mirror of https://github.com/F-Stack/f-stack.git
6781 lines
197 KiB
C
6781 lines
197 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2001-2020 Intel Corporation
|
|
*/
|
|
|
|
#include "ice_switch.h"
|
|
#include "ice_flex_type.h"
|
|
#include "ice_flow.h"
|
|
|
|
#define ICE_ETH_DA_OFFSET 0
|
|
#define ICE_ETH_ETHTYPE_OFFSET 12
|
|
#define ICE_ETH_VLAN_TCI_OFFSET 14
|
|
#define ICE_MAX_VLAN_ID 0xFFF
|
|
|
|
/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
|
|
* struct to configure any switch filter rules.
|
|
* {DA (6 bytes), SA(6 bytes),
|
|
* Ether type (2 bytes for header without VLAN tag) OR
|
|
* VLAN tag (4 bytes for header with VLAN tag) }
|
|
*
|
|
* Word on Hardcoded values
|
|
* byte 0 = 0x2: to identify it as locally administered DA MAC
|
|
* byte 6 = 0x2: to identify it as locally administered SA MAC
|
|
* byte 12 = 0x81 & byte 13 = 0x00:
|
|
* In case of VLAN filter first two bytes defines ether type (0x8100)
|
|
* and remaining two bytes are placeholder for programming a given VLAN ID
|
|
* In case of Ether type filter it is treated as header without VLAN tag
|
|
* and byte 12 and 13 is used to program a given Ether type instead
|
|
*/
|
|
#define DUMMY_ETH_HDR_LEN 16
|
|
static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
|
|
0x2, 0, 0, 0, 0, 0,
|
|
0x81, 0, 0, 0};
|
|
|
|
#define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE \
|
|
(sizeof(struct ice_aqc_sw_rules_elem) - \
|
|
sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
|
|
sizeof(struct ice_sw_rule_lkup_rx_tx) + DUMMY_ETH_HDR_LEN - 1)
|
|
#define ICE_SW_RULE_RX_TX_NO_HDR_SIZE \
|
|
(sizeof(struct ice_aqc_sw_rules_elem) - \
|
|
sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
|
|
sizeof(struct ice_sw_rule_lkup_rx_tx) - 1)
|
|
#define ICE_SW_RULE_LG_ACT_SIZE(n) \
|
|
(sizeof(struct ice_aqc_sw_rules_elem) - \
|
|
sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
|
|
sizeof(struct ice_sw_rule_lg_act) - \
|
|
sizeof(((struct ice_sw_rule_lg_act *)0)->act) + \
|
|
((n) * sizeof(((struct ice_sw_rule_lg_act *)0)->act)))
|
|
#define ICE_SW_RULE_VSI_LIST_SIZE(n) \
|
|
(sizeof(struct ice_aqc_sw_rules_elem) - \
|
|
sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
|
|
sizeof(struct ice_sw_rule_vsi_list) - \
|
|
sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi) + \
|
|
((n) * sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi)))
|
|
|
|
struct ice_dummy_pkt_offsets {
|
|
enum ice_protocol_type type;
|
|
u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_gre_tcp_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_ETYPE_OL, 12 },
|
|
{ ICE_IPV4_OFOS, 14 },
|
|
{ ICE_NVGRE, 34 },
|
|
{ ICE_MAC_IL, 42 },
|
|
{ ICE_IPV4_IL, 56 },
|
|
{ ICE_TCP_IL, 76 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const
|
|
u8 dummy_gre_tcp_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x08, 0x00, /* ICE_ETYPE_OL 12 */
|
|
|
|
0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x2F, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x08, 0x00,
|
|
|
|
0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x06, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x50, 0x02, 0x20, 0x00,
|
|
0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_gre_udp_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_ETYPE_OL, 12 },
|
|
{ ICE_IPV4_OFOS, 14 },
|
|
{ ICE_NVGRE, 34 },
|
|
{ ICE_MAC_IL, 42 },
|
|
{ ICE_IPV4_IL, 56 },
|
|
{ ICE_UDP_ILOS, 76 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const
|
|
u8 dummy_gre_udp_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x08, 0x00, /* ICE_ETYPE_OL 12 */
|
|
|
|
0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x2F, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x08, 0x00,
|
|
|
|
0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x11, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */
|
|
0x00, 0x08, 0x00, 0x00,
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_udp_tun_tcp_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_ETYPE_OL, 12 },
|
|
{ ICE_IPV4_OFOS, 14 },
|
|
{ ICE_UDP_OF, 34 },
|
|
{ ICE_VXLAN, 42 },
|
|
{ ICE_GENEVE, 42 },
|
|
{ ICE_VXLAN_GPE, 42 },
|
|
{ ICE_MAC_IL, 50 },
|
|
{ ICE_IPV4_IL, 64 },
|
|
{ ICE_TCP_IL, 84 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const
|
|
u8 dummy_udp_tun_tcp_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x08, 0x00, /* ICE_ETYPE_OL 12 */
|
|
|
|
0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
|
|
0x00, 0x01, 0x00, 0x00,
|
|
0x40, 0x11, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
|
|
0x00, 0x46, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x08, 0x00,
|
|
|
|
0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
|
|
0x00, 0x01, 0x00, 0x00,
|
|
0x40, 0x06, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x50, 0x02, 0x20, 0x00,
|
|
0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_udp_tun_udp_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_ETYPE_OL, 12 },
|
|
{ ICE_IPV4_OFOS, 14 },
|
|
{ ICE_UDP_OF, 34 },
|
|
{ ICE_VXLAN, 42 },
|
|
{ ICE_GENEVE, 42 },
|
|
{ ICE_VXLAN_GPE, 42 },
|
|
{ ICE_MAC_IL, 50 },
|
|
{ ICE_IPV4_IL, 64 },
|
|
{ ICE_UDP_ILOS, 84 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const
|
|
u8 dummy_udp_tun_udp_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x08, 0x00, /* ICE_ETYPE_OL 12 */
|
|
|
|
0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
|
|
0x00, 0x01, 0x00, 0x00,
|
|
0x00, 0x11, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
|
|
0x00, 0x3a, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x08, 0x00,
|
|
|
|
0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
|
|
0x00, 0x01, 0x00, 0x00,
|
|
0x00, 0x11, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
|
|
0x00, 0x08, 0x00, 0x00,
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_udp_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_ETYPE_OL, 12 },
|
|
{ ICE_IPV4_OFOS, 14 },
|
|
{ ICE_UDP_ILOS, 34 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const u8
|
|
dummy_udp_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x08, 0x00, /* ICE_ETYPE_OL 12 */
|
|
|
|
0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
|
|
0x00, 0x01, 0x00, 0x00,
|
|
0x00, 0x11, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
|
|
0x00, 0x08, 0x00, 0x00,
|
|
|
|
0x00, 0x00, /* 2 bytes for 4 byte alignment */
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_tcp_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_ETYPE_OL, 12 },
|
|
{ ICE_IPV4_OFOS, 14 },
|
|
{ ICE_TCP_IL, 34 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const u8
|
|
dummy_tcp_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x08, 0x00, /* ICE_ETYPE_OL 12 */
|
|
|
|
0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
|
|
0x00, 0x01, 0x00, 0x00,
|
|
0x00, 0x06, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x50, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, /* 2 bytes for 4 byte alignment */
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_tcp_ipv6_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_ETYPE_OL, 12 },
|
|
{ ICE_IPV6_OFOS, 14 },
|
|
{ ICE_TCP_IL, 54 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const u8
|
|
dummy_tcp_ipv6_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x86, 0xDD, /* ICE_ETYPE_OL 12 */
|
|
|
|
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
|
|
0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x50, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, /* 2 bytes for 4 byte alignment */
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_udp_ipv6_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_ETYPE_OL, 12 },
|
|
{ ICE_IPV6_OFOS, 14 },
|
|
{ ICE_UDP_ILOS, 54 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const u8
|
|
dummy_udp_ipv6_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x86, 0xDD, /* ICE_ETYPE_OL 12 */
|
|
|
|
0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
|
|
0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
|
|
0x00, 0x08, 0x00, 0x00,
|
|
|
|
0x00, 0x00, /* 2 bytes for 4 byte alignment */
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_udp_gtp_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_IPV4_OFOS, 14 },
|
|
{ ICE_UDP_OF, 34 },
|
|
{ ICE_GTP, 42 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const u8
|
|
dummy_udp_gtp_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x08, 0x00,
|
|
|
|
0x45, 0x00, 0x00, 0x30, /* ICE_IPV4_OFOS 14 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x11, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x08, 0x68, /* ICE_UDP_OF 34 */
|
|
0x00, 0x1c, 0x00, 0x00,
|
|
|
|
0x34, 0xff, 0x00, 0x0c, /* ICE_GTP 42 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x85,
|
|
|
|
0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
};
|
|
|
|
static const
|
|
struct ice_dummy_pkt_offsets dummy_pppoe_packet_offsets[] = {
|
|
{ ICE_MAC_OFOS, 0 },
|
|
{ ICE_ETYPE_OL, 12 },
|
|
{ ICE_VLAN_OFOS, 14},
|
|
{ ICE_PPPOE, 18 },
|
|
{ ICE_PROTOCOL_LAST, 0 },
|
|
};
|
|
|
|
static const u8
|
|
dummy_pppoe_packet[] = {
|
|
0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x81, 0x00, /* ICE_ETYPE_OL 12 */
|
|
|
|
0x00, 0x00, 0x88, 0x64, /* ICE_VLAN_OFOS 14 */
|
|
|
|
0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 18 */
|
|
0x00, 0x16,
|
|
|
|
0x00, 0x21, /* PPP Link Layer 24 */
|
|
|
|
0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 26 */
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, /* 2 bytes for 4 bytes alignment */
|
|
};
|
|
|
|
/* this is a recipe to profile association bitmap */
|
|
static ice_declare_bitmap(recipe_to_profile[ICE_MAX_NUM_RECIPES],
|
|
ICE_MAX_NUM_PROFILES);
|
|
|
|
/* this is a profile to recipe association bitmap */
|
|
static ice_declare_bitmap(profile_to_recipe[ICE_MAX_NUM_PROFILES],
|
|
ICE_MAX_NUM_RECIPES);
|
|
|
|
static void ice_get_recp_to_prof_map(struct ice_hw *hw);
|
|
|
|
/**
|
|
* ice_collect_result_idx - copy result index values
|
|
* @buf: buffer that contains the result index
|
|
* @recp: the recipe struct to copy data into
|
|
*/
|
|
static void ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
|
|
struct ice_sw_recipe *recp)
|
|
{
|
|
if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
|
|
ice_set_bit(buf->content.result_indx &
|
|
~ICE_AQ_RECIPE_RESULT_EN, recp->res_idxs);
|
|
}
|
|
|
|
/**
|
|
* ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
|
|
* @hw: pointer to hardware structure
|
|
* @recps: struct that we need to populate
|
|
* @rid: recipe ID that we are populating
|
|
* @refresh_required: true if we should get recipe to profile mapping from FW
|
|
*
|
|
* This function is used to populate all the necessary entries into our
|
|
* bookkeeping so that we have a current list of all the recipes that are
|
|
* programmed in the firmware.
|
|
*/
|
|
static enum ice_status
|
|
ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
|
|
bool *refresh_required)
|
|
{
|
|
ice_declare_bitmap(result_bm, ICE_MAX_FV_WORDS);
|
|
struct ice_aqc_recipe_data_elem *tmp;
|
|
u16 num_recps = ICE_MAX_NUM_RECIPES;
|
|
struct ice_prot_lkup_ext *lkup_exts;
|
|
u16 i, sub_recps, fv_word_idx = 0;
|
|
enum ice_status status;
|
|
|
|
ice_zero_bitmap(result_bm, ICE_MAX_FV_WORDS);
|
|
|
|
/* we need a buffer big enough to accommodate all the recipes */
|
|
tmp = (struct ice_aqc_recipe_data_elem *)ice_calloc(hw,
|
|
ICE_MAX_NUM_RECIPES, sizeof(*tmp));
|
|
if (!tmp)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
tmp[0].recipe_indx = rid;
|
|
status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
|
|
/* non-zero status meaning recipe doesn't exist */
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
/* Get recipe to profile map so that we can get the fv from lkups that
|
|
* we read for a recipe from FW. Since we want to minimize the number of
|
|
* times we make this FW call, just make one call and cache the copy
|
|
* until a new recipe is added. This operation is only required the
|
|
* first time to get the changes from FW. Then to search existing
|
|
* entries we don't need to update the cache again until another recipe
|
|
* gets added.
|
|
*/
|
|
if (*refresh_required) {
|
|
ice_get_recp_to_prof_map(hw);
|
|
*refresh_required = false;
|
|
}
|
|
|
|
/* Start populating all the entries for recps[rid] based on lkups from
|
|
* firmware. Note that we are only creating the root recipe in our
|
|
* database.
|
|
*/
|
|
lkup_exts = &recps[rid].lkup_exts;
|
|
|
|
for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
|
|
struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
|
|
struct ice_recp_grp_entry *rg_entry;
|
|
u8 prof, idx, prot = 0;
|
|
bool is_root;
|
|
u16 off = 0;
|
|
|
|
rg_entry = (struct ice_recp_grp_entry *)
|
|
ice_malloc(hw, sizeof(*rg_entry));
|
|
if (!rg_entry) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_unroll;
|
|
}
|
|
|
|
idx = root_bufs.recipe_indx;
|
|
is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
|
|
|
|
/* Mark all result indices in this chain */
|
|
if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
|
|
ice_set_bit(root_bufs.content.result_indx &
|
|
~ICE_AQ_RECIPE_RESULT_EN, result_bm);
|
|
|
|
/* get the first profile that is associated with rid */
|
|
prof = ice_find_first_bit(recipe_to_profile[idx],
|
|
ICE_MAX_NUM_PROFILES);
|
|
for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
|
|
u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
|
|
|
|
rg_entry->fv_idx[i] = lkup_indx;
|
|
rg_entry->fv_mask[i] =
|
|
LE16_TO_CPU(root_bufs.content.mask[i + 1]);
|
|
|
|
/* If the recipe is a chained recipe then all its
|
|
* child recipe's result will have a result index.
|
|
* To fill fv_words we should not use those result
|
|
* index, we only need the protocol ids and offsets.
|
|
* We will skip all the fv_idx which stores result
|
|
* index in them. We also need to skip any fv_idx which
|
|
* has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
|
|
* valid offset value.
|
|
*/
|
|
if (ice_is_bit_set(hw->switch_info->prof_res_bm[prof],
|
|
rg_entry->fv_idx[i]) ||
|
|
rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
|
|
rg_entry->fv_idx[i] == 0)
|
|
continue;
|
|
|
|
ice_find_prot_off(hw, ICE_BLK_SW, prof,
|
|
rg_entry->fv_idx[i], &prot, &off);
|
|
lkup_exts->fv_words[fv_word_idx].prot_id = prot;
|
|
lkup_exts->fv_words[fv_word_idx].off = off;
|
|
fv_word_idx++;
|
|
}
|
|
/* populate rg_list with the data from the child entry of this
|
|
* recipe
|
|
*/
|
|
LIST_ADD(&rg_entry->l_entry, &recps[rid].rg_list);
|
|
|
|
/* Propagate some data to the recipe database */
|
|
recps[idx].is_root = is_root;
|
|
recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
|
|
ice_zero_bitmap(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
|
|
if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
|
|
recps[idx].chain_idx = root_bufs.content.result_indx &
|
|
~ICE_AQ_RECIPE_RESULT_EN;
|
|
ice_set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
|
|
} else {
|
|
recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
|
|
}
|
|
|
|
if (!is_root)
|
|
continue;
|
|
|
|
/* Only do the following for root recipes entries */
|
|
ice_memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
|
|
sizeof(recps[idx].r_bitmap), ICE_NONDMA_TO_NONDMA);
|
|
recps[idx].root_rid = root_bufs.content.rid &
|
|
~ICE_AQ_RECIPE_ID_IS_ROOT;
|
|
recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
|
|
}
|
|
|
|
/* Complete initialization of the root recipe entry */
|
|
lkup_exts->n_val_words = fv_word_idx;
|
|
recps[rid].big_recp = (num_recps > 1);
|
|
recps[rid].n_grp_count = (u8)num_recps;
|
|
recps[rid].root_buf = (struct ice_aqc_recipe_data_elem *)
|
|
ice_memdup(hw, tmp, recps[rid].n_grp_count *
|
|
sizeof(*recps[rid].root_buf), ICE_NONDMA_TO_NONDMA);
|
|
if (!recps[rid].root_buf)
|
|
goto err_unroll;
|
|
|
|
/* Copy result indexes */
|
|
ice_cp_bitmap(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
|
|
recps[rid].recp_created = true;
|
|
|
|
err_unroll:
|
|
ice_free(hw, tmp);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_recp_to_prof_map - updates recipe to profile mapping
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* This function is used to populate recipe_to_profile matrix where index to
|
|
* this array is the recipe ID and the element is the mapping of which profiles
|
|
* is this recipe mapped to.
|
|
*/
|
|
static void
|
|
ice_get_recp_to_prof_map(struct ice_hw *hw)
|
|
{
|
|
ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
|
|
u16 i;
|
|
|
|
for (i = 0; i < ICE_MAX_NUM_PROFILES; i++) {
|
|
u16 j;
|
|
|
|
ice_zero_bitmap(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
|
|
ice_zero_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
|
|
if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
|
|
continue;
|
|
ice_cp_bitmap(profile_to_recipe[i], r_bitmap,
|
|
ICE_MAX_NUM_RECIPES);
|
|
for (j = 0; j < ICE_MAX_NUM_RECIPES; j++)
|
|
if (ice_is_bit_set(r_bitmap, j))
|
|
ice_set_bit(i, recipe_to_profile[j]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_init_def_sw_recp - initialize the recipe book keeping tables
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Allocate memory for the entire recipe table and initialize the structures/
|
|
* entries corresponding to basic recipes.
|
|
*/
|
|
enum ice_status ice_init_def_sw_recp(struct ice_hw *hw)
|
|
{
|
|
struct ice_sw_recipe *recps;
|
|
u8 i;
|
|
|
|
recps = (struct ice_sw_recipe *)
|
|
ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
|
|
if (!recps)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
|
|
recps[i].root_rid = i;
|
|
INIT_LIST_HEAD(&recps[i].filt_rules);
|
|
INIT_LIST_HEAD(&recps[i].filt_replay_rules);
|
|
INIT_LIST_HEAD(&recps[i].rg_list);
|
|
ice_init_lock(&recps[i].filt_rule_lock);
|
|
}
|
|
|
|
hw->switch_info->recp_list = recps;
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_sw_cfg - get switch configuration
|
|
* @hw: pointer to the hardware structure
|
|
* @buf: pointer to the result buffer
|
|
* @buf_size: length of the buffer available for response
|
|
* @req_desc: pointer to requested descriptor
|
|
* @num_elems: pointer to number of elements
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get switch configuration (0x0200) to be placed in 'buff'.
|
|
* This admin command returns information such as initial VSI/port number
|
|
* and switch ID it belongs to.
|
|
*
|
|
* NOTE: *req_desc is both an input/output parameter.
|
|
* The caller of this function first calls this function with *request_desc set
|
|
* to 0. If the response from f/w has *req_desc set to 0, all the switch
|
|
* configuration information has been returned; if non-zero (meaning not all
|
|
* the information was returned), the caller should call this function again
|
|
* with *req_desc set to the previous value returned by f/w to get the
|
|
* next block of switch configuration information.
|
|
*
|
|
* *num_elems is output only parameter. This reflects the number of elements
|
|
* in response buffer. The caller of this function to use *num_elems while
|
|
* parsing the response buffer.
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp *buf,
|
|
u16 buf_size, u16 *req_desc, u16 *num_elems,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_sw_cfg *cmd;
|
|
enum ice_status status;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
|
|
cmd = &desc.params.get_sw_conf;
|
|
cmd->element = CPU_TO_LE16(*req_desc);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
if (!status) {
|
|
*req_desc = LE16_TO_CPU(cmd->element);
|
|
*num_elems = LE16_TO_CPU(cmd->num_elems);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_sw - allocate resources specific to switch
|
|
* @hw: pointer to the HW struct
|
|
* @ena_stats: true to turn on VEB stats
|
|
* @shared_res: true for shared resource, false for dedicated resource
|
|
* @sw_id: switch ID returned
|
|
* @counter_id: VEB counter ID returned
|
|
*
|
|
* allocates switch resources (SWID and VEB counter) (0x0208)
|
|
*/
|
|
enum ice_status
|
|
ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id,
|
|
u16 *counter_id)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *sw_buf;
|
|
struct ice_aqc_res_elem *sw_ele;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
buf_len = sizeof(*sw_buf);
|
|
sw_buf = (struct ice_aqc_alloc_free_res_elem *)
|
|
ice_malloc(hw, buf_len);
|
|
if (!sw_buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Prepare buffer for switch ID.
|
|
* The number of resource entries in buffer is passed as 1 since only a
|
|
* single switch/VEB instance is allocated, and hence a single sw_id
|
|
* is requested.
|
|
*/
|
|
sw_buf->num_elems = CPU_TO_LE16(1);
|
|
sw_buf->res_type =
|
|
CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID |
|
|
(shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
|
|
ICE_AQC_RES_TYPE_FLAG_DEDICATED));
|
|
|
|
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
|
|
ice_aqc_opc_alloc_res, NULL);
|
|
|
|
if (status)
|
|
goto ice_alloc_sw_exit;
|
|
|
|
sw_ele = &sw_buf->elem[0];
|
|
*sw_id = LE16_TO_CPU(sw_ele->e.sw_resp);
|
|
|
|
if (ena_stats) {
|
|
/* Prepare buffer for VEB Counter */
|
|
enum ice_adminq_opc opc = ice_aqc_opc_alloc_res;
|
|
struct ice_aqc_alloc_free_res_elem *counter_buf;
|
|
struct ice_aqc_res_elem *counter_ele;
|
|
|
|
counter_buf = (struct ice_aqc_alloc_free_res_elem *)
|
|
ice_malloc(hw, buf_len);
|
|
if (!counter_buf) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto ice_alloc_sw_exit;
|
|
}
|
|
|
|
/* The number of resource entries in buffer is passed as 1 since
|
|
* only a single switch/VEB instance is allocated, and hence a
|
|
* single VEB counter is requested.
|
|
*/
|
|
counter_buf->num_elems = CPU_TO_LE16(1);
|
|
counter_buf->res_type =
|
|
CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER |
|
|
ICE_AQC_RES_TYPE_FLAG_DEDICATED);
|
|
status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
|
|
opc, NULL);
|
|
|
|
if (status) {
|
|
ice_free(hw, counter_buf);
|
|
goto ice_alloc_sw_exit;
|
|
}
|
|
counter_ele = &counter_buf->elem[0];
|
|
*counter_id = LE16_TO_CPU(counter_ele->e.sw_resp);
|
|
ice_free(hw, counter_buf);
|
|
}
|
|
|
|
ice_alloc_sw_exit:
|
|
ice_free(hw, sw_buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_free_sw - free resources specific to switch
|
|
* @hw: pointer to the HW struct
|
|
* @sw_id: switch ID returned
|
|
* @counter_id: VEB counter ID returned
|
|
*
|
|
* free switch resources (SWID and VEB counter) (0x0209)
|
|
*
|
|
* NOTE: This function frees multiple resources. It continues
|
|
* releasing other resources even after it encounters error.
|
|
* The error code returned is the last error it encountered.
|
|
*/
|
|
enum ice_status ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf;
|
|
enum ice_status status, ret_status;
|
|
u16 buf_len;
|
|
|
|
buf_len = sizeof(*sw_buf);
|
|
sw_buf = (struct ice_aqc_alloc_free_res_elem *)
|
|
ice_malloc(hw, buf_len);
|
|
if (!sw_buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Prepare buffer to free for switch ID res.
|
|
* The number of resource entries in buffer is passed as 1 since only a
|
|
* single switch/VEB instance is freed, and hence a single sw_id
|
|
* is released.
|
|
*/
|
|
sw_buf->num_elems = CPU_TO_LE16(1);
|
|
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID);
|
|
sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id);
|
|
|
|
ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
|
|
ice_aqc_opc_free_res, NULL);
|
|
|
|
if (ret_status)
|
|
ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
|
|
|
|
/* Prepare buffer to free for VEB Counter resource */
|
|
counter_buf = (struct ice_aqc_alloc_free_res_elem *)
|
|
ice_malloc(hw, buf_len);
|
|
if (!counter_buf) {
|
|
ice_free(hw, sw_buf);
|
|
return ICE_ERR_NO_MEMORY;
|
|
}
|
|
|
|
/* The number of resource entries in buffer is passed as 1 since only a
|
|
* single switch/VEB instance is freed, and hence a single VEB counter
|
|
* is released
|
|
*/
|
|
counter_buf->num_elems = CPU_TO_LE16(1);
|
|
counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER);
|
|
counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
|
|
|
|
status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
|
|
ice_aqc_opc_free_res, NULL);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"VEB counter resource could not be freed\n");
|
|
ret_status = status;
|
|
}
|
|
|
|
ice_free(hw, counter_buf);
|
|
ice_free(hw, sw_buf);
|
|
return ret_status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_add_vsi
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_ctx: pointer to a VSI context struct
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Add a VSI context to the hardware (0x0210)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_add_update_free_vsi_resp *res;
|
|
struct ice_aqc_add_get_update_free_vsi *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.vsi_cmd;
|
|
res = &desc.params.add_update_free_vsi_res;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
|
|
|
|
if (!vsi_ctx->alloc_from_pool)
|
|
cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num |
|
|
ICE_AQ_VSI_IS_VALID);
|
|
|
|
cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags);
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
|
|
sizeof(vsi_ctx->info), cd);
|
|
|
|
if (!status) {
|
|
vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M;
|
|
vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used);
|
|
vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_free_vsi
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_ctx: pointer to a VSI context struct
|
|
* @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Free VSI context info from hardware (0x0213)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
|
|
bool keep_vsi_alloc, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_add_update_free_vsi_resp *resp;
|
|
struct ice_aqc_add_get_update_free_vsi *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.vsi_cmd;
|
|
resp = &desc.params.add_update_free_vsi_res;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
|
|
|
|
cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
|
|
if (keep_vsi_alloc)
|
|
cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
if (!status) {
|
|
vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
|
|
vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_update_vsi
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_ctx: pointer to a VSI context struct
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Update VSI context in the hardware (0x0211)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_add_update_free_vsi_resp *resp;
|
|
struct ice_aqc_add_get_update_free_vsi *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.vsi_cmd;
|
|
resp = &desc.params.add_update_free_vsi_res;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
|
|
|
|
cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
|
|
sizeof(vsi_ctx->info), cd);
|
|
|
|
if (!status) {
|
|
vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
|
|
vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_is_vsi_valid - check whether the VSI is valid or not
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: VSI handle
|
|
*
|
|
* check whether the VSI is valid or not
|
|
*/
|
|
bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
|
|
}
|
|
|
|
/**
|
|
* ice_get_hw_vsi_num - return the HW VSI number
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: VSI handle
|
|
*
|
|
* return the HW VSI number
|
|
* Caution: call this function only if VSI is valid (ice_is_vsi_valid)
|
|
*/
|
|
u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
return hw->vsi_ctx[vsi_handle]->vsi_num;
|
|
}
|
|
|
|
/**
|
|
* ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: VSI handle
|
|
*
|
|
* return the VSI context entry for a given VSI handle
|
|
*/
|
|
struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
|
|
}
|
|
|
|
/**
|
|
* ice_save_vsi_ctx - save the VSI context for a given VSI handle
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: VSI handle
|
|
* @vsi: VSI context pointer
|
|
*
|
|
* save the VSI context entry for a given VSI handle
|
|
*/
|
|
static void
|
|
ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
|
|
{
|
|
hw->vsi_ctx[vsi_handle] = vsi;
|
|
}
|
|
|
|
/**
|
|
* ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: VSI handle
|
|
*/
|
|
static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
struct ice_vsi_ctx *vsi;
|
|
u8 i;
|
|
|
|
vsi = ice_get_vsi_ctx(hw, vsi_handle);
|
|
if (!vsi)
|
|
return;
|
|
ice_for_each_traffic_class(i) {
|
|
if (vsi->lan_q_ctx[i]) {
|
|
ice_free(hw, vsi->lan_q_ctx[i]);
|
|
vsi->lan_q_ctx[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_clear_vsi_ctx - clear the VSI context entry
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: VSI handle
|
|
*
|
|
* clear the VSI context entry
|
|
*/
|
|
static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
struct ice_vsi_ctx *vsi;
|
|
|
|
vsi = ice_get_vsi_ctx(hw, vsi_handle);
|
|
if (vsi) {
|
|
ice_clear_vsi_q_ctx(hw, vsi_handle);
|
|
ice_free(hw, vsi);
|
|
hw->vsi_ctx[vsi_handle] = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_clear_all_vsi_ctx - clear all the VSI context entries
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
void ice_clear_all_vsi_ctx(struct ice_hw *hw)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = 0; i < ICE_MAX_VSI; i++)
|
|
ice_clear_vsi_ctx(hw, i);
|
|
}
|
|
|
|
/**
|
|
* ice_add_vsi - add VSI context to the hardware and VSI handle list
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: unique VSI handle provided by drivers
|
|
* @vsi_ctx: pointer to a VSI context struct
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Add a VSI context to the hardware also add it into the VSI handle list.
|
|
* If this function gets called after reset for existing VSIs then update
|
|
* with the new HW VSI number in the corresponding VSI handle list entry.
|
|
*/
|
|
enum ice_status
|
|
ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_vsi_ctx *tmp_vsi_ctx;
|
|
enum ice_status status;
|
|
|
|
if (vsi_handle >= ICE_MAX_VSI)
|
|
return ICE_ERR_PARAM;
|
|
status = ice_aq_add_vsi(hw, vsi_ctx, cd);
|
|
if (status)
|
|
return status;
|
|
tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
|
|
if (!tmp_vsi_ctx) {
|
|
/* Create a new VSI context */
|
|
tmp_vsi_ctx = (struct ice_vsi_ctx *)
|
|
ice_malloc(hw, sizeof(*tmp_vsi_ctx));
|
|
if (!tmp_vsi_ctx) {
|
|
ice_aq_free_vsi(hw, vsi_ctx, false, cd);
|
|
return ICE_ERR_NO_MEMORY;
|
|
}
|
|
*tmp_vsi_ctx = *vsi_ctx;
|
|
|
|
ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
|
|
} else {
|
|
/* update with new HW VSI num */
|
|
tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_free_vsi- free VSI context from hardware and VSI handle list
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: unique VSI handle
|
|
* @vsi_ctx: pointer to a VSI context struct
|
|
* @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Free VSI context info from hardware as well as from VSI handle list
|
|
*/
|
|
enum ice_status
|
|
ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
|
|
bool keep_vsi_alloc, struct ice_sq_cd *cd)
|
|
{
|
|
enum ice_status status;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
|
|
if (!status)
|
|
ice_clear_vsi_ctx(hw, vsi_handle);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_update_vsi
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: unique VSI handle
|
|
* @vsi_ctx: pointer to a VSI context struct
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Update VSI context in the hardware
|
|
*/
|
|
enum ice_status
|
|
ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
return ice_aq_update_vsi(hw, vsi_ctx, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_vsi_params
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_ctx: pointer to a VSI context struct
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get VSI context info from hardware (0x0212)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_add_get_update_free_vsi *cmd;
|
|
struct ice_aqc_get_vsi_resp *resp;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.vsi_cmd;
|
|
resp = &desc.params.get_vsi_resp;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params);
|
|
|
|
cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
|
|
sizeof(vsi_ctx->info), cd);
|
|
if (!status) {
|
|
vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) &
|
|
ICE_AQ_VSI_NUM_M;
|
|
vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
|
|
vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_add_update_mir_rule - add/update a mirror rule
|
|
* @hw: pointer to the HW struct
|
|
* @rule_type: Rule Type
|
|
* @dest_vsi: VSI number to which packets will be mirrored
|
|
* @count: length of the list
|
|
* @mr_buf: buffer for list of mirrored VSI numbers
|
|
* @cd: pointer to command details structure or NULL
|
|
* @rule_id: Rule ID
|
|
*
|
|
* Add/Update Mirror Rule (0x260).
|
|
*/
|
|
enum ice_status
|
|
ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi,
|
|
u16 count, struct ice_mir_rule_buf *mr_buf,
|
|
struct ice_sq_cd *cd, u16 *rule_id)
|
|
{
|
|
struct ice_aqc_add_update_mir_rule *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
__le16 *mr_list = NULL;
|
|
u16 buf_size = 0;
|
|
|
|
switch (rule_type) {
|
|
case ICE_AQC_RULE_TYPE_VPORT_INGRESS:
|
|
case ICE_AQC_RULE_TYPE_VPORT_EGRESS:
|
|
/* Make sure count and mr_buf are set for these rule_types */
|
|
if (!(count && mr_buf))
|
|
return ICE_ERR_PARAM;
|
|
|
|
buf_size = count * sizeof(__le16);
|
|
mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size);
|
|
if (!mr_list)
|
|
return ICE_ERR_NO_MEMORY;
|
|
break;
|
|
case ICE_AQC_RULE_TYPE_PPORT_INGRESS:
|
|
case ICE_AQC_RULE_TYPE_PPORT_EGRESS:
|
|
/* Make sure count and mr_buf are not set for these
|
|
* rule_types
|
|
*/
|
|
if (count || mr_buf)
|
|
return ICE_ERR_PARAM;
|
|
break;
|
|
default:
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"Error due to unsupported rule_type %u\n", rule_type);
|
|
return ICE_ERR_OUT_OF_RANGE;
|
|
}
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule);
|
|
|
|
/* Pre-process 'mr_buf' items for add/update of virtual port
|
|
* ingress/egress mirroring (but not physical port ingress/egress
|
|
* mirroring)
|
|
*/
|
|
if (mr_buf) {
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
u16 id;
|
|
|
|
id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M;
|
|
|
|
/* Validate specified VSI number, make sure it is less
|
|
* than ICE_MAX_VSI, if not return with error.
|
|
*/
|
|
if (id >= ICE_MAX_VSI) {
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"Error VSI index (%u) out-of-range\n",
|
|
id);
|
|
ice_free(hw, mr_list);
|
|
return ICE_ERR_OUT_OF_RANGE;
|
|
}
|
|
|
|
/* add VSI to mirror rule */
|
|
if (mr_buf[i].add)
|
|
mr_list[i] =
|
|
CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M);
|
|
else /* remove VSI from mirror rule */
|
|
mr_list[i] = CPU_TO_LE16(id);
|
|
}
|
|
}
|
|
|
|
cmd = &desc.params.add_update_rule;
|
|
if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID)
|
|
cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) |
|
|
ICE_AQC_RULE_ID_VALID_M);
|
|
cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M);
|
|
cmd->num_entries = CPU_TO_LE16(count);
|
|
cmd->dest = CPU_TO_LE16(dest_vsi);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd);
|
|
if (!status)
|
|
*rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M;
|
|
|
|
ice_free(hw, mr_list);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_delete_mir_rule - delete a mirror rule
|
|
* @hw: pointer to the HW struct
|
|
* @rule_id: Mirror rule ID (to be deleted)
|
|
* @keep_allocd: if set, the VSI stays part of the PF allocated res,
|
|
* otherwise it is returned to the shared pool
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Delete Mirror Rule (0x261).
|
|
*/
|
|
enum ice_status
|
|
ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_delete_mir_rule *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
/* rule_id should be in the range 0...63 */
|
|
if (rule_id >= ICE_MAX_NUM_MIRROR_RULES)
|
|
return ICE_ERR_OUT_OF_RANGE;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule);
|
|
|
|
cmd = &desc.params.del_rule;
|
|
rule_id |= ICE_AQC_RULE_ID_VALID_M;
|
|
cmd->rule_id = CPU_TO_LE16(rule_id);
|
|
|
|
if (keep_allocd)
|
|
cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_alloc_free_vsi_list
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_list_id: VSI list ID returned or used for lookup
|
|
* @lkup_type: switch rule filter lookup type
|
|
* @opc: switch rules population command type - pass in the command opcode
|
|
*
|
|
* allocates or free a VSI list resource
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
|
|
enum ice_sw_lkup_type lkup_type,
|
|
enum ice_adminq_opc opc)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *sw_buf;
|
|
struct ice_aqc_res_elem *vsi_ele;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
buf_len = sizeof(*sw_buf);
|
|
sw_buf = (struct ice_aqc_alloc_free_res_elem *)
|
|
ice_malloc(hw, buf_len);
|
|
if (!sw_buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
sw_buf->num_elems = CPU_TO_LE16(1);
|
|
|
|
if (lkup_type == ICE_SW_LKUP_MAC ||
|
|
lkup_type == ICE_SW_LKUP_MAC_VLAN ||
|
|
lkup_type == ICE_SW_LKUP_ETHERTYPE ||
|
|
lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
|
|
lkup_type == ICE_SW_LKUP_PROMISC ||
|
|
lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
|
|
lkup_type == ICE_SW_LKUP_LAST) {
|
|
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
|
|
} else if (lkup_type == ICE_SW_LKUP_VLAN) {
|
|
sw_buf->res_type =
|
|
CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
|
|
} else {
|
|
status = ICE_ERR_PARAM;
|
|
goto ice_aq_alloc_free_vsi_list_exit;
|
|
}
|
|
|
|
if (opc == ice_aqc_opc_free_res)
|
|
sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id);
|
|
|
|
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
|
|
if (status)
|
|
goto ice_aq_alloc_free_vsi_list_exit;
|
|
|
|
if (opc == ice_aqc_opc_alloc_res) {
|
|
vsi_ele = &sw_buf->elem[0];
|
|
*vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp);
|
|
}
|
|
|
|
ice_aq_alloc_free_vsi_list_exit:
|
|
ice_free(hw, sw_buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_storm_ctrl - Sets storm control configuration
|
|
* @hw: pointer to the HW struct
|
|
* @bcast_thresh: represents the upper threshold for broadcast storm control
|
|
* @mcast_thresh: represents the upper threshold for multicast storm control
|
|
* @ctl_bitmask: storm control control knobs
|
|
*
|
|
* Sets the storm control configuration (0x0280)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh,
|
|
u32 ctl_bitmask)
|
|
{
|
|
struct ice_aqc_storm_cfg *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.storm_conf;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg);
|
|
|
|
cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M);
|
|
cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M);
|
|
cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_storm_ctrl - gets storm control configuration
|
|
* @hw: pointer to the HW struct
|
|
* @bcast_thresh: represents the upper threshold for broadcast storm control
|
|
* @mcast_thresh: represents the upper threshold for multicast storm control
|
|
* @ctl_bitmask: storm control control knobs
|
|
*
|
|
* Gets the storm control configuration (0x0281)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh,
|
|
u32 *ctl_bitmask)
|
|
{
|
|
enum ice_status status;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
if (!status) {
|
|
struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf;
|
|
|
|
if (bcast_thresh)
|
|
*bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) &
|
|
ICE_AQ_THRESHOLD_M;
|
|
if (mcast_thresh)
|
|
*mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) &
|
|
ICE_AQ_THRESHOLD_M;
|
|
if (ctl_bitmask)
|
|
*ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_sw_rules - add/update/remove switch rules
|
|
* @hw: pointer to the HW struct
|
|
* @rule_list: pointer to switch rule population list
|
|
* @rule_list_sz: total size of the rule list in bytes
|
|
* @num_rules: number of switch rules in the rule_list
|
|
* @opc: switch rules population command type - pass in the command opcode
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
|
|
u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
if (opc != ice_aqc_opc_add_sw_rules &&
|
|
opc != ice_aqc_opc_update_sw_rules &&
|
|
opc != ice_aqc_opc_remove_sw_rules)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, opc);
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
desc.params.sw_rules.num_rules_fltr_entry_index =
|
|
CPU_TO_LE16(num_rules);
|
|
return ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_add_recipe - add switch recipe
|
|
* @hw: pointer to the HW struct
|
|
* @s_recipe_list: pointer to switch rule population list
|
|
* @num_recipes: number of switch recipes in the list
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Add(0x0290)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_add_recipe(struct ice_hw *hw,
|
|
struct ice_aqc_recipe_data_elem *s_recipe_list,
|
|
u16 num_recipes, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_add_get_recipe *cmd;
|
|
struct ice_aq_desc desc;
|
|
u16 buf_size;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
cmd = &desc.params.add_get_recipe;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
|
|
|
|
cmd->num_sub_recipes = CPU_TO_LE16(num_recipes);
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
buf_size = num_recipes * sizeof(*s_recipe_list);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_recipe - get switch recipe
|
|
* @hw: pointer to the HW struct
|
|
* @s_recipe_list: pointer to switch rule population list
|
|
* @num_recipes: pointer to the number of recipes (input and output)
|
|
* @recipe_root: root recipe number of recipe(s) to retrieve
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get(0x0292)
|
|
*
|
|
* On input, *num_recipes should equal the number of entries in s_recipe_list.
|
|
* On output, *num_recipes will equal the number of entries returned in
|
|
* s_recipe_list.
|
|
*
|
|
* The caller must supply enough space in s_recipe_list to hold all possible
|
|
* recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_recipe(struct ice_hw *hw,
|
|
struct ice_aqc_recipe_data_elem *s_recipe_list,
|
|
u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_add_get_recipe *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
u16 buf_size;
|
|
|
|
if (*num_recipes != ICE_MAX_NUM_RECIPES)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
cmd = &desc.params.add_get_recipe;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
|
|
|
|
cmd->return_index = CPU_TO_LE16(recipe_root);
|
|
cmd->num_sub_recipes = 0;
|
|
|
|
buf_size = *num_recipes * sizeof(*s_recipe_list);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
|
|
/* cppcheck-suppress constArgument */
|
|
*num_recipes = LE16_TO_CPU(cmd->num_sub_recipes);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_map_recipe_to_profile - Map recipe to packet profile
|
|
* @hw: pointer to the HW struct
|
|
* @profile_id: package profile ID to associate the recipe with
|
|
* @r_bitmap: Recipe bitmap filled in and need to be returned as response
|
|
* @cd: pointer to command details structure or NULL
|
|
* Recipe to profile association (0x0291)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_recipe_to_profile *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
cmd = &desc.params.recipe_to_profile;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
|
|
cmd->profile_id = CPU_TO_LE16(profile_id);
|
|
/* Set the recipe ID bit in the bitmask to let the device know which
|
|
* profile we are associating the recipe to
|
|
*/
|
|
ice_memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_recipe_to_profile - Map recipe to packet profile
|
|
* @hw: pointer to the HW struct
|
|
* @profile_id: package profile ID to associate the recipe with
|
|
* @r_bitmap: Recipe bitmap filled in and need to be returned as response
|
|
* @cd: pointer to command details structure or NULL
|
|
* Associate profile ID with given recipe (0x0293)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_recipe_to_profile *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
cmd = &desc.params.recipe_to_profile;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
|
|
cmd->profile_id = CPU_TO_LE16(profile_id);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
if (!status)
|
|
ice_memcpy(r_bitmap, cmd->recipe_assoc,
|
|
sizeof(cmd->recipe_assoc), ICE_NONDMA_TO_NONDMA);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_recipe - add recipe resource
|
|
* @hw: pointer to the hardware structure
|
|
* @rid: recipe ID returned as response to AQ call
|
|
*/
|
|
enum ice_status ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *sw_buf;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
buf_len = sizeof(*sw_buf);
|
|
sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
|
|
if (!sw_buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
sw_buf->num_elems = CPU_TO_LE16(1);
|
|
sw_buf->res_type = CPU_TO_LE16((ICE_AQC_RES_TYPE_RECIPE <<
|
|
ICE_AQC_RES_TYPE_S) |
|
|
ICE_AQC_RES_TYPE_FLAG_SHARED);
|
|
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
|
|
ice_aqc_opc_alloc_res, NULL);
|
|
if (!status)
|
|
*rid = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
|
|
ice_free(hw, sw_buf);
|
|
|
|
return status;
|
|
}
|
|
|
|
/* ice_init_port_info - Initialize port_info with switch configuration data
|
|
* @pi: pointer to port_info
|
|
* @vsi_port_num: VSI number or port number
|
|
* @type: Type of switch element (port or VSI)
|
|
* @swid: switch ID of the switch the element is attached to
|
|
* @pf_vf_num: PF or VF number
|
|
* @is_vf: true if the element is a VF, false otherwise
|
|
*/
|
|
static void
|
|
ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
|
|
u16 swid, u16 pf_vf_num, bool is_vf)
|
|
{
|
|
switch (type) {
|
|
case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
|
|
pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
|
|
pi->sw_id = swid;
|
|
pi->pf_vf_num = pf_vf_num;
|
|
pi->is_vf = is_vf;
|
|
pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
|
|
pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
|
|
break;
|
|
default:
|
|
ice_debug(pi->hw, ICE_DBG_SW,
|
|
"incorrect VSI/port type received\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* ice_get_initial_sw_cfg - Get initial port and default VSI data
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw)
|
|
{
|
|
struct ice_aqc_get_sw_cfg_resp *rbuf;
|
|
enum ice_status status;
|
|
u16 num_total_ports;
|
|
u16 req_desc = 0;
|
|
u16 num_elems;
|
|
u16 j = 0;
|
|
u16 i;
|
|
|
|
num_total_ports = 1;
|
|
|
|
rbuf = (struct ice_aqc_get_sw_cfg_resp *)
|
|
ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
|
|
|
|
if (!rbuf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Multiple calls to ice_aq_get_sw_cfg may be required
|
|
* to get all the switch configuration information. The need
|
|
* for additional calls is indicated by ice_aq_get_sw_cfg
|
|
* writing a non-zero value in req_desc
|
|
*/
|
|
do {
|
|
status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
|
|
&req_desc, &num_elems, NULL);
|
|
|
|
if (status)
|
|
break;
|
|
|
|
for (i = 0; i < num_elems; i++) {
|
|
struct ice_aqc_get_sw_cfg_resp_elem *ele;
|
|
u16 pf_vf_num, swid, vsi_port_num;
|
|
bool is_vf = false;
|
|
u8 type;
|
|
|
|
ele = rbuf[i].elements;
|
|
vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) &
|
|
ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
|
|
|
|
pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) &
|
|
ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
|
|
|
|
swid = LE16_TO_CPU(ele->swid);
|
|
|
|
if (LE16_TO_CPU(ele->pf_vf_num) &
|
|
ICE_AQC_GET_SW_CONF_RESP_IS_VF)
|
|
is_vf = true;
|
|
|
|
type = LE16_TO_CPU(ele->vsi_port_num) >>
|
|
ICE_AQC_GET_SW_CONF_RESP_TYPE_S;
|
|
|
|
switch (type) {
|
|
case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
|
|
case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
|
|
if (j == num_total_ports) {
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"more ports than expected\n");
|
|
status = ICE_ERR_CFG;
|
|
goto out;
|
|
}
|
|
ice_init_port_info(hw->port_info,
|
|
vsi_port_num, type, swid,
|
|
pf_vf_num, is_vf);
|
|
j++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
} while (req_desc && !status);
|
|
|
|
out:
|
|
ice_free(hw, (void *)rbuf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_sw_info - Helper function to populate lb_en and lan_en
|
|
* @hw: pointer to the hardware structure
|
|
* @fi: filter info structure to fill/update
|
|
*
|
|
* This helper function populates the lb_en and lan_en elements of the provided
|
|
* ice_fltr_info struct using the switch's type and characteristics of the
|
|
* switch rule being configured.
|
|
*/
|
|
static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
|
|
{
|
|
fi->lb_en = false;
|
|
fi->lan_en = false;
|
|
if ((fi->flag & ICE_FLTR_TX) &&
|
|
(fi->fltr_act == ICE_FWD_TO_VSI ||
|
|
fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
|
|
fi->fltr_act == ICE_FWD_TO_Q ||
|
|
fi->fltr_act == ICE_FWD_TO_QGRP)) {
|
|
/* Setting LB for prune actions will result in replicated
|
|
* packets to the internal switch that will be dropped.
|
|
*/
|
|
if (fi->lkup_type != ICE_SW_LKUP_VLAN)
|
|
fi->lb_en = true;
|
|
|
|
/* Set lan_en to TRUE if
|
|
* 1. The switch is a VEB AND
|
|
* 2
|
|
* 2.1 The lookup is a directional lookup like ethertype,
|
|
* promiscuous, ethertype-MAC, promiscuous-VLAN
|
|
* and default-port OR
|
|
* 2.2 The lookup is VLAN, OR
|
|
* 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
|
|
* 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
|
|
*
|
|
* OR
|
|
*
|
|
* The switch is a VEPA.
|
|
*
|
|
* In all other cases, the LAN enable has to be set to false.
|
|
*/
|
|
if (hw->evb_veb) {
|
|
if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
|
|
fi->lkup_type == ICE_SW_LKUP_PROMISC ||
|
|
fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
|
|
fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
|
|
fi->lkup_type == ICE_SW_LKUP_DFLT ||
|
|
fi->lkup_type == ICE_SW_LKUP_VLAN ||
|
|
(fi->lkup_type == ICE_SW_LKUP_MAC &&
|
|
!IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) ||
|
|
(fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
|
|
!IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)))
|
|
fi->lan_en = true;
|
|
} else {
|
|
fi->lan_en = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_fill_sw_rule - Helper function to fill switch rule structure
|
|
* @hw: pointer to the hardware structure
|
|
* @f_info: entry containing packet forwarding information
|
|
* @s_rule: switch rule structure to be filled in based on mac_entry
|
|
* @opc: switch rules population command type - pass in the command opcode
|
|
*/
|
|
static void
|
|
ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
|
|
struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc)
|
|
{
|
|
u16 vlan_id = ICE_MAX_VLAN_ID + 1;
|
|
void *daddr = NULL;
|
|
u16 eth_hdr_sz;
|
|
u8 *eth_hdr;
|
|
u32 act = 0;
|
|
__be16 *off;
|
|
u8 q_rgn;
|
|
|
|
if (opc == ice_aqc_opc_remove_sw_rules) {
|
|
s_rule->pdata.lkup_tx_rx.act = 0;
|
|
s_rule->pdata.lkup_tx_rx.index =
|
|
CPU_TO_LE16(f_info->fltr_rule_id);
|
|
s_rule->pdata.lkup_tx_rx.hdr_len = 0;
|
|
return;
|
|
}
|
|
|
|
eth_hdr_sz = sizeof(dummy_eth_header);
|
|
eth_hdr = s_rule->pdata.lkup_tx_rx.hdr;
|
|
|
|
/* initialize the ether header with a dummy header */
|
|
ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA);
|
|
ice_fill_sw_info(hw, f_info);
|
|
|
|
switch (f_info->fltr_act) {
|
|
case ICE_FWD_TO_VSI:
|
|
act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
|
|
ICE_SINGLE_ACT_VSI_ID_M;
|
|
if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
|
|
act |= ICE_SINGLE_ACT_VSI_FORWARDING |
|
|
ICE_SINGLE_ACT_VALID_BIT;
|
|
break;
|
|
case ICE_FWD_TO_VSI_LIST:
|
|
act |= ICE_SINGLE_ACT_VSI_LIST;
|
|
act |= (f_info->fwd_id.vsi_list_id <<
|
|
ICE_SINGLE_ACT_VSI_LIST_ID_S) &
|
|
ICE_SINGLE_ACT_VSI_LIST_ID_M;
|
|
if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
|
|
act |= ICE_SINGLE_ACT_VSI_FORWARDING |
|
|
ICE_SINGLE_ACT_VALID_BIT;
|
|
break;
|
|
case ICE_FWD_TO_Q:
|
|
act |= ICE_SINGLE_ACT_TO_Q;
|
|
act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
|
|
ICE_SINGLE_ACT_Q_INDEX_M;
|
|
break;
|
|
case ICE_DROP_PACKET:
|
|
act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
|
|
ICE_SINGLE_ACT_VALID_BIT;
|
|
break;
|
|
case ICE_FWD_TO_QGRP:
|
|
q_rgn = f_info->qgrp_size > 0 ?
|
|
(u8)ice_ilog2(f_info->qgrp_size) : 0;
|
|
act |= ICE_SINGLE_ACT_TO_Q;
|
|
act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
|
|
ICE_SINGLE_ACT_Q_INDEX_M;
|
|
act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
|
|
ICE_SINGLE_ACT_Q_REGION_M;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (f_info->lb_en)
|
|
act |= ICE_SINGLE_ACT_LB_ENABLE;
|
|
if (f_info->lan_en)
|
|
act |= ICE_SINGLE_ACT_LAN_ENABLE;
|
|
|
|
switch (f_info->lkup_type) {
|
|
case ICE_SW_LKUP_MAC:
|
|
daddr = f_info->l_data.mac.mac_addr;
|
|
break;
|
|
case ICE_SW_LKUP_VLAN:
|
|
vlan_id = f_info->l_data.vlan.vlan_id;
|
|
if (f_info->fltr_act == ICE_FWD_TO_VSI ||
|
|
f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
|
|
act |= ICE_SINGLE_ACT_PRUNE;
|
|
act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
|
|
}
|
|
break;
|
|
case ICE_SW_LKUP_ETHERTYPE_MAC:
|
|
daddr = f_info->l_data.ethertype_mac.mac_addr;
|
|
/* fall-through */
|
|
case ICE_SW_LKUP_ETHERTYPE:
|
|
off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
|
|
*off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype);
|
|
break;
|
|
case ICE_SW_LKUP_MAC_VLAN:
|
|
daddr = f_info->l_data.mac_vlan.mac_addr;
|
|
vlan_id = f_info->l_data.mac_vlan.vlan_id;
|
|
break;
|
|
case ICE_SW_LKUP_PROMISC_VLAN:
|
|
vlan_id = f_info->l_data.mac_vlan.vlan_id;
|
|
/* fall-through */
|
|
case ICE_SW_LKUP_PROMISC:
|
|
daddr = f_info->l_data.mac_vlan.mac_addr;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
s_rule->type = (f_info->flag & ICE_FLTR_RX) ?
|
|
CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) :
|
|
CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
|
|
|
|
/* Recipe set depending on lookup type */
|
|
s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(f_info->lkup_type);
|
|
s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(f_info->src);
|
|
s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
|
|
|
|
if (daddr)
|
|
ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN,
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
if (!(vlan_id > ICE_MAX_VLAN_ID)) {
|
|
off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
|
|
*off = CPU_TO_BE16(vlan_id);
|
|
}
|
|
|
|
/* Create the switch rule with the final dummy Ethernet header */
|
|
if (opc != ice_aqc_opc_update_sw_rules)
|
|
s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(eth_hdr_sz);
|
|
}
|
|
|
|
/**
|
|
* ice_add_marker_act
|
|
* @hw: pointer to the hardware structure
|
|
* @m_ent: the management entry for which sw marker needs to be added
|
|
* @sw_marker: sw marker to tag the Rx descriptor with
|
|
* @l_id: large action resource ID
|
|
*
|
|
* Create a large action to hold software marker and update the switch rule
|
|
* entry pointed by m_ent with newly created large action
|
|
*/
|
|
static enum ice_status
|
|
ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
|
|
u16 sw_marker, u16 l_id)
|
|
{
|
|
struct ice_aqc_sw_rules_elem *lg_act, *rx_tx;
|
|
/* For software marker we need 3 large actions
|
|
* 1. FWD action: FWD TO VSI or VSI LIST
|
|
* 2. GENERIC VALUE action to hold the profile ID
|
|
* 3. GENERIC VALUE action to hold the software marker ID
|
|
*/
|
|
const u16 num_lg_acts = 3;
|
|
enum ice_status status;
|
|
u16 lg_act_size;
|
|
u16 rules_size;
|
|
u32 act;
|
|
u16 id;
|
|
|
|
if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Create two back-to-back switch rules and submit them to the HW using
|
|
* one memory buffer:
|
|
* 1. Large Action
|
|
* 2. Look up Tx Rx
|
|
*/
|
|
lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts);
|
|
rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
|
|
lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size);
|
|
if (!lg_act)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
|
|
|
|
/* Fill in the first switch rule i.e. large action */
|
|
lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
|
|
lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
|
|
lg_act->pdata.lg_act.size = CPU_TO_LE16(num_lg_acts);
|
|
|
|
/* First action VSI forwarding or VSI list forwarding depending on how
|
|
* many VSIs
|
|
*/
|
|
id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
|
|
m_ent->fltr_info.fwd_id.hw_vsi_id;
|
|
|
|
act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
|
|
act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
|
|
ICE_LG_ACT_VSI_LIST_ID_M;
|
|
if (m_ent->vsi_count > 1)
|
|
act |= ICE_LG_ACT_VSI_LIST;
|
|
lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
|
|
|
|
/* Second action descriptor type */
|
|
act = ICE_LG_ACT_GENERIC;
|
|
|
|
act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
|
|
lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
|
|
|
|
act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
|
|
ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
|
|
|
|
/* Third action Marker value */
|
|
act |= ICE_LG_ACT_GENERIC;
|
|
act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
|
|
ICE_LG_ACT_GENERIC_VALUE_M;
|
|
|
|
lg_act->pdata.lg_act.act[2] = CPU_TO_LE32(act);
|
|
|
|
/* call the fill switch rule to fill the lookup Tx Rx structure */
|
|
ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
|
|
ice_aqc_opc_update_sw_rules);
|
|
|
|
/* Update the action to point to the large action ID */
|
|
rx_tx->pdata.lkup_tx_rx.act =
|
|
CPU_TO_LE32(ICE_SINGLE_ACT_PTR |
|
|
((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
|
|
ICE_SINGLE_ACT_PTR_VAL_M));
|
|
|
|
/* Use the filter rule ID of the previously created rule with single
|
|
* act. Once the update happens, hardware will treat this as large
|
|
* action
|
|
*/
|
|
rx_tx->pdata.lkup_tx_rx.index =
|
|
CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id);
|
|
|
|
status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
|
|
ice_aqc_opc_update_sw_rules, NULL);
|
|
if (!status) {
|
|
m_ent->lg_act_idx = l_id;
|
|
m_ent->sw_marker_id = sw_marker;
|
|
}
|
|
|
|
ice_free(hw, lg_act);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_add_counter_act - add/update filter rule with counter action
|
|
* @hw: pointer to the hardware structure
|
|
* @m_ent: the management entry for which counter needs to be added
|
|
* @counter_id: VLAN counter ID returned as part of allocate resource
|
|
* @l_id: large action resource ID
|
|
*/
|
|
static enum ice_status
|
|
ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
|
|
u16 counter_id, u16 l_id)
|
|
{
|
|
struct ice_aqc_sw_rules_elem *lg_act;
|
|
struct ice_aqc_sw_rules_elem *rx_tx;
|
|
enum ice_status status;
|
|
/* 2 actions will be added while adding a large action counter */
|
|
const int num_acts = 2;
|
|
u16 lg_act_size;
|
|
u16 rules_size;
|
|
u16 f_rule_id;
|
|
u32 act;
|
|
u16 id;
|
|
|
|
if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Create two back-to-back switch rules and submit them to the HW using
|
|
* one memory buffer:
|
|
* 1. Large Action
|
|
* 2. Look up Tx Rx
|
|
*/
|
|
lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_acts);
|
|
rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
|
|
lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw,
|
|
rules_size);
|
|
if (!lg_act)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
rx_tx = (struct ice_aqc_sw_rules_elem *)
|
|
((u8 *)lg_act + lg_act_size);
|
|
|
|
/* Fill in the first switch rule i.e. large action */
|
|
lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
|
|
lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
|
|
lg_act->pdata.lg_act.size = CPU_TO_LE16(num_acts);
|
|
|
|
/* First action VSI forwarding or VSI list forwarding depending on how
|
|
* many VSIs
|
|
*/
|
|
id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
|
|
m_ent->fltr_info.fwd_id.hw_vsi_id;
|
|
|
|
act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
|
|
act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
|
|
ICE_LG_ACT_VSI_LIST_ID_M;
|
|
if (m_ent->vsi_count > 1)
|
|
act |= ICE_LG_ACT_VSI_LIST;
|
|
lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
|
|
|
|
/* Second action counter ID */
|
|
act = ICE_LG_ACT_STAT_COUNT;
|
|
act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) &
|
|
ICE_LG_ACT_STAT_COUNT_M;
|
|
lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
|
|
|
|
/* call the fill switch rule to fill the lookup Tx Rx structure */
|
|
ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
|
|
ice_aqc_opc_update_sw_rules);
|
|
|
|
act = ICE_SINGLE_ACT_PTR;
|
|
act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M;
|
|
rx_tx->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
|
|
|
|
/* Use the filter rule ID of the previously created rule with single
|
|
* act. Once the update happens, hardware will treat this as large
|
|
* action
|
|
*/
|
|
f_rule_id = m_ent->fltr_info.fltr_rule_id;
|
|
rx_tx->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_rule_id);
|
|
|
|
status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
|
|
ice_aqc_opc_update_sw_rules, NULL);
|
|
if (!status) {
|
|
m_ent->lg_act_idx = l_id;
|
|
m_ent->counter_index = counter_id;
|
|
}
|
|
|
|
ice_free(hw, lg_act);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_create_vsi_list_map
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle_arr: array of VSI handles to set in the VSI mapping
|
|
* @num_vsi: number of VSI handles in the array
|
|
* @vsi_list_id: VSI list ID generated as part of allocate resource
|
|
*
|
|
* Helper function to create a new entry of VSI list ID to VSI mapping
|
|
* using the given VSI list ID
|
|
*/
|
|
static struct ice_vsi_list_map_info *
|
|
ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
|
|
u16 vsi_list_id)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_vsi_list_map_info *v_map;
|
|
int i;
|
|
|
|
v_map = (struct ice_vsi_list_map_info *)ice_calloc(hw, 1,
|
|
sizeof(*v_map));
|
|
if (!v_map)
|
|
return NULL;
|
|
|
|
v_map->vsi_list_id = vsi_list_id;
|
|
v_map->ref_cnt = 1;
|
|
for (i = 0; i < num_vsi; i++)
|
|
ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
|
|
|
|
LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head);
|
|
return v_map;
|
|
}
|
|
|
|
/**
|
|
* ice_update_vsi_list_rule
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle_arr: array of VSI handles to form a VSI list
|
|
* @num_vsi: number of VSI handles in the array
|
|
* @vsi_list_id: VSI list ID generated as part of allocate resource
|
|
* @remove: Boolean value to indicate if this is a remove action
|
|
* @opc: switch rules population command type - pass in the command opcode
|
|
* @lkup_type: lookup type of the filter
|
|
*
|
|
* Call AQ command to add a new switch rule or update existing switch rule
|
|
* using the given VSI list ID
|
|
*/
|
|
static enum ice_status
|
|
ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
|
|
u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
|
|
enum ice_sw_lkup_type lkup_type)
|
|
{
|
|
struct ice_aqc_sw_rules_elem *s_rule;
|
|
enum ice_status status;
|
|
u16 s_rule_size;
|
|
u16 type;
|
|
int i;
|
|
|
|
if (!num_vsi)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (lkup_type == ICE_SW_LKUP_MAC ||
|
|
lkup_type == ICE_SW_LKUP_MAC_VLAN ||
|
|
lkup_type == ICE_SW_LKUP_ETHERTYPE ||
|
|
lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
|
|
lkup_type == ICE_SW_LKUP_PROMISC ||
|
|
lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
|
|
lkup_type == ICE_SW_LKUP_LAST)
|
|
type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
|
|
ICE_AQC_SW_RULES_T_VSI_LIST_SET;
|
|
else if (lkup_type == ICE_SW_LKUP_VLAN)
|
|
type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
|
|
ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
|
|
else
|
|
return ICE_ERR_PARAM;
|
|
|
|
s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi);
|
|
s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
|
|
if (!s_rule)
|
|
return ICE_ERR_NO_MEMORY;
|
|
for (i = 0; i < num_vsi; i++) {
|
|
if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
|
|
status = ICE_ERR_PARAM;
|
|
goto exit;
|
|
}
|
|
/* AQ call requires hw_vsi_id(s) */
|
|
s_rule->pdata.vsi_list.vsi[i] =
|
|
CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
|
|
}
|
|
|
|
s_rule->type = CPU_TO_LE16(type);
|
|
s_rule->pdata.vsi_list.number_vsi = CPU_TO_LE16(num_vsi);
|
|
s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id);
|
|
|
|
status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
|
|
|
|
exit:
|
|
ice_free(hw, s_rule);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_create_vsi_list_rule - Creates and populates a VSI list rule
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle_arr: array of VSI handles to form a VSI list
|
|
* @num_vsi: number of VSI handles in the array
|
|
* @vsi_list_id: stores the ID of the VSI list to be created
|
|
* @lkup_type: switch rule filter's lookup type
|
|
*/
|
|
static enum ice_status
|
|
ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
|
|
u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
|
|
{
|
|
enum ice_status status;
|
|
|
|
status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
|
|
ice_aqc_opc_alloc_res);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Update the newly created VSI list to include the specified VSIs */
|
|
return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
|
|
*vsi_list_id, false,
|
|
ice_aqc_opc_add_sw_rules, lkup_type);
|
|
}
|
|
|
|
/**
|
|
* ice_create_pkt_fwd_rule
|
|
* @hw: pointer to the hardware structure
|
|
* @f_entry: entry containing packet forwarding information
|
|
*
|
|
* Create switch rule with given filter information and add an entry
|
|
* to the corresponding filter management list to track this switch rule
|
|
* and VSI mapping
|
|
*/
|
|
static enum ice_status
|
|
ice_create_pkt_fwd_rule(struct ice_hw *hw,
|
|
struct ice_fltr_list_entry *f_entry)
|
|
{
|
|
struct ice_fltr_mgmt_list_entry *fm_entry;
|
|
struct ice_aqc_sw_rules_elem *s_rule;
|
|
enum ice_sw_lkup_type l_type;
|
|
struct ice_sw_recipe *recp;
|
|
enum ice_status status;
|
|
|
|
s_rule = (struct ice_aqc_sw_rules_elem *)
|
|
ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
|
|
if (!s_rule)
|
|
return ICE_ERR_NO_MEMORY;
|
|
fm_entry = (struct ice_fltr_mgmt_list_entry *)
|
|
ice_malloc(hw, sizeof(*fm_entry));
|
|
if (!fm_entry) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto ice_create_pkt_fwd_rule_exit;
|
|
}
|
|
|
|
fm_entry->fltr_info = f_entry->fltr_info;
|
|
|
|
/* Initialize all the fields for the management entry */
|
|
fm_entry->vsi_count = 1;
|
|
fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
|
|
fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
|
|
fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
|
|
|
|
ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
|
|
ice_aqc_opc_add_sw_rules);
|
|
|
|
status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
|
|
ice_aqc_opc_add_sw_rules, NULL);
|
|
if (status) {
|
|
ice_free(hw, fm_entry);
|
|
goto ice_create_pkt_fwd_rule_exit;
|
|
}
|
|
|
|
f_entry->fltr_info.fltr_rule_id =
|
|
LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
|
|
fm_entry->fltr_info.fltr_rule_id =
|
|
LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
|
|
|
|
/* The book keeping entries will get removed when base driver
|
|
* calls remove filter AQ command
|
|
*/
|
|
l_type = fm_entry->fltr_info.lkup_type;
|
|
recp = &hw->switch_info->recp_list[l_type];
|
|
LIST_ADD(&fm_entry->list_entry, &recp->filt_rules);
|
|
|
|
ice_create_pkt_fwd_rule_exit:
|
|
ice_free(hw, s_rule);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_update_pkt_fwd_rule
|
|
* @hw: pointer to the hardware structure
|
|
* @f_info: filter information for switch rule
|
|
*
|
|
* Call AQ command to update a previously created switch rule with a
|
|
* VSI list ID
|
|
*/
|
|
static enum ice_status
|
|
ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
|
|
{
|
|
struct ice_aqc_sw_rules_elem *s_rule;
|
|
enum ice_status status;
|
|
|
|
s_rule = (struct ice_aqc_sw_rules_elem *)
|
|
ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
|
|
if (!s_rule)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
|
|
|
|
s_rule->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_info->fltr_rule_id);
|
|
|
|
/* Update switch rule with new rule set to forward VSI list */
|
|
status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
|
|
ice_aqc_opc_update_sw_rules, NULL);
|
|
|
|
ice_free(hw, s_rule);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_update_sw_rule_bridge_mode
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Updates unicast switch filter rules based on VEB/VEPA mode
|
|
*/
|
|
enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_mgmt_list_entry *fm_entry;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
struct LIST_HEAD_TYPE *rule_head;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
|
|
rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
|
|
rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
|
|
|
|
ice_acquire_lock(rule_lock);
|
|
LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
struct ice_fltr_info *fi = &fm_entry->fltr_info;
|
|
u8 *addr = fi->l_data.mac.mac_addr;
|
|
|
|
/* Update unicast Tx rules to reflect the selected
|
|
* VEB/VEPA mode
|
|
*/
|
|
if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) &&
|
|
(fi->fltr_act == ICE_FWD_TO_VSI ||
|
|
fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
|
|
fi->fltr_act == ICE_FWD_TO_Q ||
|
|
fi->fltr_act == ICE_FWD_TO_QGRP)) {
|
|
status = ice_update_pkt_fwd_rule(hw, fi);
|
|
if (status)
|
|
break;
|
|
}
|
|
}
|
|
|
|
ice_release_lock(rule_lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_add_update_vsi_list
|
|
* @hw: pointer to the hardware structure
|
|
* @m_entry: pointer to current filter management list entry
|
|
* @cur_fltr: filter information from the book keeping entry
|
|
* @new_fltr: filter information with the new VSI to be added
|
|
*
|
|
* Call AQ command to add or update previously created VSI list with new VSI.
|
|
*
|
|
* Helper function to do book keeping associated with adding filter information
|
|
* The algorithm to do the book keeping is described below :
|
|
* When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
|
|
* if only one VSI has been added till now
|
|
* Allocate a new VSI list and add two VSIs
|
|
* to this list using switch rule command
|
|
* Update the previously created switch rule with the
|
|
* newly created VSI list ID
|
|
* if a VSI list was previously created
|
|
* Add the new VSI to the previously created VSI list set
|
|
* using the update switch rule command
|
|
*/
|
|
static enum ice_status
|
|
ice_add_update_vsi_list(struct ice_hw *hw,
|
|
struct ice_fltr_mgmt_list_entry *m_entry,
|
|
struct ice_fltr_info *cur_fltr,
|
|
struct ice_fltr_info *new_fltr)
|
|
{
|
|
enum ice_status status = ICE_SUCCESS;
|
|
u16 vsi_list_id = 0;
|
|
|
|
if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
|
|
cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
|
|
return ICE_ERR_NOT_IMPL;
|
|
|
|
if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
|
|
new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
|
|
(cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
|
|
cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
|
|
return ICE_ERR_NOT_IMPL;
|
|
|
|
if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
|
|
/* Only one entry existed in the mapping and it was not already
|
|
* a part of a VSI list. So, create a VSI list with the old and
|
|
* new VSIs.
|
|
*/
|
|
struct ice_fltr_info tmp_fltr;
|
|
u16 vsi_handle_arr[2];
|
|
|
|
/* A rule already exists with the new VSI being added */
|
|
if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
|
|
return ICE_ERR_ALREADY_EXISTS;
|
|
|
|
vsi_handle_arr[0] = cur_fltr->vsi_handle;
|
|
vsi_handle_arr[1] = new_fltr->vsi_handle;
|
|
status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
|
|
&vsi_list_id,
|
|
new_fltr->lkup_type);
|
|
if (status)
|
|
return status;
|
|
|
|
tmp_fltr = *new_fltr;
|
|
tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
|
|
tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
|
|
tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
|
|
/* Update the previous switch rule of "MAC forward to VSI" to
|
|
* "MAC fwd to VSI list"
|
|
*/
|
|
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
|
|
if (status)
|
|
return status;
|
|
|
|
cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
|
|
cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
|
|
m_entry->vsi_list_info =
|
|
ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
|
|
vsi_list_id);
|
|
|
|
if (!m_entry->vsi_list_info)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* If this entry was large action then the large action needs
|
|
* to be updated to point to FWD to VSI list
|
|
*/
|
|
if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
|
|
status =
|
|
ice_add_marker_act(hw, m_entry,
|
|
m_entry->sw_marker_id,
|
|
m_entry->lg_act_idx);
|
|
} else {
|
|
u16 vsi_handle = new_fltr->vsi_handle;
|
|
enum ice_adminq_opc opcode;
|
|
|
|
if (!m_entry->vsi_list_info)
|
|
return ICE_ERR_CFG;
|
|
|
|
/* A rule already exists with the new VSI being added */
|
|
if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
|
|
return ICE_SUCCESS;
|
|
|
|
/* Update the previously created VSI list set with
|
|
* the new VSI ID passed in
|
|
*/
|
|
vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
|
|
opcode = ice_aqc_opc_update_sw_rules;
|
|
|
|
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
|
|
vsi_list_id, false, opcode,
|
|
new_fltr->lkup_type);
|
|
/* update VSI list mapping info with new VSI ID */
|
|
if (!status)
|
|
ice_set_bit(vsi_handle,
|
|
m_entry->vsi_list_info->vsi_map);
|
|
}
|
|
if (!status)
|
|
m_entry->vsi_count++;
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_find_rule_entry - Search a rule entry
|
|
* @hw: pointer to the hardware structure
|
|
* @recp_id: lookup type for which the specified rule needs to be searched
|
|
* @f_info: rule information
|
|
*
|
|
* Helper function to search for a given rule entry
|
|
* Returns pointer to entry storing the rule if found
|
|
*/
|
|
static struct ice_fltr_mgmt_list_entry *
|
|
ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
|
|
{
|
|
struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct LIST_HEAD_TYPE *list_head;
|
|
|
|
list_head = &sw->recp_list[recp_id].filt_rules;
|
|
LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
|
|
sizeof(f_info->l_data)) &&
|
|
f_info->flag == list_itr->fltr_info.flag) {
|
|
ret = list_itr;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_find_vsi_list_entry - Search VSI list map with VSI count 1
|
|
* @hw: pointer to the hardware structure
|
|
* @recp_id: lookup type for which VSI lists needs to be searched
|
|
* @vsi_handle: VSI handle to be found in VSI list
|
|
* @vsi_list_id: VSI list ID found containing vsi_handle
|
|
*
|
|
* Helper function to search a VSI list with single entry containing given VSI
|
|
* handle element. This can be extended further to search VSI list with more
|
|
* than 1 vsi_count. Returns pointer to VSI list entry if found.
|
|
*/
|
|
static struct ice_vsi_list_map_info *
|
|
ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
|
|
u16 *vsi_list_id)
|
|
{
|
|
struct ice_vsi_list_map_info *map_info = NULL;
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct LIST_HEAD_TYPE *list_head;
|
|
|
|
list_head = &sw->recp_list[recp_id].filt_rules;
|
|
if (sw->recp_list[recp_id].adv_rule) {
|
|
struct ice_adv_fltr_mgmt_list_entry *list_itr;
|
|
|
|
LIST_FOR_EACH_ENTRY(list_itr, list_head,
|
|
ice_adv_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
if (list_itr->vsi_list_info) {
|
|
map_info = list_itr->vsi_list_info;
|
|
if (ice_is_bit_set(map_info->vsi_map,
|
|
vsi_handle)) {
|
|
*vsi_list_id = map_info->vsi_list_id;
|
|
return map_info;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
struct ice_fltr_mgmt_list_entry *list_itr;
|
|
|
|
LIST_FOR_EACH_ENTRY(list_itr, list_head,
|
|
ice_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
if (list_itr->vsi_count == 1 &&
|
|
list_itr->vsi_list_info) {
|
|
map_info = list_itr->vsi_list_info;
|
|
if (ice_is_bit_set(map_info->vsi_map,
|
|
vsi_handle)) {
|
|
*vsi_list_id = map_info->vsi_list_id;
|
|
return map_info;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_add_rule_internal - add rule for a given lookup type
|
|
* @hw: pointer to the hardware structure
|
|
* @recp_id: lookup type (recipe ID) for which rule has to be added
|
|
* @f_entry: structure containing MAC forwarding information
|
|
*
|
|
* Adds or updates the rule lists for a given recipe
|
|
*/
|
|
static enum ice_status
|
|
ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
|
|
struct ice_fltr_list_entry *f_entry)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_info *new_fltr, *cur_fltr;
|
|
struct ice_fltr_mgmt_list_entry *m_entry;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
enum ice_status status = ICE_SUCCESS;
|
|
|
|
if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Load the hw_vsi_id only if the fwd action is fwd to VSI */
|
|
if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
|
|
f_entry->fltr_info.fwd_id.hw_vsi_id =
|
|
ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
|
|
|
|
rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
|
|
|
|
ice_acquire_lock(rule_lock);
|
|
new_fltr = &f_entry->fltr_info;
|
|
if (new_fltr->flag & ICE_FLTR_RX)
|
|
new_fltr->src = hw->port_info->lport;
|
|
else if (new_fltr->flag & ICE_FLTR_TX)
|
|
new_fltr->src =
|
|
ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
|
|
|
|
m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
|
|
if (!m_entry) {
|
|
status = ice_create_pkt_fwd_rule(hw, f_entry);
|
|
goto exit_add_rule_internal;
|
|
}
|
|
|
|
cur_fltr = &m_entry->fltr_info;
|
|
status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
|
|
|
|
exit_add_rule_internal:
|
|
ice_release_lock(rule_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_remove_vsi_list_rule
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_list_id: VSI list ID generated as part of allocate resource
|
|
* @lkup_type: switch rule filter lookup type
|
|
*
|
|
* The VSI list should be emptied before this function is called to remove the
|
|
* VSI list.
|
|
*/
|
|
static enum ice_status
|
|
ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
|
|
enum ice_sw_lkup_type lkup_type)
|
|
{
|
|
struct ice_aqc_sw_rules_elem *s_rule;
|
|
enum ice_status status;
|
|
u16 s_rule_size;
|
|
|
|
s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(0);
|
|
s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
|
|
if (!s_rule)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
|
|
s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id);
|
|
|
|
/* Free the vsi_list resource that we allocated. It is assumed that the
|
|
* list is empty at this point.
|
|
*/
|
|
status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
|
|
ice_aqc_opc_free_res);
|
|
|
|
ice_free(hw, s_rule);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_update_vsi_list
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle of the VSI to remove
|
|
* @fm_list: filter management entry for which the VSI list management needs to
|
|
* be done
|
|
*/
|
|
static enum ice_status
|
|
ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
|
|
struct ice_fltr_mgmt_list_entry *fm_list)
|
|
{
|
|
enum ice_sw_lkup_type lkup_type;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
u16 vsi_list_id;
|
|
|
|
if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
|
|
fm_list->vsi_count == 0)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* A rule with the VSI being removed does not exist */
|
|
if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
|
|
return ICE_ERR_DOES_NOT_EXIST;
|
|
|
|
lkup_type = fm_list->fltr_info.lkup_type;
|
|
vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
|
|
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
|
|
ice_aqc_opc_update_sw_rules,
|
|
lkup_type);
|
|
if (status)
|
|
return status;
|
|
|
|
fm_list->vsi_count--;
|
|
ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
|
|
|
|
if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
|
|
struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
|
|
struct ice_vsi_list_map_info *vsi_list_info =
|
|
fm_list->vsi_list_info;
|
|
u16 rem_vsi_handle;
|
|
|
|
rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
|
|
ICE_MAX_VSI);
|
|
if (!ice_is_vsi_valid(hw, rem_vsi_handle))
|
|
return ICE_ERR_OUT_OF_RANGE;
|
|
|
|
/* Make sure VSI list is empty before removing it below */
|
|
status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
|
|
vsi_list_id, true,
|
|
ice_aqc_opc_update_sw_rules,
|
|
lkup_type);
|
|
if (status)
|
|
return status;
|
|
|
|
tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
|
|
tmp_fltr_info.fwd_id.hw_vsi_id =
|
|
ice_get_hw_vsi_num(hw, rem_vsi_handle);
|
|
tmp_fltr_info.vsi_handle = rem_vsi_handle;
|
|
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
|
|
tmp_fltr_info.fwd_id.hw_vsi_id, status);
|
|
return status;
|
|
}
|
|
|
|
fm_list->fltr_info = tmp_fltr_info;
|
|
}
|
|
|
|
if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
|
|
(fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
|
|
struct ice_vsi_list_map_info *vsi_list_info =
|
|
fm_list->vsi_list_info;
|
|
|
|
/* Remove the VSI list since it is no longer used */
|
|
status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"Failed to remove VSI list %d, error %d\n",
|
|
vsi_list_id, status);
|
|
return status;
|
|
}
|
|
|
|
LIST_DEL(&vsi_list_info->list_entry);
|
|
ice_free(hw, vsi_list_info);
|
|
fm_list->vsi_list_info = NULL;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_remove_rule_internal - Remove a filter rule of a given type
|
|
*
|
|
* @hw: pointer to the hardware structure
|
|
* @recp_id: recipe ID for which the rule needs to removed
|
|
* @f_entry: rule entry containing filter information
|
|
*/
|
|
static enum ice_status
|
|
ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
|
|
struct ice_fltr_list_entry *f_entry)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_mgmt_list_entry *list_elem;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
enum ice_status status = ICE_SUCCESS;
|
|
bool remove_rule = false;
|
|
u16 vsi_handle;
|
|
|
|
if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
f_entry->fltr_info.fwd_id.hw_vsi_id =
|
|
ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
|
|
|
|
rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
|
|
ice_acquire_lock(rule_lock);
|
|
list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
|
|
if (!list_elem) {
|
|
status = ICE_ERR_DOES_NOT_EXIST;
|
|
goto exit;
|
|
}
|
|
|
|
if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
|
|
remove_rule = true;
|
|
} else if (!list_elem->vsi_list_info) {
|
|
status = ICE_ERR_DOES_NOT_EXIST;
|
|
goto exit;
|
|
} else if (list_elem->vsi_list_info->ref_cnt > 1) {
|
|
/* a ref_cnt > 1 indicates that the vsi_list is being
|
|
* shared by multiple rules. Decrement the ref_cnt and
|
|
* remove this rule, but do not modify the list, as it
|
|
* is in-use by other rules.
|
|
*/
|
|
list_elem->vsi_list_info->ref_cnt--;
|
|
remove_rule = true;
|
|
} else {
|
|
/* a ref_cnt of 1 indicates the vsi_list is only used
|
|
* by one rule. However, the original removal request is only
|
|
* for a single VSI. Update the vsi_list first, and only
|
|
* remove the rule if there are no further VSIs in this list.
|
|
*/
|
|
vsi_handle = f_entry->fltr_info.vsi_handle;
|
|
status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
|
|
if (status)
|
|
goto exit;
|
|
/* if VSI count goes to zero after updating the VSI list */
|
|
if (list_elem->vsi_count == 0)
|
|
remove_rule = true;
|
|
}
|
|
|
|
if (remove_rule) {
|
|
/* Remove the lookup rule */
|
|
struct ice_aqc_sw_rules_elem *s_rule;
|
|
|
|
s_rule = (struct ice_aqc_sw_rules_elem *)
|
|
ice_malloc(hw, ICE_SW_RULE_RX_TX_NO_HDR_SIZE);
|
|
if (!s_rule) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto exit;
|
|
}
|
|
|
|
ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
|
|
ice_aqc_opc_remove_sw_rules);
|
|
|
|
status = ice_aq_sw_rules(hw, s_rule,
|
|
ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1,
|
|
ice_aqc_opc_remove_sw_rules, NULL);
|
|
|
|
/* Remove a book keeping from the list */
|
|
ice_free(hw, s_rule);
|
|
|
|
if (status)
|
|
goto exit;
|
|
|
|
LIST_DEL(&list_elem->list_entry);
|
|
ice_free(hw, list_elem);
|
|
}
|
|
exit:
|
|
ice_release_lock(rule_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_res_alloc - get allocated resources
|
|
* @hw: pointer to the HW struct
|
|
* @num_entries: pointer to u16 to store the number of resource entries returned
|
|
* @buf: pointer to user-supplied buffer
|
|
* @buf_size: size of buff
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* The user-supplied buffer must be large enough to store the resource
|
|
* information for all resource types. Each resource type is an
|
|
* ice_aqc_get_res_resp_data_elem structure.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries, void *buf,
|
|
u16 buf_size, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_res_alloc *resp;
|
|
enum ice_status status;
|
|
struct ice_aq_desc desc;
|
|
|
|
if (!buf)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN)
|
|
return ICE_ERR_INVAL_SIZE;
|
|
|
|
resp = &desc.params.get_res;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc);
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
|
|
if (!status && num_entries)
|
|
*num_entries = LE16_TO_CPU(resp->resp_elem_num);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_res_descs - get allocated resource descriptors
|
|
* @hw: pointer to the hardware structure
|
|
* @num_entries: number of resource entries in buffer
|
|
* @buf: Indirect buffer to hold data parameters and response
|
|
* @buf_size: size of buffer for indirect commands
|
|
* @res_type: resource type
|
|
* @res_shared: is resource shared
|
|
* @desc_id: input - first desc ID to start; output - next desc ID
|
|
* @cd: pointer to command details structure or NULL
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries,
|
|
struct ice_aqc_get_allocd_res_desc_resp *buf,
|
|
u16 buf_size, u16 res_type, bool res_shared, u16 *desc_id,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_allocd_res_desc *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
cmd = &desc.params.get_res_desc;
|
|
|
|
if (!buf)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (buf_size != (num_entries * sizeof(*buf)))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc);
|
|
|
|
cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
|
|
ICE_AQC_RES_TYPE_M) | (res_shared ?
|
|
ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
|
|
cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
if (!status)
|
|
*desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_add_mac - Add a MAC address based filter rule
|
|
* @hw: pointer to the hardware structure
|
|
* @m_list: list of MAC addresses and forwarding information
|
|
*
|
|
* IMPORTANT: When the ucast_shared flag is set to false and m_list has
|
|
* multiple unicast addresses, the function assumes that all the
|
|
* addresses are unique in a given add_mac call. It doesn't
|
|
* check for duplicates in this case, removing duplicates from a given
|
|
* list should be taken care of in the caller of this function.
|
|
*/
|
|
enum ice_status
|
|
ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
|
|
{
|
|
struct ice_aqc_sw_rules_elem *s_rule, *r_iter;
|
|
struct ice_fltr_list_entry *m_list_itr;
|
|
struct LIST_HEAD_TYPE *rule_head;
|
|
u16 elem_sent, total_elem_left;
|
|
struct ice_switch_info *sw;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
enum ice_status status = ICE_SUCCESS;
|
|
u16 num_unicast = 0;
|
|
u16 s_rule_size;
|
|
|
|
if (!m_list || !hw)
|
|
return ICE_ERR_PARAM;
|
|
s_rule = NULL;
|
|
sw = hw->switch_info;
|
|
rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
|
|
LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
|
|
u16 vsi_handle;
|
|
u16 hw_vsi_id;
|
|
|
|
m_list_itr->fltr_info.flag = ICE_FLTR_TX;
|
|
vsi_handle = m_list_itr->fltr_info.vsi_handle;
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
|
|
/* update the src in case it is VSI num */
|
|
if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
|
|
return ICE_ERR_PARAM;
|
|
m_list_itr->fltr_info.src = hw_vsi_id;
|
|
if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
|
|
IS_ZERO_ETHER_ADDR(add))
|
|
return ICE_ERR_PARAM;
|
|
if (IS_UNICAST_ETHER_ADDR(add) && !hw->ucast_shared) {
|
|
/* Don't overwrite the unicast address */
|
|
ice_acquire_lock(rule_lock);
|
|
if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC,
|
|
&m_list_itr->fltr_info)) {
|
|
ice_release_lock(rule_lock);
|
|
return ICE_ERR_ALREADY_EXISTS;
|
|
}
|
|
ice_release_lock(rule_lock);
|
|
num_unicast++;
|
|
} else if (IS_MULTICAST_ETHER_ADDR(add) ||
|
|
(IS_UNICAST_ETHER_ADDR(add) && hw->ucast_shared)) {
|
|
m_list_itr->status =
|
|
ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
|
|
m_list_itr);
|
|
if (m_list_itr->status)
|
|
return m_list_itr->status;
|
|
}
|
|
}
|
|
|
|
ice_acquire_lock(rule_lock);
|
|
/* Exit if no suitable entries were found for adding bulk switch rule */
|
|
if (!num_unicast) {
|
|
status = ICE_SUCCESS;
|
|
goto ice_add_mac_exit;
|
|
}
|
|
|
|
rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
|
|
|
|
/* Allocate switch rule buffer for the bulk update for unicast */
|
|
s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
|
|
s_rule = (struct ice_aqc_sw_rules_elem *)
|
|
ice_calloc(hw, num_unicast, s_rule_size);
|
|
if (!s_rule) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto ice_add_mac_exit;
|
|
}
|
|
|
|
r_iter = s_rule;
|
|
LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
|
|
u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
|
|
|
|
if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
|
|
ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
|
|
ice_aqc_opc_add_sw_rules);
|
|
r_iter = (struct ice_aqc_sw_rules_elem *)
|
|
((u8 *)r_iter + s_rule_size);
|
|
}
|
|
}
|
|
|
|
/* Call AQ bulk switch rule update for all unicast addresses */
|
|
r_iter = s_rule;
|
|
/* Call AQ switch rule in AQ_MAX chunk */
|
|
for (total_elem_left = num_unicast; total_elem_left > 0;
|
|
total_elem_left -= elem_sent) {
|
|
struct ice_aqc_sw_rules_elem *entry = r_iter;
|
|
|
|
elem_sent = min(total_elem_left,
|
|
(u16)(ICE_AQ_MAX_BUF_LEN / s_rule_size));
|
|
status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
|
|
elem_sent, ice_aqc_opc_add_sw_rules,
|
|
NULL);
|
|
if (status)
|
|
goto ice_add_mac_exit;
|
|
r_iter = (struct ice_aqc_sw_rules_elem *)
|
|
((u8 *)r_iter + (elem_sent * s_rule_size));
|
|
}
|
|
|
|
/* Fill up rule ID based on the value returned from FW */
|
|
r_iter = s_rule;
|
|
LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
|
|
u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
|
|
struct ice_fltr_mgmt_list_entry *fm_entry;
|
|
|
|
if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
|
|
f_info->fltr_rule_id =
|
|
LE16_TO_CPU(r_iter->pdata.lkup_tx_rx.index);
|
|
f_info->fltr_act = ICE_FWD_TO_VSI;
|
|
/* Create an entry to track this MAC address */
|
|
fm_entry = (struct ice_fltr_mgmt_list_entry *)
|
|
ice_malloc(hw, sizeof(*fm_entry));
|
|
if (!fm_entry) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto ice_add_mac_exit;
|
|
}
|
|
fm_entry->fltr_info = *f_info;
|
|
fm_entry->vsi_count = 1;
|
|
/* The book keeping entries will get removed when
|
|
* base driver calls remove filter AQ command
|
|
*/
|
|
|
|
LIST_ADD(&fm_entry->list_entry, rule_head);
|
|
r_iter = (struct ice_aqc_sw_rules_elem *)
|
|
((u8 *)r_iter + s_rule_size);
|
|
}
|
|
}
|
|
|
|
ice_add_mac_exit:
|
|
ice_release_lock(rule_lock);
|
|
if (s_rule)
|
|
ice_free(hw, s_rule);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_add_vlan_internal - Add one VLAN based filter rule
|
|
* @hw: pointer to the hardware structure
|
|
* @f_entry: filter entry containing one VLAN information
|
|
*/
|
|
static enum ice_status
|
|
ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_mgmt_list_entry *v_list_itr;
|
|
struct ice_fltr_info *new_fltr, *cur_fltr;
|
|
enum ice_sw_lkup_type lkup_type;
|
|
u16 vsi_list_id = 0, vsi_handle;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
enum ice_status status = ICE_SUCCESS;
|
|
|
|
if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
f_entry->fltr_info.fwd_id.hw_vsi_id =
|
|
ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
|
|
new_fltr = &f_entry->fltr_info;
|
|
|
|
/* VLAN ID should only be 12 bits */
|
|
if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (new_fltr->src_id != ICE_SRC_ID_VSI)
|
|
return ICE_ERR_PARAM;
|
|
|
|
new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
|
|
lkup_type = new_fltr->lkup_type;
|
|
vsi_handle = new_fltr->vsi_handle;
|
|
rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
|
|
ice_acquire_lock(rule_lock);
|
|
v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
|
|
if (!v_list_itr) {
|
|
struct ice_vsi_list_map_info *map_info = NULL;
|
|
|
|
if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
|
|
/* All VLAN pruning rules use a VSI list. Check if
|
|
* there is already a VSI list containing VSI that we
|
|
* want to add. If found, use the same vsi_list_id for
|
|
* this new VLAN rule or else create a new list.
|
|
*/
|
|
map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
|
|
vsi_handle,
|
|
&vsi_list_id);
|
|
if (!map_info) {
|
|
status = ice_create_vsi_list_rule(hw,
|
|
&vsi_handle,
|
|
1,
|
|
&vsi_list_id,
|
|
lkup_type);
|
|
if (status)
|
|
goto exit;
|
|
}
|
|
/* Convert the action to forwarding to a VSI list. */
|
|
new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
|
|
new_fltr->fwd_id.vsi_list_id = vsi_list_id;
|
|
}
|
|
|
|
status = ice_create_pkt_fwd_rule(hw, f_entry);
|
|
if (!status) {
|
|
v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
|
|
new_fltr);
|
|
if (!v_list_itr) {
|
|
status = ICE_ERR_DOES_NOT_EXIST;
|
|
goto exit;
|
|
}
|
|
/* reuse VSI list for new rule and increment ref_cnt */
|
|
if (map_info) {
|
|
v_list_itr->vsi_list_info = map_info;
|
|
map_info->ref_cnt++;
|
|
} else {
|
|
v_list_itr->vsi_list_info =
|
|
ice_create_vsi_list_map(hw, &vsi_handle,
|
|
1, vsi_list_id);
|
|
}
|
|
}
|
|
} else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
|
|
/* Update existing VSI list to add new VSI ID only if it used
|
|
* by one VLAN rule.
|
|
*/
|
|
cur_fltr = &v_list_itr->fltr_info;
|
|
status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
|
|
new_fltr);
|
|
} else {
|
|
/* If VLAN rule exists and VSI list being used by this rule is
|
|
* referenced by more than 1 VLAN rule. Then create a new VSI
|
|
* list appending previous VSI with new VSI and update existing
|
|
* VLAN rule to point to new VSI list ID
|
|
*/
|
|
struct ice_fltr_info tmp_fltr;
|
|
u16 vsi_handle_arr[2];
|
|
u16 cur_handle;
|
|
|
|
/* Current implementation only supports reusing VSI list with
|
|
* one VSI count. We should never hit below condition
|
|
*/
|
|
if (v_list_itr->vsi_count > 1 &&
|
|
v_list_itr->vsi_list_info->ref_cnt > 1) {
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
|
|
status = ICE_ERR_CFG;
|
|
goto exit;
|
|
}
|
|
|
|
cur_handle =
|
|
ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
|
|
ICE_MAX_VSI);
|
|
|
|
/* A rule already exists with the new VSI being added */
|
|
if (cur_handle == vsi_handle) {
|
|
status = ICE_ERR_ALREADY_EXISTS;
|
|
goto exit;
|
|
}
|
|
|
|
vsi_handle_arr[0] = cur_handle;
|
|
vsi_handle_arr[1] = vsi_handle;
|
|
status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
|
|
&vsi_list_id, lkup_type);
|
|
if (status)
|
|
goto exit;
|
|
|
|
tmp_fltr = v_list_itr->fltr_info;
|
|
tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
|
|
tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
|
|
tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
|
|
/* Update the previous switch rule to a new VSI list which
|
|
* includes current VSI that is requested
|
|
*/
|
|
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
|
|
if (status)
|
|
goto exit;
|
|
|
|
/* before overriding VSI list map info. decrement ref_cnt of
|
|
* previous VSI list
|
|
*/
|
|
v_list_itr->vsi_list_info->ref_cnt--;
|
|
|
|
/* now update to newly created list */
|
|
v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
|
|
v_list_itr->vsi_list_info =
|
|
ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
|
|
vsi_list_id);
|
|
v_list_itr->vsi_count++;
|
|
}
|
|
|
|
exit:
|
|
ice_release_lock(rule_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_add_vlan - Add VLAN based filter rule
|
|
* @hw: pointer to the hardware structure
|
|
* @v_list: list of VLAN entries and forwarding information
|
|
*/
|
|
enum ice_status
|
|
ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
|
|
{
|
|
struct ice_fltr_list_entry *v_list_itr;
|
|
|
|
if (!v_list || !hw)
|
|
return ICE_ERR_PARAM;
|
|
|
|
LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
|
|
return ICE_ERR_PARAM;
|
|
v_list_itr->fltr_info.flag = ICE_FLTR_TX;
|
|
v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
|
|
if (v_list_itr->status)
|
|
return v_list_itr->status;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_add_mac_vlan - Add MAC and VLAN pair based filter rule
|
|
* @hw: pointer to the hardware structure
|
|
* @mv_list: list of MAC and VLAN filters
|
|
*
|
|
* If the VSI on which the MAC-VLAN pair has to be added has Rx and Tx VLAN
|
|
* pruning bits enabled, then it is the responsibility of the caller to make
|
|
* sure to add a VLAN only filter on the same VSI. Packets belonging to that
|
|
* VLAN won't be received on that VSI otherwise.
|
|
*/
|
|
enum ice_status
|
|
ice_add_mac_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *mv_list)
|
|
{
|
|
struct ice_fltr_list_entry *mv_list_itr;
|
|
|
|
if (!mv_list || !hw)
|
|
return ICE_ERR_PARAM;
|
|
|
|
LIST_FOR_EACH_ENTRY(mv_list_itr, mv_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
enum ice_sw_lkup_type l_type =
|
|
mv_list_itr->fltr_info.lkup_type;
|
|
|
|
if (l_type != ICE_SW_LKUP_MAC_VLAN)
|
|
return ICE_ERR_PARAM;
|
|
mv_list_itr->fltr_info.flag = ICE_FLTR_TX;
|
|
mv_list_itr->status =
|
|
ice_add_rule_internal(hw, ICE_SW_LKUP_MAC_VLAN,
|
|
mv_list_itr);
|
|
if (mv_list_itr->status)
|
|
return mv_list_itr->status;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_add_eth_mac - Add ethertype and MAC based filter rule
|
|
* @hw: pointer to the hardware structure
|
|
* @em_list: list of ether type MAC filter, MAC is optional
|
|
*
|
|
* This function requires the caller to populate the entries in
|
|
* the filter list with the necessary fields (including flags to
|
|
* indicate Tx or Rx rules).
|
|
*/
|
|
enum ice_status
|
|
ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
|
|
{
|
|
struct ice_fltr_list_entry *em_list_itr;
|
|
|
|
if (!em_list || !hw)
|
|
return ICE_ERR_PARAM;
|
|
|
|
LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
enum ice_sw_lkup_type l_type =
|
|
em_list_itr->fltr_info.lkup_type;
|
|
|
|
if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
|
|
l_type != ICE_SW_LKUP_ETHERTYPE)
|
|
return ICE_ERR_PARAM;
|
|
|
|
em_list_itr->status = ice_add_rule_internal(hw, l_type,
|
|
em_list_itr);
|
|
if (em_list_itr->status)
|
|
return em_list_itr->status;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
|
|
* @hw: pointer to the hardware structure
|
|
* @em_list: list of ethertype or ethertype MAC entries
|
|
*/
|
|
enum ice_status
|
|
ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
|
|
{
|
|
struct ice_fltr_list_entry *em_list_itr, *tmp;
|
|
|
|
if (!em_list || !hw)
|
|
return ICE_ERR_PARAM;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
enum ice_sw_lkup_type l_type =
|
|
em_list_itr->fltr_info.lkup_type;
|
|
|
|
if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
|
|
l_type != ICE_SW_LKUP_ETHERTYPE)
|
|
return ICE_ERR_PARAM;
|
|
|
|
em_list_itr->status = ice_remove_rule_internal(hw, l_type,
|
|
em_list_itr);
|
|
if (em_list_itr->status)
|
|
return em_list_itr->status;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_sw_rule_info
|
|
* @hw: pointer to the hardware structure
|
|
* @rule_head: pointer to the switch list structure that we want to delete
|
|
*/
|
|
static void
|
|
ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
|
|
{
|
|
if (!LIST_EMPTY(rule_head)) {
|
|
struct ice_fltr_mgmt_list_entry *entry;
|
|
struct ice_fltr_mgmt_list_entry *tmp;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head,
|
|
ice_fltr_mgmt_list_entry, list_entry) {
|
|
LIST_DEL(&entry->list_entry);
|
|
ice_free(hw, entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_rem_adv_rule_info
|
|
* @hw: pointer to the hardware structure
|
|
* @rule_head: pointer to the switch list structure that we want to delete
|
|
*/
|
|
static void
|
|
ice_rem_adv_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
|
|
{
|
|
struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
|
|
struct ice_adv_fltr_mgmt_list_entry *lst_itr;
|
|
|
|
if (LIST_EMPTY(rule_head))
|
|
return;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry, rule_head,
|
|
ice_adv_fltr_mgmt_list_entry, list_entry) {
|
|
LIST_DEL(&lst_itr->list_entry);
|
|
ice_free(hw, lst_itr->lkups);
|
|
ice_free(hw, lst_itr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_rem_all_sw_rules_info
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
void ice_rem_all_sw_rules_info(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
u8 i;
|
|
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
|
|
struct LIST_HEAD_TYPE *rule_head;
|
|
|
|
rule_head = &sw->recp_list[i].filt_rules;
|
|
if (!sw->recp_list[i].adv_rule)
|
|
ice_rem_sw_rule_info(hw, rule_head);
|
|
else
|
|
ice_rem_adv_rule_info(hw, rule_head);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_dflt_vsi - change state of VSI to set/clear default
|
|
* @pi: pointer to the port_info structure
|
|
* @vsi_handle: VSI handle to set as default
|
|
* @set: true to add the above mentioned switch rule, false to remove it
|
|
* @direction: ICE_FLTR_RX or ICE_FLTR_TX
|
|
*
|
|
* add filter rule to set/unset given VSI as default VSI for the switch
|
|
* (represented by swid)
|
|
*/
|
|
enum ice_status
|
|
ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
|
|
u8 direction)
|
|
{
|
|
struct ice_aqc_sw_rules_elem *s_rule;
|
|
struct ice_fltr_info f_info;
|
|
struct ice_hw *hw = pi->hw;
|
|
enum ice_adminq_opc opcode;
|
|
enum ice_status status;
|
|
u16 s_rule_size;
|
|
u16 hw_vsi_id;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
|
|
s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE :
|
|
ICE_SW_RULE_RX_TX_NO_HDR_SIZE;
|
|
s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
|
|
if (!s_rule)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM);
|
|
|
|
f_info.lkup_type = ICE_SW_LKUP_DFLT;
|
|
f_info.flag = direction;
|
|
f_info.fltr_act = ICE_FWD_TO_VSI;
|
|
f_info.fwd_id.hw_vsi_id = hw_vsi_id;
|
|
|
|
if (f_info.flag & ICE_FLTR_RX) {
|
|
f_info.src = pi->lport;
|
|
f_info.src_id = ICE_SRC_ID_LPORT;
|
|
if (!set)
|
|
f_info.fltr_rule_id =
|
|
pi->dflt_rx_vsi_rule_id;
|
|
} else if (f_info.flag & ICE_FLTR_TX) {
|
|
f_info.src_id = ICE_SRC_ID_VSI;
|
|
f_info.src = hw_vsi_id;
|
|
if (!set)
|
|
f_info.fltr_rule_id =
|
|
pi->dflt_tx_vsi_rule_id;
|
|
}
|
|
|
|
if (set)
|
|
opcode = ice_aqc_opc_add_sw_rules;
|
|
else
|
|
opcode = ice_aqc_opc_remove_sw_rules;
|
|
|
|
ice_fill_sw_rule(hw, &f_info, s_rule, opcode);
|
|
|
|
status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL);
|
|
if (status || !(f_info.flag & ICE_FLTR_TX_RX))
|
|
goto out;
|
|
if (set) {
|
|
u16 index = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
|
|
|
|
if (f_info.flag & ICE_FLTR_TX) {
|
|
pi->dflt_tx_vsi_num = hw_vsi_id;
|
|
pi->dflt_tx_vsi_rule_id = index;
|
|
} else if (f_info.flag & ICE_FLTR_RX) {
|
|
pi->dflt_rx_vsi_num = hw_vsi_id;
|
|
pi->dflt_rx_vsi_rule_id = index;
|
|
}
|
|
} else {
|
|
if (f_info.flag & ICE_FLTR_TX) {
|
|
pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
|
|
pi->dflt_tx_vsi_rule_id = ICE_INVAL_ACT;
|
|
} else if (f_info.flag & ICE_FLTR_RX) {
|
|
pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
|
|
pi->dflt_rx_vsi_rule_id = ICE_INVAL_ACT;
|
|
}
|
|
}
|
|
|
|
out:
|
|
ice_free(hw, s_rule);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
|
|
* @hw: pointer to the hardware structure
|
|
* @recp_id: lookup type for which the specified rule needs to be searched
|
|
* @f_info: rule information
|
|
*
|
|
* Helper function to search for a unicast rule entry - this is to be used
|
|
* to remove unicast MAC filter that is not shared with other VSIs on the
|
|
* PF switch.
|
|
*
|
|
* Returns pointer to entry storing the rule if found
|
|
*/
|
|
static struct ice_fltr_mgmt_list_entry *
|
|
ice_find_ucast_rule_entry(struct ice_hw *hw, u8 recp_id,
|
|
struct ice_fltr_info *f_info)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_mgmt_list_entry *list_itr;
|
|
struct LIST_HEAD_TYPE *list_head;
|
|
|
|
list_head = &sw->recp_list[recp_id].filt_rules;
|
|
LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
|
|
sizeof(f_info->l_data)) &&
|
|
f_info->fwd_id.hw_vsi_id ==
|
|
list_itr->fltr_info.fwd_id.hw_vsi_id &&
|
|
f_info->flag == list_itr->fltr_info.flag)
|
|
return list_itr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_remove_mac - remove a MAC address based filter rule
|
|
* @hw: pointer to the hardware structure
|
|
* @m_list: list of MAC addresses and forwarding information
|
|
*
|
|
* This function removes either a MAC filter rule or a specific VSI from a
|
|
* VSI list for a multicast MAC address.
|
|
*
|
|
* Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
|
|
* ice_add_mac. Caller should be aware that this call will only work if all
|
|
* the entries passed into m_list were added previously. It will not attempt to
|
|
* do a partial remove of entries that were found.
|
|
*/
|
|
enum ice_status
|
|
ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
|
|
{
|
|
struct ice_fltr_list_entry *list_itr, *tmp;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
|
|
if (!m_list)
|
|
return ICE_ERR_PARAM;
|
|
|
|
rule_lock = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
|
|
LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
|
|
u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
|
|
u16 vsi_handle;
|
|
|
|
if (l_type != ICE_SW_LKUP_MAC)
|
|
return ICE_ERR_PARAM;
|
|
|
|
vsi_handle = list_itr->fltr_info.vsi_handle;
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
list_itr->fltr_info.fwd_id.hw_vsi_id =
|
|
ice_get_hw_vsi_num(hw, vsi_handle);
|
|
if (IS_UNICAST_ETHER_ADDR(add) && !hw->ucast_shared) {
|
|
/* Don't remove the unicast address that belongs to
|
|
* another VSI on the switch, since it is not being
|
|
* shared...
|
|
*/
|
|
ice_acquire_lock(rule_lock);
|
|
if (!ice_find_ucast_rule_entry(hw, ICE_SW_LKUP_MAC,
|
|
&list_itr->fltr_info)) {
|
|
ice_release_lock(rule_lock);
|
|
return ICE_ERR_DOES_NOT_EXIST;
|
|
}
|
|
ice_release_lock(rule_lock);
|
|
}
|
|
list_itr->status = ice_remove_rule_internal(hw,
|
|
ICE_SW_LKUP_MAC,
|
|
list_itr);
|
|
if (list_itr->status)
|
|
return list_itr->status;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_remove_vlan - Remove VLAN based filter rule
|
|
* @hw: pointer to the hardware structure
|
|
* @v_list: list of VLAN entries and forwarding information
|
|
*/
|
|
enum ice_status
|
|
ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
|
|
{
|
|
struct ice_fltr_list_entry *v_list_itr, *tmp;
|
|
|
|
if (!v_list || !hw)
|
|
return ICE_ERR_PARAM;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
|
|
|
|
if (l_type != ICE_SW_LKUP_VLAN)
|
|
return ICE_ERR_PARAM;
|
|
v_list_itr->status = ice_remove_rule_internal(hw,
|
|
ICE_SW_LKUP_VLAN,
|
|
v_list_itr);
|
|
if (v_list_itr->status)
|
|
return v_list_itr->status;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_remove_mac_vlan - Remove MAC VLAN based filter rule
|
|
* @hw: pointer to the hardware structure
|
|
* @v_list: list of MAC VLAN entries and forwarding information
|
|
*/
|
|
enum ice_status
|
|
ice_remove_mac_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
|
|
{
|
|
struct ice_fltr_list_entry *v_list_itr, *tmp;
|
|
|
|
if (!v_list || !hw)
|
|
return ICE_ERR_PARAM;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
|
|
|
|
if (l_type != ICE_SW_LKUP_MAC_VLAN)
|
|
return ICE_ERR_PARAM;
|
|
v_list_itr->status =
|
|
ice_remove_rule_internal(hw, ICE_SW_LKUP_MAC_VLAN,
|
|
v_list_itr);
|
|
if (v_list_itr->status)
|
|
return v_list_itr->status;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_uses_fltr - Determine if given VSI uses specified filter
|
|
* @fm_entry: filter entry to inspect
|
|
* @vsi_handle: VSI handle to compare with filter info
|
|
*/
|
|
static bool
|
|
ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
|
|
{
|
|
return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
|
|
fm_entry->fltr_info.vsi_handle == vsi_handle) ||
|
|
(fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
|
|
fm_entry->vsi_list_info &&
|
|
(ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
|
|
vsi_handle))));
|
|
}
|
|
|
|
/**
|
|
* ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle to remove filters from
|
|
* @vsi_list_head: pointer to the list to add entry to
|
|
* @fi: pointer to fltr_info of filter entry to copy & add
|
|
*
|
|
* Helper function, used when creating a list of filters to remove from
|
|
* a specific VSI. The entry added to vsi_list_head is a COPY of the
|
|
* original filter entry, with the exception of fltr_info.fltr_act and
|
|
* fltr_info.fwd_id fields. These are set such that later logic can
|
|
* extract which VSI to remove the fltr from, and pass on that information.
|
|
*/
|
|
static enum ice_status
|
|
ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
|
|
struct LIST_HEAD_TYPE *vsi_list_head,
|
|
struct ice_fltr_info *fi)
|
|
{
|
|
struct ice_fltr_list_entry *tmp;
|
|
|
|
/* this memory is freed up in the caller function
|
|
* once filters for this VSI are removed
|
|
*/
|
|
tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
|
|
if (!tmp)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
tmp->fltr_info = *fi;
|
|
|
|
/* Overwrite these fields to indicate which VSI to remove filter from,
|
|
* so find and remove logic can extract the information from the
|
|
* list entries. Note that original entries will still have proper
|
|
* values.
|
|
*/
|
|
tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
|
|
tmp->fltr_info.vsi_handle = vsi_handle;
|
|
tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
|
|
LIST_ADD(&tmp->list_entry, vsi_list_head);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_add_to_vsi_fltr_list - Add VSI filters to the list
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle to remove filters from
|
|
* @lkup_list_head: pointer to the list that has certain lookup type filters
|
|
* @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
|
|
*
|
|
* Locates all filters in lkup_list_head that are used by the given VSI,
|
|
* and adds COPIES of those entries to vsi_list_head (intended to be used
|
|
* to remove the listed filters).
|
|
* Note that this means all entries in vsi_list_head must be explicitly
|
|
* deallocated by the caller when done with list.
|
|
*/
|
|
static enum ice_status
|
|
ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
|
|
struct LIST_HEAD_TYPE *lkup_list_head,
|
|
struct LIST_HEAD_TYPE *vsi_list_head)
|
|
{
|
|
struct ice_fltr_mgmt_list_entry *fm_entry;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
|
|
/* check to make sure VSI ID is valid and within boundary */
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head,
|
|
ice_fltr_mgmt_list_entry, list_entry) {
|
|
if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
|
|
continue;
|
|
|
|
status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
|
|
vsi_list_head,
|
|
&fm_entry->fltr_info);
|
|
if (status)
|
|
return status;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_determine_promisc_mask
|
|
* @fi: filter info to parse
|
|
*
|
|
* Helper function to determine which ICE_PROMISC_ mask corresponds
|
|
* to given filter into.
|
|
*/
|
|
static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
|
|
{
|
|
u16 vid = fi->l_data.mac_vlan.vlan_id;
|
|
u8 *macaddr = fi->l_data.mac.mac_addr;
|
|
bool is_tx_fltr = false;
|
|
u8 promisc_mask = 0;
|
|
|
|
if (fi->flag == ICE_FLTR_TX)
|
|
is_tx_fltr = true;
|
|
|
|
if (IS_BROADCAST_ETHER_ADDR(macaddr))
|
|
promisc_mask |= is_tx_fltr ?
|
|
ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
|
|
else if (IS_MULTICAST_ETHER_ADDR(macaddr))
|
|
promisc_mask |= is_tx_fltr ?
|
|
ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
|
|
else if (IS_UNICAST_ETHER_ADDR(macaddr))
|
|
promisc_mask |= is_tx_fltr ?
|
|
ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
|
|
if (vid)
|
|
promisc_mask |= is_tx_fltr ?
|
|
ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
|
|
|
|
return promisc_mask;
|
|
}
|
|
|
|
/**
|
|
* ice_get_vsi_promisc - get promiscuous mode of given VSI
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle to retrieve info from
|
|
* @promisc_mask: pointer to mask to be filled in
|
|
* @vid: VLAN ID of promisc VLAN VSI
|
|
*/
|
|
enum ice_status
|
|
ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
|
|
u16 *vid)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_mgmt_list_entry *itr;
|
|
struct LIST_HEAD_TYPE *rule_head;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
*vid = 0;
|
|
*promisc_mask = 0;
|
|
rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rules;
|
|
rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rule_lock;
|
|
|
|
ice_acquire_lock(rule_lock);
|
|
LIST_FOR_EACH_ENTRY(itr, rule_head,
|
|
ice_fltr_mgmt_list_entry, list_entry) {
|
|
/* Continue if this filter doesn't apply to this VSI or the
|
|
* VSI ID is not in the VSI map for this filter
|
|
*/
|
|
if (!ice_vsi_uses_fltr(itr, vsi_handle))
|
|
continue;
|
|
|
|
*promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
|
|
}
|
|
ice_release_lock(rule_lock);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle to retrieve info from
|
|
* @promisc_mask: pointer to mask to be filled in
|
|
* @vid: VLAN ID of promisc VLAN VSI
|
|
*/
|
|
enum ice_status
|
|
ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
|
|
u16 *vid)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_mgmt_list_entry *itr;
|
|
struct LIST_HEAD_TYPE *rule_head;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
*vid = 0;
|
|
*promisc_mask = 0;
|
|
rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rules;
|
|
rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rule_lock;
|
|
|
|
ice_acquire_lock(rule_lock);
|
|
LIST_FOR_EACH_ENTRY(itr, rule_head, ice_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
/* Continue if this filter doesn't apply to this VSI or the
|
|
* VSI ID is not in the VSI map for this filter
|
|
*/
|
|
if (!ice_vsi_uses_fltr(itr, vsi_handle))
|
|
continue;
|
|
|
|
*promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
|
|
}
|
|
ice_release_lock(rule_lock);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_remove_promisc - Remove promisc based filter rules
|
|
* @hw: pointer to the hardware structure
|
|
* @recp_id: recipe ID for which the rule needs to removed
|
|
* @v_list: list of promisc entries
|
|
*/
|
|
static enum ice_status
|
|
ice_remove_promisc(struct ice_hw *hw, u8 recp_id,
|
|
struct LIST_HEAD_TYPE *v_list)
|
|
{
|
|
struct ice_fltr_list_entry *v_list_itr, *tmp;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
|
|
list_entry) {
|
|
v_list_itr->status =
|
|
ice_remove_rule_internal(hw, recp_id, v_list_itr);
|
|
if (v_list_itr->status)
|
|
return v_list_itr->status;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle to clear mode
|
|
* @promisc_mask: mask of promiscuous config bits to clear
|
|
* @vid: VLAN ID to clear VLAN promiscuous
|
|
*/
|
|
enum ice_status
|
|
ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
|
|
u16 vid)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_list_entry *fm_entry, *tmp;
|
|
struct LIST_HEAD_TYPE remove_list_head;
|
|
struct ice_fltr_mgmt_list_entry *itr;
|
|
struct LIST_HEAD_TYPE *rule_head;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
enum ice_status status = ICE_SUCCESS;
|
|
u8 recipe_id;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
|
|
recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
|
|
else
|
|
recipe_id = ICE_SW_LKUP_PROMISC;
|
|
|
|
rule_head = &sw->recp_list[recipe_id].filt_rules;
|
|
rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
|
|
|
|
INIT_LIST_HEAD(&remove_list_head);
|
|
|
|
ice_acquire_lock(rule_lock);
|
|
LIST_FOR_EACH_ENTRY(itr, rule_head,
|
|
ice_fltr_mgmt_list_entry, list_entry) {
|
|
struct ice_fltr_info *fltr_info;
|
|
u8 fltr_promisc_mask = 0;
|
|
|
|
if (!ice_vsi_uses_fltr(itr, vsi_handle))
|
|
continue;
|
|
fltr_info = &itr->fltr_info;
|
|
|
|
if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
|
|
vid != fltr_info->l_data.mac_vlan.vlan_id)
|
|
continue;
|
|
|
|
fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
|
|
|
|
/* Skip if filter is not completely specified by given mask */
|
|
if (fltr_promisc_mask & ~promisc_mask)
|
|
continue;
|
|
|
|
status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
|
|
&remove_list_head,
|
|
fltr_info);
|
|
if (status) {
|
|
ice_release_lock(rule_lock);
|
|
goto free_fltr_list;
|
|
}
|
|
}
|
|
ice_release_lock(rule_lock);
|
|
|
|
status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
|
|
|
|
free_fltr_list:
|
|
LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
|
|
ice_fltr_list_entry, list_entry) {
|
|
LIST_DEL(&fm_entry->list_entry);
|
|
ice_free(hw, fm_entry);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle to configure
|
|
* @promisc_mask: mask of promiscuous config bits
|
|
* @vid: VLAN ID to set VLAN promiscuous
|
|
*/
|
|
enum ice_status
|
|
ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
|
|
{
|
|
enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
|
|
struct ice_fltr_list_entry f_list_entry;
|
|
struct ice_fltr_info new_fltr;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
bool is_tx_fltr;
|
|
u16 hw_vsi_id;
|
|
int pkt_type;
|
|
u8 recipe_id;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
|
|
ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM);
|
|
|
|
if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
|
|
new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
|
|
new_fltr.l_data.mac_vlan.vlan_id = vid;
|
|
recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
|
|
} else {
|
|
new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
|
|
recipe_id = ICE_SW_LKUP_PROMISC;
|
|
}
|
|
|
|
/* Separate filters must be set for each direction/packet type
|
|
* combination, so we will loop over the mask value, store the
|
|
* individual type, and clear it out in the input mask as it
|
|
* is found.
|
|
*/
|
|
while (promisc_mask) {
|
|
u8 *mac_addr;
|
|
|
|
pkt_type = 0;
|
|
is_tx_fltr = false;
|
|
|
|
if (promisc_mask & ICE_PROMISC_UCAST_RX) {
|
|
promisc_mask &= ~ICE_PROMISC_UCAST_RX;
|
|
pkt_type = UCAST_FLTR;
|
|
} else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
|
|
promisc_mask &= ~ICE_PROMISC_UCAST_TX;
|
|
pkt_type = UCAST_FLTR;
|
|
is_tx_fltr = true;
|
|
} else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
|
|
promisc_mask &= ~ICE_PROMISC_MCAST_RX;
|
|
pkt_type = MCAST_FLTR;
|
|
} else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
|
|
promisc_mask &= ~ICE_PROMISC_MCAST_TX;
|
|
pkt_type = MCAST_FLTR;
|
|
is_tx_fltr = true;
|
|
} else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
|
|
promisc_mask &= ~ICE_PROMISC_BCAST_RX;
|
|
pkt_type = BCAST_FLTR;
|
|
} else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
|
|
promisc_mask &= ~ICE_PROMISC_BCAST_TX;
|
|
pkt_type = BCAST_FLTR;
|
|
is_tx_fltr = true;
|
|
}
|
|
|
|
/* Check for VLAN promiscuous flag */
|
|
if (promisc_mask & ICE_PROMISC_VLAN_RX) {
|
|
promisc_mask &= ~ICE_PROMISC_VLAN_RX;
|
|
} else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
|
|
promisc_mask &= ~ICE_PROMISC_VLAN_TX;
|
|
is_tx_fltr = true;
|
|
}
|
|
|
|
/* Set filter DA based on packet type */
|
|
mac_addr = new_fltr.l_data.mac.mac_addr;
|
|
if (pkt_type == BCAST_FLTR) {
|
|
ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM);
|
|
} else if (pkt_type == MCAST_FLTR ||
|
|
pkt_type == UCAST_FLTR) {
|
|
/* Use the dummy ether header DA */
|
|
ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN,
|
|
ICE_NONDMA_TO_NONDMA);
|
|
if (pkt_type == MCAST_FLTR)
|
|
mac_addr[0] |= 0x1; /* Set multicast bit */
|
|
}
|
|
|
|
/* Need to reset this to zero for all iterations */
|
|
new_fltr.flag = 0;
|
|
if (is_tx_fltr) {
|
|
new_fltr.flag |= ICE_FLTR_TX;
|
|
new_fltr.src = hw_vsi_id;
|
|
} else {
|
|
new_fltr.flag |= ICE_FLTR_RX;
|
|
new_fltr.src = hw->port_info->lport;
|
|
}
|
|
|
|
new_fltr.fltr_act = ICE_FWD_TO_VSI;
|
|
new_fltr.vsi_handle = vsi_handle;
|
|
new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
|
|
f_list_entry.fltr_info = new_fltr;
|
|
|
|
status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
|
|
if (status != ICE_SUCCESS)
|
|
goto set_promisc_exit;
|
|
}
|
|
|
|
set_promisc_exit:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vlan_vsi_promisc
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle to configure
|
|
* @promisc_mask: mask of promiscuous config bits
|
|
* @rm_vlan_promisc: Clear VLANs VSI promisc mode
|
|
*
|
|
* Configure VSI with all associated VLANs to given promiscuous mode(s)
|
|
*/
|
|
enum ice_status
|
|
ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
|
|
bool rm_vlan_promisc)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_list_entry *list_itr, *tmp;
|
|
struct LIST_HEAD_TYPE vsi_list_head;
|
|
struct LIST_HEAD_TYPE *vlan_head;
|
|
struct ice_lock *vlan_lock; /* Lock to protect filter rule list */
|
|
enum ice_status status;
|
|
u16 vlan_id;
|
|
|
|
INIT_LIST_HEAD(&vsi_list_head);
|
|
vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
|
|
vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
|
|
ice_acquire_lock(vlan_lock);
|
|
status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
|
|
&vsi_list_head);
|
|
ice_release_lock(vlan_lock);
|
|
if (status)
|
|
goto free_fltr_list;
|
|
|
|
LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry,
|
|
list_entry) {
|
|
vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
|
|
if (rm_vlan_promisc)
|
|
status = ice_clear_vsi_promisc(hw, vsi_handle,
|
|
promisc_mask, vlan_id);
|
|
else
|
|
status = ice_set_vsi_promisc(hw, vsi_handle,
|
|
promisc_mask, vlan_id);
|
|
if (status)
|
|
break;
|
|
}
|
|
|
|
free_fltr_list:
|
|
LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head,
|
|
ice_fltr_list_entry, list_entry) {
|
|
LIST_DEL(&list_itr->list_entry);
|
|
ice_free(hw, list_itr);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle to remove filters from
|
|
* @lkup: switch rule filter lookup type
|
|
*/
|
|
static void
|
|
ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
|
|
enum ice_sw_lkup_type lkup)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_list_entry *fm_entry;
|
|
struct LIST_HEAD_TYPE remove_list_head;
|
|
struct LIST_HEAD_TYPE *rule_head;
|
|
struct ice_fltr_list_entry *tmp;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
enum ice_status status;
|
|
|
|
INIT_LIST_HEAD(&remove_list_head);
|
|
rule_lock = &sw->recp_list[lkup].filt_rule_lock;
|
|
rule_head = &sw->recp_list[lkup].filt_rules;
|
|
ice_acquire_lock(rule_lock);
|
|
status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
|
|
&remove_list_head);
|
|
ice_release_lock(rule_lock);
|
|
if (status)
|
|
goto free_fltr_list;
|
|
|
|
switch (lkup) {
|
|
case ICE_SW_LKUP_MAC:
|
|
ice_remove_mac(hw, &remove_list_head);
|
|
break;
|
|
case ICE_SW_LKUP_VLAN:
|
|
ice_remove_vlan(hw, &remove_list_head);
|
|
break;
|
|
case ICE_SW_LKUP_PROMISC:
|
|
case ICE_SW_LKUP_PROMISC_VLAN:
|
|
ice_remove_promisc(hw, lkup, &remove_list_head);
|
|
break;
|
|
case ICE_SW_LKUP_MAC_VLAN:
|
|
ice_remove_mac_vlan(hw, &remove_list_head);
|
|
break;
|
|
case ICE_SW_LKUP_ETHERTYPE:
|
|
case ICE_SW_LKUP_ETHERTYPE_MAC:
|
|
ice_remove_eth_mac(hw, &remove_list_head);
|
|
break;
|
|
case ICE_SW_LKUP_DFLT:
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"Remove filters for this lookup type hasn't been implemented yet\n");
|
|
break;
|
|
case ICE_SW_LKUP_LAST:
|
|
ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n");
|
|
break;
|
|
}
|
|
|
|
free_fltr_list:
|
|
LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
|
|
ice_fltr_list_entry, list_entry) {
|
|
LIST_DEL(&fm_entry->list_entry);
|
|
ice_free(hw, fm_entry);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_remove_vsi_fltr - Remove all filters for a VSI
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle to remove filters from
|
|
*/
|
|
void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
|
|
ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
|
|
ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
|
|
ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
|
|
ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
|
|
ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
|
|
ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
|
|
ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_res_cntr - allocating resource counter
|
|
* @hw: pointer to the hardware structure
|
|
* @type: type of resource
|
|
* @alloc_shared: if set it is shared else dedicated
|
|
* @num_items: number of entries requested for FD resource type
|
|
* @counter_id: counter index returned by AQ call
|
|
*/
|
|
enum ice_status
|
|
ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
|
|
u16 *counter_id)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *buf;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
/* Allocate resource */
|
|
buf_len = sizeof(*buf);
|
|
buf = (struct ice_aqc_alloc_free_res_elem *)
|
|
ice_malloc(hw, buf_len);
|
|
if (!buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
buf->num_elems = CPU_TO_LE16(num_items);
|
|
buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
|
|
ICE_AQC_RES_TYPE_M) | alloc_shared);
|
|
|
|
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
|
|
ice_aqc_opc_alloc_res, NULL);
|
|
if (status)
|
|
goto exit;
|
|
|
|
*counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp);
|
|
|
|
exit:
|
|
ice_free(hw, buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_free_res_cntr - free resource counter
|
|
* @hw: pointer to the hardware structure
|
|
* @type: type of resource
|
|
* @alloc_shared: if set it is shared else dedicated
|
|
* @num_items: number of entries to be freed for FD resource type
|
|
* @counter_id: counter ID resource which needs to be freed
|
|
*/
|
|
enum ice_status
|
|
ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
|
|
u16 counter_id)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *buf;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
/* Free resource */
|
|
buf_len = sizeof(*buf);
|
|
buf = (struct ice_aqc_alloc_free_res_elem *)
|
|
ice_malloc(hw, buf_len);
|
|
if (!buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
buf->num_elems = CPU_TO_LE16(num_items);
|
|
buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
|
|
ICE_AQC_RES_TYPE_M) | alloc_shared);
|
|
buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
|
|
|
|
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
|
|
ice_aqc_opc_free_res, NULL);
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"counter resource could not be freed\n");
|
|
|
|
ice_free(hw, buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_vlan_res_counter - obtain counter resource for VLAN type
|
|
* @hw: pointer to the hardware structure
|
|
* @counter_id: returns counter index
|
|
*/
|
|
enum ice_status ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id)
|
|
{
|
|
return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
|
|
ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
|
|
counter_id);
|
|
}
|
|
|
|
/**
|
|
* ice_free_vlan_res_counter - Free counter resource for VLAN type
|
|
* @hw: pointer to the hardware structure
|
|
* @counter_id: counter index to be freed
|
|
*/
|
|
enum ice_status ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id)
|
|
{
|
|
return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
|
|
ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
|
|
counter_id);
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_res_lg_act - add large action resource
|
|
* @hw: pointer to the hardware structure
|
|
* @l_id: large action ID to fill it in
|
|
* @num_acts: number of actions to hold with a large action entry
|
|
*/
|
|
static enum ice_status
|
|
ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *sw_buf;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
if (num_acts > ICE_MAX_LG_ACT || num_acts == 0)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Allocate resource for large action */
|
|
buf_len = sizeof(*sw_buf);
|
|
sw_buf = (struct ice_aqc_alloc_free_res_elem *)
|
|
ice_malloc(hw, buf_len);
|
|
if (!sw_buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
sw_buf->num_elems = CPU_TO_LE16(1);
|
|
|
|
/* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1.
|
|
* If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3.
|
|
* If num_acts is greater than 2, then use
|
|
* ICE_AQC_RES_TYPE_WIDE_TABLE_4.
|
|
* The num_acts cannot exceed 4. This was ensured at the
|
|
* beginning of the function.
|
|
*/
|
|
if (num_acts == 1)
|
|
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_1);
|
|
else if (num_acts == 2)
|
|
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_2);
|
|
else
|
|
sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_4);
|
|
|
|
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
|
|
ice_aqc_opc_alloc_res, NULL);
|
|
if (!status)
|
|
*l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
|
|
|
|
ice_free(hw, sw_buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_add_mac_with_sw_marker - add filter with sw marker
|
|
* @hw: pointer to the hardware structure
|
|
* @f_info: filter info structure containing the MAC filter information
|
|
* @sw_marker: sw marker to tag the Rx descriptor with
|
|
*/
|
|
enum ice_status
|
|
ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info,
|
|
u16 sw_marker)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_mgmt_list_entry *m_entry;
|
|
struct ice_fltr_list_entry fl_info;
|
|
struct LIST_HEAD_TYPE l_head;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
enum ice_status ret;
|
|
bool entry_exists;
|
|
u16 lg_act_id;
|
|
|
|
if (f_info->fltr_act != ICE_FWD_TO_VSI)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (f_info->lkup_type != ICE_SW_LKUP_MAC)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (sw_marker == ICE_INVAL_SW_MARKER_ID)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
|
|
|
|
/* Add filter if it doesn't exist so then the adding of large
|
|
* action always results in update
|
|
*/
|
|
|
|
INIT_LIST_HEAD(&l_head);
|
|
fl_info.fltr_info = *f_info;
|
|
LIST_ADD(&fl_info.list_entry, &l_head);
|
|
|
|
entry_exists = false;
|
|
ret = ice_add_mac(hw, &l_head);
|
|
if (ret == ICE_ERR_ALREADY_EXISTS)
|
|
entry_exists = true;
|
|
else if (ret)
|
|
return ret;
|
|
|
|
rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
|
|
ice_acquire_lock(rule_lock);
|
|
/* Get the book keeping entry for the filter */
|
|
m_entry = ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, f_info);
|
|
if (!m_entry)
|
|
goto exit_error;
|
|
|
|
/* If counter action was enabled for this rule then don't enable
|
|
* sw marker large action
|
|
*/
|
|
if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
|
|
ret = ICE_ERR_PARAM;
|
|
goto exit_error;
|
|
}
|
|
|
|
/* if same marker was added before */
|
|
if (m_entry->sw_marker_id == sw_marker) {
|
|
ret = ICE_ERR_ALREADY_EXISTS;
|
|
goto exit_error;
|
|
}
|
|
|
|
/* Allocate a hardware table entry to hold large act. Three actions
|
|
* for marker based large action
|
|
*/
|
|
ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3);
|
|
if (ret)
|
|
goto exit_error;
|
|
|
|
if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
|
|
goto exit_error;
|
|
|
|
/* Update the switch rule to add the marker action */
|
|
ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id);
|
|
if (!ret) {
|
|
ice_release_lock(rule_lock);
|
|
return ret;
|
|
}
|
|
|
|
exit_error:
|
|
ice_release_lock(rule_lock);
|
|
/* only remove entry if it did not exist previously */
|
|
if (!entry_exists)
|
|
ret = ice_remove_mac(hw, &l_head);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_add_mac_with_counter - add filter with counter enabled
|
|
* @hw: pointer to the hardware structure
|
|
* @f_info: pointer to filter info structure containing the MAC filter
|
|
* information
|
|
*/
|
|
enum ice_status
|
|
ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_fltr_mgmt_list_entry *m_entry;
|
|
struct ice_fltr_list_entry fl_info;
|
|
struct LIST_HEAD_TYPE l_head;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
enum ice_status ret;
|
|
bool entry_exist;
|
|
u16 counter_id;
|
|
u16 lg_act_id;
|
|
|
|
if (f_info->fltr_act != ICE_FWD_TO_VSI)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (f_info->lkup_type != ICE_SW_LKUP_MAC)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
|
|
|
|
entry_exist = false;
|
|
|
|
rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
|
|
|
|
/* Add filter if it doesn't exist so then the adding of large
|
|
* action always results in update
|
|
*/
|
|
INIT_LIST_HEAD(&l_head);
|
|
|
|
fl_info.fltr_info = *f_info;
|
|
LIST_ADD(&fl_info.list_entry, &l_head);
|
|
|
|
ret = ice_add_mac(hw, &l_head);
|
|
if (ret == ICE_ERR_ALREADY_EXISTS)
|
|
entry_exist = true;
|
|
else if (ret)
|
|
return ret;
|
|
|
|
ice_acquire_lock(rule_lock);
|
|
m_entry = ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, f_info);
|
|
if (!m_entry) {
|
|
ret = ICE_ERR_BAD_PTR;
|
|
goto exit_error;
|
|
}
|
|
|
|
/* Don't enable counter for a filter for which sw marker was enabled */
|
|
if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) {
|
|
ret = ICE_ERR_PARAM;
|
|
goto exit_error;
|
|
}
|
|
|
|
/* If a counter was already enabled then don't need to add again */
|
|
if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
|
|
ret = ICE_ERR_ALREADY_EXISTS;
|
|
goto exit_error;
|
|
}
|
|
|
|
/* Allocate a hardware table entry to VLAN counter */
|
|
ret = ice_alloc_vlan_res_counter(hw, &counter_id);
|
|
if (ret)
|
|
goto exit_error;
|
|
|
|
/* Allocate a hardware table entry to hold large act. Two actions for
|
|
* counter based large action
|
|
*/
|
|
ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2);
|
|
if (ret)
|
|
goto exit_error;
|
|
|
|
if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
|
|
goto exit_error;
|
|
|
|
/* Update the switch rule to add the counter action */
|
|
ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id);
|
|
if (!ret) {
|
|
ice_release_lock(rule_lock);
|
|
return ret;
|
|
}
|
|
|
|
exit_error:
|
|
ice_release_lock(rule_lock);
|
|
/* only remove entry if it did not exist previously */
|
|
if (!entry_exist)
|
|
ret = ice_remove_mac(hw, &l_head);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This is mapping table entry that maps every word within a given protocol
|
|
* structure to the real byte offset as per the specification of that
|
|
* protocol header.
|
|
* for example dst address is 3 words in ethertype header and corresponding
|
|
* bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
|
|
* IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
|
|
* matching entry describing its field. This needs to be updated if new
|
|
* structure is added to that union.
|
|
*/
|
|
static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
|
|
{ ICE_MAC_OFOS, { 0, 2, 4, 6, 8, 10, 12 } },
|
|
{ ICE_MAC_IL, { 0, 2, 4, 6, 8, 10, 12 } },
|
|
{ ICE_ETYPE_OL, { 0 } },
|
|
{ ICE_VLAN_OFOS, { 0, 2 } },
|
|
{ ICE_IPV4_OFOS, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
|
|
{ ICE_IPV4_IL, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
|
|
{ ICE_IPV6_OFOS, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
|
|
26, 28, 30, 32, 34, 36, 38 } },
|
|
{ ICE_IPV6_IL, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
|
|
26, 28, 30, 32, 34, 36, 38 } },
|
|
{ ICE_TCP_IL, { 0, 2 } },
|
|
{ ICE_UDP_OF, { 0, 2 } },
|
|
{ ICE_UDP_ILOS, { 0, 2 } },
|
|
{ ICE_SCTP_IL, { 0, 2 } },
|
|
{ ICE_VXLAN, { 8, 10, 12, 14 } },
|
|
{ ICE_GENEVE, { 8, 10, 12, 14 } },
|
|
{ ICE_VXLAN_GPE, { 8, 10, 12, 14 } },
|
|
{ ICE_NVGRE, { 0, 2, 4, 6 } },
|
|
{ ICE_GTP, { 8, 10, 12, 14, 16, 18, 20 } },
|
|
{ ICE_PPPOE, { 0, 2, 4, 6 } },
|
|
};
|
|
|
|
/* The following table describes preferred grouping of recipes.
|
|
* If a recipe that needs to be programmed is a superset or matches one of the
|
|
* following combinations, then the recipe needs to be chained as per the
|
|
* following policy.
|
|
*/
|
|
|
|
static const struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
|
|
{ ICE_MAC_OFOS, ICE_MAC_OFOS_HW },
|
|
{ ICE_MAC_IL, ICE_MAC_IL_HW },
|
|
{ ICE_ETYPE_OL, ICE_ETYPE_OL_HW },
|
|
{ ICE_VLAN_OFOS, ICE_VLAN_OL_HW },
|
|
{ ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW },
|
|
{ ICE_IPV4_IL, ICE_IPV4_IL_HW },
|
|
{ ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW },
|
|
{ ICE_IPV6_IL, ICE_IPV6_IL_HW },
|
|
{ ICE_TCP_IL, ICE_TCP_IL_HW },
|
|
{ ICE_UDP_OF, ICE_UDP_OF_HW },
|
|
{ ICE_UDP_ILOS, ICE_UDP_ILOS_HW },
|
|
{ ICE_SCTP_IL, ICE_SCTP_IL_HW },
|
|
{ ICE_VXLAN, ICE_UDP_OF_HW },
|
|
{ ICE_GENEVE, ICE_UDP_OF_HW },
|
|
{ ICE_VXLAN_GPE, ICE_UDP_OF_HW },
|
|
{ ICE_NVGRE, ICE_GRE_OF_HW },
|
|
{ ICE_GTP, ICE_UDP_OF_HW },
|
|
{ ICE_PPPOE, ICE_PPPOE_HW },
|
|
};
|
|
|
|
/**
|
|
* ice_find_recp - find a recipe
|
|
* @hw: pointer to the hardware structure
|
|
* @lkup_exts: extension sequence to match
|
|
*
|
|
* Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
|
|
*/
|
|
static u16 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts)
|
|
{
|
|
bool refresh_required = true;
|
|
struct ice_sw_recipe *recp;
|
|
u16 i;
|
|
|
|
/* Walk through existing recipes to find a match */
|
|
recp = hw->switch_info->recp_list;
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
|
|
/* If recipe was not created for this ID, in SW bookkeeping,
|
|
* check if FW has an entry for this recipe. If the FW has an
|
|
* entry update it in our SW bookkeeping and continue with the
|
|
* matching.
|
|
*/
|
|
if (!recp[i].recp_created)
|
|
if (ice_get_recp_frm_fw(hw,
|
|
hw->switch_info->recp_list, i,
|
|
&refresh_required))
|
|
continue;
|
|
|
|
/* Skip inverse action recipes */
|
|
if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
|
|
ICE_AQ_RECIPE_ACT_INV_ACT)
|
|
continue;
|
|
|
|
/* if number of words we are looking for match */
|
|
if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
|
|
struct ice_fv_word *a = lkup_exts->fv_words;
|
|
struct ice_fv_word *b = recp[i].lkup_exts.fv_words;
|
|
bool found = true;
|
|
u8 p, q;
|
|
|
|
for (p = 0; p < lkup_exts->n_val_words; p++) {
|
|
for (q = 0; q < recp[i].lkup_exts.n_val_words;
|
|
q++) {
|
|
if (a[p].off == b[q].off &&
|
|
a[p].prot_id == b[q].prot_id)
|
|
/* Found the "p"th word in the
|
|
* given recipe
|
|
*/
|
|
break;
|
|
}
|
|
/* After walking through all the words in the
|
|
* "i"th recipe if "p"th word was not found then
|
|
* this recipe is not what we are looking for.
|
|
* So break out from this loop and try the next
|
|
* recipe
|
|
*/
|
|
if (q >= recp[i].lkup_exts.n_val_words) {
|
|
found = false;
|
|
break;
|
|
}
|
|
}
|
|
/* If for "i"th recipe the found was never set to false
|
|
* then it means we found our match
|
|
*/
|
|
if (found)
|
|
return i; /* Return the recipe ID */
|
|
}
|
|
}
|
|
return ICE_MAX_NUM_RECIPES;
|
|
}
|
|
|
|
/**
|
|
* ice_prot_type_to_id - get protocol ID from protocol type
|
|
* @type: protocol type
|
|
* @id: pointer to variable that will receive the ID
|
|
*
|
|
* Returns true if found, false otherwise
|
|
*/
|
|
static bool ice_prot_type_to_id(enum ice_protocol_type type, u16 *id)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
|
|
if (ice_prot_id_tbl[i].type == type) {
|
|
*id = ice_prot_id_tbl[i].protocol_id;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_find_valid_words - count valid words
|
|
* @rule: advanced rule with lookup information
|
|
* @lkup_exts: byte offset extractions of the words that are valid
|
|
*
|
|
* calculate valid words in a lookup rule using mask value
|
|
*/
|
|
static u16
|
|
ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
|
|
struct ice_prot_lkup_ext *lkup_exts)
|
|
{
|
|
u16 j, word = 0;
|
|
u16 prot_id;
|
|
u16 ret_val;
|
|
|
|
if (!ice_prot_type_to_id(rule->type, &prot_id))
|
|
return 0;
|
|
|
|
word = lkup_exts->n_val_words;
|
|
|
|
for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
|
|
if (((u16 *)&rule->m_u)[j] &&
|
|
(unsigned long)rule->type < ARRAY_SIZE(ice_prot_ext)) {
|
|
/* No more space to accommodate */
|
|
if (word >= ICE_MAX_CHAIN_WORDS)
|
|
return 0;
|
|
lkup_exts->fv_words[word].off =
|
|
ice_prot_ext[rule->type].offs[j];
|
|
lkup_exts->fv_words[word].prot_id =
|
|
ice_prot_id_tbl[rule->type].protocol_id;
|
|
lkup_exts->field_mask[word] = ((u16 *)&rule->m_u)[j];
|
|
word++;
|
|
}
|
|
|
|
ret_val = word - lkup_exts->n_val_words;
|
|
lkup_exts->n_val_words = word;
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* ice_create_first_fit_recp_def - Create a recipe grouping
|
|
* @hw: pointer to the hardware structure
|
|
* @lkup_exts: an array of protocol header extractions
|
|
* @rg_list: pointer to a list that stores new recipe groups
|
|
* @recp_cnt: pointer to a variable that stores returned number of recipe groups
|
|
*
|
|
* Using first fit algorithm, take all the words that are still not done
|
|
* and start grouping them in 4-word groups. Each group makes up one
|
|
* recipe.
|
|
*/
|
|
static enum ice_status
|
|
ice_create_first_fit_recp_def(struct ice_hw *hw,
|
|
struct ice_prot_lkup_ext *lkup_exts,
|
|
struct LIST_HEAD_TYPE *rg_list,
|
|
u8 *recp_cnt)
|
|
{
|
|
struct ice_pref_recipe_group *grp = NULL;
|
|
u8 j;
|
|
|
|
*recp_cnt = 0;
|
|
|
|
/* Walk through every word in the rule to check if it is not done. If so
|
|
* then this word needs to be part of a new recipe.
|
|
*/
|
|
for (j = 0; j < lkup_exts->n_val_words; j++)
|
|
if (!ice_is_bit_set(lkup_exts->done, j)) {
|
|
if (!grp ||
|
|
grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
|
|
struct ice_recp_grp_entry *entry;
|
|
|
|
entry = (struct ice_recp_grp_entry *)
|
|
ice_malloc(hw, sizeof(*entry));
|
|
if (!entry)
|
|
return ICE_ERR_NO_MEMORY;
|
|
LIST_ADD(&entry->l_entry, rg_list);
|
|
grp = &entry->r_group;
|
|
(*recp_cnt)++;
|
|
}
|
|
|
|
grp->pairs[grp->n_val_pairs].prot_id =
|
|
lkup_exts->fv_words[j].prot_id;
|
|
grp->pairs[grp->n_val_pairs].off =
|
|
lkup_exts->fv_words[j].off;
|
|
grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
|
|
grp->n_val_pairs++;
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_fv_word_index - fill in the field vector indices for a recipe group
|
|
* @hw: pointer to the hardware structure
|
|
* @fv_list: field vector with the extraction sequence information
|
|
* @rg_list: recipe groupings with protocol-offset pairs
|
|
*
|
|
* Helper function to fill in the field vector indices for protocol-offset
|
|
* pairs. These indexes are then ultimately programmed into a recipe.
|
|
*/
|
|
static enum ice_status
|
|
ice_fill_fv_word_index(struct ice_hw *hw, struct LIST_HEAD_TYPE *fv_list,
|
|
struct LIST_HEAD_TYPE *rg_list)
|
|
{
|
|
struct ice_sw_fv_list_entry *fv;
|
|
struct ice_recp_grp_entry *rg;
|
|
struct ice_fv_word *fv_ext;
|
|
|
|
if (LIST_EMPTY(fv_list))
|
|
return ICE_SUCCESS;
|
|
|
|
fv = LIST_FIRST_ENTRY(fv_list, struct ice_sw_fv_list_entry, list_entry);
|
|
fv_ext = fv->fv_ptr->ew;
|
|
|
|
LIST_FOR_EACH_ENTRY(rg, rg_list, ice_recp_grp_entry, l_entry) {
|
|
u8 i;
|
|
|
|
for (i = 0; i < rg->r_group.n_val_pairs; i++) {
|
|
struct ice_fv_word *pr;
|
|
bool found = false;
|
|
u16 mask;
|
|
u8 j;
|
|
|
|
pr = &rg->r_group.pairs[i];
|
|
mask = rg->r_group.mask[i];
|
|
|
|
for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
|
|
if (fv_ext[j].prot_id == pr->prot_id &&
|
|
fv_ext[j].off == pr->off) {
|
|
found = true;
|
|
|
|
/* Store index of field vector */
|
|
rg->fv_idx[i] = j;
|
|
/* Mask is given by caller as big
|
|
* endian, but sent to FW as little
|
|
* endian
|
|
*/
|
|
rg->fv_mask[i] = mask << 8 | mask >> 8;
|
|
break;
|
|
}
|
|
|
|
/* Protocol/offset could not be found, caller gave an
|
|
* invalid pair
|
|
*/
|
|
if (!found)
|
|
return ICE_ERR_PARAM;
|
|
}
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_find_free_recp_res_idx - find free result indexes for recipe
|
|
* @hw: pointer to hardware structure
|
|
* @profiles: bitmap of profiles that will be associated with the new recipe
|
|
* @free_idx: pointer to variable to receive the free index bitmap
|
|
*
|
|
* The algorithm used here is:
|
|
* 1. When creating a new recipe, create a set P which contains all
|
|
* Profiles that will be associated with our new recipe
|
|
*
|
|
* 2. For each Profile p in set P:
|
|
* a. Add all recipes associated with Profile p into set R
|
|
* b. Optional : PossibleIndexes &= profile[p].possibleIndexes
|
|
* [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
|
|
* i. Or just assume they all have the same possible indexes:
|
|
* 44, 45, 46, 47
|
|
* i.e., PossibleIndexes = 0x0000F00000000000
|
|
*
|
|
* 3. For each Recipe r in set R:
|
|
* a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
|
|
* b. FreeIndexes = UsedIndexes ^ PossibleIndexes
|
|
*
|
|
* FreeIndexes will contain the bits indicating the indexes free for use,
|
|
* then the code needs to update the recipe[r].used_result_idx_bits to
|
|
* indicate which indexes were selected for use by this recipe.
|
|
*/
|
|
static u16
|
|
ice_find_free_recp_res_idx(struct ice_hw *hw, const ice_bitmap_t *profiles,
|
|
ice_bitmap_t *free_idx)
|
|
{
|
|
ice_declare_bitmap(possible_idx, ICE_MAX_FV_WORDS);
|
|
ice_declare_bitmap(recipes, ICE_MAX_NUM_RECIPES);
|
|
ice_declare_bitmap(used_idx, ICE_MAX_FV_WORDS);
|
|
u16 count = 0;
|
|
u16 bit;
|
|
|
|
ice_zero_bitmap(possible_idx, ICE_MAX_FV_WORDS);
|
|
ice_zero_bitmap(recipes, ICE_MAX_NUM_RECIPES);
|
|
ice_zero_bitmap(used_idx, ICE_MAX_FV_WORDS);
|
|
ice_zero_bitmap(free_idx, ICE_MAX_FV_WORDS);
|
|
|
|
for (count = 0; count < ICE_MAX_FV_WORDS; count++)
|
|
ice_set_bit(count, possible_idx);
|
|
|
|
/* For each profile we are going to associate the recipe with, add the
|
|
* recipes that are associated with that profile. This will give us
|
|
* the set of recipes that our recipe may collide with. Also, determine
|
|
* what possible result indexes are usable given this set of profiles.
|
|
*/
|
|
bit = 0;
|
|
while (ICE_MAX_NUM_PROFILES >
|
|
(bit = ice_find_next_bit(profiles, ICE_MAX_NUM_PROFILES, bit))) {
|
|
ice_or_bitmap(recipes, recipes, profile_to_recipe[bit],
|
|
ICE_MAX_NUM_RECIPES);
|
|
ice_and_bitmap(possible_idx, possible_idx,
|
|
hw->switch_info->prof_res_bm[bit],
|
|
ICE_MAX_FV_WORDS);
|
|
bit++;
|
|
}
|
|
|
|
/* For each recipe that our new recipe may collide with, determine
|
|
* which indexes have been used.
|
|
*/
|
|
for (bit = 0; bit < ICE_MAX_NUM_RECIPES; bit++)
|
|
if (ice_is_bit_set(recipes, bit)) {
|
|
ice_or_bitmap(used_idx, used_idx,
|
|
hw->switch_info->recp_list[bit].res_idxs,
|
|
ICE_MAX_FV_WORDS);
|
|
}
|
|
|
|
ice_xor_bitmap(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
|
|
|
|
/* return number of free indexes */
|
|
count = 0;
|
|
bit = 0;
|
|
while (ICE_MAX_FV_WORDS >
|
|
(bit = ice_find_next_bit(free_idx, ICE_MAX_FV_WORDS, bit))) {
|
|
count++;
|
|
bit++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* ice_add_sw_recipe - function to call AQ calls to create switch recipe
|
|
* @hw: pointer to hardware structure
|
|
* @rm: recipe management list entry
|
|
* @match_tun: if field vector index for tunnel needs to be programmed
|
|
* @profiles: bitmap of profiles that will be assocated.
|
|
*/
|
|
static enum ice_status
|
|
ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
|
|
bool match_tun, ice_bitmap_t *profiles)
|
|
{
|
|
ice_declare_bitmap(result_idx_bm, ICE_MAX_FV_WORDS);
|
|
struct ice_aqc_recipe_data_elem *tmp;
|
|
struct ice_aqc_recipe_data_elem *buf;
|
|
struct ice_recp_grp_entry *entry;
|
|
enum ice_status status;
|
|
u16 free_res_idx;
|
|
u16 recipe_count;
|
|
u8 chain_idx;
|
|
u8 recps = 0;
|
|
|
|
/* When more than one recipe are required, another recipe is needed to
|
|
* chain them together. Matching a tunnel metadata ID takes up one of
|
|
* the match fields in the chaining recipe reducing the number of
|
|
* chained recipes by one.
|
|
*/
|
|
/* check number of free result indices */
|
|
ice_zero_bitmap(result_idx_bm, ICE_MAX_FV_WORDS);
|
|
free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
|
|
|
|
ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
|
|
free_res_idx, rm->n_grp_count);
|
|
|
|
if (rm->n_grp_count > 1) {
|
|
if (rm->n_grp_count > free_res_idx)
|
|
return ICE_ERR_MAX_LIMIT;
|
|
|
|
rm->n_grp_count++;
|
|
}
|
|
|
|
tmp = (struct ice_aqc_recipe_data_elem *)ice_calloc(hw,
|
|
ICE_MAX_NUM_RECIPES,
|
|
sizeof(*tmp));
|
|
if (!tmp)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
buf = (struct ice_aqc_recipe_data_elem *)
|
|
ice_calloc(hw, rm->n_grp_count, sizeof(*buf));
|
|
if (!buf) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_mem;
|
|
}
|
|
|
|
ice_zero_bitmap(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
|
|
recipe_count = ICE_MAX_NUM_RECIPES;
|
|
status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
|
|
NULL);
|
|
if (status || recipe_count == 0)
|
|
goto err_unroll;
|
|
|
|
/* Allocate the recipe resources, and configure them according to the
|
|
* match fields from protocol headers and extracted field vectors.
|
|
*/
|
|
chain_idx = ice_find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
|
|
LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry, l_entry) {
|
|
u8 i;
|
|
|
|
status = ice_alloc_recipe(hw, &entry->rid);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
/* Clear the result index of the located recipe, as this will be
|
|
* updated, if needed, later in the recipe creation process.
|
|
*/
|
|
tmp[0].content.result_indx = 0;
|
|
|
|
buf[recps] = tmp[0];
|
|
buf[recps].recipe_indx = (u8)entry->rid;
|
|
/* if the recipe is a non-root recipe RID should be programmed
|
|
* as 0 for the rules to be applied correctly.
|
|
*/
|
|
buf[recps].content.rid = 0;
|
|
ice_memset(&buf[recps].content.lkup_indx, 0,
|
|
sizeof(buf[recps].content.lkup_indx),
|
|
ICE_NONDMA_MEM);
|
|
|
|
/* All recipes use look-up index 0 to match switch ID. */
|
|
buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
|
|
buf[recps].content.mask[0] =
|
|
CPU_TO_LE16(ICE_AQ_SW_ID_LKUP_MASK);
|
|
/* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
|
|
* to be 0
|
|
*/
|
|
for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
|
|
buf[recps].content.lkup_indx[i] = 0x80;
|
|
buf[recps].content.mask[i] = 0;
|
|
}
|
|
|
|
for (i = 0; i < entry->r_group.n_val_pairs; i++) {
|
|
buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
|
|
buf[recps].content.mask[i + 1] =
|
|
CPU_TO_LE16(entry->fv_mask[i]);
|
|
}
|
|
|
|
if (rm->n_grp_count > 1) {
|
|
/* Checks to see if there really is a valid result index
|
|
* that can be used.
|
|
*/
|
|
if (chain_idx >= ICE_MAX_FV_WORDS) {
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"No chain index available\n");
|
|
status = ICE_ERR_MAX_LIMIT;
|
|
goto err_unroll;
|
|
}
|
|
|
|
entry->chain_idx = chain_idx;
|
|
buf[recps].content.result_indx =
|
|
ICE_AQ_RECIPE_RESULT_EN |
|
|
((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
|
|
ICE_AQ_RECIPE_RESULT_DATA_M);
|
|
ice_clear_bit(chain_idx, result_idx_bm);
|
|
chain_idx = ice_find_first_bit(result_idx_bm,
|
|
ICE_MAX_FV_WORDS);
|
|
}
|
|
|
|
/* fill recipe dependencies */
|
|
ice_zero_bitmap((ice_bitmap_t *)buf[recps].recipe_bitmap,
|
|
ICE_MAX_NUM_RECIPES);
|
|
ice_set_bit(buf[recps].recipe_indx,
|
|
(ice_bitmap_t *)buf[recps].recipe_bitmap);
|
|
buf[recps].content.act_ctrl_fwd_priority = rm->priority;
|
|
recps++;
|
|
}
|
|
|
|
if (rm->n_grp_count == 1) {
|
|
rm->root_rid = buf[0].recipe_indx;
|
|
ice_set_bit(buf[0].recipe_indx, rm->r_bitmap);
|
|
buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
|
|
if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
|
|
ice_memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
|
|
sizeof(buf[0].recipe_bitmap),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
} else {
|
|
status = ICE_ERR_BAD_PTR;
|
|
goto err_unroll;
|
|
}
|
|
/* Applicable only for ROOT_RECIPE, set the fwd_priority for
|
|
* the recipe which is getting created if specified
|
|
* by user. Usually any advanced switch filter, which results
|
|
* into new extraction sequence, ended up creating a new recipe
|
|
* of type ROOT and usually recipes are associated with profiles
|
|
* Switch rule referreing newly created recipe, needs to have
|
|
* either/or 'fwd' or 'join' priority, otherwise switch rule
|
|
* evaluation will not happen correctly. In other words, if
|
|
* switch rule to be evaluated on priority basis, then recipe
|
|
* needs to have priority, otherwise it will be evaluated last.
|
|
*/
|
|
buf[0].content.act_ctrl_fwd_priority = rm->priority;
|
|
} else {
|
|
struct ice_recp_grp_entry *last_chain_entry;
|
|
u16 rid, i;
|
|
|
|
/* Allocate the last recipe that will chain the outcomes of the
|
|
* other recipes together
|
|
*/
|
|
status = ice_alloc_recipe(hw, &rid);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
buf[recps].recipe_indx = (u8)rid;
|
|
buf[recps].content.rid = (u8)rid;
|
|
buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
|
|
/* the new entry created should also be part of rg_list to
|
|
* make sure we have complete recipe
|
|
*/
|
|
last_chain_entry = (struct ice_recp_grp_entry *)ice_malloc(hw,
|
|
sizeof(*last_chain_entry));
|
|
if (!last_chain_entry) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_unroll;
|
|
}
|
|
last_chain_entry->rid = rid;
|
|
ice_memset(&buf[recps].content.lkup_indx, 0,
|
|
sizeof(buf[recps].content.lkup_indx),
|
|
ICE_NONDMA_MEM);
|
|
/* All recipes use look-up index 0 to match switch ID. */
|
|
buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
|
|
buf[recps].content.mask[0] =
|
|
CPU_TO_LE16(ICE_AQ_SW_ID_LKUP_MASK);
|
|
for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
|
|
buf[recps].content.lkup_indx[i] =
|
|
ICE_AQ_RECIPE_LKUP_IGNORE;
|
|
buf[recps].content.mask[i] = 0;
|
|
}
|
|
|
|
i = 1;
|
|
/* update r_bitmap with the recp that is used for chaining */
|
|
ice_set_bit(rid, rm->r_bitmap);
|
|
/* this is the recipe that chains all the other recipes so it
|
|
* should not have a chaining ID to indicate the same
|
|
*/
|
|
last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
|
|
LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry,
|
|
l_entry) {
|
|
last_chain_entry->fv_idx[i] = entry->chain_idx;
|
|
buf[recps].content.lkup_indx[i] = entry->chain_idx;
|
|
buf[recps].content.mask[i++] = CPU_TO_LE16(0xFFFF);
|
|
ice_set_bit(entry->rid, rm->r_bitmap);
|
|
}
|
|
LIST_ADD(&last_chain_entry->l_entry, &rm->rg_list);
|
|
if (sizeof(buf[recps].recipe_bitmap) >=
|
|
sizeof(rm->r_bitmap)) {
|
|
ice_memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
|
|
sizeof(buf[recps].recipe_bitmap),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
} else {
|
|
status = ICE_ERR_BAD_PTR;
|
|
goto err_unroll;
|
|
}
|
|
buf[recps].content.act_ctrl_fwd_priority = rm->priority;
|
|
|
|
/* To differentiate among different UDP tunnels, a meta data ID
|
|
* flag is used.
|
|
*/
|
|
if (match_tun) {
|
|
buf[recps].content.lkup_indx[i] = ICE_TUN_FLAG_FV_IND;
|
|
buf[recps].content.mask[i] =
|
|
CPU_TO_LE16(ICE_TUN_FLAG_MASK);
|
|
}
|
|
|
|
recps++;
|
|
rm->root_rid = (u8)rid;
|
|
}
|
|
status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
|
|
ice_release_change_lock(hw);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
/* Every recipe that just got created add it to the recipe
|
|
* book keeping list
|
|
*/
|
|
LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry, l_entry) {
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
bool is_root, idx_found = false;
|
|
struct ice_sw_recipe *recp;
|
|
u16 idx, buf_idx = 0;
|
|
|
|
/* find buffer index for copying some data */
|
|
for (idx = 0; idx < rm->n_grp_count; idx++)
|
|
if (buf[idx].recipe_indx == entry->rid) {
|
|
buf_idx = idx;
|
|
idx_found = true;
|
|
}
|
|
|
|
if (!idx_found) {
|
|
status = ICE_ERR_OUT_OF_RANGE;
|
|
goto err_unroll;
|
|
}
|
|
|
|
recp = &sw->recp_list[entry->rid];
|
|
is_root = (rm->root_rid == entry->rid);
|
|
recp->is_root = is_root;
|
|
|
|
recp->root_rid = entry->rid;
|
|
recp->big_recp = (is_root && rm->n_grp_count > 1);
|
|
|
|
ice_memcpy(&recp->ext_words, entry->r_group.pairs,
|
|
entry->r_group.n_val_pairs *
|
|
sizeof(struct ice_fv_word),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
ice_memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
|
|
sizeof(recp->r_bitmap), ICE_NONDMA_TO_NONDMA);
|
|
|
|
/* Copy non-result fv index values and masks to recipe. This
|
|
* call will also update the result recipe bitmask.
|
|
*/
|
|
ice_collect_result_idx(&buf[buf_idx], recp);
|
|
|
|
/* for non-root recipes, also copy to the root, this allows
|
|
* easier matching of a complete chained recipe
|
|
*/
|
|
if (!is_root)
|
|
ice_collect_result_idx(&buf[buf_idx],
|
|
&sw->recp_list[rm->root_rid]);
|
|
|
|
recp->n_ext_words = entry->r_group.n_val_pairs;
|
|
recp->chain_idx = entry->chain_idx;
|
|
recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
|
|
recp->n_grp_count = rm->n_grp_count;
|
|
recp->tun_type = rm->tun_type;
|
|
recp->recp_created = true;
|
|
recp->adv_rule = 1;
|
|
}
|
|
rm->root_buf = buf;
|
|
ice_free(hw, tmp);
|
|
return status;
|
|
|
|
err_unroll:
|
|
err_mem:
|
|
ice_free(hw, tmp);
|
|
ice_free(hw, buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_create_recipe_group - creates recipe group
|
|
* @hw: pointer to hardware structure
|
|
* @rm: recipe management list entry
|
|
* @lkup_exts: lookup elements
|
|
*/
|
|
static enum ice_status
|
|
ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
|
|
struct ice_prot_lkup_ext *lkup_exts)
|
|
{
|
|
enum ice_status status;
|
|
u8 recp_count = 0;
|
|
|
|
rm->n_grp_count = 0;
|
|
|
|
/* Create recipes for words that are marked not done by packing them
|
|
* as best fit.
|
|
*/
|
|
status = ice_create_first_fit_recp_def(hw, lkup_exts,
|
|
&rm->rg_list, &recp_count);
|
|
if (!status) {
|
|
rm->n_grp_count += recp_count;
|
|
rm->n_ext_words = lkup_exts->n_val_words;
|
|
ice_memcpy(&rm->ext_words, lkup_exts->fv_words,
|
|
sizeof(rm->ext_words), ICE_NONDMA_TO_NONDMA);
|
|
ice_memcpy(rm->word_masks, lkup_exts->field_mask,
|
|
sizeof(rm->word_masks), ICE_NONDMA_TO_NONDMA);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_fv - get field vectors/extraction sequences for spec. lookup types
|
|
* @hw: pointer to hardware structure
|
|
* @lkups: lookup elements or match criteria for the advanced recipe, one
|
|
* structure per protocol header
|
|
* @lkups_cnt: number of protocols
|
|
* @bm: bitmap of field vectors to consider
|
|
* @fv_list: pointer to a list that holds the returned field vectors
|
|
*/
|
|
static enum ice_status
|
|
ice_get_fv(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
|
|
ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list)
|
|
{
|
|
enum ice_status status;
|
|
u16 *prot_ids;
|
|
u16 i;
|
|
|
|
prot_ids = (u16 *)ice_calloc(hw, lkups_cnt, sizeof(*prot_ids));
|
|
if (!prot_ids)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
for (i = 0; i < lkups_cnt; i++)
|
|
if (!ice_prot_type_to_id(lkups[i].type, &prot_ids[i])) {
|
|
status = ICE_ERR_CFG;
|
|
goto free_mem;
|
|
}
|
|
|
|
/* Find field vectors that include all specified protocol types */
|
|
status = ice_get_sw_fv_list(hw, prot_ids, lkups_cnt, bm, fv_list);
|
|
|
|
free_mem:
|
|
ice_free(hw, prot_ids);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_add_special_words - Add words that are not protocols, such as metadata
|
|
* @rinfo: other information regarding the rule e.g. priority and action info
|
|
* @lkup_exts: lookup word structure
|
|
*/
|
|
static enum ice_status
|
|
ice_add_special_words(struct ice_adv_rule_info *rinfo,
|
|
struct ice_prot_lkup_ext *lkup_exts)
|
|
{
|
|
/* If this is a tunneled packet, then add recipe index to match the
|
|
* tunnel bit in the packet metadata flags.
|
|
*/
|
|
if (rinfo->tun_type != ICE_NON_TUN) {
|
|
if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
|
|
u8 word = lkup_exts->n_val_words++;
|
|
|
|
lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
|
|
lkup_exts->fv_words[word].off = ICE_TUN_FLAG_MDID *
|
|
ICE_MDID_SIZE;
|
|
lkup_exts->field_mask[word] = ICE_TUN_FLAG_MASK;
|
|
} else {
|
|
return ICE_ERR_MAX_LIMIT;
|
|
}
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
|
|
* @hw: pointer to hardware structure
|
|
* @rinfo: other information regarding the rule e.g. priority and action info
|
|
* @bm: pointer to memory for returning the bitmap of field vectors
|
|
*/
|
|
static void
|
|
ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
|
|
ice_bitmap_t *bm)
|
|
{
|
|
enum ice_prof_type type;
|
|
|
|
switch (rinfo->tun_type) {
|
|
case ICE_NON_TUN:
|
|
type = ICE_PROF_NON_TUN;
|
|
break;
|
|
case ICE_ALL_TUNNELS:
|
|
type = ICE_PROF_TUN_ALL;
|
|
break;
|
|
case ICE_SW_TUN_VXLAN_GPE:
|
|
case ICE_SW_TUN_GENEVE:
|
|
case ICE_SW_TUN_VXLAN:
|
|
case ICE_SW_TUN_UDP:
|
|
case ICE_SW_TUN_GTP:
|
|
type = ICE_PROF_TUN_UDP;
|
|
break;
|
|
case ICE_SW_TUN_NVGRE:
|
|
type = ICE_PROF_TUN_GRE;
|
|
break;
|
|
case ICE_SW_TUN_PPPOE:
|
|
type = ICE_PROF_TUN_PPPOE;
|
|
break;
|
|
case ICE_SW_TUN_AND_NON_TUN:
|
|
default:
|
|
type = ICE_PROF_ALL;
|
|
break;
|
|
}
|
|
|
|
ice_get_sw_fv_bitmap(hw, type, bm);
|
|
}
|
|
|
|
/**
|
|
* ice_add_adv_recipe - Add an advanced recipe that is not part of the default
|
|
* @hw: pointer to hardware structure
|
|
* @lkups: lookup elements or match criteria for the advanced recipe, one
|
|
* structure per protocol header
|
|
* @lkups_cnt: number of protocols
|
|
* @rinfo: other information regarding the rule e.g. priority and action info
|
|
* @rid: return the recipe ID of the recipe created
|
|
*/
|
|
static enum ice_status
|
|
ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
|
|
u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
|
|
{
|
|
ice_declare_bitmap(fv_bitmap, ICE_MAX_NUM_PROFILES);
|
|
ice_declare_bitmap(profiles, ICE_MAX_NUM_PROFILES);
|
|
struct ice_prot_lkup_ext *lkup_exts;
|
|
struct ice_recp_grp_entry *r_entry;
|
|
struct ice_sw_fv_list_entry *fvit;
|
|
struct ice_recp_grp_entry *r_tmp;
|
|
struct ice_sw_fv_list_entry *tmp;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
struct ice_sw_recipe *rm;
|
|
bool match_tun = false;
|
|
u8 i;
|
|
|
|
if (!lkups_cnt)
|
|
return ICE_ERR_PARAM;
|
|
|
|
lkup_exts = (struct ice_prot_lkup_ext *)
|
|
ice_malloc(hw, sizeof(*lkup_exts));
|
|
if (!lkup_exts)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Determine the number of words to be matched and if it exceeds a
|
|
* recipe's restrictions
|
|
*/
|
|
for (i = 0; i < lkups_cnt; i++) {
|
|
u16 count;
|
|
|
|
if (lkups[i].type >= ICE_PROTOCOL_LAST) {
|
|
status = ICE_ERR_CFG;
|
|
goto err_free_lkup_exts;
|
|
}
|
|
|
|
count = ice_fill_valid_words(&lkups[i], lkup_exts);
|
|
if (!count) {
|
|
status = ICE_ERR_CFG;
|
|
goto err_free_lkup_exts;
|
|
}
|
|
}
|
|
|
|
rm = (struct ice_sw_recipe *)ice_malloc(hw, sizeof(*rm));
|
|
if (!rm) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_free_lkup_exts;
|
|
}
|
|
|
|
/* Get field vectors that contain fields extracted from all the protocol
|
|
* headers being programmed.
|
|
*/
|
|
INIT_LIST_HEAD(&rm->fv_list);
|
|
INIT_LIST_HEAD(&rm->rg_list);
|
|
|
|
/* Get bitmap of field vectors (profiles) that are compatible with the
|
|
* rule request; only these will be searched in the subsequent call to
|
|
* ice_get_fv.
|
|
*/
|
|
ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
|
|
|
|
status = ice_get_fv(hw, lkups, lkups_cnt, fv_bitmap, &rm->fv_list);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
/* Group match words into recipes using preferred recipe grouping
|
|
* criteria.
|
|
*/
|
|
status = ice_create_recipe_group(hw, rm, lkup_exts);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
/* There is only profile for UDP tunnels. So, it is necessary to use a
|
|
* metadata ID flag to differentiate different tunnel types. A separate
|
|
* recipe needs to be used for the metadata.
|
|
*/
|
|
if ((rinfo->tun_type == ICE_SW_TUN_VXLAN_GPE ||
|
|
rinfo->tun_type == ICE_SW_TUN_GENEVE ||
|
|
rinfo->tun_type == ICE_SW_TUN_VXLAN) && rm->n_grp_count > 1)
|
|
match_tun = true;
|
|
|
|
/* set the recipe priority if specified */
|
|
rm->priority = rinfo->priority ? rinfo->priority : 0;
|
|
|
|
/* Find offsets from the field vector. Pick the first one for all the
|
|
* recipes.
|
|
*/
|
|
status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
/* get bitmap of all profiles the recipe will be associated with */
|
|
ice_zero_bitmap(profiles, ICE_MAX_NUM_PROFILES);
|
|
LIST_FOR_EACH_ENTRY(fvit, &rm->fv_list, ice_sw_fv_list_entry,
|
|
list_entry) {
|
|
ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
|
|
ice_set_bit((u16)fvit->profile_id, profiles);
|
|
}
|
|
|
|
/* Create any special protocol/offset pairs, such as looking at tunnel
|
|
* bits by extracting metadata
|
|
*/
|
|
status = ice_add_special_words(rinfo, lkup_exts);
|
|
if (status)
|
|
goto err_free_lkup_exts;
|
|
|
|
/* Look for a recipe which matches our requested fv / mask list */
|
|
*rid = ice_find_recp(hw, lkup_exts);
|
|
if (*rid < ICE_MAX_NUM_RECIPES)
|
|
/* Success if found a recipe that match the existing criteria */
|
|
goto err_unroll;
|
|
|
|
/* Recipe we need does not exist, add a recipe */
|
|
status = ice_add_sw_recipe(hw, rm, match_tun, profiles);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
/* Associate all the recipes created with all the profiles in the
|
|
* common field vector.
|
|
*/
|
|
LIST_FOR_EACH_ENTRY(fvit, &rm->fv_list, ice_sw_fv_list_entry,
|
|
list_entry) {
|
|
ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
|
|
u16 j;
|
|
|
|
status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
|
|
(u8 *)r_bitmap, NULL);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
ice_or_bitmap(r_bitmap, r_bitmap, rm->r_bitmap,
|
|
ICE_MAX_NUM_RECIPES);
|
|
status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
|
|
(u8 *)r_bitmap,
|
|
NULL);
|
|
ice_release_change_lock(hw);
|
|
|
|
if (status)
|
|
goto err_unroll;
|
|
|
|
/* Update profile to recipe bitmap array */
|
|
ice_cp_bitmap(profile_to_recipe[fvit->profile_id], r_bitmap,
|
|
ICE_MAX_NUM_RECIPES);
|
|
|
|
/* Update recipe to profile bitmap array */
|
|
for (j = 0; j < ICE_MAX_NUM_RECIPES; j++)
|
|
if (ice_is_bit_set(r_bitmap, j))
|
|
ice_set_bit((u16)fvit->profile_id,
|
|
recipe_to_profile[j]);
|
|
}
|
|
|
|
*rid = rm->root_rid;
|
|
ice_memcpy(&hw->switch_info->recp_list[*rid].lkup_exts,
|
|
lkup_exts, sizeof(*lkup_exts), ICE_NONDMA_TO_NONDMA);
|
|
err_unroll:
|
|
LIST_FOR_EACH_ENTRY_SAFE(r_entry, r_tmp, &rm->rg_list,
|
|
ice_recp_grp_entry, l_entry) {
|
|
LIST_DEL(&r_entry->l_entry);
|
|
ice_free(hw, r_entry);
|
|
}
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(fvit, tmp, &rm->fv_list, ice_sw_fv_list_entry,
|
|
list_entry) {
|
|
LIST_DEL(&fvit->list_entry);
|
|
ice_free(hw, fvit);
|
|
}
|
|
|
|
if (rm->root_buf)
|
|
ice_free(hw, rm->root_buf);
|
|
|
|
ice_free(hw, rm);
|
|
|
|
err_free_lkup_exts:
|
|
ice_free(hw, lkup_exts);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_find_dummy_packet - find dummy packet by tunnel type
|
|
*
|
|
* @lkups: lookup elements or match criteria for the advanced recipe, one
|
|
* structure per protocol header
|
|
* @lkups_cnt: number of protocols
|
|
* @tun_type: tunnel type from the match criteria
|
|
* @pkt: dummy packet to fill according to filter match criteria
|
|
* @pkt_len: packet length of dummy packet
|
|
* @offsets: pointer to receive the pointer to the offsets for the packet
|
|
*/
|
|
static void
|
|
ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
|
|
enum ice_sw_tunnel_type tun_type, const u8 **pkt,
|
|
u16 *pkt_len,
|
|
const struct ice_dummy_pkt_offsets **offsets)
|
|
{
|
|
bool tcp = false, udp = false, ipv6 = false;
|
|
u16 i;
|
|
|
|
if (tun_type == ICE_SW_TUN_GTP) {
|
|
*pkt = dummy_udp_gtp_packet;
|
|
*pkt_len = sizeof(dummy_udp_gtp_packet);
|
|
*offsets = dummy_udp_gtp_packet_offsets;
|
|
return;
|
|
}
|
|
if (tun_type == ICE_SW_TUN_PPPOE) {
|
|
*pkt = dummy_pppoe_packet;
|
|
*pkt_len = sizeof(dummy_pppoe_packet);
|
|
*offsets = dummy_pppoe_packet_offsets;
|
|
return;
|
|
}
|
|
for (i = 0; i < lkups_cnt; i++) {
|
|
if (lkups[i].type == ICE_UDP_ILOS)
|
|
udp = true;
|
|
else if (lkups[i].type == ICE_TCP_IL)
|
|
tcp = true;
|
|
else if (lkups[i].type == ICE_IPV6_OFOS)
|
|
ipv6 = true;
|
|
}
|
|
|
|
if (tun_type == ICE_ALL_TUNNELS) {
|
|
*pkt = dummy_gre_udp_packet;
|
|
*pkt_len = sizeof(dummy_gre_udp_packet);
|
|
*offsets = dummy_gre_udp_packet_offsets;
|
|
return;
|
|
}
|
|
|
|
if (tun_type == ICE_SW_TUN_NVGRE) {
|
|
if (tcp) {
|
|
*pkt = dummy_gre_tcp_packet;
|
|
*pkt_len = sizeof(dummy_gre_tcp_packet);
|
|
*offsets = dummy_gre_tcp_packet_offsets;
|
|
return;
|
|
}
|
|
|
|
*pkt = dummy_gre_udp_packet;
|
|
*pkt_len = sizeof(dummy_gre_udp_packet);
|
|
*offsets = dummy_gre_udp_packet_offsets;
|
|
return;
|
|
}
|
|
|
|
if (tun_type == ICE_SW_TUN_VXLAN || tun_type == ICE_SW_TUN_GENEVE ||
|
|
tun_type == ICE_SW_TUN_VXLAN_GPE || tun_type == ICE_SW_TUN_UDP) {
|
|
if (tcp) {
|
|
*pkt = dummy_udp_tun_tcp_packet;
|
|
*pkt_len = sizeof(dummy_udp_tun_tcp_packet);
|
|
*offsets = dummy_udp_tun_tcp_packet_offsets;
|
|
return;
|
|
}
|
|
|
|
*pkt = dummy_udp_tun_udp_packet;
|
|
*pkt_len = sizeof(dummy_udp_tun_udp_packet);
|
|
*offsets = dummy_udp_tun_udp_packet_offsets;
|
|
return;
|
|
}
|
|
|
|
if (udp && !ipv6) {
|
|
*pkt = dummy_udp_packet;
|
|
*pkt_len = sizeof(dummy_udp_packet);
|
|
*offsets = dummy_udp_packet_offsets;
|
|
return;
|
|
} else if (udp && ipv6) {
|
|
*pkt = dummy_udp_ipv6_packet;
|
|
*pkt_len = sizeof(dummy_udp_ipv6_packet);
|
|
*offsets = dummy_udp_ipv6_packet_offsets;
|
|
return;
|
|
} else if ((tcp && ipv6) || ipv6) {
|
|
*pkt = dummy_tcp_ipv6_packet;
|
|
*pkt_len = sizeof(dummy_tcp_ipv6_packet);
|
|
*offsets = dummy_tcp_ipv6_packet_offsets;
|
|
return;
|
|
}
|
|
|
|
*pkt = dummy_tcp_packet;
|
|
*pkt_len = sizeof(dummy_tcp_packet);
|
|
*offsets = dummy_tcp_packet_offsets;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
|
|
*
|
|
* @lkups: lookup elements or match criteria for the advanced recipe, one
|
|
* structure per protocol header
|
|
* @lkups_cnt: number of protocols
|
|
* @s_rule: stores rule information from the match criteria
|
|
* @dummy_pkt: dummy packet to fill according to filter match criteria
|
|
* @pkt_len: packet length of dummy packet
|
|
* @offsets: offset info for the dummy packet
|
|
*/
|
|
static enum ice_status
|
|
ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
|
|
struct ice_aqc_sw_rules_elem *s_rule,
|
|
const u8 *dummy_pkt, u16 pkt_len,
|
|
const struct ice_dummy_pkt_offsets *offsets)
|
|
{
|
|
u8 *pkt;
|
|
u16 i;
|
|
|
|
/* Start with a packet with a pre-defined/dummy content. Then, fill
|
|
* in the header values to be looked up or matched.
|
|
*/
|
|
pkt = s_rule->pdata.lkup_tx_rx.hdr;
|
|
|
|
ice_memcpy(pkt, dummy_pkt, pkt_len, ICE_NONDMA_TO_NONDMA);
|
|
|
|
for (i = 0; i < lkups_cnt; i++) {
|
|
enum ice_protocol_type type;
|
|
u16 offset = 0, len = 0, j;
|
|
bool found = false;
|
|
|
|
/* find the start of this layer; it should be found since this
|
|
* was already checked when search for the dummy packet
|
|
*/
|
|
type = lkups[i].type;
|
|
for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
|
|
if (type == offsets[j].type) {
|
|
offset = offsets[j].offset;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
/* this should never happen in a correct calling sequence */
|
|
if (!found)
|
|
return ICE_ERR_PARAM;
|
|
|
|
switch (lkups[i].type) {
|
|
case ICE_MAC_OFOS:
|
|
case ICE_MAC_IL:
|
|
len = sizeof(struct ice_ether_hdr);
|
|
break;
|
|
case ICE_ETYPE_OL:
|
|
len = sizeof(struct ice_ethtype_hdr);
|
|
break;
|
|
case ICE_VLAN_OFOS:
|
|
len = sizeof(struct ice_vlan_hdr);
|
|
break;
|
|
case ICE_IPV4_OFOS:
|
|
case ICE_IPV4_IL:
|
|
len = sizeof(struct ice_ipv4_hdr);
|
|
break;
|
|
case ICE_IPV6_OFOS:
|
|
case ICE_IPV6_IL:
|
|
len = sizeof(struct ice_ipv6_hdr);
|
|
break;
|
|
case ICE_TCP_IL:
|
|
case ICE_UDP_OF:
|
|
case ICE_UDP_ILOS:
|
|
len = sizeof(struct ice_l4_hdr);
|
|
break;
|
|
case ICE_SCTP_IL:
|
|
len = sizeof(struct ice_sctp_hdr);
|
|
break;
|
|
case ICE_NVGRE:
|
|
len = sizeof(struct ice_nvgre);
|
|
break;
|
|
case ICE_VXLAN:
|
|
case ICE_GENEVE:
|
|
case ICE_VXLAN_GPE:
|
|
len = sizeof(struct ice_udp_tnl_hdr);
|
|
break;
|
|
|
|
case ICE_GTP:
|
|
len = sizeof(struct ice_udp_gtp_hdr);
|
|
break;
|
|
case ICE_PPPOE:
|
|
len = sizeof(struct ice_pppoe_hdr);
|
|
break;
|
|
default:
|
|
return ICE_ERR_PARAM;
|
|
}
|
|
|
|
/* the length should be a word multiple */
|
|
if (len % ICE_BYTES_PER_WORD)
|
|
return ICE_ERR_CFG;
|
|
|
|
/* We have the offset to the header start, the length, the
|
|
* caller's header values and mask. Use this information to
|
|
* copy the data into the dummy packet appropriately based on
|
|
* the mask. Note that we need to only write the bits as
|
|
* indicated by the mask to make sure we don't improperly write
|
|
* over any significant packet data.
|
|
*/
|
|
for (j = 0; j < len / sizeof(u16); j++)
|
|
if (((u16 *)&lkups[i].m_u)[j])
|
|
((u16 *)(pkt + offset))[j] =
|
|
(((u16 *)(pkt + offset))[j] &
|
|
~((u16 *)&lkups[i].m_u)[j]) |
|
|
(((u16 *)&lkups[i].h_u)[j] &
|
|
((u16 *)&lkups[i].m_u)[j]);
|
|
}
|
|
|
|
s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(pkt_len);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
|
|
* @hw: pointer to the hardware structure
|
|
* @tun_type: tunnel type
|
|
* @pkt: dummy packet to fill in
|
|
* @offsets: offset info for the dummy packet
|
|
*/
|
|
static enum ice_status
|
|
ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
|
|
u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
|
|
{
|
|
u16 open_port, i;
|
|
|
|
switch (tun_type) {
|
|
case ICE_SW_TUN_AND_NON_TUN:
|
|
case ICE_SW_TUN_VXLAN_GPE:
|
|
case ICE_SW_TUN_VXLAN:
|
|
case ICE_SW_TUN_UDP:
|
|
if (!ice_get_open_tunnel_port(hw, TNL_VXLAN, &open_port))
|
|
return ICE_ERR_CFG;
|
|
break;
|
|
|
|
case ICE_SW_TUN_GENEVE:
|
|
if (!ice_get_open_tunnel_port(hw, TNL_GENEVE, &open_port))
|
|
return ICE_ERR_CFG;
|
|
break;
|
|
|
|
default:
|
|
/* Nothing needs to be done for this tunnel type */
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* Find the outer UDP protocol header and insert the port number */
|
|
for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
|
|
if (offsets[i].type == ICE_UDP_OF) {
|
|
struct ice_l4_hdr *hdr;
|
|
u16 offset;
|
|
|
|
offset = offsets[i].offset;
|
|
hdr = (struct ice_l4_hdr *)&pkt[offset];
|
|
hdr->dst_port = CPU_TO_BE16(open_port);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
}
|
|
|
|
return ICE_ERR_CFG;
|
|
}
|
|
|
|
/**
|
|
* ice_find_adv_rule_entry - Search a rule entry
|
|
* @hw: pointer to the hardware structure
|
|
* @lkups: lookup elements or match criteria for the advanced recipe, one
|
|
* structure per protocol header
|
|
* @lkups_cnt: number of protocols
|
|
* @recp_id: recipe ID for which we are finding the rule
|
|
* @rinfo: other information regarding the rule e.g. priority and action info
|
|
*
|
|
* Helper function to search for a given advance rule entry
|
|
* Returns pointer to entry storing the rule if found
|
|
*/
|
|
static struct ice_adv_fltr_mgmt_list_entry *
|
|
ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
|
|
u16 lkups_cnt, u8 recp_id,
|
|
struct ice_adv_rule_info *rinfo)
|
|
{
|
|
struct ice_adv_fltr_mgmt_list_entry *list_itr;
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
int i;
|
|
|
|
LIST_FOR_EACH_ENTRY(list_itr, &sw->recp_list[recp_id].filt_rules,
|
|
ice_adv_fltr_mgmt_list_entry, list_entry) {
|
|
bool lkups_matched = true;
|
|
|
|
if (lkups_cnt != list_itr->lkups_cnt)
|
|
continue;
|
|
for (i = 0; i < list_itr->lkups_cnt; i++)
|
|
if (memcmp(&list_itr->lkups[i], &lkups[i],
|
|
sizeof(*lkups))) {
|
|
lkups_matched = false;
|
|
break;
|
|
}
|
|
if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
|
|
rinfo->tun_type == list_itr->rule_info.tun_type &&
|
|
lkups_matched)
|
|
return list_itr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_adv_add_update_vsi_list
|
|
* @hw: pointer to the hardware structure
|
|
* @m_entry: pointer to current adv filter management list entry
|
|
* @cur_fltr: filter information from the book keeping entry
|
|
* @new_fltr: filter information with the new VSI to be added
|
|
*
|
|
* Call AQ command to add or update previously created VSI list with new VSI.
|
|
*
|
|
* Helper function to do book keeping associated with adding filter information
|
|
* The algorithm to do the booking keeping is described below :
|
|
* When a VSI needs to subscribe to a given advanced filter
|
|
* if only one VSI has been added till now
|
|
* Allocate a new VSI list and add two VSIs
|
|
* to this list using switch rule command
|
|
* Update the previously created switch rule with the
|
|
* newly created VSI list ID
|
|
* if a VSI list was previously created
|
|
* Add the new VSI to the previously created VSI list set
|
|
* using the update switch rule command
|
|
*/
|
|
static enum ice_status
|
|
ice_adv_add_update_vsi_list(struct ice_hw *hw,
|
|
struct ice_adv_fltr_mgmt_list_entry *m_entry,
|
|
struct ice_adv_rule_info *cur_fltr,
|
|
struct ice_adv_rule_info *new_fltr)
|
|
{
|
|
enum ice_status status;
|
|
u16 vsi_list_id = 0;
|
|
|
|
if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
|
|
cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
|
|
cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
|
|
return ICE_ERR_NOT_IMPL;
|
|
|
|
if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
|
|
new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
|
|
(cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
|
|
cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
|
|
return ICE_ERR_NOT_IMPL;
|
|
|
|
if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
|
|
/* Only one entry existed in the mapping and it was not already
|
|
* a part of a VSI list. So, create a VSI list with the old and
|
|
* new VSIs.
|
|
*/
|
|
struct ice_fltr_info tmp_fltr;
|
|
u16 vsi_handle_arr[2];
|
|
|
|
/* A rule already exists with the new VSI being added */
|
|
if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
|
|
new_fltr->sw_act.fwd_id.hw_vsi_id)
|
|
return ICE_ERR_ALREADY_EXISTS;
|
|
|
|
vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
|
|
vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
|
|
status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
|
|
&vsi_list_id,
|
|
ICE_SW_LKUP_LAST);
|
|
if (status)
|
|
return status;
|
|
|
|
ice_memset(&tmp_fltr, 0, sizeof(tmp_fltr), ICE_NONDMA_MEM);
|
|
tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
|
|
tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
|
|
tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
|
|
tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
|
|
|
|
/* Update the previous switch rule of "forward to VSI" to
|
|
* "fwd to VSI list"
|
|
*/
|
|
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
|
|
if (status)
|
|
return status;
|
|
|
|
cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
|
|
cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
|
|
m_entry->vsi_list_info =
|
|
ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
|
|
vsi_list_id);
|
|
} else {
|
|
u16 vsi_handle = new_fltr->sw_act.vsi_handle;
|
|
|
|
if (!m_entry->vsi_list_info)
|
|
return ICE_ERR_CFG;
|
|
|
|
/* A rule already exists with the new VSI being added */
|
|
if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
|
|
return ICE_SUCCESS;
|
|
|
|
/* Update the previously created VSI list set with
|
|
* the new VSI ID passed in
|
|
*/
|
|
vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
|
|
|
|
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
|
|
vsi_list_id, false,
|
|
ice_aqc_opc_update_sw_rules,
|
|
ICE_SW_LKUP_LAST);
|
|
/* update VSI list mapping info with new VSI ID */
|
|
if (!status)
|
|
ice_set_bit(vsi_handle,
|
|
m_entry->vsi_list_info->vsi_map);
|
|
}
|
|
if (!status)
|
|
m_entry->vsi_count++;
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_add_adv_rule - helper function to create an advanced switch rule
|
|
* @hw: pointer to the hardware structure
|
|
* @lkups: information on the words that needs to be looked up. All words
|
|
* together makes one recipe
|
|
* @lkups_cnt: num of entries in the lkups array
|
|
* @rinfo: other information related to the rule that needs to be programmed
|
|
* @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
|
|
* ignored is case of error.
|
|
*
|
|
* This function can program only 1 rule at a time. The lkups is used to
|
|
* describe the all the words that forms the "lookup" portion of the recipe.
|
|
* These words can span multiple protocols. Callers to this function need to
|
|
* pass in a list of protocol headers with lookup information along and mask
|
|
* that determines which words are valid from the given protocol header.
|
|
* rinfo describes other information related to this rule such as forwarding
|
|
* IDs, priority of this rule, etc.
|
|
*/
|
|
enum ice_status
|
|
ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
|
|
u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
|
|
struct ice_rule_query_data *added_entry)
|
|
{
|
|
struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
|
|
u16 rid = 0, i, pkt_len, rule_buf_sz, vsi_handle;
|
|
const struct ice_dummy_pkt_offsets *pkt_offsets;
|
|
struct ice_aqc_sw_rules_elem *s_rule = NULL;
|
|
struct LIST_HEAD_TYPE *rule_head;
|
|
struct ice_switch_info *sw;
|
|
enum ice_status status;
|
|
const u8 *pkt = NULL;
|
|
u16 word_cnt;
|
|
u32 act = 0;
|
|
u8 q_rgn;
|
|
|
|
/* Initialize profile to result index bitmap */
|
|
if (!hw->switch_info->prof_res_bm_init) {
|
|
hw->switch_info->prof_res_bm_init = 1;
|
|
ice_init_prof_result_bm(hw);
|
|
}
|
|
|
|
if (!lkups_cnt)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* get # of words we need to match */
|
|
word_cnt = 0;
|
|
for (i = 0; i < lkups_cnt; i++) {
|
|
u16 j, *ptr;
|
|
|
|
ptr = (u16 *)&lkups[i].m_u;
|
|
for (j = 0; j < sizeof(lkups->m_u) / sizeof(u16); j++)
|
|
if (ptr[j] != 0)
|
|
word_cnt++;
|
|
}
|
|
if (!word_cnt || word_cnt > ICE_MAX_CHAIN_WORDS)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* make sure that we can locate a dummy packet */
|
|
ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type, &pkt, &pkt_len,
|
|
&pkt_offsets);
|
|
if (!pkt) {
|
|
status = ICE_ERR_PARAM;
|
|
goto err_ice_add_adv_rule;
|
|
}
|
|
|
|
if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
|
|
rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
|
|
rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
|
|
rinfo->sw_act.fltr_act == ICE_DROP_PACKET))
|
|
return ICE_ERR_CFG;
|
|
|
|
vsi_handle = rinfo->sw_act.vsi_handle;
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
|
|
rinfo->sw_act.fwd_id.hw_vsi_id =
|
|
ice_get_hw_vsi_num(hw, vsi_handle);
|
|
if (rinfo->sw_act.flag & ICE_FLTR_TX)
|
|
rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
|
|
status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
|
|
if (status)
|
|
return status;
|
|
m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
|
|
if (m_entry) {
|
|
/* we have to add VSI to VSI_LIST and increment vsi_count.
|
|
* Also Update VSI list so that we can change forwarding rule
|
|
* if the rule already exists, we will check if it exists with
|
|
* same vsi_id, if not then add it to the VSI list if it already
|
|
* exists if not then create a VSI list and add the existing VSI
|
|
* ID and the new VSI ID to the list
|
|
* We will add that VSI to the list
|
|
*/
|
|
status = ice_adv_add_update_vsi_list(hw, m_entry,
|
|
&m_entry->rule_info,
|
|
rinfo);
|
|
if (added_entry) {
|
|
added_entry->rid = rid;
|
|
added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
|
|
added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
|
|
}
|
|
return status;
|
|
}
|
|
rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE + pkt_len;
|
|
s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rule_buf_sz);
|
|
if (!s_rule)
|
|
return ICE_ERR_NO_MEMORY;
|
|
act |= ICE_SINGLE_ACT_LB_ENABLE | ICE_SINGLE_ACT_LAN_ENABLE;
|
|
switch (rinfo->sw_act.fltr_act) {
|
|
case ICE_FWD_TO_VSI:
|
|
act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
|
|
ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
|
|
act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
|
|
break;
|
|
case ICE_FWD_TO_Q:
|
|
act |= ICE_SINGLE_ACT_TO_Q;
|
|
act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
|
|
ICE_SINGLE_ACT_Q_INDEX_M;
|
|
break;
|
|
case ICE_FWD_TO_QGRP:
|
|
q_rgn = rinfo->sw_act.qgrp_size > 0 ?
|
|
(u8)ice_ilog2(rinfo->sw_act.qgrp_size) : 0;
|
|
act |= ICE_SINGLE_ACT_TO_Q;
|
|
act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
|
|
ICE_SINGLE_ACT_Q_INDEX_M;
|
|
act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
|
|
ICE_SINGLE_ACT_Q_REGION_M;
|
|
break;
|
|
case ICE_DROP_PACKET:
|
|
act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
|
|
ICE_SINGLE_ACT_VALID_BIT;
|
|
break;
|
|
default:
|
|
status = ICE_ERR_CFG;
|
|
goto err_ice_add_adv_rule;
|
|
}
|
|
|
|
/* set the rule LOOKUP type based on caller specified 'RX'
|
|
* instead of hardcoding it to be either LOOKUP_TX/RX
|
|
*
|
|
* for 'RX' set the source to be the port number
|
|
* for 'TX' set the source to be the source HW VSI number (determined
|
|
* by caller)
|
|
*/
|
|
if (rinfo->rx) {
|
|
s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX);
|
|
s_rule->pdata.lkup_tx_rx.src =
|
|
CPU_TO_LE16(hw->port_info->lport);
|
|
} else {
|
|
s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
|
|
s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(rinfo->sw_act.src);
|
|
}
|
|
|
|
s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(rid);
|
|
s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
|
|
|
|
status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, pkt,
|
|
pkt_len, pkt_offsets);
|
|
if (status)
|
|
goto err_ice_add_adv_rule;
|
|
|
|
if (rinfo->tun_type != ICE_NON_TUN &&
|
|
rinfo->tun_type != ICE_SW_TUN_AND_NON_TUN) {
|
|
status = ice_fill_adv_packet_tun(hw, rinfo->tun_type,
|
|
s_rule->pdata.lkup_tx_rx.hdr,
|
|
pkt_offsets);
|
|
if (status)
|
|
goto err_ice_add_adv_rule;
|
|
}
|
|
|
|
status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
|
|
rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
|
|
NULL);
|
|
if (status)
|
|
goto err_ice_add_adv_rule;
|
|
adv_fltr = (struct ice_adv_fltr_mgmt_list_entry *)
|
|
ice_malloc(hw, sizeof(struct ice_adv_fltr_mgmt_list_entry));
|
|
if (!adv_fltr) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_ice_add_adv_rule;
|
|
}
|
|
|
|
adv_fltr->lkups = (struct ice_adv_lkup_elem *)
|
|
ice_memdup(hw, lkups, lkups_cnt * sizeof(*lkups),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
if (!adv_fltr->lkups) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_ice_add_adv_rule;
|
|
}
|
|
|
|
adv_fltr->lkups_cnt = lkups_cnt;
|
|
adv_fltr->rule_info = *rinfo;
|
|
adv_fltr->rule_info.fltr_rule_id =
|
|
LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
|
|
sw = hw->switch_info;
|
|
sw->recp_list[rid].adv_rule = true;
|
|
rule_head = &sw->recp_list[rid].filt_rules;
|
|
|
|
if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
|
|
adv_fltr->vsi_count = 1;
|
|
|
|
/* Add rule entry to book keeping list */
|
|
LIST_ADD(&adv_fltr->list_entry, rule_head);
|
|
if (added_entry) {
|
|
added_entry->rid = rid;
|
|
added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
|
|
added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
|
|
}
|
|
err_ice_add_adv_rule:
|
|
if (status && adv_fltr) {
|
|
ice_free(hw, adv_fltr->lkups);
|
|
ice_free(hw, adv_fltr);
|
|
}
|
|
|
|
ice_free(hw, s_rule);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_adv_rem_update_vsi_list
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle of the VSI to remove
|
|
* @fm_list: filter management entry for which the VSI list management needs to
|
|
* be done
|
|
*/
|
|
static enum ice_status
|
|
ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
|
|
struct ice_adv_fltr_mgmt_list_entry *fm_list)
|
|
{
|
|
struct ice_vsi_list_map_info *vsi_list_info;
|
|
enum ice_sw_lkup_type lkup_type;
|
|
enum ice_status status;
|
|
u16 vsi_list_id;
|
|
|
|
if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
|
|
fm_list->vsi_count == 0)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* A rule with the VSI being removed does not exist */
|
|
if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
|
|
return ICE_ERR_DOES_NOT_EXIST;
|
|
|
|
lkup_type = ICE_SW_LKUP_LAST;
|
|
vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
|
|
status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
|
|
ice_aqc_opc_update_sw_rules,
|
|
lkup_type);
|
|
if (status)
|
|
return status;
|
|
|
|
fm_list->vsi_count--;
|
|
ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
|
|
vsi_list_info = fm_list->vsi_list_info;
|
|
if (fm_list->vsi_count == 1) {
|
|
struct ice_fltr_info tmp_fltr;
|
|
u16 rem_vsi_handle;
|
|
|
|
rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
|
|
ICE_MAX_VSI);
|
|
if (!ice_is_vsi_valid(hw, rem_vsi_handle))
|
|
return ICE_ERR_OUT_OF_RANGE;
|
|
|
|
/* Make sure VSI list is empty before removing it below */
|
|
status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
|
|
vsi_list_id, true,
|
|
ice_aqc_opc_update_sw_rules,
|
|
lkup_type);
|
|
if (status)
|
|
return status;
|
|
|
|
ice_memset(&tmp_fltr, 0, sizeof(tmp_fltr), ICE_NONDMA_MEM);
|
|
tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
|
|
fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
|
|
tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
|
|
tmp_fltr.fwd_id.hw_vsi_id =
|
|
ice_get_hw_vsi_num(hw, rem_vsi_handle);
|
|
fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
|
|
ice_get_hw_vsi_num(hw, rem_vsi_handle);
|
|
|
|
/* Update the previous switch rule of "MAC forward to VSI" to
|
|
* "MAC fwd to VSI list"
|
|
*/
|
|
status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
|
|
tmp_fltr.fwd_id.hw_vsi_id, status);
|
|
return status;
|
|
}
|
|
fm_list->vsi_list_info->ref_cnt--;
|
|
|
|
/* Remove the VSI list since it is no longer used */
|
|
status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_SW,
|
|
"Failed to remove VSI list %d, error %d\n",
|
|
vsi_list_id, status);
|
|
return status;
|
|
}
|
|
|
|
LIST_DEL(&vsi_list_info->list_entry);
|
|
ice_free(hw, vsi_list_info);
|
|
fm_list->vsi_list_info = NULL;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_adv_rule - removes existing advanced switch rule
|
|
* @hw: pointer to the hardware structure
|
|
* @lkups: information on the words that needs to be looked up. All words
|
|
* together makes one recipe
|
|
* @lkups_cnt: num of entries in the lkups array
|
|
* @rinfo: Its the pointer to the rule information for the rule
|
|
*
|
|
* This function can be used to remove 1 rule at a time. The lkups is
|
|
* used to describe all the words that forms the "lookup" portion of the
|
|
* rule. These words can span multiple protocols. Callers to this function
|
|
* need to pass in a list of protocol headers with lookup information along
|
|
* and mask that determines which words are valid from the given protocol
|
|
* header. rinfo describes other information related to this rule such as
|
|
* forwarding IDs, priority of this rule, etc.
|
|
*/
|
|
enum ice_status
|
|
ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
|
|
u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
|
|
{
|
|
struct ice_adv_fltr_mgmt_list_entry *list_elem;
|
|
struct ice_prot_lkup_ext lkup_exts;
|
|
struct ice_lock *rule_lock; /* Lock to protect filter rule list */
|
|
enum ice_status status = ICE_SUCCESS;
|
|
bool remove_rule = false;
|
|
u16 i, rid, vsi_handle;
|
|
|
|
ice_memset(&lkup_exts, 0, sizeof(lkup_exts), ICE_NONDMA_MEM);
|
|
for (i = 0; i < lkups_cnt; i++) {
|
|
u16 count;
|
|
|
|
if (lkups[i].type >= ICE_PROTOCOL_LAST)
|
|
return ICE_ERR_CFG;
|
|
|
|
count = ice_fill_valid_words(&lkups[i], &lkup_exts);
|
|
if (!count)
|
|
return ICE_ERR_CFG;
|
|
}
|
|
|
|
/* Create any special protocol/offset pairs, such as looking at tunnel
|
|
* bits by extracting metadata
|
|
*/
|
|
status = ice_add_special_words(rinfo, &lkup_exts);
|
|
if (status)
|
|
return status;
|
|
|
|
rid = ice_find_recp(hw, &lkup_exts);
|
|
/* If did not find a recipe that match the existing criteria */
|
|
if (rid == ICE_MAX_NUM_RECIPES)
|
|
return ICE_ERR_PARAM;
|
|
|
|
rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
|
|
list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
|
|
/* the rule is already removed */
|
|
if (!list_elem)
|
|
return ICE_SUCCESS;
|
|
ice_acquire_lock(rule_lock);
|
|
if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
|
|
remove_rule = true;
|
|
} else if (list_elem->vsi_count > 1) {
|
|
remove_rule = false;
|
|
vsi_handle = rinfo->sw_act.vsi_handle;
|
|
status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
|
|
} else {
|
|
vsi_handle = rinfo->sw_act.vsi_handle;
|
|
status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
|
|
if (status) {
|
|
ice_release_lock(rule_lock);
|
|
return status;
|
|
}
|
|
if (list_elem->vsi_count == 0)
|
|
remove_rule = true;
|
|
}
|
|
ice_release_lock(rule_lock);
|
|
if (remove_rule) {
|
|
struct ice_aqc_sw_rules_elem *s_rule;
|
|
u16 rule_buf_sz;
|
|
|
|
rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE;
|
|
s_rule =
|
|
(struct ice_aqc_sw_rules_elem *)ice_malloc(hw,
|
|
rule_buf_sz);
|
|
if (!s_rule)
|
|
return ICE_ERR_NO_MEMORY;
|
|
s_rule->pdata.lkup_tx_rx.act = 0;
|
|
s_rule->pdata.lkup_tx_rx.index =
|
|
CPU_TO_LE16(list_elem->rule_info.fltr_rule_id);
|
|
s_rule->pdata.lkup_tx_rx.hdr_len = 0;
|
|
status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
|
|
rule_buf_sz, 1,
|
|
ice_aqc_opc_remove_sw_rules, NULL);
|
|
if (status == ICE_SUCCESS) {
|
|
ice_acquire_lock(rule_lock);
|
|
LIST_DEL(&list_elem->list_entry);
|
|
ice_free(hw, list_elem->lkups);
|
|
ice_free(hw, list_elem);
|
|
ice_release_lock(rule_lock);
|
|
}
|
|
ice_free(hw, s_rule);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
|
|
* @hw: pointer to the hardware structure
|
|
* @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
|
|
*
|
|
* This function is used to remove 1 rule at a time. The removal is based on
|
|
* the remove_entry parameter. This function will remove rule for a given
|
|
* vsi_handle with a given rule_id which is passed as parameter in remove_entry
|
|
*/
|
|
enum ice_status
|
|
ice_rem_adv_rule_by_id(struct ice_hw *hw,
|
|
struct ice_rule_query_data *remove_entry)
|
|
{
|
|
struct ice_adv_fltr_mgmt_list_entry *list_itr;
|
|
struct LIST_HEAD_TYPE *list_head;
|
|
struct ice_adv_rule_info rinfo;
|
|
struct ice_switch_info *sw;
|
|
|
|
sw = hw->switch_info;
|
|
if (!sw->recp_list[remove_entry->rid].recp_created)
|
|
return ICE_ERR_PARAM;
|
|
list_head = &sw->recp_list[remove_entry->rid].filt_rules;
|
|
LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_adv_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
if (list_itr->rule_info.fltr_rule_id ==
|
|
remove_entry->rule_id) {
|
|
rinfo = list_itr->rule_info;
|
|
rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
|
|
return ice_rem_adv_rule(hw, list_itr->lkups,
|
|
list_itr->lkups_cnt, &rinfo);
|
|
}
|
|
}
|
|
/* either list is empty or unable to find rule */
|
|
return ICE_ERR_DOES_NOT_EXIST;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_adv_for_vsi - removes existing advanced switch rules for a
|
|
* given VSI handle
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: VSI handle for which we are supposed to remove all the rules.
|
|
*
|
|
* This function is used to remove all the rules for a given VSI and as soon
|
|
* as removing a rule fails, it will return immediately with the error code,
|
|
* else it will return ICE_SUCCESS
|
|
*/
|
|
enum ice_status
|
|
ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
struct ice_adv_fltr_mgmt_list_entry *list_itr;
|
|
struct ice_vsi_list_map_info *map_info;
|
|
struct LIST_HEAD_TYPE *list_head;
|
|
struct ice_adv_rule_info rinfo;
|
|
struct ice_switch_info *sw;
|
|
enum ice_status status;
|
|
u16 vsi_list_id = 0;
|
|
u8 rid;
|
|
|
|
sw = hw->switch_info;
|
|
for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
|
|
if (!sw->recp_list[rid].recp_created)
|
|
continue;
|
|
if (!sw->recp_list[rid].adv_rule)
|
|
continue;
|
|
list_head = &sw->recp_list[rid].filt_rules;
|
|
map_info = NULL;
|
|
LIST_FOR_EACH_ENTRY(list_itr, list_head,
|
|
ice_adv_fltr_mgmt_list_entry, list_entry) {
|
|
map_info = ice_find_vsi_list_entry(hw, rid, vsi_handle,
|
|
&vsi_list_id);
|
|
if (!map_info)
|
|
continue;
|
|
rinfo = list_itr->rule_info;
|
|
rinfo.sw_act.vsi_handle = vsi_handle;
|
|
status = ice_rem_adv_rule(hw, list_itr->lkups,
|
|
list_itr->lkups_cnt, &rinfo);
|
|
if (status)
|
|
return status;
|
|
map_info = NULL;
|
|
}
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_fltr - Replay all the filters stored by a specific list head
|
|
* @hw: pointer to the hardware structure
|
|
* @list_head: list for which filters needs to be replayed
|
|
* @recp_id: Recipe ID for which rules need to be replayed
|
|
*/
|
|
static enum ice_status
|
|
ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head)
|
|
{
|
|
struct ice_fltr_mgmt_list_entry *itr;
|
|
struct LIST_HEAD_TYPE l_head;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
|
|
if (LIST_EMPTY(list_head))
|
|
return status;
|
|
|
|
/* Move entries from the given list_head to a temporary l_head so that
|
|
* they can be replayed. Otherwise when trying to re-add the same
|
|
* filter, the function will return already exists
|
|
*/
|
|
LIST_REPLACE_INIT(list_head, &l_head);
|
|
|
|
/* Mark the given list_head empty by reinitializing it so filters
|
|
* could be added again by *handler
|
|
*/
|
|
LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
struct ice_fltr_list_entry f_entry;
|
|
|
|
f_entry.fltr_info = itr->fltr_info;
|
|
if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) {
|
|
status = ice_add_rule_internal(hw, recp_id, &f_entry);
|
|
if (status != ICE_SUCCESS)
|
|
goto end;
|
|
continue;
|
|
}
|
|
|
|
/* Add a filter per VSI separately */
|
|
while (1) {
|
|
u16 vsi_handle;
|
|
|
|
vsi_handle =
|
|
ice_find_first_bit(itr->vsi_list_info->vsi_map,
|
|
ICE_MAX_VSI);
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
break;
|
|
|
|
ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
|
|
f_entry.fltr_info.vsi_handle = vsi_handle;
|
|
f_entry.fltr_info.fwd_id.hw_vsi_id =
|
|
ice_get_hw_vsi_num(hw, vsi_handle);
|
|
f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
|
|
if (recp_id == ICE_SW_LKUP_VLAN)
|
|
status = ice_add_vlan_internal(hw, &f_entry);
|
|
else
|
|
status = ice_add_rule_internal(hw, recp_id,
|
|
&f_entry);
|
|
if (status != ICE_SUCCESS)
|
|
goto end;
|
|
}
|
|
}
|
|
end:
|
|
/* Clear the filter management list */
|
|
ice_rem_sw_rule_info(hw, &l_head);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_all_fltr - replay all filters stored in bookkeeping lists
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* NOTE: This function does not clean up partially added filters on error.
|
|
* It is up to caller of the function to issue a reset or fail early.
|
|
*/
|
|
enum ice_status ice_replay_all_fltr(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
u8 i;
|
|
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
|
|
struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules;
|
|
|
|
status = ice_replay_fltr(hw, i, head);
|
|
if (status != ICE_SUCCESS)
|
|
return status;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_vsi_fltr - Replay filters for requested VSI
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: driver VSI handle
|
|
* @recp_id: Recipe ID for which rules need to be replayed
|
|
* @list_head: list for which filters need to be replayed
|
|
*
|
|
* Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
|
|
* It is required to pass valid VSI handle.
|
|
*/
|
|
static enum ice_status
|
|
ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
|
|
struct LIST_HEAD_TYPE *list_head)
|
|
{
|
|
struct ice_fltr_mgmt_list_entry *itr;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
u16 hw_vsi_id;
|
|
|
|
if (LIST_EMPTY(list_head))
|
|
return status;
|
|
hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
|
|
LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
struct ice_fltr_list_entry f_entry;
|
|
|
|
f_entry.fltr_info = itr->fltr_info;
|
|
if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
|
|
itr->fltr_info.vsi_handle == vsi_handle) {
|
|
/* update the src in case it is VSI num */
|
|
if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
|
|
f_entry.fltr_info.src = hw_vsi_id;
|
|
status = ice_add_rule_internal(hw, recp_id, &f_entry);
|
|
if (status != ICE_SUCCESS)
|
|
goto end;
|
|
continue;
|
|
}
|
|
if (!itr->vsi_list_info ||
|
|
!ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
|
|
continue;
|
|
/* Clearing it so that the logic can add it back */
|
|
ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
|
|
f_entry.fltr_info.vsi_handle = vsi_handle;
|
|
f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
|
|
/* update the src in case it is VSI num */
|
|
if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
|
|
f_entry.fltr_info.src = hw_vsi_id;
|
|
if (recp_id == ICE_SW_LKUP_VLAN)
|
|
status = ice_add_vlan_internal(hw, &f_entry);
|
|
else
|
|
status = ice_add_rule_internal(hw, recp_id, &f_entry);
|
|
if (status != ICE_SUCCESS)
|
|
goto end;
|
|
}
|
|
end:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: driver VSI handle
|
|
* @list_head: list for which filters need to be replayed
|
|
*
|
|
* Replay the advanced rule for the given VSI.
|
|
*/
|
|
static enum ice_status
|
|
ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
|
|
struct LIST_HEAD_TYPE *list_head)
|
|
{
|
|
struct ice_rule_query_data added_entry = { 0 };
|
|
struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
|
|
if (LIST_EMPTY(list_head))
|
|
return status;
|
|
LIST_FOR_EACH_ENTRY(adv_fltr, list_head, ice_adv_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
|
|
u16 lk_cnt = adv_fltr->lkups_cnt;
|
|
|
|
if (vsi_handle != rinfo->sw_act.vsi_handle)
|
|
continue;
|
|
status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
|
|
&added_entry);
|
|
if (status)
|
|
break;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: driver VSI handle
|
|
*
|
|
* Replays filters for requested VSI via vsi_handle.
|
|
*/
|
|
enum ice_status ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
enum ice_status status;
|
|
u8 i;
|
|
|
|
/* Update the recipes that were created */
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
|
|
struct LIST_HEAD_TYPE *head;
|
|
|
|
head = &sw->recp_list[i].filt_replay_rules;
|
|
if (!sw->recp_list[i].adv_rule)
|
|
status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
|
|
else
|
|
status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
|
|
if (status != ICE_SUCCESS)
|
|
return status;
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_rm_all_sw_replay_rule_info - deletes filter replay rules
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Deletes the filter replay rules.
|
|
*/
|
|
void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
u8 i;
|
|
|
|
if (!sw)
|
|
return;
|
|
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
|
|
if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
|
|
struct LIST_HEAD_TYPE *l_head;
|
|
|
|
l_head = &sw->recp_list[i].filt_replay_rules;
|
|
if (!sw->recp_list[i].adv_rule)
|
|
ice_rem_sw_rule_info(hw, l_head);
|
|
else
|
|
ice_rem_adv_rule_info(hw, l_head);
|
|
}
|
|
}
|
|
}
|