mirror of https://github.com/F-Stack/f-stack.git
560 lines
14 KiB
C
560 lines
14 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2005 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#ifdef FSTACK
|
|
#include <stdint.h>
|
|
#endif
|
|
|
|
#include <sys/cdefs.h>
|
|
#include <sys/param.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#ifndef FSTACK
|
|
#include <kvm.h>
|
|
#endif
|
|
#include <nlist.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "memstat.h"
|
|
#include "memstat_internal.h"
|
|
|
|
#ifndef FSTACK
|
|
static int memstat_malloc_zone_count;
|
|
static int memstat_malloc_zone_sizes[32];
|
|
|
|
static int memstat_malloc_zone_init(void);
|
|
static int memstat_malloc_zone_init_kvm(kvm_t *kvm);
|
|
|
|
static struct nlist namelist[] = {
|
|
#define X_KMEMSTATISTICS 0
|
|
{ .n_name = "_kmemstatistics" },
|
|
#define X_KMEMZONES 1
|
|
{ .n_name = "_kmemzones" },
|
|
#define X_NUMZONES 2
|
|
{ .n_name = "_numzones" },
|
|
#define X_VM_MALLOC_ZONE_COUNT 3
|
|
{ .n_name = "_vm_malloc_zone_count" },
|
|
#define X_MP_MAXCPUS 4
|
|
{ .n_name = "_mp_maxcpus" },
|
|
{ .n_name = "" },
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Extract malloc(9) statistics from the running kernel, and store all memory
|
|
* type information in the passed list. For each type, check the list for an
|
|
* existing entry with the right name/allocator -- if present, update that
|
|
* entry. Otherwise, add a new entry. On error, the entire list will be
|
|
* cleared, as entries will be in an inconsistent state.
|
|
*
|
|
* To reduce the level of work for a list that starts empty, we keep around a
|
|
* hint as to whether it was empty when we began, so we can avoid searching
|
|
* the list for entries to update. Updates are O(n^2) due to searching for
|
|
* each entry before adding it.
|
|
*/
|
|
int
|
|
memstat_sysctl_malloc(struct memory_type_list *list, int flags)
|
|
{
|
|
struct malloc_type_stream_header *mtshp;
|
|
struct malloc_type_header *mthp;
|
|
struct malloc_type_stats *mtsp;
|
|
struct memory_type *mtp;
|
|
int count, hint_dontsearch, i, j, maxcpus;
|
|
char *buffer, *p;
|
|
size_t size;
|
|
|
|
hint_dontsearch = LIST_EMPTY(&list->mtl_list);
|
|
|
|
/*
|
|
* Query the number of CPUs, number of malloc types so that we can
|
|
* guess an initial buffer size. We loop until we succeed or really
|
|
* fail. Note that the value of maxcpus we query using sysctl is not
|
|
* the version we use when processing the real data -- that is read
|
|
* from the header.
|
|
*/
|
|
retry:
|
|
size = sizeof(maxcpus);
|
|
if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) {
|
|
if (errno == EACCES || errno == EPERM)
|
|
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
|
|
else
|
|
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
|
|
return (-1);
|
|
}
|
|
if (size != sizeof(maxcpus)) {
|
|
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
|
|
return (-1);
|
|
}
|
|
|
|
size = sizeof(count);
|
|
if (sysctlbyname("kern.malloc_count", &count, &size, NULL, 0) < 0) {
|
|
if (errno == EACCES || errno == EPERM)
|
|
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
|
|
else
|
|
list->mtl_error = MEMSTAT_ERROR_VERSION;
|
|
return (-1);
|
|
}
|
|
if (size != sizeof(count)) {
|
|
list->mtl_error = MEMSTAT_ERROR_DATAERROR;
|
|
return (-1);
|
|
}
|
|
|
|
#ifndef FSTACK
|
|
if (memstat_malloc_zone_init() == -1) {
|
|
list->mtl_error = MEMSTAT_ERROR_VERSION;
|
|
return (-1);
|
|
}
|
|
#endif
|
|
|
|
size = sizeof(*mthp) + count * (sizeof(*mthp) + sizeof(*mtsp) *
|
|
maxcpus);
|
|
|
|
buffer = malloc(size);
|
|
if (buffer == NULL) {
|
|
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
|
|
return (-1);
|
|
}
|
|
|
|
if (sysctlbyname("kern.malloc_stats", buffer, &size, NULL, 0) < 0) {
|
|
/*
|
|
* XXXRW: ENOMEM is an ambiguous return, we should bound the
|
|
* number of loops, perhaps.
|
|
*/
|
|
if (errno == ENOMEM) {
|
|
free(buffer);
|
|
goto retry;
|
|
}
|
|
if (errno == EACCES || errno == EPERM)
|
|
list->mtl_error = MEMSTAT_ERROR_PERMISSION;
|
|
else
|
|
list->mtl_error = MEMSTAT_ERROR_VERSION;
|
|
free(buffer);
|
|
return (-1);
|
|
}
|
|
|
|
if (size == 0) {
|
|
free(buffer);
|
|
return (0);
|
|
}
|
|
|
|
if (size < sizeof(*mtshp)) {
|
|
list->mtl_error = MEMSTAT_ERROR_VERSION;
|
|
free(buffer);
|
|
return (-1);
|
|
}
|
|
p = buffer;
|
|
mtshp = (struct malloc_type_stream_header *)p;
|
|
p += sizeof(*mtshp);
|
|
|
|
if (mtshp->mtsh_version != MALLOC_TYPE_STREAM_VERSION) {
|
|
list->mtl_error = MEMSTAT_ERROR_VERSION;
|
|
free(buffer);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* For the remainder of this function, we are quite trusting about
|
|
* the layout of structures and sizes, since we've determined we have
|
|
* a matching version and acceptable CPU count.
|
|
*/
|
|
maxcpus = mtshp->mtsh_maxcpus;
|
|
count = mtshp->mtsh_count;
|
|
for (i = 0; i < count; i++) {
|
|
mthp = (struct malloc_type_header *)p;
|
|
p += sizeof(*mthp);
|
|
|
|
if (hint_dontsearch == 0) {
|
|
mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC,
|
|
mthp->mth_name);
|
|
} else
|
|
mtp = NULL;
|
|
if (mtp == NULL)
|
|
mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
|
|
mthp->mth_name, maxcpus);
|
|
if (mtp == NULL) {
|
|
_memstat_mtl_empty(list);
|
|
free(buffer);
|
|
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Reset the statistics on a current node.
|
|
*/
|
|
_memstat_mt_reset_stats(mtp, maxcpus);
|
|
|
|
for (j = 0; j < maxcpus; j++) {
|
|
mtsp = (struct malloc_type_stats *)p;
|
|
p += sizeof(*mtsp);
|
|
|
|
/*
|
|
* Sumarize raw statistics across CPUs into coalesced
|
|
* statistics.
|
|
*/
|
|
mtp->mt_memalloced += mtsp->mts_memalloced;
|
|
mtp->mt_memfreed += mtsp->mts_memfreed;
|
|
mtp->mt_numallocs += mtsp->mts_numallocs;
|
|
mtp->mt_numfrees += mtsp->mts_numfrees;
|
|
mtp->mt_sizemask |= mtsp->mts_size;
|
|
|
|
/*
|
|
* Copies of per-CPU statistics.
|
|
*/
|
|
mtp->mt_percpu_alloc[j].mtp_memalloced =
|
|
mtsp->mts_memalloced;
|
|
mtp->mt_percpu_alloc[j].mtp_memfreed =
|
|
mtsp->mts_memfreed;
|
|
mtp->mt_percpu_alloc[j].mtp_numallocs =
|
|
mtsp->mts_numallocs;
|
|
mtp->mt_percpu_alloc[j].mtp_numfrees =
|
|
mtsp->mts_numfrees;
|
|
mtp->mt_percpu_alloc[j].mtp_sizemask =
|
|
mtsp->mts_size;
|
|
}
|
|
|
|
/*
|
|
* Derived cross-CPU statistics.
|
|
*/
|
|
mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
|
|
mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
|
|
}
|
|
|
|
free(buffer);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifndef FSTACK
|
|
static int
|
|
kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
|
|
size_t offset)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
|
|
size);
|
|
if (ret < 0)
|
|
return (MEMSTAT_ERROR_KVM);
|
|
if ((size_t)ret != size)
|
|
return (MEMSTAT_ERROR_KVM_SHORTREAD);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
|
|
{
|
|
ssize_t ret;
|
|
int i;
|
|
|
|
for (i = 0; i < buflen; i++) {
|
|
ret = kvm_read(kvm, __DECONST(unsigned long, kvm_pointer) +
|
|
i, &(buffer[i]), sizeof(char));
|
|
if (ret < 0)
|
|
return (MEMSTAT_ERROR_KVM);
|
|
if ((size_t)ret != sizeof(char))
|
|
return (MEMSTAT_ERROR_KVM_SHORTREAD);
|
|
if (buffer[i] == '\0')
|
|
return (0);
|
|
}
|
|
/* Truncate. */
|
|
buffer[i-1] = '\0';
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
|
|
size_t offset)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
|
|
if (ret < 0)
|
|
return (MEMSTAT_ERROR_KVM);
|
|
if ((size_t)ret != size)
|
|
return (MEMSTAT_ERROR_KVM_SHORTREAD);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
kread_zpcpu(kvm_t *kvm, u_long base, void *buf, size_t size, int cpu)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = kvm_read_zpcpu(kvm, base, buf, size, cpu);
|
|
if (ret < 0)
|
|
return (MEMSTAT_ERROR_KVM);
|
|
if ((size_t)ret != size)
|
|
return (MEMSTAT_ERROR_KVM_SHORTREAD);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle)
|
|
{
|
|
struct memory_type *mtp;
|
|
void *kmemstatistics;
|
|
int hint_dontsearch, j, mp_maxcpus, mp_ncpus, ret;
|
|
char name[MEMTYPE_MAXNAME];
|
|
struct malloc_type_stats mts;
|
|
struct malloc_type_internal *mtip;
|
|
struct malloc_type type, *typep;
|
|
kvm_t *kvm;
|
|
|
|
kvm = (kvm_t *)kvm_handle;
|
|
|
|
hint_dontsearch = LIST_EMPTY(&list->mtl_list);
|
|
|
|
if (kvm_nlist(kvm, namelist) != 0) {
|
|
list->mtl_error = MEMSTAT_ERROR_KVM;
|
|
return (-1);
|
|
}
|
|
|
|
if (namelist[X_KMEMSTATISTICS].n_type == 0 ||
|
|
namelist[X_KMEMSTATISTICS].n_value == 0) {
|
|
list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
|
|
return (-1);
|
|
}
|
|
|
|
ret = kread_symbol(kvm, X_MP_MAXCPUS, &mp_maxcpus,
|
|
sizeof(mp_maxcpus), 0);
|
|
if (ret != 0) {
|
|
list->mtl_error = ret;
|
|
return (-1);
|
|
}
|
|
|
|
ret = kread_symbol(kvm, X_KMEMSTATISTICS, &kmemstatistics,
|
|
sizeof(kmemstatistics), 0);
|
|
if (ret != 0) {
|
|
list->mtl_error = ret;
|
|
return (-1);
|
|
}
|
|
|
|
ret = memstat_malloc_zone_init_kvm(kvm);
|
|
if (ret != 0) {
|
|
list->mtl_error = ret;
|
|
return (-1);
|
|
}
|
|
|
|
mp_ncpus = kvm_getncpus(kvm);
|
|
|
|
for (typep = kmemstatistics; typep != NULL; typep = type.ks_next) {
|
|
ret = kread(kvm, typep, &type, sizeof(type), 0);
|
|
if (ret != 0) {
|
|
_memstat_mtl_empty(list);
|
|
list->mtl_error = ret;
|
|
return (-1);
|
|
}
|
|
ret = kread_string(kvm, (void *)type.ks_shortdesc, name,
|
|
MEMTYPE_MAXNAME);
|
|
if (ret != 0) {
|
|
_memstat_mtl_empty(list);
|
|
list->mtl_error = ret;
|
|
return (-1);
|
|
}
|
|
if (type.ks_version != M_VERSION) {
|
|
warnx("type %s with unsupported version %lu; skipped",
|
|
name, type.ks_version);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Since our compile-time value for MAXCPU may differ from the
|
|
* kernel's, we populate our own array.
|
|
*/
|
|
mtip = &type.ks_mti;
|
|
|
|
if (hint_dontsearch == 0) {
|
|
mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, name);
|
|
} else
|
|
mtp = NULL;
|
|
if (mtp == NULL)
|
|
mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
|
|
name, mp_maxcpus);
|
|
if (mtp == NULL) {
|
|
_memstat_mtl_empty(list);
|
|
list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* This logic is replicated from kern_malloc.c, and should
|
|
* be kept in sync.
|
|
*/
|
|
_memstat_mt_reset_stats(mtp, mp_maxcpus);
|
|
for (j = 0; j < mp_ncpus; j++) {
|
|
ret = kread_zpcpu(kvm, (u_long)mtip->mti_stats, &mts,
|
|
sizeof(mts), j);
|
|
if (ret != 0) {
|
|
_memstat_mtl_empty(list);
|
|
list->mtl_error = ret;
|
|
return (-1);
|
|
}
|
|
mtp->mt_memalloced += mts.mts_memalloced;
|
|
mtp->mt_memfreed += mts.mts_memfreed;
|
|
mtp->mt_numallocs += mts.mts_numallocs;
|
|
mtp->mt_numfrees += mts.mts_numfrees;
|
|
mtp->mt_sizemask |= mts.mts_size;
|
|
|
|
mtp->mt_percpu_alloc[j].mtp_memalloced =
|
|
mts.mts_memalloced;
|
|
mtp->mt_percpu_alloc[j].mtp_memfreed =
|
|
mts.mts_memfreed;
|
|
mtp->mt_percpu_alloc[j].mtp_numallocs =
|
|
mts.mts_numallocs;
|
|
mtp->mt_percpu_alloc[j].mtp_numfrees =
|
|
mts.mts_numfrees;
|
|
mtp->mt_percpu_alloc[j].mtp_sizemask =
|
|
mts.mts_size;
|
|
}
|
|
for (; j < mp_maxcpus; j++) {
|
|
bzero(&mtp->mt_percpu_alloc[j],
|
|
sizeof(mtp->mt_percpu_alloc[0]));
|
|
}
|
|
|
|
mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
|
|
mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
memstat_malloc_zone_init(void)
|
|
{
|
|
size_t size;
|
|
|
|
size = sizeof(memstat_malloc_zone_count);
|
|
if (sysctlbyname("vm.malloc.zone_count", &memstat_malloc_zone_count,
|
|
&size, NULL, 0) < 0) {
|
|
return (-1);
|
|
}
|
|
|
|
if (memstat_malloc_zone_count > (int)nitems(memstat_malloc_zone_sizes)) {
|
|
return (-1);
|
|
}
|
|
|
|
size = sizeof(memstat_malloc_zone_sizes);
|
|
if (sysctlbyname("vm.malloc.zone_sizes", &memstat_malloc_zone_sizes,
|
|
&size, NULL, 0) < 0) {
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Copied from kern_malloc.c
|
|
*
|
|
* kz_zone is an array sized at compilation time, the size is exported in
|
|
* "numzones". Below we need to iterate kz_size.
|
|
*/
|
|
struct memstat_kmemzone {
|
|
int kz_size;
|
|
const char *kz_name;
|
|
void *kz_zone[1];
|
|
};
|
|
|
|
static int
|
|
memstat_malloc_zone_init_kvm(kvm_t *kvm)
|
|
{
|
|
struct memstat_kmemzone *kmemzones, *kz;
|
|
int numzones, objsize, allocsize, ret;
|
|
int i;
|
|
|
|
ret = kread_symbol(kvm, X_VM_MALLOC_ZONE_COUNT,
|
|
&memstat_malloc_zone_count, sizeof(memstat_malloc_zone_count), 0);
|
|
if (ret != 0) {
|
|
return (ret);
|
|
}
|
|
|
|
ret = kread_symbol(kvm, X_NUMZONES, &numzones, sizeof(numzones), 0);
|
|
if (ret != 0) {
|
|
return (ret);
|
|
}
|
|
|
|
objsize = __offsetof(struct memstat_kmemzone, kz_zone) +
|
|
sizeof(void *) * numzones;
|
|
|
|
allocsize = objsize * memstat_malloc_zone_count;
|
|
kmemzones = malloc(allocsize);
|
|
if (kmemzones == NULL) {
|
|
return (MEMSTAT_ERROR_NOMEMORY);
|
|
}
|
|
ret = kread_symbol(kvm, X_KMEMZONES, kmemzones, allocsize, 0);
|
|
if (ret != 0) {
|
|
free(kmemzones);
|
|
return (ret);
|
|
}
|
|
|
|
kz = kmemzones;
|
|
for (i = 0; i < (int)nitems(memstat_malloc_zone_sizes); i++) {
|
|
memstat_malloc_zone_sizes[i] = kz->kz_size;
|
|
kz = (struct memstat_kmemzone *)((char *)kz + objsize);
|
|
}
|
|
|
|
free(kmemzones);
|
|
return (0);
|
|
}
|
|
|
|
size_t
|
|
memstat_malloc_zone_get_count(void)
|
|
{
|
|
|
|
return (memstat_malloc_zone_count);
|
|
}
|
|
|
|
size_t
|
|
memstat_malloc_zone_get_size(size_t n)
|
|
{
|
|
|
|
if (n >= nitems(memstat_malloc_zone_sizes)) {
|
|
return (-1);
|
|
}
|
|
|
|
return (memstat_malloc_zone_sizes[n]);
|
|
}
|
|
|
|
int
|
|
memstat_malloc_zone_used(const struct memory_type *mtp, size_t n)
|
|
{
|
|
|
|
if (memstat_get_sizemask(mtp) & (1 << n))
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|