f-stack/dpdk/drivers/common/cnxk/roc_nix_tm_utils.c

1295 lines
31 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#include "roc_api.h"
#include "roc_priv.h"
static inline uint64_t
nix_tm_shaper2regval(struct nix_tm_shaper_data *shaper)
{
uint64_t regval;
if (roc_model_is_cn9k()) {
regval = (shaper->burst_exponent << 37);
regval |= (shaper->burst_mantissa << 29);
regval |= (shaper->div_exp << 13);
regval |= (shaper->exponent << 9);
regval |= (shaper->mantissa << 1);
return regval;
}
regval = (shaper->burst_exponent << 44);
regval |= (shaper->burst_mantissa << 29);
regval |= (shaper->div_exp << 13);
regval |= (shaper->exponent << 9);
regval |= (shaper->mantissa << 1);
return regval;
}
uint16_t
nix_tm_lvl2nix_tl1_root(uint32_t lvl)
{
switch (lvl) {
case ROC_TM_LVL_ROOT:
return NIX_TXSCH_LVL_TL1;
case ROC_TM_LVL_SCH1:
return NIX_TXSCH_LVL_TL2;
case ROC_TM_LVL_SCH2:
return NIX_TXSCH_LVL_TL3;
case ROC_TM_LVL_SCH3:
return NIX_TXSCH_LVL_TL4;
case ROC_TM_LVL_SCH4:
return NIX_TXSCH_LVL_SMQ;
default:
return NIX_TXSCH_LVL_CNT;
}
}
uint16_t
nix_tm_lvl2nix_tl2_root(uint32_t lvl)
{
switch (lvl) {
case ROC_TM_LVL_ROOT:
return NIX_TXSCH_LVL_TL2;
case ROC_TM_LVL_SCH1:
return NIX_TXSCH_LVL_TL3;
case ROC_TM_LVL_SCH2:
return NIX_TXSCH_LVL_TL4;
case ROC_TM_LVL_SCH3:
return NIX_TXSCH_LVL_SMQ;
default:
return NIX_TXSCH_LVL_CNT;
}
}
uint16_t
nix_tm_lvl2nix(struct nix *nix, uint32_t lvl)
{
if (nix_tm_have_tl1_access(nix))
return nix_tm_lvl2nix_tl1_root(lvl);
else
return nix_tm_lvl2nix_tl2_root(lvl);
}
static uint8_t
nix_tm_relchan_get(struct nix *nix)
{
return nix->tx_chan_base & 0xff;
}
static int
nix_tm_find_prio_anchor(struct nix *nix, uint32_t node_id,
enum roc_nix_tm_tree tree)
{
struct nix_tm_node *child_node;
struct nix_tm_node_list *list;
list = nix_tm_node_list(nix, tree);
TAILQ_FOREACH(child_node, list, node) {
if (!child_node->parent)
continue;
if (!(child_node->parent->id == node_id))
continue;
if (child_node->priority == child_node->parent->rr_prio)
continue;
return child_node->hw_id - child_node->priority;
}
return 0;
}
struct nix_tm_shaper_profile *
nix_tm_shaper_profile_search(struct nix *nix, uint32_t id)
{
struct nix_tm_shaper_profile *profile;
TAILQ_FOREACH(profile, &nix->shaper_profile_list, shaper) {
if (profile->id == id)
return profile;
}
return NULL;
}
struct nix_tm_node *
nix_tm_node_search(struct nix *nix, uint32_t node_id, enum roc_nix_tm_tree tree)
{
struct nix_tm_node_list *list;
struct nix_tm_node *node;
list = nix_tm_node_list(nix, tree);
TAILQ_FOREACH(node, list, node) {
if (node->id == node_id)
return node;
}
return NULL;
}
static uint64_t
nix_tm_shaper_rate_conv_floor(uint64_t value, uint64_t *exponent_p,
uint64_t *mantissa_p, uint64_t *div_exp_p)
{
uint64_t div_exp, exponent, mantissa;
/* Boundary checks */
if (value < NIX_TM_MIN_SHAPER_RATE || value > NIX_TM_MAX_SHAPER_RATE)
return 0;
if (value <= NIX_TM_SHAPER_RATE(0, 0, 0)) {
/* Calculate rate div_exp and mantissa using
* the following formula:
*
* value = (2E6 * (256 + mantissa)
* / ((1 << div_exp) * 256))
*/
div_exp = 0;
exponent = 0;
mantissa = NIX_TM_MAX_RATE_MANTISSA;
while (value <= (NIX_TM_SHAPER_RATE_CONST / (1 << div_exp)))
div_exp += 1;
while (value <= ((NIX_TM_SHAPER_RATE_CONST * (256 + mantissa)) /
((1 << div_exp) * 256)))
mantissa -= 1;
} else {
/* Calculate rate exponent and mantissa using
* the following formula:
*
* value = (2E6 * ((256 + mantissa) << exponent)) / 256
*
*/
div_exp = 0;
exponent = NIX_TM_MAX_RATE_EXPONENT;
mantissa = NIX_TM_MAX_RATE_MANTISSA;
while (value <= (NIX_TM_SHAPER_RATE_CONST * (1 << exponent)))
exponent -= 1;
while (value <= ((NIX_TM_SHAPER_RATE_CONST *
((256 + mantissa) << exponent)) /
256))
mantissa -= 1;
}
if (div_exp > NIX_TM_MAX_RATE_DIV_EXP ||
exponent > NIX_TM_MAX_RATE_EXPONENT ||
mantissa > NIX_TM_MAX_RATE_MANTISSA)
return 0;
if (div_exp_p)
*div_exp_p = div_exp;
if (exponent_p)
*exponent_p = exponent;
if (mantissa_p)
*mantissa_p = mantissa;
/* Calculate real rate value */
return NIX_TM_SHAPER_RATE(exponent, mantissa, div_exp);
}
static uint64_t
nix_tm_shaper_rate_conv_exact(uint64_t value, uint64_t *exponent_p,
uint64_t *mantissa_p, uint64_t *div_exp_p)
{
uint64_t div_exp, exponent, mantissa;
/* Boundary checks */
if (value < NIX_TM_MIN_SHAPER_RATE || value > NIX_TM_MAX_SHAPER_RATE)
return 0;
if (value <= NIX_TM_SHAPER_RATE(0, 0, 0)) {
/* Calculate rate div_exp and mantissa using
* the following formula:
*
* value = (2E6 * (256 + mantissa)
* / ((1 << div_exp) * 256))
*/
div_exp = 0;
exponent = 0;
mantissa = NIX_TM_MAX_RATE_MANTISSA;
while (value < (NIX_TM_SHAPER_RATE_CONST / (1 << div_exp)))
div_exp += 1;
while (value < ((NIX_TM_SHAPER_RATE_CONST * (256 + mantissa)) /
((1 << div_exp) * 256)))
mantissa -= 1;
} else {
/* Calculate rate exponent and mantissa using
* the following formula:
*
* value = (2E6 * ((256 + mantissa) << exponent)) / 256
*
*/
div_exp = 0;
exponent = NIX_TM_MAX_RATE_EXPONENT;
mantissa = NIX_TM_MAX_RATE_MANTISSA;
while (value < (NIX_TM_SHAPER_RATE_CONST * (1 << exponent)))
exponent -= 1;
while (value < ((NIX_TM_SHAPER_RATE_CONST *
((256 + mantissa) << exponent)) /
256))
mantissa -= 1;
}
if (div_exp > NIX_TM_MAX_RATE_DIV_EXP ||
exponent > NIX_TM_MAX_RATE_EXPONENT ||
mantissa > NIX_TM_MAX_RATE_MANTISSA)
return 0;
if (div_exp_p)
*div_exp_p = div_exp;
if (exponent_p)
*exponent_p = exponent;
if (mantissa_p)
*mantissa_p = mantissa;
/* Calculate real rate value */
return NIX_TM_SHAPER_RATE(exponent, mantissa, div_exp);
}
/* With zero accuracy we will tune parameters as defined by HW,
* non zero accuracy will keep the parameters close to lower values
* and make sure long-term shaper rate will not exceed the requested rate.
*/
uint64_t
nix_tm_shaper_rate_conv(uint64_t value, uint64_t *exponent_p,
uint64_t *mantissa_p, uint64_t *div_exp_p,
int8_t accuracy)
{
if (!accuracy)
return nix_tm_shaper_rate_conv_exact(value, exponent_p,
mantissa_p, div_exp_p);
return nix_tm_shaper_rate_conv_floor(value, exponent_p, mantissa_p,
div_exp_p);
}
uint64_t
nix_tm_shaper_burst_conv(uint64_t value, uint64_t *exponent_p,
uint64_t *mantissa_p)
{
uint64_t min_burst, max_burst;
uint64_t exponent, mantissa;
uint32_t max_mantissa;
min_burst = NIX_TM_MIN_SHAPER_BURST;
max_burst = roc_nix_tm_max_shaper_burst_get();
if (value < min_burst || value > max_burst)
return 0;
max_mantissa = (roc_model_is_cn9k() ? NIX_CN9K_TM_MAX_BURST_MANTISSA :
NIX_TM_MAX_BURST_MANTISSA);
/* Calculate burst exponent and mantissa using
* the following formula:
*
* value = (((256 + mantissa) << (exponent + 1) / 256)
*
*/
exponent = NIX_TM_MAX_BURST_EXPONENT;
mantissa = max_mantissa;
while (value < (1ull << (exponent + 1)))
exponent -= 1;
while (value < ((256 + mantissa) << (exponent + 1)) / 256)
mantissa -= 1;
if (exponent > NIX_TM_MAX_BURST_EXPONENT || mantissa > max_mantissa)
return 0;
if (exponent_p)
*exponent_p = exponent;
if (mantissa_p)
*mantissa_p = mantissa;
return NIX_TM_SHAPER_BURST(exponent, mantissa);
}
static void
nix_tm_shaper_conf_get(struct nix_tm_shaper_profile *profile,
struct nix_tm_shaper_data *cir,
struct nix_tm_shaper_data *pir)
{
memset(cir, 0, sizeof(*cir));
memset(pir, 0, sizeof(*pir));
if (!profile)
return;
/* Calculate CIR exponent and mantissa */
if (profile->commit.rate)
cir->rate = nix_tm_shaper_rate_conv(
profile->commit.rate, &cir->exponent, &cir->mantissa,
&cir->div_exp, profile->accuracy);
/* Calculate PIR exponent and mantissa */
if (profile->peak.rate)
pir->rate = nix_tm_shaper_rate_conv(
profile->peak.rate, &pir->exponent, &pir->mantissa,
&pir->div_exp, profile->accuracy);
/* Calculate CIR burst exponent and mantissa */
if (profile->commit.size)
cir->burst = nix_tm_shaper_burst_conv(profile->commit.size,
&cir->burst_exponent,
&cir->burst_mantissa);
/* Calculate PIR burst exponent and mantissa */
if (profile->peak.size)
pir->burst = nix_tm_shaper_burst_conv(profile->peak.size,
&pir->burst_exponent,
&pir->burst_mantissa);
}
uint32_t
nix_tm_check_rr(struct nix *nix, uint32_t parent_id, enum roc_nix_tm_tree tree,
uint32_t *rr_prio, uint32_t *max_prio)
{
uint32_t node_cnt[NIX_TM_TLX_SP_PRIO_MAX];
struct nix_tm_node_list *list;
struct nix_tm_node *node;
uint32_t rr_num = 0, i;
uint32_t children = 0;
uint32_t priority;
memset(node_cnt, 0, sizeof(node_cnt));
*rr_prio = 0xF;
*max_prio = UINT32_MAX;
list = nix_tm_node_list(nix, tree);
TAILQ_FOREACH(node, list, node) {
if (!node->parent)
continue;
if (!(node->parent->id == parent_id))
continue;
priority = node->priority;
node_cnt[priority]++;
children++;
}
for (i = 0; i < NIX_TM_TLX_SP_PRIO_MAX; i++) {
if (!node_cnt[i])
break;
if (node_cnt[i] > rr_num) {
*rr_prio = i;
rr_num = node_cnt[i];
}
}
/* RR group of single RR child is considered as SP */
if (rr_num == 1) {
*rr_prio = 0xF;
rr_num = 0;
}
/* Max prio will be returned only when we have non zero prio
* or if a parent has single child.
*/
if (i > 1 || (children == 1))
*max_prio = i - 1;
return rr_num;
}
static uint16_t
nix_tm_max_prio(struct nix *nix, uint16_t hw_lvl)
{
if (hw_lvl >= NIX_TXSCH_LVL_CNT)
return 0;
/* MDQ does not support SP */
if (hw_lvl == NIX_TXSCH_LVL_MDQ)
return 0;
/* PF's TL1 with VF's enabled does not support SP */
if (hw_lvl == NIX_TXSCH_LVL_TL1 && (!nix_tm_have_tl1_access(nix) ||
(nix->tm_flags & NIX_TM_TL1_NO_SP)))
return 0;
return NIX_TM_TLX_SP_PRIO_MAX - 1;
}
int
nix_tm_validate_prio(struct nix *nix, uint32_t lvl, uint32_t parent_id,
uint32_t priority, enum roc_nix_tm_tree tree)
{
uint8_t priorities[NIX_TM_TLX_SP_PRIO_MAX];
struct nix_tm_node_list *list;
struct nix_tm_node *node;
uint32_t rr_num = 0;
int i;
list = nix_tm_node_list(nix, tree);
/* Validate priority against max */
if (priority > nix_tm_max_prio(nix, nix_tm_lvl2nix(nix, lvl - 1)))
return NIX_ERR_TM_PRIO_EXCEEDED;
if (parent_id == ROC_NIX_TM_NODE_ID_INVALID)
return 0;
memset(priorities, 0, sizeof(priorities));
priorities[priority] = 1;
TAILQ_FOREACH(node, list, node) {
if (!node->parent)
continue;
if (node->parent->id != parent_id)
continue;
priorities[node->priority]++;
}
for (i = 0; i < NIX_TM_TLX_SP_PRIO_MAX; i++)
if (priorities[i] > 1)
rr_num++;
/* At max, one rr groups per parent */
if (rr_num > 1)
return NIX_ERR_TM_MULTIPLE_RR_GROUPS;
/* Check for previous priority to avoid holes in priorities */
if (priority && !priorities[priority - 1])
return NIX_ERR_TM_PRIO_ORDER;
return 0;
}
bool
nix_tm_child_res_valid(struct nix_tm_node_list *list,
struct nix_tm_node *parent)
{
struct nix_tm_node *child;
TAILQ_FOREACH(child, list, node) {
if (child->parent != parent)
continue;
if (!(child->flags & NIX_TM_NODE_HWRES))
return false;
}
return true;
}
uint8_t
nix_tm_tl1_default_prep(struct nix *nix, uint32_t schq, volatile uint64_t *reg,
volatile uint64_t *regval)
{
uint8_t k = 0;
/*
* Default config for TL1.
* For VF this is always ignored.
*/
plt_tm_dbg("Default config for main root %s(%u)",
nix_tm_hwlvl2str(NIX_TXSCH_LVL_TL1), schq);
/* Set DWRR quantum */
reg[k] = NIX_AF_TL1X_SCHEDULE(schq);
regval[k] = NIX_TM_TL1_DFLT_RR_QTM;
k++;
reg[k] = NIX_AF_TL1X_TOPOLOGY(schq);
regval[k] = (nix->tm_aggr_lvl_rr_prio << 1);
k++;
reg[k] = NIX_AF_TL1X_CIR(schq);
regval[k] = 0;
k++;
return k;
}
uint8_t
nix_tm_topology_reg_prep(struct nix *nix, struct nix_tm_node *node,
volatile uint64_t *reg, volatile uint64_t *regval,
volatile uint64_t *regval_mask)
{
struct roc_nix *roc_nix = nix_priv_to_roc_nix(nix);
uint8_t k = 0, hw_lvl, parent_lvl;
uint64_t parent = 0, child = 0;
enum roc_nix_tm_tree tree;
uint32_t rr_prio, schq;
uint16_t link, relchan;
tree = node->tree;
schq = node->hw_id;
hw_lvl = node->hw_lvl;
parent_lvl = hw_lvl + 1;
rr_prio = node->rr_prio;
/* Root node will not have a parent node */
if (hw_lvl == nix->tm_root_lvl)
parent = node->parent_hw_id;
else
parent = node->parent->hw_id;
link = nix->tx_link;
relchan = nix_tm_relchan_get(nix);
if (hw_lvl != NIX_TXSCH_LVL_SMQ)
child = nix_tm_find_prio_anchor(nix, node->id, tree);
/* Override default rr_prio when TL1
* Static Priority is disabled
*/
if (hw_lvl == NIX_TXSCH_LVL_TL1 && nix->tm_flags & NIX_TM_TL1_NO_SP) {
rr_prio = nix->tm_aggr_lvl_rr_prio;
child = 0;
}
plt_tm_dbg("Topology config node %s(%u)->%s(%" PRIu64 ") lvl %u, id %u"
" prio_anchor %" PRIu64 " rr_prio %u (%p)",
nix_tm_hwlvl2str(hw_lvl), schq, nix_tm_hwlvl2str(parent_lvl),
parent, node->lvl, node->id, child, rr_prio, node);
/* Prepare Topology and Link config */
switch (hw_lvl) {
case NIX_TXSCH_LVL_SMQ:
/* Set xoff which will be cleared later */
reg[k] = NIX_AF_SMQX_CFG(schq);
regval[k] = (BIT_ULL(50) | NIX_MIN_HW_FRS |
((nix->mtu & 0xFFFF) << 8));
/* Maximum Vtag insertion size as a multiple of four bytes */
if (roc_nix->hw_vlan_ins)
regval[k] |= (0x2ULL << 36);
regval_mask[k] = ~(BIT_ULL(50) | GENMASK_ULL(6, 0) |
GENMASK_ULL(23, 8) | GENMASK_ULL(38, 36));
k++;
/* Parent and schedule conf */
reg[k] = NIX_AF_MDQX_PARENT(schq);
regval[k] = parent << 16;
k++;
break;
case NIX_TXSCH_LVL_TL4:
/* Parent and schedule conf */
reg[k] = NIX_AF_TL4X_PARENT(schq);
regval[k] = parent << 16;
k++;
reg[k] = NIX_AF_TL4X_TOPOLOGY(schq);
regval[k] = (child << 32) | (rr_prio << 1);
k++;
/* Configure TL4 to send to SDP channel instead of CGX/LBK */
if (nix->sdp_link) {
reg[k] = NIX_AF_TL4X_SDP_LINK_CFG(schq);
regval[k] = BIT_ULL(12);
k++;
}
break;
case NIX_TXSCH_LVL_TL3:
/* Parent and schedule conf */
reg[k] = NIX_AF_TL3X_PARENT(schq);
regval[k] = parent << 16;
k++;
reg[k] = NIX_AF_TL3X_TOPOLOGY(schq);
regval[k] = (child << 32) | (rr_prio << 1);
k++;
/* Link configuration */
if (!nix->sdp_link &&
nix->tm_link_cfg_lvl == NIX_TXSCH_LVL_TL3) {
reg[k] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, link);
regval[k] = BIT_ULL(12) | relchan;
/* Enable BP if node is BP capable and rx_pause is set
*/
if (nix->rx_pause && node->bp_capa)
regval[k] |= BIT_ULL(13);
k++;
}
break;
case NIX_TXSCH_LVL_TL2:
/* Parent and schedule conf */
reg[k] = NIX_AF_TL2X_PARENT(schq);
regval[k] = parent << 16;
k++;
reg[k] = NIX_AF_TL2X_TOPOLOGY(schq);
regval[k] = (child << 32) | (rr_prio << 1);
k++;
/* Link configuration */
if (!nix->sdp_link &&
nix->tm_link_cfg_lvl == NIX_TXSCH_LVL_TL2) {
reg[k] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, link);
regval[k] = BIT_ULL(12) | relchan;
/* Enable BP if node is BP capable and rx_pause is set
*/
if (nix->rx_pause && node->bp_capa)
regval[k] |= BIT_ULL(13);
k++;
}
break;
case NIX_TXSCH_LVL_TL1:
reg[k] = NIX_AF_TL1X_TOPOLOGY(schq);
regval[k] = (child << 32) | (rr_prio << 1 /*RR_PRIO*/);
k++;
break;
}
return k;
}
static inline int
nix_tm_default_rr_weight(struct nix *nix)
{
struct roc_nix *roc_nix = nix_priv_to_roc_nix(nix);
uint32_t max_pktlen = roc_nix_max_pkt_len(roc_nix);
uint32_t weight;
/* Reduce TX VTAG Insertions */
max_pktlen -= 8;
weight = max_pktlen / roc_nix->dwrr_mtu;
if (max_pktlen % roc_nix->dwrr_mtu)
weight += 1;
return weight;
}
uint8_t
nix_tm_sched_reg_prep(struct nix *nix, struct nix_tm_node *node, volatile uint64_t *reg,
volatile uint64_t *regval)
{
uint64_t strict_prio = node->priority;
uint32_t hw_lvl = node->hw_lvl;
uint32_t schq = node->hw_id;
uint64_t rr_quantum;
uint8_t k = 0;
/* If minimum weight not provided, then by default RR_QUANTUM
* should be in sync with kernel, i.e., single MTU value
*/
if (!node->weight)
rr_quantum = nix_tm_default_rr_weight(nix);
else
/* For CN9K, weight needs to be converted to quantum */
rr_quantum = nix_tm_weight_to_rr_quantum(node->weight);
/* For children to root, strict prio is default if either
* device root is TL2 or TL1 Static Priority is disabled.
*/
if (hw_lvl == NIX_TXSCH_LVL_TL2 &&
(!nix_tm_have_tl1_access(nix) || nix->tm_flags & NIX_TM_TL1_NO_SP))
strict_prio = nix->tm_aggr_lvl_rr_prio;
plt_tm_dbg("Schedule config node %s(%u) lvl %u id %u, "
"prio 0x%" PRIx64 ", rr_quantum/rr_wt 0x%" PRIx64 " (%p)",
nix_tm_hwlvl2str(node->hw_lvl), schq, node->lvl, node->id, strict_prio,
rr_quantum, node);
switch (hw_lvl) {
case NIX_TXSCH_LVL_SMQ:
reg[k] = NIX_AF_MDQX_SCHEDULE(schq);
regval[k] = (strict_prio << 24) | rr_quantum;
k++;
break;
case NIX_TXSCH_LVL_TL4:
reg[k] = NIX_AF_TL4X_SCHEDULE(schq);
regval[k] = (strict_prio << 24) | rr_quantum;
k++;
break;
case NIX_TXSCH_LVL_TL3:
reg[k] = NIX_AF_TL3X_SCHEDULE(schq);
regval[k] = (strict_prio << 24) | rr_quantum;
k++;
break;
case NIX_TXSCH_LVL_TL2:
reg[k] = NIX_AF_TL2X_SCHEDULE(schq);
regval[k] = (strict_prio << 24) | rr_quantum;
k++;
break;
case NIX_TXSCH_LVL_TL1:
reg[k] = NIX_AF_TL1X_SCHEDULE(schq);
regval[k] = rr_quantum;
k++;
break;
}
return k;
}
uint8_t
nix_tm_shaper_reg_prep(struct nix_tm_node *node,
struct nix_tm_shaper_profile *profile,
volatile uint64_t *reg, volatile uint64_t *regval)
{
struct nix_tm_shaper_data cir, pir;
uint32_t schq = node->hw_id;
uint64_t adjust = 0;
uint8_t k = 0;
nix_tm_shaper_conf_get(profile, &cir, &pir);
if (profile && node->pkt_mode)
adjust = profile->pkt_mode_adj;
else if (profile)
adjust = profile->pkt_len_adj;
adjust &= 0x1FF;
plt_tm_dbg("Shaper config node %s(%u) lvl %u id %u, "
"pir %" PRIu64 "(%" PRIu64 "B),"
" cir %" PRIu64 "(%" PRIu64 "B)"
"adjust 0x%" PRIx64 "(pktmode %u) (%p)",
nix_tm_hwlvl2str(node->hw_lvl), schq, node->lvl, node->id,
pir.rate, pir.burst, cir.rate, cir.burst, adjust,
node->pkt_mode, node);
switch (node->hw_lvl) {
case NIX_TXSCH_LVL_SMQ:
/* Configure PIR, CIR */
reg[k] = NIX_AF_MDQX_PIR(schq);
regval[k] = (pir.rate && pir.burst) ?
(nix_tm_shaper2regval(&pir) | 1) :
0;
k++;
reg[k] = NIX_AF_MDQX_CIR(schq);
regval[k] = (cir.rate && cir.burst) ?
(nix_tm_shaper2regval(&cir) | 1) :
0;
k++;
/* Configure RED ALG */
reg[k] = NIX_AF_MDQX_SHAPE(schq);
regval[k] = (adjust | (uint64_t)node->red_algo << 9 |
(uint64_t)node->pkt_mode << 24);
k++;
break;
case NIX_TXSCH_LVL_TL4:
/* Configure PIR, CIR */
reg[k] = NIX_AF_TL4X_PIR(schq);
regval[k] = (pir.rate && pir.burst) ?
(nix_tm_shaper2regval(&pir) | 1) :
0;
k++;
reg[k] = NIX_AF_TL4X_CIR(schq);
regval[k] = (cir.rate && cir.burst) ?
(nix_tm_shaper2regval(&cir) | 1) :
0;
k++;
/* Configure RED algo */
reg[k] = NIX_AF_TL4X_SHAPE(schq);
regval[k] = (adjust | (uint64_t)node->red_algo << 9 |
(uint64_t)node->pkt_mode << 24);
k++;
break;
case NIX_TXSCH_LVL_TL3:
/* Configure PIR, CIR */
reg[k] = NIX_AF_TL3X_PIR(schq);
regval[k] = (pir.rate && pir.burst) ?
(nix_tm_shaper2regval(&pir) | 1) :
0;
k++;
reg[k] = NIX_AF_TL3X_CIR(schq);
regval[k] = (cir.rate && cir.burst) ?
(nix_tm_shaper2regval(&cir) | 1) :
0;
k++;
/* Configure RED algo */
reg[k] = NIX_AF_TL3X_SHAPE(schq);
regval[k] = (adjust | (uint64_t)node->red_algo << 9 |
(uint64_t)node->pkt_mode << 24);
k++;
break;
case NIX_TXSCH_LVL_TL2:
/* Configure PIR, CIR */
reg[k] = NIX_AF_TL2X_PIR(schq);
regval[k] = (pir.rate && pir.burst) ?
(nix_tm_shaper2regval(&pir) | 1) :
0;
k++;
reg[k] = NIX_AF_TL2X_CIR(schq);
regval[k] = (cir.rate && cir.burst) ?
(nix_tm_shaper2regval(&cir) | 1) :
0;
k++;
/* Configure RED algo */
reg[k] = NIX_AF_TL2X_SHAPE(schq);
regval[k] = (adjust | (uint64_t)node->red_algo << 9 |
(uint64_t)node->pkt_mode << 24);
k++;
break;
case NIX_TXSCH_LVL_TL1:
/* Configure CIR */
reg[k] = NIX_AF_TL1X_CIR(schq);
regval[k] = (cir.rate && cir.burst) ?
(nix_tm_shaper2regval(&cir) | 1) :
0;
k++;
/* Configure length disable and adjust */
reg[k] = NIX_AF_TL1X_SHAPE(schq);
regval[k] = (adjust | (uint64_t)node->pkt_mode << 24);
k++;
break;
}
return k;
}
uint8_t
nix_tm_sw_xoff_prep(struct nix_tm_node *node, bool enable,
volatile uint64_t *reg, volatile uint64_t *regval)
{
uint32_t hw_lvl = node->hw_lvl;
uint32_t schq = node->hw_id;
uint8_t k = 0;
plt_tm_dbg("sw xoff config node %s(%u) lvl %u id %u, enable %u (%p)",
nix_tm_hwlvl2str(hw_lvl), schq, node->lvl, node->id, enable,
node);
regval[k] = enable;
switch (hw_lvl) {
case NIX_TXSCH_LVL_MDQ:
reg[k] = NIX_AF_MDQX_SW_XOFF(schq);
k++;
break;
case NIX_TXSCH_LVL_TL4:
reg[k] = NIX_AF_TL4X_SW_XOFF(schq);
k++;
break;
case NIX_TXSCH_LVL_TL3:
reg[k] = NIX_AF_TL3X_SW_XOFF(schq);
k++;
break;
case NIX_TXSCH_LVL_TL2:
reg[k] = NIX_AF_TL2X_SW_XOFF(schq);
k++;
break;
case NIX_TXSCH_LVL_TL1:
reg[k] = NIX_AF_TL1X_SW_XOFF(schq);
k++;
break;
default:
break;
}
return k;
}
/* Search for min rate in topology */
uint64_t
nix_tm_shaper_profile_rate_min(struct nix *nix)
{
struct nix_tm_shaper_profile *profile;
uint64_t rate_min = 1E9; /* 1 Gbps */
TAILQ_FOREACH(profile, &nix->shaper_profile_list, shaper) {
if (profile->peak.rate && profile->peak.rate < rate_min)
rate_min = profile->peak.rate;
if (profile->commit.rate && profile->commit.rate < rate_min)
rate_min = profile->commit.rate;
}
return rate_min;
}
uint16_t
nix_tm_resource_avail(struct nix *nix, uint8_t hw_lvl, bool contig)
{
uint32_t pos = 0, start_pos = 0;
struct plt_bitmap *bmp;
uint16_t count = 0;
uint64_t slab = 0;
bmp = contig ? nix->schq_contig_bmp[hw_lvl] : nix->schq_bmp[hw_lvl];
plt_bitmap_scan_init(bmp);
if (!plt_bitmap_scan(bmp, &pos, &slab))
return count;
/* Count bit set */
start_pos = pos;
do {
count += __builtin_popcountll(slab);
if (!plt_bitmap_scan(bmp, &pos, &slab))
break;
} while (pos != start_pos);
return count;
}
uint16_t
nix_tm_resource_estimate(struct nix *nix, uint16_t *schq_contig, uint16_t *schq,
enum roc_nix_tm_tree tree)
{
struct nix_tm_node_list *list;
uint8_t contig_cnt, hw_lvl;
struct nix_tm_node *parent;
uint16_t cnt = 0, avail;
list = nix_tm_node_list(nix, tree);
/* Walk through parents from TL1..TL4 */
for (hw_lvl = NIX_TXSCH_LVL_TL1; hw_lvl > 0; hw_lvl--) {
TAILQ_FOREACH(parent, list, node) {
if (hw_lvl != parent->hw_lvl)
continue;
/* Skip accounting for children whose
* parent does not indicate so.
*/
if (!parent->child_realloc)
continue;
/* Count children needed */
schq[hw_lvl - 1] += parent->rr_num;
if (parent->max_prio != UINT32_MAX) {
contig_cnt = parent->max_prio + 1;
schq_contig[hw_lvl - 1] += contig_cnt;
/* When we have SP + DWRR at a parent,
* we will always have a spare schq at rr prio
* location in contiguous queues. Hence reduce
* discontiguous count by 1.
*/
if (parent->max_prio > 0 && parent->rr_num)
schq[hw_lvl - 1] -= 1;
}
}
}
schq[nix->tm_root_lvl] = 1;
if (!nix_tm_have_tl1_access(nix))
schq[NIX_TXSCH_LVL_TL1] = 1;
/* Now check for existing resources */
for (hw_lvl = 0; hw_lvl < NIX_TXSCH_LVL_CNT; hw_lvl++) {
avail = nix_tm_resource_avail(nix, hw_lvl, false);
if (schq[hw_lvl] <= avail)
schq[hw_lvl] = 0;
else
schq[hw_lvl] -= avail;
/* For contiguous queues, realloc everything */
avail = nix_tm_resource_avail(nix, hw_lvl, true);
if (schq_contig[hw_lvl] <= avail)
schq_contig[hw_lvl] = 0;
cnt += schq[hw_lvl];
cnt += schq_contig[hw_lvl];
plt_tm_dbg("Estimate resources needed for %s: dis %u cont %u",
nix_tm_hwlvl2str(hw_lvl), schq[hw_lvl],
schq_contig[hw_lvl]);
}
return cnt;
}
uint16_t
roc_nix_tm_leaf_cnt(struct roc_nix *roc_nix)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
struct nix_tm_node_list *list;
struct nix_tm_node *node;
uint16_t leaf_cnt = 0;
/* Count leafs only in user list */
list = nix_tm_node_list(nix, ROC_NIX_TM_USER);
TAILQ_FOREACH(node, list, node) {
if (node->id < nix->nb_tx_queues)
leaf_cnt++;
}
return leaf_cnt;
}
int
roc_nix_tm_node_lvl(struct roc_nix *roc_nix, uint32_t node_id)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
struct nix_tm_node *node;
node = nix_tm_node_search(nix, node_id, ROC_NIX_TM_USER);
if (!node)
return NIX_ERR_TM_INVALID_NODE;
return node->lvl;
}
struct roc_nix_tm_node *
roc_nix_tm_node_get(struct roc_nix *roc_nix, uint32_t node_id)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
struct nix_tm_node *node;
node = nix_tm_node_search(nix, node_id, ROC_NIX_TM_USER);
return (struct roc_nix_tm_node *)node;
}
struct roc_nix_tm_node *
roc_nix_tm_node_next(struct roc_nix *roc_nix, struct roc_nix_tm_node *__prev)
{
struct nix_tm_node *prev = (struct nix_tm_node *)__prev;
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
struct nix_tm_node_list *list;
list = nix_tm_node_list(nix, ROC_NIX_TM_USER);
/* HEAD of the list */
if (!prev)
return (struct roc_nix_tm_node *)TAILQ_FIRST(list);
/* Next entry */
if (prev->tree != ROC_NIX_TM_USER)
return NULL;
return (struct roc_nix_tm_node *)TAILQ_NEXT(prev, node);
}
struct roc_nix_tm_shaper_profile *
roc_nix_tm_shaper_profile_get(struct roc_nix *roc_nix, uint32_t profile_id)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
struct nix_tm_shaper_profile *profile;
profile = nix_tm_shaper_profile_search(nix, profile_id);
return (struct roc_nix_tm_shaper_profile *)profile;
}
struct roc_nix_tm_shaper_profile *
roc_nix_tm_shaper_profile_next(struct roc_nix *roc_nix,
struct roc_nix_tm_shaper_profile *__prev)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
struct nix_tm_shaper_profile_list *list;
struct nix_tm_shaper_profile *prev;
prev = (struct nix_tm_shaper_profile *)__prev;
list = &nix->shaper_profile_list;
/* HEAD of the list */
if (!prev)
return (struct roc_nix_tm_shaper_profile *)TAILQ_FIRST(list);
return (struct roc_nix_tm_shaper_profile *)TAILQ_NEXT(prev, shaper);
}
struct nix_tm_node *
nix_tm_node_alloc(void)
{
struct nix_tm_node *node;
node = plt_zmalloc(sizeof(struct nix_tm_node), 0);
if (!node)
return NULL;
node->free_fn = plt_free;
return node;
}
void
nix_tm_node_free(struct nix_tm_node *node)
{
if (!node || node->free_fn == NULL)
return;
(node->free_fn)(node);
}
struct nix_tm_shaper_profile *
nix_tm_shaper_profile_alloc(void)
{
struct nix_tm_shaper_profile *profile;
profile = plt_zmalloc(sizeof(struct nix_tm_shaper_profile), 0);
if (!profile)
return NULL;
profile->free_fn = plt_free;
return profile;
}
void
nix_tm_shaper_profile_free(struct nix_tm_shaper_profile *profile)
{
if (!profile || !profile->free_fn)
return;
(profile->free_fn)(profile);
}
int
roc_nix_tm_node_stats_get(struct roc_nix *roc_nix, uint32_t node_id, bool clear,
struct roc_nix_tm_node_stats *n_stats)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
struct mbox *mbox = (&nix->dev)->mbox;
struct nix_txschq_config *req, *rsp;
struct nix_tm_node *node;
uint32_t schq;
int rc, i;
node = nix_tm_node_search(nix, node_id, ROC_NIX_TM_USER);
if (!node)
return NIX_ERR_TM_INVALID_NODE;
if (node->hw_lvl != NIX_TXSCH_LVL_TL1)
return NIX_ERR_OP_NOTSUP;
/* Check if node has HW resource */
if (!(node->flags & NIX_TM_NODE_HWRES))
return 0;
schq = node->hw_id;
/* Skip fetch if not requested */
if (!n_stats)
goto clear_stats;
memset(n_stats, 0, sizeof(struct roc_nix_tm_node_stats));
req = mbox_alloc_msg_nix_txschq_cfg(mbox);
req->read = 1;
req->lvl = NIX_TXSCH_LVL_TL1;
i = 0;
req->reg[i++] = NIX_AF_TL1X_DROPPED_PACKETS(schq);
req->reg[i++] = NIX_AF_TL1X_DROPPED_BYTES(schq);
req->reg[i++] = NIX_AF_TL1X_GREEN_PACKETS(schq);
req->reg[i++] = NIX_AF_TL1X_GREEN_BYTES(schq);
req->reg[i++] = NIX_AF_TL1X_YELLOW_PACKETS(schq);
req->reg[i++] = NIX_AF_TL1X_YELLOW_BYTES(schq);
req->reg[i++] = NIX_AF_TL1X_RED_PACKETS(schq);
req->reg[i++] = NIX_AF_TL1X_RED_BYTES(schq);
req->num_regs = i;
rc = mbox_process_msg(mbox, (void **)&rsp);
if (rc)
return rc;
/* Return stats */
n_stats->stats[ROC_NIX_TM_NODE_PKTS_DROPPED] = rsp->regval[0];
n_stats->stats[ROC_NIX_TM_NODE_BYTES_DROPPED] = rsp->regval[1];
n_stats->stats[ROC_NIX_TM_NODE_GREEN_PKTS] = rsp->regval[2];
n_stats->stats[ROC_NIX_TM_NODE_GREEN_BYTES] = rsp->regval[3];
n_stats->stats[ROC_NIX_TM_NODE_YELLOW_PKTS] = rsp->regval[4];
n_stats->stats[ROC_NIX_TM_NODE_YELLOW_BYTES] = rsp->regval[5];
n_stats->stats[ROC_NIX_TM_NODE_RED_PKTS] = rsp->regval[6];
n_stats->stats[ROC_NIX_TM_NODE_RED_BYTES] = rsp->regval[7];
clear_stats:
if (!clear)
return 0;
/* Clear all the stats */
req = mbox_alloc_msg_nix_txschq_cfg(mbox);
req->lvl = NIX_TXSCH_LVL_TL1;
i = 0;
req->reg[i++] = NIX_AF_TL1X_DROPPED_PACKETS(schq);
req->reg[i++] = NIX_AF_TL1X_DROPPED_BYTES(schq);
req->reg[i++] = NIX_AF_TL1X_GREEN_PACKETS(schq);
req->reg[i++] = NIX_AF_TL1X_GREEN_BYTES(schq);
req->reg[i++] = NIX_AF_TL1X_YELLOW_PACKETS(schq);
req->reg[i++] = NIX_AF_TL1X_YELLOW_BYTES(schq);
req->reg[i++] = NIX_AF_TL1X_RED_PACKETS(schq);
req->reg[i++] = NIX_AF_TL1X_RED_BYTES(schq);
req->num_regs = i;
return mbox_process_msg(mbox, (void **)&rsp);
}
bool
roc_nix_tm_is_user_hierarchy_enabled(struct roc_nix *roc_nix)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
if ((nix->tm_flags & NIX_TM_HIERARCHY_ENA) &&
(nix->tm_tree == ROC_NIX_TM_USER))
return true;
return false;
}
int
roc_nix_tm_tree_type_get(struct roc_nix *roc_nix)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
return nix->tm_tree;
}
int
roc_nix_tm_max_prio(struct roc_nix *roc_nix, int lvl)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
int hw_lvl = nix_tm_lvl2nix(nix, lvl);
return nix_tm_max_prio(nix, hw_lvl);
}
int
roc_nix_tm_lvl_is_leaf(struct roc_nix *roc_nix, int lvl)
{
return nix_tm_is_leaf(roc_nix_to_nix_priv(roc_nix), lvl);
}
void
roc_nix_tm_shaper_default_red_algo(struct roc_nix_tm_node *node,
struct roc_nix_tm_shaper_profile *roc_prof)
{
struct nix_tm_node *tm_node = (struct nix_tm_node *)node;
struct nix_tm_shaper_profile *profile;
struct nix_tm_shaper_data cir, pir;
if (!roc_prof)
return;
profile = (struct nix_tm_shaper_profile *)roc_prof->reserved;
tm_node->red_algo = roc_prof->red_algo;
/* C0 doesn't support STALL when both PIR & CIR are enabled */
if (roc_model_is_cn96_cx()) {
nix_tm_shaper_conf_get(profile, &cir, &pir);
if (pir.rate && cir.rate)
tm_node->red_algo = NIX_REDALG_DISCARD;
}
}
int
roc_nix_tm_lvl_cnt_get(struct roc_nix *roc_nix)
{
if (nix_tm_have_tl1_access(roc_nix_to_nix_priv(roc_nix)))
return NIX_TXSCH_LVL_CNT;
return (NIX_TXSCH_LVL_CNT - 1);
}
int
roc_nix_tm_lvl_have_link_access(struct roc_nix *roc_nix, int lvl)
{
struct nix *nix = roc_nix_to_nix_priv(roc_nix);
if (nix_tm_lvl2nix(nix, lvl) == NIX_TXSCH_LVL_TL1)
return 1;
return 0;
}