f-stack/dpdk/drivers/bus/pci/linux/pci.c

934 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <dirent.h>
#include <rte_log.h>
#include <rte_bus.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_eal_memconfig.h>
#include <rte_malloc.h>
#include <rte_devargs.h>
#include <rte_memcpy.h>
#include <rte_vfio.h>
#include <rte_memory.h>
#include "eal_private.h"
#include "eal_filesystem.h"
#include "private.h"
#include "pci_init.h"
/**
* @file
* PCI probing under linux
*
* This code is used to simulate a PCI probe by parsing information in sysfs.
* When a registered device matches a driver, it is then initialized with
* IGB_UIO driver (or doesn't initialize, if the device wasn't bound to it).
*/
extern struct rte_pci_bus rte_pci_bus;
static int
pci_get_kernel_driver_by_path(const char *filename, char *dri_name)
{
int count;
char path[PATH_MAX];
char *name;
if (!filename || !dri_name)
return -1;
count = readlink(filename, path, PATH_MAX);
if (count >= PATH_MAX)
return -1;
/* For device does not have a driver */
if (count < 0)
return 1;
path[count] = '\0';
name = strrchr(path, '/');
if (name) {
strncpy(dri_name, name + 1, strlen(name + 1) + 1);
return 0;
}
return -1;
}
/* Map pci device */
int
rte_pci_map_device(struct rte_pci_device *dev)
{
int ret = -1;
/* try mapping the NIC resources using VFIO if it exists */
switch (dev->kdrv) {
case RTE_KDRV_VFIO:
#ifdef VFIO_PRESENT
if (pci_vfio_is_enabled())
ret = pci_vfio_map_resource(dev);
#endif
break;
case RTE_KDRV_IGB_UIO:
case RTE_KDRV_UIO_GENERIC:
if (rte_eal_using_phys_addrs()) {
/* map resources for devices that use uio */
ret = pci_uio_map_resource(dev);
}
break;
default:
RTE_LOG(DEBUG, EAL,
" Not managed by a supported kernel driver, skipped\n");
ret = 1;
break;
}
return ret;
}
/* Unmap pci device */
void
rte_pci_unmap_device(struct rte_pci_device *dev)
{
/* try unmapping the NIC resources using VFIO if it exists */
switch (dev->kdrv) {
case RTE_KDRV_VFIO:
#ifdef VFIO_PRESENT
if (pci_vfio_is_enabled())
pci_vfio_unmap_resource(dev);
#endif
break;
case RTE_KDRV_IGB_UIO:
case RTE_KDRV_UIO_GENERIC:
/* unmap resources for devices that use uio */
pci_uio_unmap_resource(dev);
break;
default:
RTE_LOG(DEBUG, EAL,
" Not managed by a supported kernel driver, skipped\n");
break;
}
}
void *
pci_find_max_end_va(void)
{
const struct rte_memseg *seg = rte_eal_get_physmem_layout();
const struct rte_memseg *last = seg;
unsigned i = 0;
for (i = 0; i < RTE_MAX_MEMSEG; i++, seg++) {
if (seg->addr == NULL)
break;
if (seg->addr > last->addr)
last = seg;
}
return RTE_PTR_ADD(last->addr, last->len);
}
/* parse one line of the "resource" sysfs file (note that the 'line'
* string is modified)
*/
int
pci_parse_one_sysfs_resource(char *line, size_t len, uint64_t *phys_addr,
uint64_t *end_addr, uint64_t *flags)
{
union pci_resource_info {
struct {
char *phys_addr;
char *end_addr;
char *flags;
};
char *ptrs[PCI_RESOURCE_FMT_NVAL];
} res_info;
if (rte_strsplit(line, len, res_info.ptrs, 3, ' ') != 3) {
RTE_LOG(ERR, EAL,
"%s(): bad resource format\n", __func__);
return -1;
}
errno = 0;
*phys_addr = strtoull(res_info.phys_addr, NULL, 16);
*end_addr = strtoull(res_info.end_addr, NULL, 16);
*flags = strtoull(res_info.flags, NULL, 16);
if (errno != 0) {
RTE_LOG(ERR, EAL,
"%s(): bad resource format\n", __func__);
return -1;
}
return 0;
}
/* parse the "resource" sysfs file */
static int
pci_parse_sysfs_resource(const char *filename, struct rte_pci_device *dev)
{
FILE *f;
char buf[BUFSIZ];
int i;
uint64_t phys_addr, end_addr, flags;
f = fopen(filename, "r");
if (f == NULL) {
RTE_LOG(ERR, EAL, "Cannot open sysfs resource\n");
return -1;
}
for (i = 0; i<PCI_MAX_RESOURCE; i++) {
if (fgets(buf, sizeof(buf), f) == NULL) {
RTE_LOG(ERR, EAL,
"%s(): cannot read resource\n", __func__);
goto error;
}
if (pci_parse_one_sysfs_resource(buf, sizeof(buf), &phys_addr,
&end_addr, &flags) < 0)
goto error;
if (flags & IORESOURCE_MEM) {
dev->mem_resource[i].phys_addr = phys_addr;
dev->mem_resource[i].len = end_addr - phys_addr + 1;
/* not mapped for now */
dev->mem_resource[i].addr = NULL;
}
}
fclose(f);
return 0;
error:
fclose(f);
return -1;
}
/* Scan one pci sysfs entry, and fill the devices list from it. */
static int
pci_scan_one(const char *dirname, const struct rte_pci_addr *addr)
{
char filename[PATH_MAX];
unsigned long tmp;
struct rte_pci_device *dev;
char driver[PATH_MAX];
int ret;
dev = malloc(sizeof(*dev));
if (dev == NULL)
return -1;
memset(dev, 0, sizeof(*dev));
dev->addr = *addr;
/* get vendor id */
snprintf(filename, sizeof(filename), "%s/vendor", dirname);
if (eal_parse_sysfs_value(filename, &tmp) < 0) {
free(dev);
return -1;
}
dev->id.vendor_id = (uint16_t)tmp;
/* get device id */
snprintf(filename, sizeof(filename), "%s/device", dirname);
if (eal_parse_sysfs_value(filename, &tmp) < 0) {
free(dev);
return -1;
}
dev->id.device_id = (uint16_t)tmp;
/* get subsystem_vendor id */
snprintf(filename, sizeof(filename), "%s/subsystem_vendor",
dirname);
if (eal_parse_sysfs_value(filename, &tmp) < 0) {
free(dev);
return -1;
}
dev->id.subsystem_vendor_id = (uint16_t)tmp;
/* get subsystem_device id */
snprintf(filename, sizeof(filename), "%s/subsystem_device",
dirname);
if (eal_parse_sysfs_value(filename, &tmp) < 0) {
free(dev);
return -1;
}
dev->id.subsystem_device_id = (uint16_t)tmp;
/* get class_id */
snprintf(filename, sizeof(filename), "%s/class",
dirname);
if (eal_parse_sysfs_value(filename, &tmp) < 0) {
free(dev);
return -1;
}
/* the least 24 bits are valid: class, subclass, program interface */
dev->id.class_id = (uint32_t)tmp & RTE_CLASS_ANY_ID;
/* get max_vfs */
dev->max_vfs = 0;
snprintf(filename, sizeof(filename), "%s/max_vfs", dirname);
if (!access(filename, F_OK) &&
eal_parse_sysfs_value(filename, &tmp) == 0)
dev->max_vfs = (uint16_t)tmp;
else {
/* for non igb_uio driver, need kernel version >= 3.8 */
snprintf(filename, sizeof(filename),
"%s/sriov_numvfs", dirname);
if (!access(filename, F_OK) &&
eal_parse_sysfs_value(filename, &tmp) == 0)
dev->max_vfs = (uint16_t)tmp;
}
/* get numa node, default to 0 if not present */
snprintf(filename, sizeof(filename), "%s/numa_node",
dirname);
if (access(filename, F_OK) != -1) {
if (eal_parse_sysfs_value(filename, &tmp) == 0)
dev->device.numa_node = tmp;
else
dev->device.numa_node = -1;
} else {
dev->device.numa_node = 0;
}
pci_name_set(dev);
/* parse resources */
snprintf(filename, sizeof(filename), "%s/resource", dirname);
if (pci_parse_sysfs_resource(filename, dev) < 0) {
RTE_LOG(ERR, EAL, "%s(): cannot parse resource\n", __func__);
free(dev);
return -1;
}
/* parse driver */
snprintf(filename, sizeof(filename), "%s/driver", dirname);
ret = pci_get_kernel_driver_by_path(filename, driver);
if (ret < 0) {
RTE_LOG(ERR, EAL, "Fail to get kernel driver\n");
free(dev);
return -1;
}
if (!ret) {
if (!strcmp(driver, "vfio-pci"))
dev->kdrv = RTE_KDRV_VFIO;
else if (!strcmp(driver, "igb_uio"))
dev->kdrv = RTE_KDRV_IGB_UIO;
else if (!strcmp(driver, "uio_pci_generic"))
dev->kdrv = RTE_KDRV_UIO_GENERIC;
else
dev->kdrv = RTE_KDRV_UNKNOWN;
} else
dev->kdrv = RTE_KDRV_NONE;
/* device is valid, add in list (sorted) */
if (TAILQ_EMPTY(&rte_pci_bus.device_list)) {
rte_pci_add_device(dev);
} else {
struct rte_pci_device *dev2;
int ret;
TAILQ_FOREACH(dev2, &rte_pci_bus.device_list, next) {
ret = rte_pci_addr_cmp(&dev->addr, &dev2->addr);
if (ret > 0)
continue;
if (ret < 0) {
rte_pci_insert_device(dev2, dev);
} else { /* already registered */
dev2->kdrv = dev->kdrv;
dev2->max_vfs = dev->max_vfs;
pci_name_set(dev2);
memmove(dev2->mem_resource, dev->mem_resource,
sizeof(dev->mem_resource));
free(dev);
}
return 0;
}
rte_pci_add_device(dev);
}
return 0;
}
int
pci_update_device(const struct rte_pci_addr *addr)
{
char filename[PATH_MAX];
snprintf(filename, sizeof(filename), "%s/" PCI_PRI_FMT,
rte_pci_get_sysfs_path(), addr->domain, addr->bus, addr->devid,
addr->function);
return pci_scan_one(filename, addr);
}
/*
* split up a pci address into its constituent parts.
*/
static int
parse_pci_addr_format(const char *buf, int bufsize, struct rte_pci_addr *addr)
{
/* first split on ':' */
union splitaddr {
struct {
char *domain;
char *bus;
char *devid;
char *function;
};
char *str[PCI_FMT_NVAL]; /* last element-separator is "." not ":" */
} splitaddr;
char *buf_copy = strndup(buf, bufsize);
if (buf_copy == NULL)
return -1;
if (rte_strsplit(buf_copy, bufsize, splitaddr.str, PCI_FMT_NVAL, ':')
!= PCI_FMT_NVAL - 1)
goto error;
/* final split is on '.' between devid and function */
splitaddr.function = strchr(splitaddr.devid,'.');
if (splitaddr.function == NULL)
goto error;
*splitaddr.function++ = '\0';
/* now convert to int values */
errno = 0;
addr->domain = strtoul(splitaddr.domain, NULL, 16);
addr->bus = strtoul(splitaddr.bus, NULL, 16);
addr->devid = strtoul(splitaddr.devid, NULL, 16);
addr->function = strtoul(splitaddr.function, NULL, 10);
if (errno != 0)
goto error;
free(buf_copy); /* free the copy made with strdup */
return 0;
error:
free(buf_copy);
return -1;
}
/*
* Scan the content of the PCI bus, and the devices in the devices
* list
*/
int
rte_pci_scan(void)
{
struct dirent *e;
DIR *dir;
char dirname[PATH_MAX];
struct rte_pci_addr addr;
/* for debug purposes, PCI can be disabled */
if (!rte_eal_has_pci())
return 0;
#ifdef VFIO_PRESENT
if (!pci_vfio_is_enabled())
RTE_LOG(DEBUG, EAL, "VFIO PCI modules not loaded\n");
#endif
dir = opendir(rte_pci_get_sysfs_path());
if (dir == NULL) {
RTE_LOG(ERR, EAL, "%s(): opendir failed: %s\n",
__func__, strerror(errno));
return -1;
}
while ((e = readdir(dir)) != NULL) {
if (e->d_name[0] == '.')
continue;
if (parse_pci_addr_format(e->d_name, sizeof(e->d_name), &addr) != 0)
continue;
snprintf(dirname, sizeof(dirname), "%s/%s",
rte_pci_get_sysfs_path(), e->d_name);
if (pci_scan_one(dirname, &addr) < 0)
goto error;
}
closedir(dir);
return 0;
error:
closedir(dir);
return -1;
}
/*
* Is pci device bound to any kdrv
*/
static inline int
pci_one_device_is_bound(void)
{
struct rte_pci_device *dev = NULL;
int ret = 0;
FOREACH_DEVICE_ON_PCIBUS(dev) {
if (dev->kdrv == RTE_KDRV_UNKNOWN ||
dev->kdrv == RTE_KDRV_NONE) {
continue;
} else {
ret = 1;
break;
}
}
return ret;
}
/*
* Any one of the device bound to uio
*/
static inline int
pci_one_device_bound_uio(void)
{
struct rte_pci_device *dev = NULL;
struct rte_devargs *devargs;
int need_check;
FOREACH_DEVICE_ON_PCIBUS(dev) {
devargs = dev->device.devargs;
need_check = 0;
switch (rte_pci_bus.bus.conf.scan_mode) {
case RTE_BUS_SCAN_WHITELIST:
if (devargs && devargs->policy == RTE_DEV_WHITELISTED)
need_check = 1;
break;
case RTE_BUS_SCAN_UNDEFINED:
case RTE_BUS_SCAN_BLACKLIST:
if (devargs == NULL ||
devargs->policy != RTE_DEV_BLACKLISTED)
need_check = 1;
break;
}
if (!need_check)
continue;
if (dev->kdrv == RTE_KDRV_IGB_UIO ||
dev->kdrv == RTE_KDRV_UIO_GENERIC) {
return 1;
}
}
return 0;
}
/*
* Any one of the device has iova as va
*/
static inline int
pci_one_device_has_iova_va(void)
{
struct rte_pci_device *dev = NULL;
struct rte_pci_driver *drv = NULL;
FOREACH_DRIVER_ON_PCIBUS(drv) {
if (drv && drv->drv_flags & RTE_PCI_DRV_IOVA_AS_VA) {
FOREACH_DEVICE_ON_PCIBUS(dev) {
if (dev->kdrv == RTE_KDRV_VFIO &&
rte_pci_match(drv, dev))
return 1;
}
}
}
return 0;
}
#if defined(RTE_ARCH_X86)
static bool
pci_one_device_iommu_support_va(struct rte_pci_device *dev)
{
#define VTD_CAP_MGAW_SHIFT 16
#define VTD_CAP_MGAW_MASK (0x3fULL << VTD_CAP_MGAW_SHIFT)
struct rte_pci_addr *addr = &dev->addr;
char filename[PATH_MAX];
FILE *fp;
uint64_t mgaw, vtd_cap_reg = 0;
snprintf(filename, sizeof(filename),
"%s/" PCI_PRI_FMT "/iommu/intel-iommu/cap",
rte_pci_get_sysfs_path(), addr->domain, addr->bus, addr->devid,
addr->function);
if (access(filename, F_OK) == -1) {
/* We don't have an Intel IOMMU, assume VA supported*/
return true;
}
/* We have an intel IOMMU */
fp = fopen(filename, "r");
if (fp == NULL) {
RTE_LOG(ERR, EAL, "%s(): can't open %s\n", __func__, filename);
return false;
}
if (fscanf(fp, "%" PRIx64, &vtd_cap_reg) != 1) {
RTE_LOG(ERR, EAL, "%s(): can't read %s\n", __func__, filename);
fclose(fp);
return false;
}
fclose(fp);
mgaw = ((vtd_cap_reg & VTD_CAP_MGAW_MASK) >> VTD_CAP_MGAW_SHIFT) + 1;
if (!rte_eal_check_dma_mask(mgaw))
return true;
else
return false;
}
#elif defined(RTE_ARCH_PPC_64)
static bool
pci_one_device_iommu_support_va(__rte_unused struct rte_pci_device *dev)
{
return false;
}
#else
static bool
pci_one_device_iommu_support_va(__rte_unused struct rte_pci_device *dev)
{
return true;
}
#endif
/*
* All devices IOMMUs support VA as IOVA
*/
static bool
pci_devices_iommu_support_va(void)
{
struct rte_pci_device *dev = NULL;
struct rte_pci_driver *drv = NULL;
int iommu_dma_mask_check_done = 0;
FOREACH_DRIVER_ON_PCIBUS(drv) {
FOREACH_DEVICE_ON_PCIBUS(dev) {
if (!rte_pci_match(drv, dev))
continue;
if (!iommu_dma_mask_check_done) {
if (!pci_one_device_iommu_support_va(dev))
return false;
iommu_dma_mask_check_done = 1;
}
}
}
return true;
}
/*
* Get iommu class of PCI devices on the bus.
*/
enum rte_iova_mode
rte_pci_get_iommu_class(void)
{
bool is_bound;
bool is_vfio_noiommu_enabled = true;
bool has_iova_va;
bool is_bound_uio;
bool iommu_no_va;
is_bound = pci_one_device_is_bound();
if (!is_bound)
return RTE_IOVA_DC;
has_iova_va = pci_one_device_has_iova_va();
is_bound_uio = pci_one_device_bound_uio();
iommu_no_va = !pci_devices_iommu_support_va();
#ifdef VFIO_PRESENT
is_vfio_noiommu_enabled = rte_vfio_noiommu_is_enabled() == true ?
true : false;
#endif
if (has_iova_va && !is_bound_uio && !is_vfio_noiommu_enabled &&
!iommu_no_va)
return RTE_IOVA_VA;
if (has_iova_va) {
RTE_LOG(WARNING, EAL, "Some devices want iova as va but pa will be used because.. ");
if (is_vfio_noiommu_enabled)
RTE_LOG(WARNING, EAL, "vfio-noiommu mode configured\n");
if (is_bound_uio)
RTE_LOG(WARNING, EAL, "few device bound to UIO\n");
if (iommu_no_va)
RTE_LOG(WARNING, EAL, "IOMMU does not support IOVA as VA\n");
}
return RTE_IOVA_PA;
}
/* Read PCI config space. */
int rte_pci_read_config(const struct rte_pci_device *device,
void *buf, size_t len, off_t offset)
{
const struct rte_intr_handle *intr_handle = &device->intr_handle;
switch (intr_handle->type) {
case RTE_INTR_HANDLE_UIO:
case RTE_INTR_HANDLE_UIO_INTX:
return pci_uio_read_config(intr_handle, buf, len, offset);
#ifdef VFIO_PRESENT
case RTE_INTR_HANDLE_VFIO_MSIX:
case RTE_INTR_HANDLE_VFIO_MSI:
case RTE_INTR_HANDLE_VFIO_LEGACY:
return pci_vfio_read_config(intr_handle, buf, len, offset);
#endif
default:
RTE_LOG(ERR, EAL,
"Unknown handle type of fd %d\n",
intr_handle->fd);
return -1;
}
}
/* Write PCI config space. */
int rte_pci_write_config(const struct rte_pci_device *device,
const void *buf, size_t len, off_t offset)
{
const struct rte_intr_handle *intr_handle = &device->intr_handle;
switch (intr_handle->type) {
case RTE_INTR_HANDLE_UIO:
case RTE_INTR_HANDLE_UIO_INTX:
return pci_uio_write_config(intr_handle, buf, len, offset);
#ifdef VFIO_PRESENT
case RTE_INTR_HANDLE_VFIO_MSIX:
case RTE_INTR_HANDLE_VFIO_MSI:
case RTE_INTR_HANDLE_VFIO_LEGACY:
return pci_vfio_write_config(intr_handle, buf, len, offset);
#endif
default:
RTE_LOG(ERR, EAL,
"Unknown handle type of fd %d\n",
intr_handle->fd);
return -1;
}
}
#if defined(RTE_ARCH_X86)
static int
pci_ioport_map(struct rte_pci_device *dev, int bar __rte_unused,
struct rte_pci_ioport *p)
{
uint16_t start, end;
FILE *fp;
char *line = NULL;
char pci_id[16];
int found = 0;
size_t linesz;
snprintf(pci_id, sizeof(pci_id), PCI_PRI_FMT,
dev->addr.domain, dev->addr.bus,
dev->addr.devid, dev->addr.function);
fp = fopen("/proc/ioports", "r");
if (fp == NULL) {
RTE_LOG(ERR, EAL, "%s(): can't open ioports\n", __func__);
return -1;
}
while (getdelim(&line, &linesz, '\n', fp) > 0) {
char *ptr = line;
char *left;
int n;
n = strcspn(ptr, ":");
ptr[n] = 0;
left = &ptr[n + 1];
while (*left && isspace(*left))
left++;
if (!strncmp(left, pci_id, strlen(pci_id))) {
found = 1;
while (*ptr && isspace(*ptr))
ptr++;
sscanf(ptr, "%04hx-%04hx", &start, &end);
break;
}
}
free(line);
fclose(fp);
if (!found)
return -1;
p->base = start;
RTE_LOG(DEBUG, EAL, "PCI Port IO found start=0x%x\n", start);
return 0;
}
#endif
int
rte_pci_ioport_map(struct rte_pci_device *dev, int bar,
struct rte_pci_ioport *p)
{
int ret = -1;
switch (dev->kdrv) {
#ifdef VFIO_PRESENT
case RTE_KDRV_VFIO:
if (pci_vfio_is_enabled())
ret = pci_vfio_ioport_map(dev, bar, p);
break;
#endif
case RTE_KDRV_IGB_UIO:
ret = pci_uio_ioport_map(dev, bar, p);
break;
case RTE_KDRV_UIO_GENERIC:
#if defined(RTE_ARCH_X86)
ret = pci_ioport_map(dev, bar, p);
#else
ret = pci_uio_ioport_map(dev, bar, p);
#endif
break;
case RTE_KDRV_NONE:
#if defined(RTE_ARCH_X86)
ret = pci_ioport_map(dev, bar, p);
#endif
break;
default:
break;
}
if (!ret)
p->dev = dev;
return ret;
}
void
rte_pci_ioport_read(struct rte_pci_ioport *p,
void *data, size_t len, off_t offset)
{
switch (p->dev->kdrv) {
#ifdef VFIO_PRESENT
case RTE_KDRV_VFIO:
pci_vfio_ioport_read(p, data, len, offset);
break;
#endif
case RTE_KDRV_IGB_UIO:
pci_uio_ioport_read(p, data, len, offset);
break;
case RTE_KDRV_UIO_GENERIC:
pci_uio_ioport_read(p, data, len, offset);
break;
case RTE_KDRV_NONE:
#if defined(RTE_ARCH_X86)
pci_uio_ioport_read(p, data, len, offset);
#endif
break;
default:
break;
}
}
void
rte_pci_ioport_write(struct rte_pci_ioport *p,
const void *data, size_t len, off_t offset)
{
switch (p->dev->kdrv) {
#ifdef VFIO_PRESENT
case RTE_KDRV_VFIO:
pci_vfio_ioport_write(p, data, len, offset);
break;
#endif
case RTE_KDRV_IGB_UIO:
pci_uio_ioport_write(p, data, len, offset);
break;
case RTE_KDRV_UIO_GENERIC:
pci_uio_ioport_write(p, data, len, offset);
break;
case RTE_KDRV_NONE:
#if defined(RTE_ARCH_X86)
pci_uio_ioport_write(p, data, len, offset);
#endif
break;
default:
break;
}
}
int
rte_pci_ioport_unmap(struct rte_pci_ioport *p)
{
int ret = -1;
switch (p->dev->kdrv) {
#ifdef VFIO_PRESENT
case RTE_KDRV_VFIO:
if (pci_vfio_is_enabled())
ret = pci_vfio_ioport_unmap(p);
break;
#endif
case RTE_KDRV_IGB_UIO:
ret = pci_uio_ioport_unmap(p);
break;
case RTE_KDRV_UIO_GENERIC:
#if defined(RTE_ARCH_X86)
ret = 0;
#else
ret = pci_uio_ioport_unmap(p);
#endif
break;
case RTE_KDRV_NONE:
#if defined(RTE_ARCH_X86)
ret = 0;
#endif
break;
default:
break;
}
return ret;
}