mirror of https://github.com/F-Stack/f-stack.git
683 lines
22 KiB
C
683 lines
22 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
|
|
* Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*
|
|
*/
|
|
|
|
#include <sys/counter.h>
|
|
#include <sys/_bitset.h>
|
|
#include <sys/_domainset.h>
|
|
#include <sys/_task.h>
|
|
|
|
/*
|
|
* This file includes definitions, structures, prototypes, and inlines that
|
|
* should not be used outside of the actual implementation of UMA.
|
|
*/
|
|
|
|
/*
|
|
* The brief summary; Zones describe unique allocation types. Zones are
|
|
* organized into per-CPU caches which are filled by buckets. Buckets are
|
|
* organized according to memory domains. Buckets are filled from kegs which
|
|
* are also organized according to memory domains. Kegs describe a unique
|
|
* allocation type, backend memory provider, and layout. Kegs are associated
|
|
* with one or more zones and zones reference one or more kegs. Kegs provide
|
|
* slabs which are virtually contiguous collections of pages. Each slab is
|
|
* broken down int one or more items that will satisfy an individual allocation.
|
|
*
|
|
* Allocation is satisfied in the following order:
|
|
* 1) Per-CPU cache
|
|
* 2) Per-domain cache of buckets
|
|
* 3) Slab from any of N kegs
|
|
* 4) Backend page provider
|
|
*
|
|
* More detail on individual objects is contained below:
|
|
*
|
|
* Kegs contain lists of slabs which are stored in either the full bin, empty
|
|
* bin, or partially allocated bin, to reduce fragmentation. They also contain
|
|
* the user supplied value for size, which is adjusted for alignment purposes
|
|
* and rsize is the result of that. The Keg also stores information for
|
|
* managing a hash of page addresses that maps pages to uma_slab_t structures
|
|
* for pages that don't have embedded uma_slab_t's.
|
|
*
|
|
* Keg slab lists are organized by memory domain to support NUMA allocation
|
|
* policies. By default allocations are spread across domains to reduce the
|
|
* potential for hotspots. Special keg creation flags may be specified to
|
|
* prefer location allocation. However there is no strict enforcement as frees
|
|
* may happen on any CPU and these are returned to the CPU-local cache
|
|
* regardless of the originating domain.
|
|
*
|
|
* The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
|
|
* be allocated off the page from a special slab zone. The free list within a
|
|
* slab is managed with a bitmask. For item sizes that would yield more than
|
|
* 10% memory waste we potentially allocate a separate uma_slab_t if this will
|
|
* improve the number of items per slab that will fit.
|
|
*
|
|
* The only really gross cases, with regards to memory waste, are for those
|
|
* items that are just over half the page size. You can get nearly 50% waste,
|
|
* so you fall back to the memory footprint of the power of two allocator. I
|
|
* have looked at memory allocation sizes on many of the machines available to
|
|
* me, and there does not seem to be an abundance of allocations at this range
|
|
* so at this time it may not make sense to optimize for it. This can, of
|
|
* course, be solved with dynamic slab sizes.
|
|
*
|
|
* Kegs may serve multiple Zones but by far most of the time they only serve
|
|
* one. When a Zone is created, a Keg is allocated and setup for it. While
|
|
* the backing Keg stores slabs, the Zone caches Buckets of items allocated
|
|
* from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
|
|
* pair, as well as with its own set of small per-CPU caches, layered above
|
|
* the Zone's general Bucket cache.
|
|
*
|
|
* The PCPU caches are protected by critical sections, and may be accessed
|
|
* safely only from their associated CPU, while the Zones backed by the same
|
|
* Keg all share a common Keg lock (to coalesce contention on the backing
|
|
* slabs). The backing Keg typically only serves one Zone but in the case of
|
|
* multiple Zones, one of the Zones is considered the Primary Zone and all
|
|
* Zone-related stats from the Keg are done in the Primary Zone. For an
|
|
* example of a Multi-Zone setup, refer to the Mbuf allocation code.
|
|
*/
|
|
|
|
/*
|
|
* This is the representation for normal (Non OFFPAGE slab)
|
|
*
|
|
* i == item
|
|
* s == slab pointer
|
|
*
|
|
* <---------------- Page (UMA_SLAB_SIZE) ------------------>
|
|
* ___________________________________________________________
|
|
* | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
|
|
* ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
|
|
* ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
|
|
* |___________________________________________________________|
|
|
*
|
|
*
|
|
* This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
|
|
*
|
|
* ___________________________________________________________
|
|
* | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
|
|
* ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
|
|
* ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
|
|
* |___________________________________________________________|
|
|
* ___________ ^
|
|
* |slab header| |
|
|
* |___________|---*
|
|
*
|
|
*/
|
|
|
|
#ifndef VM_UMA_INT_H
|
|
#define VM_UMA_INT_H
|
|
|
|
#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
|
|
#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
|
|
#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
|
|
|
|
/* Max waste percentage before going to off page slab management */
|
|
#define UMA_MAX_WASTE 10
|
|
|
|
/* Max size of a CACHESPREAD slab. */
|
|
#define UMA_CACHESPREAD_MAX_SIZE (128 * 1024)
|
|
|
|
/*
|
|
* These flags must not overlap with the UMA_ZONE flags specified in uma.h.
|
|
*/
|
|
#define UMA_ZFLAG_OFFPAGE 0x00200000 /*
|
|
* Force the slab structure
|
|
* allocation off of the real
|
|
* memory.
|
|
*/
|
|
#define UMA_ZFLAG_HASH 0x00400000 /*
|
|
* Use a hash table instead of
|
|
* caching information in the
|
|
* vm_page.
|
|
*/
|
|
#define UMA_ZFLAG_VTOSLAB 0x00800000 /*
|
|
* Zone uses vtoslab for
|
|
* lookup.
|
|
*/
|
|
#define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */
|
|
#define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */
|
|
#define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */
|
|
#define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */
|
|
#define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */
|
|
#define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
|
|
#define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */
|
|
|
|
#define UMA_ZFLAG_INHERIT \
|
|
(UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \
|
|
UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL)
|
|
|
|
#define PRINT_UMA_ZFLAGS "\20" \
|
|
"\37TRASH" \
|
|
"\36INTERNAL" \
|
|
"\35BUCKET" \
|
|
"\34RECLAIMING" \
|
|
"\33CACHE" \
|
|
"\32LIMIT" \
|
|
"\31CTORDTOR" \
|
|
"\30VTOSLAB" \
|
|
"\27HASH" \
|
|
"\26OFFPAGE" \
|
|
"\23SMR" \
|
|
"\22ROUNDROBIN" \
|
|
"\21FIRSTTOUCH" \
|
|
"\20PCPU" \
|
|
"\17NODUMP" \
|
|
"\16CACHESPREAD" \
|
|
"\14MAXBUCKET" \
|
|
"\13NOBUCKET" \
|
|
"\12SECONDARY" \
|
|
"\11NOTPAGE" \
|
|
"\10VM" \
|
|
"\7MTXCLASS" \
|
|
"\6NOFREE" \
|
|
"\5MALLOC" \
|
|
"\4NOTOUCH" \
|
|
"\3CONTIG" \
|
|
"\2ZINIT"
|
|
|
|
/*
|
|
* Hash table for freed address -> slab translation.
|
|
*
|
|
* Only zones with memory not touchable by the allocator use the
|
|
* hash table. Otherwise slabs are found with vtoslab().
|
|
*/
|
|
#define UMA_HASH_SIZE_INIT 32
|
|
|
|
#define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
|
|
|
|
#define UMA_HASH_INSERT(h, s, mem) \
|
|
LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
|
|
(mem))], slab_tohashslab(s), uhs_hlink)
|
|
|
|
#define UMA_HASH_REMOVE(h, s) \
|
|
LIST_REMOVE(slab_tohashslab(s), uhs_hlink)
|
|
|
|
LIST_HEAD(slabhashhead, uma_hash_slab);
|
|
|
|
struct uma_hash {
|
|
struct slabhashhead *uh_slab_hash; /* Hash table for slabs */
|
|
u_int uh_hashsize; /* Current size of the hash table */
|
|
u_int uh_hashmask; /* Mask used during hashing */
|
|
};
|
|
|
|
/*
|
|
* Align field or structure to cache 'sector' in intel terminology. This
|
|
* is more efficient with adjacent line prefetch.
|
|
*/
|
|
#if defined(__amd64__) || defined(__powerpc64__)
|
|
#define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2)
|
|
#else
|
|
#define UMA_SUPER_ALIGN CACHE_LINE_SIZE
|
|
#endif
|
|
|
|
#define UMA_ALIGN __aligned(UMA_SUPER_ALIGN)
|
|
|
|
/*
|
|
* The uma_bucket structure is used to queue and manage buckets divorced
|
|
* from per-cpu caches. They are loaded into uma_cache_bucket structures
|
|
* for use.
|
|
*/
|
|
struct uma_bucket {
|
|
STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */
|
|
int16_t ub_cnt; /* Count of items in bucket. */
|
|
int16_t ub_entries; /* Max items. */
|
|
smr_seq_t ub_seq; /* SMR sequence number. */
|
|
void *ub_bucket[]; /* actual allocation storage */
|
|
};
|
|
|
|
typedef struct uma_bucket * uma_bucket_t;
|
|
|
|
/*
|
|
* The uma_cache_bucket structure is statically allocated on each per-cpu
|
|
* cache. Its use reduces branches and cache misses in the fast path.
|
|
*/
|
|
struct uma_cache_bucket {
|
|
uma_bucket_t ucb_bucket;
|
|
int16_t ucb_cnt;
|
|
int16_t ucb_entries;
|
|
uint32_t ucb_spare;
|
|
};
|
|
|
|
typedef struct uma_cache_bucket * uma_cache_bucket_t;
|
|
|
|
/*
|
|
* The uma_cache structure is allocated for each cpu for every zone
|
|
* type. This optimizes synchronization out of the allocator fast path.
|
|
*/
|
|
struct uma_cache {
|
|
struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */
|
|
struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */
|
|
struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */
|
|
uint64_t uc_allocs; /* Count of allocations */
|
|
uint64_t uc_frees; /* Count of frees */
|
|
} UMA_ALIGN;
|
|
|
|
typedef struct uma_cache * uma_cache_t;
|
|
|
|
LIST_HEAD(slabhead, uma_slab);
|
|
|
|
/*
|
|
* The cache structure pads perfectly into 64 bytes so we use spare
|
|
* bits from the embedded cache buckets to store information from the zone
|
|
* and keep all fast-path allocations accessing a single per-cpu line.
|
|
*/
|
|
static inline void
|
|
cache_set_uz_flags(uma_cache_t cache, uint32_t flags)
|
|
{
|
|
|
|
cache->uc_freebucket.ucb_spare = flags;
|
|
}
|
|
|
|
static inline void
|
|
cache_set_uz_size(uma_cache_t cache, uint32_t size)
|
|
{
|
|
|
|
cache->uc_allocbucket.ucb_spare = size;
|
|
}
|
|
|
|
static inline uint32_t
|
|
cache_uz_flags(uma_cache_t cache)
|
|
{
|
|
|
|
return (cache->uc_freebucket.ucb_spare);
|
|
}
|
|
|
|
static inline uint32_t
|
|
cache_uz_size(uma_cache_t cache)
|
|
{
|
|
|
|
return (cache->uc_allocbucket.ucb_spare);
|
|
}
|
|
|
|
/*
|
|
* Per-domain slab lists. Embedded in the kegs.
|
|
*/
|
|
struct uma_domain {
|
|
struct mtx_padalign ud_lock; /* Lock for the domain lists. */
|
|
struct slabhead ud_part_slab; /* partially allocated slabs */
|
|
struct slabhead ud_free_slab; /* completely unallocated slabs */
|
|
struct slabhead ud_full_slab; /* fully allocated slabs */
|
|
uint32_t ud_pages; /* Total page count */
|
|
uint32_t ud_free_items; /* Count of items free in all slabs */
|
|
uint32_t ud_free_slabs; /* Count of free slabs */
|
|
} __aligned(CACHE_LINE_SIZE);
|
|
|
|
typedef struct uma_domain * uma_domain_t;
|
|
|
|
/*
|
|
* Keg management structure
|
|
*
|
|
* TODO: Optimize for cache line size
|
|
*
|
|
*/
|
|
struct uma_keg {
|
|
struct uma_hash uk_hash;
|
|
LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
|
|
|
|
struct domainset_ref uk_dr; /* Domain selection policy. */
|
|
uint32_t uk_align; /* Alignment mask */
|
|
uint32_t uk_reserve; /* Number of reserved items. */
|
|
uint32_t uk_size; /* Requested size of each item */
|
|
uint32_t uk_rsize; /* Real size of each item */
|
|
|
|
uma_init uk_init; /* Keg's init routine */
|
|
uma_fini uk_fini; /* Keg's fini routine */
|
|
uma_alloc uk_allocf; /* Allocation function */
|
|
uma_free uk_freef; /* Free routine */
|
|
|
|
u_long uk_offset; /* Next free offset from base KVA */
|
|
vm_offset_t uk_kva; /* Zone base KVA */
|
|
|
|
uint32_t uk_pgoff; /* Offset to uma_slab struct */
|
|
uint16_t uk_ppera; /* pages per allocation from backend */
|
|
uint16_t uk_ipers; /* Items per slab */
|
|
uint32_t uk_flags; /* Internal flags */
|
|
|
|
/* Least used fields go to the last cache line. */
|
|
const char *uk_name; /* Name of creating zone. */
|
|
LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
|
|
|
|
/* Must be last, variable sized. */
|
|
struct uma_domain uk_domain[]; /* Keg's slab lists. */
|
|
};
|
|
typedef struct uma_keg * uma_keg_t;
|
|
|
|
/*
|
|
* Free bits per-slab.
|
|
*/
|
|
#define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
|
|
#define SLAB_MIN_SETSIZE _BITSET_BITS
|
|
BITSET_DEFINE(noslabbits, 0);
|
|
|
|
/*
|
|
* The slab structure manages a single contiguous allocation from backing
|
|
* store and subdivides it into individually allocatable items.
|
|
*/
|
|
struct uma_slab {
|
|
LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
|
|
uint16_t us_freecount; /* How many are free? */
|
|
uint8_t us_flags; /* Page flags see uma.h */
|
|
uint8_t us_domain; /* Backing NUMA domain. */
|
|
struct noslabbits us_free; /* Free bitmask, flexible. */
|
|
};
|
|
_Static_assert(sizeof(struct uma_slab) == __offsetof(struct uma_slab, us_free),
|
|
"us_free field must be last");
|
|
_Static_assert(MAXMEMDOM < 255,
|
|
"us_domain field is not wide enough");
|
|
|
|
typedef struct uma_slab * uma_slab_t;
|
|
|
|
/*
|
|
* Slab structure with a full sized bitset and hash link for both
|
|
* HASH and OFFPAGE zones.
|
|
*/
|
|
struct uma_hash_slab {
|
|
LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */
|
|
uint8_t *uhs_data; /* First item */
|
|
struct uma_slab uhs_slab; /* Must be last. */
|
|
};
|
|
|
|
typedef struct uma_hash_slab * uma_hash_slab_t;
|
|
|
|
static inline uma_hash_slab_t
|
|
slab_tohashslab(uma_slab_t slab)
|
|
{
|
|
|
|
return (__containerof(slab, struct uma_hash_slab, uhs_slab));
|
|
}
|
|
|
|
static inline void *
|
|
slab_data(uma_slab_t slab, uma_keg_t keg)
|
|
{
|
|
|
|
if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0)
|
|
return ((void *)((uintptr_t)slab - keg->uk_pgoff));
|
|
else
|
|
return (slab_tohashslab(slab)->uhs_data);
|
|
}
|
|
|
|
static inline void *
|
|
slab_item(uma_slab_t slab, uma_keg_t keg, int index)
|
|
{
|
|
uintptr_t data;
|
|
|
|
data = (uintptr_t)slab_data(slab, keg);
|
|
return ((void *)(data + keg->uk_rsize * index));
|
|
}
|
|
|
|
static inline int
|
|
slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
|
|
{
|
|
uintptr_t data;
|
|
|
|
data = (uintptr_t)slab_data(slab, keg);
|
|
return (((uintptr_t)item - data) / keg->uk_rsize);
|
|
}
|
|
|
|
STAILQ_HEAD(uma_bucketlist, uma_bucket);
|
|
|
|
struct uma_zone_domain {
|
|
struct uma_bucketlist uzd_buckets; /* full buckets */
|
|
uma_bucket_t uzd_cross; /* Fills from cross buckets. */
|
|
long uzd_nitems; /* total item count */
|
|
long uzd_imax; /* maximum item count this period */
|
|
long uzd_imin; /* minimum item count this period */
|
|
long uzd_wss; /* working set size estimate */
|
|
smr_seq_t uzd_seq; /* Lowest queued seq. */
|
|
struct mtx uzd_lock; /* Lock for the domain */
|
|
} __aligned(CACHE_LINE_SIZE);
|
|
|
|
typedef struct uma_zone_domain * uma_zone_domain_t;
|
|
|
|
/*
|
|
* Zone structure - per memory type.
|
|
*/
|
|
struct uma_zone {
|
|
/* Offset 0, used in alloc/free fast/medium fast path and const. */
|
|
uint32_t uz_flags; /* Flags inherited from kegs */
|
|
uint32_t uz_size; /* Size inherited from kegs */
|
|
uma_ctor uz_ctor; /* Constructor for each allocation */
|
|
uma_dtor uz_dtor; /* Destructor */
|
|
smr_t uz_smr; /* Safe memory reclaim context. */
|
|
uint64_t uz_max_items; /* Maximum number of items to alloc */
|
|
uint64_t uz_bucket_max; /* Maximum bucket cache size */
|
|
uint16_t uz_bucket_size; /* Number of items in full bucket */
|
|
uint16_t uz_bucket_size_max; /* Maximum number of bucket items */
|
|
uint32_t uz_sleepers; /* Threads sleeping on limit */
|
|
counter_u64_t uz_xdomain; /* Total number of cross-domain frees */
|
|
|
|
/* Offset 64, used in bucket replenish. */
|
|
uma_keg_t uz_keg; /* This zone's keg if !CACHE */
|
|
uma_import uz_import; /* Import new memory to cache. */
|
|
uma_release uz_release; /* Release memory from cache. */
|
|
void *uz_arg; /* Import/release argument. */
|
|
uma_init uz_init; /* Initializer for each item */
|
|
uma_fini uz_fini; /* Finalizer for each item. */
|
|
volatile uint64_t uz_items; /* Total items count & sleepers */
|
|
uint64_t uz_sleeps; /* Total number of alloc sleeps */
|
|
|
|
/* Offset 128 Rare stats, misc read-only. */
|
|
LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
|
|
counter_u64_t uz_allocs; /* Total number of allocations */
|
|
counter_u64_t uz_frees; /* Total number of frees */
|
|
counter_u64_t uz_fails; /* Total number of alloc failures */
|
|
const char *uz_name; /* Text name of the zone */
|
|
char *uz_ctlname; /* sysctl safe name string. */
|
|
int uz_namecnt; /* duplicate name count. */
|
|
uint16_t uz_bucket_size_min; /* Min number of items in bucket */
|
|
uint16_t uz_pad0;
|
|
|
|
/* Offset 192, rare read-only. */
|
|
struct sysctl_oid *uz_oid; /* sysctl oid pointer. */
|
|
const char *uz_warning; /* Warning to print on failure */
|
|
struct timeval uz_ratecheck; /* Warnings rate-limiting */
|
|
struct task uz_maxaction; /* Task to run when at limit */
|
|
|
|
/* Offset 256. */
|
|
struct mtx uz_cross_lock; /* Cross domain free lock */
|
|
|
|
/*
|
|
* This HAS to be the last item because we adjust the zone size
|
|
* based on NCPU and then allocate the space for the zones.
|
|
*/
|
|
struct uma_cache uz_cpu[]; /* Per cpu caches */
|
|
|
|
/* domains follow here. */
|
|
};
|
|
|
|
/*
|
|
* Macros for interpreting the uz_items field. 20 bits of sleeper count
|
|
* and 44 bit of item count.
|
|
*/
|
|
#define UZ_ITEMS_SLEEPER_SHIFT 44LL
|
|
#define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1)
|
|
#define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1)
|
|
#define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK)
|
|
#define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT)
|
|
#define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT)
|
|
|
|
#define ZONE_ASSERT_COLD(z) \
|
|
KASSERT(uma_zone_get_allocs((z)) == 0, \
|
|
("zone %s initialization after use.", (z)->uz_name))
|
|
|
|
/* Domains are contiguous after the last CPU */
|
|
#define ZDOM_GET(z, n) \
|
|
(&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n])
|
|
|
|
#undef UMA_ALIGN
|
|
|
|
#ifdef _KERNEL
|
|
/* Internal prototypes */
|
|
static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
|
|
|
|
/* Lock Macros */
|
|
|
|
#define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock
|
|
#define KEG_LOCK_INIT(k, d, lc) \
|
|
do { \
|
|
if ((lc)) \
|
|
mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
|
|
(k)->uk_name, MTX_DEF | MTX_DUPOK); \
|
|
else \
|
|
mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
|
|
"UMA zone", MTX_DEF | MTX_DUPOK); \
|
|
} while (0)
|
|
|
|
#define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d))
|
|
#define KEG_LOCK(k, d) \
|
|
({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); })
|
|
#define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d))
|
|
#define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED)
|
|
|
|
#define KEG_GET(zone, keg) do { \
|
|
(keg) = (zone)->uz_keg; \
|
|
KASSERT((void *)(keg) != NULL, \
|
|
("%s: Invalid zone %p type", __func__, (zone))); \
|
|
} while (0)
|
|
|
|
#define KEG_ASSERT_COLD(k) \
|
|
KASSERT(uma_keg_get_allocs((k)) == 0, \
|
|
("keg %s initialization after use.", (k)->uk_name))
|
|
|
|
#define ZDOM_LOCK_INIT(z, zdom, lc) \
|
|
do { \
|
|
if ((lc)) \
|
|
mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
|
|
(z)->uz_name, MTX_DEF | MTX_DUPOK); \
|
|
else \
|
|
mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
|
|
"UMA zone", MTX_DEF | MTX_DUPOK); \
|
|
} while (0)
|
|
#define ZDOM_LOCK_FINI(z) mtx_destroy(&(z)->uzd_lock)
|
|
#define ZDOM_LOCK_ASSERT(z) mtx_assert(&(z)->uzd_lock, MA_OWNED)
|
|
|
|
#define ZDOM_LOCK(z) mtx_lock(&(z)->uzd_lock)
|
|
#define ZDOM_OWNED(z) (mtx_owner(&(z)->uzd_lock) != NULL)
|
|
#define ZDOM_UNLOCK(z) mtx_unlock(&(z)->uzd_lock)
|
|
|
|
#define ZONE_LOCK(z) ZDOM_LOCK(ZDOM_GET((z), 0))
|
|
#define ZONE_UNLOCK(z) ZDOM_UNLOCK(ZDOM_GET((z), 0))
|
|
|
|
#define ZONE_CROSS_LOCK_INIT(z) \
|
|
mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF)
|
|
#define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock)
|
|
#define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock)
|
|
#define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock)
|
|
|
|
/*
|
|
* Find a slab within a hash table. This is used for OFFPAGE zones to lookup
|
|
* the slab structure.
|
|
*
|
|
* Arguments:
|
|
* hash The hash table to search.
|
|
* data The base page of the item.
|
|
*
|
|
* Returns:
|
|
* A pointer to a slab if successful, else NULL.
|
|
*/
|
|
static __inline uma_slab_t
|
|
hash_sfind(struct uma_hash *hash, uint8_t *data)
|
|
{
|
|
uma_hash_slab_t slab;
|
|
u_int hval;
|
|
|
|
hval = UMA_HASH(hash, data);
|
|
|
|
LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
|
|
if ((uint8_t *)slab->uhs_data == data)
|
|
return (&slab->uhs_slab);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
#ifndef FSTACK
|
|
static __inline uma_slab_t
|
|
vtoslab(vm_offset_t va)
|
|
{
|
|
vm_page_t p;
|
|
|
|
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
|
|
return (p->plinks.uma.slab);
|
|
}
|
|
|
|
static __inline void
|
|
vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
|
|
{
|
|
vm_page_t p;
|
|
|
|
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
|
|
*slab = p->plinks.uma.slab;
|
|
*zone = p->plinks.uma.zone;
|
|
}
|
|
|
|
static __inline void
|
|
vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
|
|
{
|
|
vm_page_t p;
|
|
|
|
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
|
|
p->plinks.uma.slab = slab;
|
|
p->plinks.uma.zone = zone;
|
|
}
|
|
#endif
|
|
|
|
extern unsigned long uma_kmem_limit;
|
|
extern unsigned long uma_kmem_total;
|
|
|
|
/* Adjust bytes under management by UMA. */
|
|
static inline void
|
|
uma_total_dec(unsigned long size)
|
|
{
|
|
|
|
atomic_subtract_long(&uma_kmem_total, size);
|
|
}
|
|
|
|
static inline void
|
|
uma_total_inc(unsigned long size)
|
|
{
|
|
|
|
if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
|
|
uma_reclaim_wakeup();
|
|
}
|
|
|
|
/*
|
|
* The following two functions may be defined by architecture specific code
|
|
* if they can provide more efficient allocation functions. This is useful
|
|
* for using direct mapped addresses.
|
|
*/
|
|
void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
|
|
uint8_t *pflag, int wait);
|
|
void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
|
|
|
|
/* Set a global soft limit on UMA managed memory. */
|
|
void uma_set_limit(unsigned long limit);
|
|
|
|
#endif /* _KERNEL */
|
|
|
|
#endif /* VM_UMA_INT_H */
|