f-stack/dpdk/drivers/common/cnxk/roc_npc_mcam.c

904 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#include "roc_api.h"
#include "roc_priv.h"
static int
npc_mcam_alloc_counter(struct npc *npc, uint16_t *ctr)
{
struct npc_mcam_alloc_counter_req *req;
struct npc_mcam_alloc_counter_rsp *rsp;
struct mbox *mbox = npc->mbox;
int rc = -ENOSPC;
req = mbox_alloc_msg_npc_mcam_alloc_counter(mbox);
if (req == NULL)
return rc;
req->count = 1;
rc = mbox_process_msg(mbox, (void *)&rsp);
if (rc)
return rc;
*ctr = rsp->cntr_list[0];
return rc;
}
int
npc_mcam_free_counter(struct npc *npc, uint16_t ctr_id)
{
struct npc_mcam_oper_counter_req *req;
struct mbox *mbox = npc->mbox;
int rc = -ENOSPC;
req = mbox_alloc_msg_npc_mcam_free_counter(mbox);
if (req == NULL)
return rc;
req->cntr = ctr_id;
return mbox_process(mbox);
}
int
npc_mcam_read_counter(struct npc *npc, uint32_t ctr_id, uint64_t *count)
{
struct npc_mcam_oper_counter_req *req;
struct npc_mcam_oper_counter_rsp *rsp;
struct mbox *mbox = npc->mbox;
int rc = -ENOSPC;
req = mbox_alloc_msg_npc_mcam_counter_stats(mbox);
if (req == NULL)
return rc;
req->cntr = ctr_id;
rc = mbox_process_msg(mbox, (void *)&rsp);
if (rc)
return rc;
*count = rsp->stat;
return rc;
}
int
npc_mcam_clear_counter(struct npc *npc, uint32_t ctr_id)
{
struct npc_mcam_oper_counter_req *req;
struct mbox *mbox = npc->mbox;
int rc = -ENOSPC;
req = mbox_alloc_msg_npc_mcam_clear_counter(mbox);
if (req == NULL)
return rc;
req->cntr = ctr_id;
return mbox_process(mbox);
}
int
npc_mcam_free_entry(struct npc *npc, uint32_t entry)
{
struct npc_mcam_free_entry_req *req;
struct mbox *mbox = npc->mbox;
int rc = -ENOSPC;
req = mbox_alloc_msg_npc_mcam_free_entry(mbox);
if (req == NULL)
return rc;
req->entry = entry;
return mbox_process(mbox);
}
int
npc_mcam_free_all_entries(struct npc *npc)
{
struct npc_mcam_free_entry_req *req;
struct mbox *mbox = npc->mbox;
int rc = -ENOSPC;
req = mbox_alloc_msg_npc_mcam_free_entry(mbox);
if (req == NULL)
return rc;
req->all = 1;
return mbox_process(mbox);
}
static int
npc_supp_key_len(uint32_t supp_mask)
{
int nib_count = 0;
while (supp_mask) {
nib_count++;
supp_mask &= (supp_mask - 1);
}
return nib_count * 4;
}
/**
* Returns true if any LDATA bits are extracted for specific LID+LTYPE.
*
* No LFLAG extraction is taken into account.
*/
static int
npc_lid_lt_in_kex(struct npc *npc, uint8_t lid, uint8_t lt)
{
struct npc_xtract_info *x_info;
int i;
for (i = 0; i < NPC_MAX_LD; i++) {
x_info = &npc->prx_dxcfg[NIX_INTF_RX][lid][lt].xtract[i];
/* Check for LDATA */
if (x_info->enable && x_info->len > 0)
return true;
}
return false;
}
static void
npc_construct_ldata_mask(struct npc *npc, struct plt_bitmap *bmap, uint8_t lid,
uint8_t lt, uint8_t ld)
{
struct npc_xtract_info *x_info, *infoflag;
int hdr_off, keylen;
npc_dxcfg_t *p;
npc_fxcfg_t *q;
int i, j;
p = &npc->prx_dxcfg;
x_info = &(*p)[0][lid][lt].xtract[ld];
if (x_info->enable == 0)
return;
hdr_off = x_info->hdr_off * 8;
keylen = x_info->len * 8;
for (i = hdr_off; i < (hdr_off + keylen); i++)
plt_bitmap_set(bmap, i);
if (x_info->flags_enable == 0)
return;
if ((npc->prx_lfcfg[0].i & 0x7) != lid)
return;
q = &npc->prx_fxcfg;
for (j = 0; j < NPC_MAX_LFL; j++) {
infoflag = &(*q)[0][ld][j].xtract[0];
if (infoflag->enable) {
hdr_off = infoflag->hdr_off * 8;
keylen = infoflag->len * 8;
for (i = hdr_off; i < (hdr_off + keylen); i++)
plt_bitmap_set(bmap, i);
}
}
}
/**
* Check if given LID+LTYPE combination is present in KEX
*
* len is non-zero, this function will return true if KEX extracts len bytes
* at given offset. Otherwise it'll return true if any bytes are extracted
* specifically for given LID+LTYPE combination (meaning not LFLAG based).
* The second case increases flexibility for custom frames whose extracted
* bits may change depending on KEX profile loaded.
*
* @param npc NPC context structure
* @param lid Layer ID to check for
* @param lt Layer Type to check for
* @param offset offset into the layer header to match
* @param len length of the match
*/
static bool
npc_is_kex_enabled(struct npc *npc, uint8_t lid, uint8_t lt, int offset,
int len)
{
struct plt_bitmap *bmap;
uint32_t bmap_sz;
uint8_t *mem;
int i;
if (!len)
return npc_lid_lt_in_kex(npc, lid, lt);
bmap_sz = plt_bitmap_get_memory_footprint(300 * 8);
mem = plt_zmalloc(bmap_sz, 0);
if (mem == NULL) {
plt_err("mem alloc failed");
return false;
}
bmap = plt_bitmap_init(300 * 8, mem, bmap_sz);
if (bmap == NULL) {
plt_err("mem alloc failed");
plt_free(mem);
return false;
}
npc_construct_ldata_mask(npc, bmap, lid, lt, 0);
npc_construct_ldata_mask(npc, bmap, lid, lt, 1);
for (i = offset; i < (offset + len); i++) {
if (plt_bitmap_get(bmap, i) != 0x1) {
plt_free(mem);
return false;
}
}
plt_free(mem);
return true;
}
uint64_t
npc_get_kex_capability(struct npc *npc)
{
npc_kex_cap_terms_t kex_cap;
memset(&kex_cap, 0, sizeof(kex_cap));
/* Ethtype: Offset 12B, len 2B */
kex_cap.bit.ethtype_0 = npc_is_kex_enabled(npc, NPC_LID_LA, NPC_LT_LA_ETHER, 12 * 8, 2 * 8);
/* QINQ VLAN Ethtype: offset 8B, len 2B */
kex_cap.bit.ethtype_x =
npc_is_kex_enabled(npc, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8 * 8, 2 * 8);
/* VLAN ID0 : Outer VLAN: Offset 2B, len 2B */
kex_cap.bit.vlan_id_0 = npc_is_kex_enabled(npc, NPC_LID_LB, NPC_LT_LB_CTAG, 2 * 8, 2 * 8);
/* VLAN PCP0 : Outer VLAN: Offset 2B, len 1B */
kex_cap.bit.vlan_pcp_0 = npc_is_kex_enabled(npc, NPC_LID_LB, NPC_LT_LB_CTAG, 2 * 8, 2 * 1);
/* VLAN IDX : Inner VLAN: offset 6B, len 2B */
kex_cap.bit.vlan_id_x =
npc_is_kex_enabled(npc, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 6 * 8, 2 * 8);
/* DMCA: offset 0B, len 6B */
kex_cap.bit.dmac = npc_is_kex_enabled(npc, NPC_LID_LA, NPC_LT_LA_ETHER, 0 * 8, 6 * 8);
/* IP proto: offset 9B, len 1B */
kex_cap.bit.ip_proto = npc_is_kex_enabled(npc, NPC_LID_LC, NPC_LT_LC_IP, 9 * 8, 1 * 8);
/* IPv4 dscp: offset 1B, len 1B, IPv6 dscp: offset 0B, len 2B */
kex_cap.bit.ip_dscp = npc_is_kex_enabled(npc, NPC_LID_LC, NPC_LT_LC_IP, 1 * 8, 1 * 8) &&
npc_is_kex_enabled(npc, NPC_LID_LC, NPC_LT_LC_IP6, 0, 2 * 8);
/* UDP dport: offset 2B, len 2B */
kex_cap.bit.udp_dport = npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_UDP, 2 * 8, 2 * 8);
/* UDP sport: offset 0B, len 2B */
kex_cap.bit.udp_sport = npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_UDP, 0 * 8, 2 * 8);
/* TCP dport: offset 2B, len 2B */
kex_cap.bit.tcp_dport = npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_TCP, 2 * 8, 2 * 8);
/* TCP sport: offset 0B, len 2B */
kex_cap.bit.tcp_sport = npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_TCP, 0 * 8, 2 * 8);
/* IP SIP: offset 12B, len 4B */
kex_cap.bit.sip_addr = npc_is_kex_enabled(npc, NPC_LID_LC, NPC_LT_LC_IP, 12 * 8, 4 * 8);
/* IP DIP: offset 14B, len 4B */
kex_cap.bit.dip_addr = npc_is_kex_enabled(npc, NPC_LID_LC, NPC_LT_LC_IP, 14 * 8, 4 * 8);
/* IP6 SIP: offset 8B, len 16B */
kex_cap.bit.sip6_addr = npc_is_kex_enabled(npc, NPC_LID_LC, NPC_LT_LC_IP6, 8 * 8, 16 * 8);
/* IP6 DIP: offset 24B, len 16B */
kex_cap.bit.dip6_addr = npc_is_kex_enabled(npc, NPC_LID_LC, NPC_LT_LC_IP6, 24 * 8, 16 * 8);
/* ESP SPI: offset 0B, len 4B */
kex_cap.bit.ipsec_spi = npc_is_kex_enabled(npc, NPC_LID_LE, NPC_LT_LE_ESP, 0 * 8, 4 * 8);
/* VXLAN VNI: offset 4B, len 3B */
kex_cap.bit.ld_vni = npc_is_kex_enabled(npc, NPC_LID_LE, NPC_LT_LE_VXLAN, 0 * 8, 3 * 8);
/* Custom L3 frame: varied offset and lengths */
kex_cap.bit.custom_l3 = npc_is_kex_enabled(npc, NPC_LID_LC, NPC_LT_LC_CUSTOM0, 0, 0);
kex_cap.bit.custom_l3 |=
(uint64_t)npc_is_kex_enabled(npc, NPC_LID_LC, NPC_LT_LC_CUSTOM1, 0, 0);
/* SCTP sport : offset 0B, len 2B */
kex_cap.bit.sctp_sport = npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_SCTP, 0 * 8, 2 * 8);
/* SCTP dport : offset 2B, len 2B */
kex_cap.bit.sctp_dport = npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_SCTP, 2 * 8, 2 * 8);
/* ICMP type : offset 0B, len 1B */
kex_cap.bit.icmp_type = npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_ICMP, 0 * 8, 1 * 8);
/* ICMP code : offset 1B, len 1B */
kex_cap.bit.icmp_code = npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_ICMP, 1 * 8, 1 * 8);
/* ICMP id : offset 4B, len 2B */
kex_cap.bit.icmp_id = npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_ICMP, 4 * 8, 2 * 8);
/* IGMP grp_addr : offset 4B, len 4B */
kex_cap.bit.igmp_grp_addr =
npc_is_kex_enabled(npc, NPC_LID_LD, NPC_LT_LD_IGMP, 4 * 8, 4 * 8);
/* GTPU teid : offset 4B, len 4B */
kex_cap.bit.gtpv1_teid = npc_is_kex_enabled(npc, NPC_LID_LE, NPC_LT_LE_GTPU, 4 * 8, 4 * 8);
return kex_cap.all_bits;
}
#define BYTESM1_SHIFT 16
#define HDR_OFF_SHIFT 8
static void
npc_update_kex_info(struct npc_xtract_info *xtract_info, uint64_t val)
{
xtract_info->len = ((val >> BYTESM1_SHIFT) & 0xf) + 1;
xtract_info->hdr_off = (val >> HDR_OFF_SHIFT) & 0xff;
xtract_info->key_off = val & 0x3f;
xtract_info->enable = ((val >> 7) & 0x1);
xtract_info->flags_enable = ((val >> 6) & 0x1);
}
int
npc_mcam_alloc_entries(struct npc *npc, int ref_mcam, int *alloc_entry,
int req_count, int prio, int *resp_count)
{
struct npc_mcam_alloc_entry_req *req;
struct npc_mcam_alloc_entry_rsp *rsp;
struct mbox *mbox = npc->mbox;
int rc = -ENOSPC;
int i;
req = mbox_alloc_msg_npc_mcam_alloc_entry(mbox);
if (req == NULL)
return rc;
req->contig = 0;
req->count = req_count;
req->priority = prio;
req->ref_entry = ref_mcam;
rc = mbox_process_msg(mbox, (void *)&rsp);
if (rc)
return rc;
for (i = 0; i < rsp->count; i++)
alloc_entry[i] = rsp->entry_list[i];
*resp_count = rsp->count;
return 0;
}
int
npc_mcam_alloc_entry(struct npc *npc, struct roc_npc_flow *mcam,
struct roc_npc_flow *ref_mcam, int prio, int *resp_count)
{
struct npc_mcam_alloc_entry_req *req;
struct npc_mcam_alloc_entry_rsp *rsp;
struct mbox *mbox = npc->mbox;
int rc = -ENOSPC;
req = mbox_alloc_msg_npc_mcam_alloc_entry(mbox);
if (req == NULL)
return rc;
req->contig = 1;
req->count = 1;
req->priority = prio;
req->ref_entry = ref_mcam->mcam_id;
rc = mbox_process_msg(mbox, (void *)&rsp);
if (rc)
return rc;
memset(mcam, 0, sizeof(struct roc_npc_flow));
mcam->mcam_id = rsp->entry;
mcam->nix_intf = ref_mcam->nix_intf;
*resp_count = rsp->count;
return 0;
}
int
npc_mcam_ena_dis_entry(struct npc *npc, struct roc_npc_flow *mcam, bool enable)
{
struct npc_mcam_ena_dis_entry_req *req;
struct mbox *mbox = npc->mbox;
int rc = -ENOSPC;
if (enable)
req = mbox_alloc_msg_npc_mcam_ena_entry(mbox);
else
req = mbox_alloc_msg_npc_mcam_dis_entry(mbox);
if (req == NULL)
return rc;
req->entry = mcam->mcam_id;
mcam->enable = enable;
return mbox_process(mbox);
}
int
npc_mcam_write_entry(struct npc *npc, struct roc_npc_flow *mcam)
{
struct npc_mcam_write_entry_req *req;
struct mbox *mbox = npc->mbox;
struct mbox_msghdr *rsp;
int rc = -ENOSPC;
uint16_t ctr = 0;
int i;
if (mcam->use_ctr && mcam->ctr_id == NPC_COUNTER_NONE) {
rc = npc_mcam_alloc_counter(npc, &ctr);
if (rc)
return rc;
mcam->ctr_id = ctr;
rc = npc_mcam_clear_counter(npc, mcam->ctr_id);
if (rc)
return rc;
}
req = mbox_alloc_msg_npc_mcam_write_entry(mbox);
if (req == NULL) {
if (mcam->use_ctr)
npc_mcam_free_counter(npc, ctr);
return rc;
}
req->entry = mcam->mcam_id;
req->intf = mcam->nix_intf;
req->enable_entry = mcam->enable;
req->entry_data.action = mcam->npc_action;
req->entry_data.vtag_action = mcam->vtag_action;
if (mcam->use_ctr) {
req->set_cntr = 1;
req->cntr = mcam->ctr_id;
}
for (i = 0; i < NPC_MCAM_KEY_X4_WORDS; i++) {
req->entry_data.kw[i] = mcam->mcam_data[i];
req->entry_data.kw_mask[i] = mcam->mcam_mask[i];
}
return mbox_process_msg(mbox, (void *)&rsp);
}
static void
npc_mcam_process_mkex_cfg(struct npc *npc, struct npc_get_kex_cfg_rsp *kex_rsp)
{
volatile uint64_t(
*q)[NPC_MAX_INTF][NPC_MAX_LID][NPC_MAX_LT][NPC_MAX_LD];
struct npc_xtract_info *x_info = NULL;
int lid, lt, ld, fl, ix;
npc_dxcfg_t *p;
uint64_t keyw;
uint64_t val;
npc->keyx_supp_nmask[NPC_MCAM_RX] =
kex_rsp->rx_keyx_cfg & 0x7fffffffULL;
npc->keyx_supp_nmask[NPC_MCAM_TX] =
kex_rsp->tx_keyx_cfg & 0x7fffffffULL;
npc->keyx_len[NPC_MCAM_RX] =
npc_supp_key_len(npc->keyx_supp_nmask[NPC_MCAM_RX]);
npc->keyx_len[NPC_MCAM_TX] =
npc_supp_key_len(npc->keyx_supp_nmask[NPC_MCAM_TX]);
keyw = (kex_rsp->rx_keyx_cfg >> 32) & 0x7ULL;
npc->keyw[NPC_MCAM_RX] = keyw;
keyw = (kex_rsp->tx_keyx_cfg >> 32) & 0x7ULL;
npc->keyw[NPC_MCAM_TX] = keyw;
/* Update KEX_LD_FLAG */
for (ix = 0; ix < NPC_MAX_INTF; ix++) {
for (ld = 0; ld < NPC_MAX_LD; ld++) {
for (fl = 0; fl < NPC_MAX_LFL; fl++) {
x_info = &npc->prx_fxcfg[ix][ld][fl].xtract[0];
val = kex_rsp->intf_ld_flags[ix][ld][fl];
npc_update_kex_info(x_info, val);
}
}
}
/* Update LID, LT and LDATA cfg */
p = &npc->prx_dxcfg;
q = (volatile uint64_t(*)[][NPC_MAX_LID][NPC_MAX_LT][NPC_MAX_LD])(
&kex_rsp->intf_lid_lt_ld);
for (ix = 0; ix < NPC_MAX_INTF; ix++) {
for (lid = 0; lid < NPC_MAX_LID; lid++) {
for (lt = 0; lt < NPC_MAX_LT; lt++) {
for (ld = 0; ld < NPC_MAX_LD; ld++) {
x_info = &(*p)[ix][lid][lt].xtract[ld];
val = (*q)[ix][lid][lt][ld];
npc_update_kex_info(x_info, val);
}
}
}
}
/* Update LDATA Flags cfg */
npc->prx_lfcfg[0].i = kex_rsp->kex_ld_flags[0];
npc->prx_lfcfg[1].i = kex_rsp->kex_ld_flags[1];
}
int
npc_mcam_fetch_kex_cfg(struct npc *npc)
{
struct npc_get_kex_cfg_rsp *kex_rsp;
struct mbox *mbox = npc->mbox;
int rc = 0;
mbox_alloc_msg_npc_get_kex_cfg(mbox);
rc = mbox_process_msg(mbox, (void *)&kex_rsp);
if (rc) {
plt_err("Failed to fetch NPC KEX config");
goto done;
}
mbox_memcpy((char *)npc->profile_name, kex_rsp->mkex_pfl_name,
MKEX_NAME_LEN);
npc_mcam_process_mkex_cfg(npc, kex_rsp);
done:
return rc;
}
static void
npc_mcam_set_channel(struct roc_npc_flow *flow,
struct npc_mcam_write_entry_req *req, uint16_t channel,
uint16_t chan_mask, bool is_second_pass)
{
uint16_t chan = 0, mask = 0;
req->entry_data.kw[0] &= ~(GENMASK(11, 0));
req->entry_data.kw_mask[0] &= ~(GENMASK(11, 0));
flow->mcam_data[0] &= ~(GENMASK(11, 0));
flow->mcam_mask[0] &= ~(GENMASK(11, 0));
chan = channel;
mask = chan_mask;
if (roc_model_runtime_is_cn10k()) {
if (is_second_pass) {
chan = (channel | NIX_CHAN_CPT_CH_START);
mask = (chan_mask | NIX_CHAN_CPT_CH_START);
} else {
if (!(flow->npc_action & NIX_RX_ACTIONOP_UCAST_IPSEC)) {
/*
* Clear bits 10 & 11 corresponding to CPT
* channel. By default, rules should match
* both first pass packets and second pass
* packets from CPT.
*/
chan = (channel & NIX_CHAN_CPT_X2P_MASK);
mask = (chan_mask & NIX_CHAN_CPT_X2P_MASK);
}
}
}
req->entry_data.kw[0] |= (uint64_t)chan;
req->entry_data.kw_mask[0] |= (uint64_t)mask;
flow->mcam_data[0] |= (uint64_t)chan;
flow->mcam_mask[0] |= (uint64_t)mask;
}
int
npc_mcam_alloc_and_write(struct npc *npc, struct roc_npc_flow *flow,
struct npc_parse_state *pst)
{
struct npc_mcam_write_entry_req *req;
struct nix_inl_dev *inl_dev = NULL;
struct mbox *mbox = npc->mbox;
struct mbox_msghdr *rsp;
struct idev_cfg *idev;
uint16_t pf_func = 0;
uint16_t ctr = ~(0);
uint32_t la_offset;
uint64_t mask;
int rc, idx;
int entry;
PLT_SET_USED(pst);
if (flow->use_ctr) {
rc = npc_mcam_alloc_counter(npc, &ctr);
if (rc)
return rc;
flow->ctr_id = ctr;
rc = npc_mcam_clear_counter(npc, flow->ctr_id);
if (rc)
return rc;
}
entry = npc_get_free_mcam_entry(mbox, flow, npc);
if (entry < 0) {
if (flow->use_ctr)
npc_mcam_free_counter(npc, ctr);
return NPC_ERR_MCAM_ALLOC;
}
req = mbox_alloc_msg_npc_mcam_write_entry(mbox);
if (req == NULL)
return -ENOSPC;
req->set_cntr = flow->use_ctr;
req->cntr = flow->ctr_id;
req->entry = entry;
req->intf = (flow->nix_intf == NIX_INTF_RX) ? NPC_MCAM_RX : NPC_MCAM_TX;
req->enable_entry = 1;
req->entry_data.action = flow->npc_action;
/*
* Driver sets vtag action on per interface basis, not
* per flow basis. It is a matter of how we decide to support
* this pmd specific behavior. There are two ways:
* 1. Inherit the vtag action from the one configured
* for this interface. This can be read from the
* vtag_action configured for default mcam entry of
* this pf_func.
* 2. Do not support vtag action with npc_flow.
*
* Second approach is used now.
*/
req->entry_data.vtag_action = flow->vtag_action;
for (idx = 0; idx < ROC_NPC_MAX_MCAM_WIDTH_DWORDS; idx++) {
req->entry_data.kw[idx] = flow->mcam_data[idx];
req->entry_data.kw_mask[idx] = flow->mcam_mask[idx];
}
idev = idev_get_cfg();
if (idev)
inl_dev = idev->nix_inl_dev;
if (flow->nix_intf == NIX_INTF_RX) {
if (inl_dev && inl_dev->is_multi_channel &&
(flow->npc_action & NIX_RX_ACTIONOP_UCAST_IPSEC)) {
pf_func = nix_inl_dev_pffunc_get();
req->entry_data.action &= ~(GENMASK(19, 4));
req->entry_data.action |= (uint64_t)pf_func << 4;
flow->npc_action &= ~(GENMASK(19, 4));
flow->npc_action |= (uint64_t)pf_func << 4;
npc_mcam_set_channel(flow, req, inl_dev->channel, inl_dev->chan_mask,
false);
} else if (npc->is_sdp_link) {
npc_mcam_set_channel(flow, req, npc->sdp_channel, npc->sdp_channel_mask,
pst->is_second_pass_rule);
} else {
npc_mcam_set_channel(flow, req, npc->channel, (BIT_ULL(12) - 1),
pst->is_second_pass_rule);
}
/*
* For second pass rule, set LA LTYPE to CPT_HDR.
* For all other rules, set LA LTYPE to match both 1st pass and 2nd pass ltypes.
*/
if (pst->is_second_pass_rule || (!pst->is_second_pass_rule && pst->has_eth_type)) {
la_offset = __builtin_popcount(npc->keyx_supp_nmask[flow->nix_intf] &
((1ULL << 9 /* LA offset */) - 1));
la_offset *= 4;
mask = ~((0xfULL << la_offset));
req->entry_data.kw[0] &= mask;
req->entry_data.kw_mask[0] &= mask;
flow->mcam_data[0] &= mask;
flow->mcam_mask[0] &= mask;
if (pst->is_second_pass_rule) {
req->entry_data.kw[0] |= ((uint64_t)NPC_LT_LA_CPT_HDR) << la_offset;
req->entry_data.kw_mask[0] |= (0xFULL << la_offset);
flow->mcam_data[0] |= ((uint64_t)NPC_LT_LA_CPT_HDR) << la_offset;
flow->mcam_mask[0] |= (0xFULL << la_offset);
} else {
/* Mask ltype ETHER (0x2) and CPT_HDR (0xa) */
req->entry_data.kw[0] |= (0x2ULL << la_offset);
req->entry_data.kw_mask[0] |= (0x7ULL << la_offset);
flow->mcam_data[0] |= (0x2ULL << la_offset);
flow->mcam_mask[0] |= (0x7ULL << la_offset);
}
}
} else {
uint16_t pf_func = (flow->npc_action >> 4) & 0xffff;
pf_func = plt_cpu_to_be_16(pf_func);
req->entry_data.kw[0] |= ((uint64_t)pf_func << 32);
req->entry_data.kw_mask[0] |= ((uint64_t)0xffff << 32);
flow->mcam_data[0] |= ((uint64_t)pf_func << 32);
flow->mcam_mask[0] |= ((uint64_t)0xffff << 32);
}
rc = mbox_process_msg(mbox, (void *)&rsp);
if (rc != 0)
return rc;
flow->mcam_id = entry;
if (flow->use_ctr)
flow->ctr_id = ctr;
return 0;
}
static void
npc_set_vlan_ltype(struct npc_parse_state *pst)
{
uint64_t val, mask;
uint8_t lb_offset;
lb_offset =
__builtin_popcount(pst->npc->keyx_supp_nmask[pst->nix_intf] &
((1ULL << NPC_LTYPE_LB_OFFSET) - 1));
lb_offset *= 4;
mask = ~((0xfULL << lb_offset));
pst->flow->mcam_data[0] &= mask;
pst->flow->mcam_mask[0] &= mask;
/* NPC_LT_LB_CTAG: 0b0010, NPC_LT_LB_STAG_QINQ: 0b0011
* Set LB layertype/mask as 0b0010/0b1110 to match both.
*/
val = ((uint64_t)(NPC_LT_LB_CTAG & NPC_LT_LB_STAG_QINQ)) << lb_offset;
pst->flow->mcam_data[0] |= val;
pst->flow->mcam_mask[0] |= (0xeULL << lb_offset);
}
static void
npc_set_ipv6ext_ltype_mask(struct npc_parse_state *pst)
{
uint8_t lc_offset, lcflag_offset;
uint64_t val, mask;
lc_offset =
__builtin_popcount(pst->npc->keyx_supp_nmask[pst->nix_intf] &
((1ULL << NPC_LTYPE_LC_OFFSET) - 1));
lc_offset *= 4;
mask = ~((0xfULL << lc_offset));
pst->flow->mcam_data[0] &= mask;
pst->flow->mcam_mask[0] &= mask;
/* NPC_LT_LC_IP6: 0b0100, NPC_LT_LC_IP6_EXT: 0b0101
* Set LC layertype/mask as 0b0100/0b1110 to match both.
*/
val = ((uint64_t)(NPC_LT_LC_IP6 & NPC_LT_LC_IP6_EXT)) << lc_offset;
pst->flow->mcam_data[0] |= val;
pst->flow->mcam_mask[0] |= (0xeULL << lc_offset);
/* If LC LFLAG is non-zero, set the LC LFLAG mask to 0xF. In general
* case flag mask is set same as the value in data. For example, to
* match 3 VLANs, flags have to match a range of values. But, for IPv6
* extended attributes matching, we need an exact match. Hence, set the
* mask as 0xF. This is done only if LC LFLAG value is non-zero,
* because for AH and ESP, LC LFLAG is zero and we don't want to match
* zero in LFLAG.
*/
if (pst->npc->keyx_supp_nmask[pst->nix_intf] & (1ULL << NPC_LFLAG_LC_OFFSET)) {
lcflag_offset = __builtin_popcount(pst->npc->keyx_supp_nmask[pst->nix_intf] &
((1ULL << NPC_LFLAG_LC_OFFSET) - 1));
lcflag_offset *= 4;
mask = (0xfULL << lcflag_offset);
val = pst->flow->mcam_data[0] & mask;
if (val)
pst->flow->mcam_mask[0] |= mask;
}
}
int
npc_program_mcam(struct npc *npc, struct npc_parse_state *pst, bool mcam_alloc)
{
struct npc_mcam_read_base_rule_rsp *base_rule_rsp;
/* This is non-LDATA part in search key */
uint64_t key_data[2] = {0ULL, 0ULL};
uint64_t key_mask[2] = {0ULL, 0ULL};
int key_len, bit = 0, index, rc = 0;
struct nix_inl_dev *inl_dev = NULL;
int intf = pst->flow->nix_intf;
struct mcam_entry *base_entry;
bool skip_base_rule = false;
int off, idx, data_off = 0;
uint8_t lid, mask, data;
struct idev_cfg *idev;
uint16_t layer_info;
uint64_t lt, flags;
/* Skip till Layer A data start */
while (bit < NPC_PARSE_KEX_S_LA_OFFSET) {
if (npc->keyx_supp_nmask[intf] & (1 << bit))
data_off++;
bit++;
}
/* Each bit represents 1 nibble */
data_off *= 4;
index = 0;
for (lid = 0; lid < NPC_MAX_LID; lid++) {
/* Offset in key */
off = NPC_PARSE_KEX_S_LID_OFFSET(lid);
lt = pst->lt[lid] & 0xf;
flags = pst->flags[lid] & 0xff;
/* NPC_LAYER_KEX_S */
layer_info = ((npc->keyx_supp_nmask[intf] >> off) & 0x7);
if (layer_info) {
for (idx = 0; idx <= 2; idx++) {
if (layer_info & (1 << idx)) {
if (idx == 2) {
data = lt;
mask = 0xf;
} else if (idx == 1) {
data = ((flags >> 4) & 0xf);
mask = ((flags >> 4) & 0xf);
} else {
data = (flags & 0xf);
mask = (flags & 0xf);
}
if (data_off >= 64) {
data_off = 0;
index++;
}
key_data[index] |=
((uint64_t)data << data_off);
if (lt == 0)
mask = 0;
key_mask[index] |=
((uint64_t)mask << data_off);
data_off += 4;
}
}
}
}
/* Copy this into mcam string */
key_len = (pst->npc->keyx_len[intf] + 7) / 8;
memcpy(pst->flow->mcam_data, key_data, key_len);
memcpy(pst->flow->mcam_mask, key_mask, key_len);
if (pst->set_vlan_ltype_mask)
npc_set_vlan_ltype(pst);
if (pst->set_ipv6ext_ltype_mask)
npc_set_ipv6ext_ltype_mask(pst);
idev = idev_get_cfg();
if (idev)
inl_dev = idev->nix_inl_dev;
if (inl_dev && inl_dev->is_multi_channel &&
(pst->flow->npc_action & NIX_RX_ACTIONOP_UCAST_IPSEC))
skip_base_rule = true;
if (pst->is_vf && pst->flow->nix_intf == NIX_INTF_RX && !skip_base_rule) {
(void)mbox_alloc_msg_npc_read_base_steer_rule(npc->mbox);
rc = mbox_process_msg(npc->mbox, (void *)&base_rule_rsp);
if (rc) {
plt_err("Failed to fetch VF's base MCAM entry");
return rc;
}
base_entry = &base_rule_rsp->entry_data;
for (idx = 0; idx < ROC_NPC_MAX_MCAM_WIDTH_DWORDS; idx++) {
pst->flow->mcam_data[idx] |= base_entry->kw[idx];
pst->flow->mcam_mask[idx] |= base_entry->kw_mask[idx];
}
}
/*
* Now we have mcam data and mask formatted as
* [Key_len/4 nibbles][0 or 1 nibble hole][data]
* hole is present if key_len is odd number of nibbles.
* mcam data must be split into 64 bits + 48 bits segments
* for each back W0, W1.
*/
if (mcam_alloc)
return npc_mcam_alloc_and_write(npc, pst->flow, pst);
else
return 0;
}
int
npc_flow_enable_all_entries(struct npc *npc, bool enable)
{
struct npc_flow_list *list;
struct roc_npc_flow *flow;
int rc = 0, idx;
/* Free any MCAM counters and delete flow list */
for (idx = 0; idx < npc->flow_max_priority; idx++) {
list = &npc->flow_list[idx];
TAILQ_FOREACH(flow, list, next) {
flow->enable = enable;
rc = npc_mcam_write_entry(npc, flow);
if (rc)
return rc;
}
}
return rc;
}
int
npc_flow_free_all_resources(struct npc *npc)
{
struct roc_npc_flow *flow;
int rc, idx;
/* Free all MCAM entries allocated */
rc = npc_mcam_free_all_entries(npc);
/* Free any MCAM counters and delete flow list */
for (idx = 0; idx < npc->flow_max_priority; idx++) {
while ((flow = TAILQ_FIRST(&npc->flow_list[idx])) != NULL) {
npc_rss_group_free(npc, flow);
if (flow->ctr_id != NPC_COUNTER_NONE) {
rc |= npc_mcam_clear_counter(npc, flow->ctr_id);
rc |= npc_mcam_free_counter(npc, flow->ctr_id);
}
npc_delete_prio_list_entry(npc, flow);
TAILQ_REMOVE(&npc->flow_list[idx], flow, next);
plt_free(flow);
}
}
return rc;
}