = dev->feature_flags;
info->capabilities = caam_jr_get_cryptodev_capabilities();
info->sym.max_nb_sessions = internals->max_nb_sessions;
info->driver_id = cryptodev_driver_id;
}
}
static struct rte_cryptodev_ops caam_jr_ops = {
.dev_configure = caam_jr_dev_configure,
.dev_start = caam_jr_dev_start,
.dev_stop = caam_jr_dev_stop,
.dev_close = caam_jr_dev_close,
.dev_infos_get = caam_jr_dev_infos_get,
.stats_get = caam_jr_stats_get,
.stats_reset = caam_jr_stats_reset,
.queue_pair_setup = caam_jr_queue_pair_setup,
.queue_pair_release = caam_jr_queue_pair_release,
.sym_session_get_size = caam_jr_sym_session_get_size,
.sym_session_configure = caam_jr_sym_session_configure,
.sym_session_clear = caam_jr_sym_session_clear
};
static struct rte_security_ops caam_jr_security_ops = {
.session_create = caam_jr_security_session_create,
.session_update = NULL,
.session_get_size = caam_jr_security_session_get_size,
.session_stats_get = NULL,
.session_destroy = caam_jr_security_session_destroy,
.set_pkt_metadata = NULL,
.capabilities_get = caam_jr_get_security_capabilities
};
/* @brief Flush job rings of any processed descs.
* The processed descs are silently dropped,
* WITHOUT being notified to UA.
*/
static void
close_job_ring(struct sec_job_ring_t *job_ring)
{
if (job_ring->irq_fd != -1) {
/* Producer index is frozen. If consumer index is not equal
* with producer index, then we have descs to flush.
*/
while (job_ring->pidx != job_ring->cidx)
hw_flush_job_ring(job_ring, false, NULL);
/* free the uio job ring */
free_job_ring(job_ring->irq_fd);
job_ring->irq_fd = -1;
caam_jr_dma_free(job_ring->input_ring);
caam_jr_dma_free(job_ring->output_ring);
g_job_rings_no--;
}
}
/** @brief Release the software and hardware resources tied to a job ring.
* @param [in] job_ring The job ring
*
* @retval 0 for success
* @retval -1 for error
*/
static int
shutdown_job_ring(struct sec_job_ring_t *job_ring)
{
int ret = 0;
PMD_INIT_FUNC_TRACE();
ASSERT(job_ring != NULL);
ret = hw_shutdown_job_ring(job_ring);
SEC_ASSERT(ret == 0, ret,
"Failed to shutdown hardware job ring %p",
job_ring);
if (job_ring->coalescing_en)
hw_job_ring_disable_coalescing(job_ring);
if (job_ring->jr_mode != SEC_NOTIFICATION_TYPE_POLL) {
ret = caam_jr_disable_irqs(job_ring->irq_fd);
SEC_ASSERT(ret == 0, ret,
"Failed to disable irqs for job ring %p",
job_ring);
}
return ret;
}
/*
* @brief Release the resources used by the SEC user space driver.
*
* Reset and release SEC's job rings indicated by the User Application at
* init_job_ring() and free any memory allocated internally.
* Call once during application tear down.
*
* @note In case there are any descriptors in-flight (descriptors received by
* SEC driver for processing and for which no response was yet provided to UA),
* the descriptors are discarded without any notifications to User Application.
*
* @retval ::0 is returned for a successful execution
* @retval ::-1 is returned if SEC driver release is in progress
*/
static int
caam_jr_dev_uninit(struct rte_cryptodev *dev)
{
struct sec_job_ring_t *internals;
PMD_INIT_FUNC_TRACE();
if (dev == NULL)
return -ENODEV;
internals = dev->data->dev_private;
rte_free(dev->security_ctx);
/* If any descriptors in flight , poll and wait
* until all descriptors are received and silently discarded.
*/
if (internals) {
shutdown_job_ring(internals);
close_job_ring(internals);
rte_mempool_free(internals->ctx_pool);
}
CAAM_JR_INFO("Closing crypto device %s", dev->data->name);
/* last caam jr instance) */
if (g_job_rings_no == 0)
g_driver_state = SEC_DRIVER_STATE_IDLE;
return SEC_SUCCESS;
}
/* @brief Initialize the software and hardware resources tied to a job ring.
* @param [in] jr_mode; Model to be used by SEC Driver to receive
* notifications from SEC. Can be either
* of the three: #SEC_NOTIFICATION_TYPE_NAPI
* #SEC_NOTIFICATION_TYPE_IRQ or
* #SEC_NOTIFICATION_TYPE_POLL
* @param [in] NAPI_mode The NAPI work mode to configure a job ring at
* startup. Used only when #SEC_NOTIFICATION_TYPE
* is set to #SEC_NOTIFICATION_TYPE_NAPI.
* @param [in] irq_coalescing_timer This value determines the maximum
* amount of time after processing a
* descriptor before raising an interrupt.
* @param [in] irq_coalescing_count This value determines how many
* descriptors are completed before
* raising an interrupt.
* @param [in] reg_base_addr, The job ring base address register
* @param [in] irq_id The job ring interrupt identification number.
* @retval job_ring_handle for successful job ring configuration
* @retval NULL on error
*
*/
static void *
init_job_ring(void *reg_base_addr, int irq_id)
{
struct sec_job_ring_t *job_ring = NULL;
int i, ret = 0;
int jr_mode = SEC_NOTIFICATION_TYPE_POLL;
int napi_mode = 0;
int irq_coalescing_timer = 0;
int irq_coalescing_count = 0;
for (i = 0; i < MAX_SEC_JOB_RINGS; i++) {
if (g_job_rings[i].irq_fd == -1) {
job_ring = &g_job_rings[i];
g_job_rings_no++;
break;
}
}
if (job_ring == NULL) {
CAAM_JR_ERR("No free job ring\n");
return NULL;
}
job_ring->register_base_addr = reg_base_addr;
job_ring->jr_mode = jr_mode;
job_ring->napi_mode = 0;
job_ring->irq_fd = irq_id;
/* Allocate mem for input and output ring */
/* Allocate memory for input ring */
job_ring->input_ring = caam_jr_dma_mem_alloc(L1_CACHE_BYTES,
SEC_DMA_MEM_INPUT_RING_SIZE);
memset(job_ring->input_ring, 0, SEC_DMA_MEM_INPUT_RING_SIZE);
/* Allocate memory for output ring */
job_ring->output_ring = caam_jr_dma_mem_alloc(L1_CACHE_BYTES,
SEC_DMA_MEM_OUTPUT_RING_SIZE);
memset(job_ring->output_ring, 0, SEC_DMA_MEM_OUTPUT_RING_SIZE);
/* Reset job ring in SEC hw and configure job ring registers */
ret = hw_reset_job_ring(job_ring);
if (ret != 0) {
CAAM_JR_ERR("Failed to reset hardware job ring");
goto cleanup;
}
if (jr_mode == SEC_NOTIFICATION_TYPE_NAPI) {
/* When SEC US driver works in NAPI mode, the UA can select
* if the driver starts with IRQs on or off.
*/
if (napi_mode == SEC_STARTUP_INTERRUPT_MODE) {
CAAM_JR_INFO("Enabling DONE IRQ generationon job ring - %p",
job_ring);
ret = caam_jr_enable_irqs(job_ring->irq_fd);
if (ret != 0) {
CAAM_JR_ERR("Failed to enable irqs for job ring");
goto cleanup;
}
}
} else if (jr_mode == SEC_NOTIFICATION_TYPE_IRQ) {
/* When SEC US driver works in pure interrupt mode,
* IRQ's are always enabled.
*/
CAAM_JR_INFO("Enabling DONE IRQ generation on job ring - %p",
job_ring);
ret = caam_jr_enable_irqs(job_ring->irq_fd);
if (ret != 0) {
CAAM_JR_ERR("Failed to enable irqs for job ring");
goto cleanup;
}
}
if (irq_coalescing_timer || irq_coalescing_count) {
hw_job_ring_set_coalescing_param(job_ring,
irq_coalescing_timer,
irq_coalescing_count);
hw_job_ring_enable_coalescing(job_ring);
job_ring->coalescing_en = 1;
}
job_ring->jr_state = SEC_JOB_RING_STATE_STARTED;
job_ring->max_nb_queue_pairs = RTE_CAAM_MAX_NB_SEC_QPS;
job_ring->max_nb_sessions = RTE_CAAM_JR_PMD_MAX_NB_SESSIONS;
return job_ring;
cleanup:
caam_jr_dma_free(job_ring->output_ring);
caam_jr_dma_free(job_ring->input_ring);
return NULL;
}
static int
caam_jr_dev_init(const char *name,
struct rte_vdev_device *vdev,
struct rte_cryptodev_pmd_init_params *init_params)
{
struct rte_cryptodev *dev;
struct rte_security_ctx *security_instance;
struct uio_job_ring *job_ring;
char str[RTE_CRYPTODEV_NAME_MAX_LEN];
PMD_INIT_FUNC_TRACE();
/* Validate driver state */
if (g_driver_state == SEC_DRIVER_STATE_IDLE) {
g_job_rings_max = sec_configure();
if (!g_job_rings_max) {
CAAM_JR_ERR("No job ring detected on UIO !!!!");
return -1;
}
/* Update driver state */
g_driver_state = SEC_DRIVER_STATE_STARTED;
}
if (g_job_rings_no >= g_job_rings_max) {
CAAM_JR_ERR("No more job rings available max=%d!!!!",
g_job_rings_max);
return -1;
}
job_ring = config_job_ring();
if (job_ring == NULL) {
CAAM_JR_ERR("failed to create job ring");
goto init_error;
}
snprintf(str, sizeof(str), "caam_jr%d", job_ring->jr_id);
dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
if (dev == NULL) {
CAAM_JR_ERR("failed to create cryptodev vdev");
goto cleanup;
}
/*TODO free it during teardown*/
dev->data->dev_private = init_job_ring(job_ring->register_base_addr,
job_ring->uio_fd);
if (!dev->data->dev_private) {
CAAM_JR_ERR("Ring memory allocation failed\n");
goto cleanup2;
}
dev->driver_id = cryptodev_driver_id;
dev->dev_ops = &caam_jr_ops;
/* register rx/tx burst functions for data path */
dev->dequeue_burst = caam_jr_dequeue_burst;
dev->enqueue_burst = caam_jr_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_HW_ACCELERATED |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_SECURITY |
RTE_CRYPTODEV_FF_IN_PLACE_SGL |
RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT;
/* For secondary processes, we don't initialise any further as primary
* has already done this work. Only check we don't need a different
* RX function
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
CAAM_JR_WARN("Device already init by primary process");
return 0;
}
/*TODO free it during teardown*/
security_instance = rte_malloc("caam_jr",
sizeof(struct rte_security_ctx), 0);
if (security_instance == NULL) {
CAAM_JR_ERR("memory allocation failed\n");
//todo error handling.
goto cleanup2;
}
security_instance->device = (void *)dev;
security_instance->ops = &caam_jr_security_ops;
security_instance->sess_cnt = 0;
dev->security_ctx = security_instance;
rte_cryptodev_pmd_probing_finish(dev);
RTE_LOG(INFO, PMD, "%s cryptodev init\n", dev->data->name);
return 0;
cleanup2:
caam_jr_dev_uninit(dev);
rte_cryptodev_pmd_release_device(dev);
cleanup:
free_job_ring(job_ring->uio_fd);
init_error:
CAAM_JR_ERR("driver %s: cryptodev_caam_jr_create failed",
init_params->name);
return -ENXIO;
}
/** Initialise CAAM JR crypto device */
static int
cryptodev_caam_jr_probe(struct rte_vdev_device *vdev)
{
int ret;
struct rte_cryptodev_pmd_init_params init_params = {
"",
sizeof(struct sec_job_ring_t),
rte_socket_id(),
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
};
const char *name;
const char *input_args;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
input_args = rte_vdev_device_args(vdev);
rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
ret = of_init();
if (ret) {
RTE_LOG(ERR, PMD,
"of_init failed\n");
return -EINVAL;
}
/* if sec device version is not configured */
if (!rta_get_sec_era()) {
const struct device_node *caam_node;
for_each_compatible_node(caam_node, NULL, "fsl,sec-v4.0") {
const uint32_t *prop = of_get_property(caam_node,
"fsl,sec-era",
NULL);
if (prop) {
rta_set_sec_era(
INTL_SEC_ERA(rte_be_to_cpu_32(*prop)));
break;
}
}
}
#ifdef RTE_LIBRTE_PMD_CAAM_JR_BE
if (rta_get_sec_era() > RTA_SEC_ERA_8) {
RTE_LOG(ERR, PMD,
"CAAM is compiled in BE mode for device with sec era > 8???\n");
return -EINVAL;
}
#endif
return caam_jr_dev_init(name, vdev, &init_params);
}
/** Uninitialise CAAM JR crypto device */
static int
cryptodev_caam_jr_remove(struct rte_vdev_device *vdev)
{
struct rte_cryptodev *cryptodev;
const char *name;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
cryptodev = rte_cryptodev_pmd_get_named_dev(name);
if (cryptodev == NULL)
return -ENODEV;
caam_jr_dev_uninit(cryptodev);
return rte_cryptodev_pmd_destroy(cryptodev);
}
static void
sec_job_rings_init(void)
{
int i;
for (i = 0; i < MAX_SEC_JOB_RINGS; i++)
g_job_rings[i].irq_fd = -1;
}
static struct rte_vdev_driver cryptodev_caam_jr_drv = {
.probe = cryptodev_caam_jr_probe,
.remove = cryptodev_caam_jr_remove
};
static struct cryptodev_driver caam_jr_crypto_drv;
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_CAAM_JR_PMD, cryptodev_caam_jr_drv);
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_CAAM_JR_PMD,
"max_nb_queue_pairs=<int>"
"socket_id=<int>");
RTE_PMD_REGISTER_CRYPTO_DRIVER(caam_jr_crypto_drv, cryptodev_caam_jr_drv.driver,
cryptodev_driver_id);
RTE_INIT(caam_jr_init)
{
sec_uio_job_rings_init();
sec_job_rings_init();
}
RTE_LOG_REGISTER(caam_jr_logtype, pmd.crypto.caam, NOTICE);