f-stack/freebsd/sys/tree.h

834 lines
28 KiB
C

/* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */
/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
/* $FreeBSD$ */
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SYS_TREE_H_
#define _SYS_TREE_H_
#include <sys/cdefs.h>
/*
* This file defines data structures for different types of trees:
* splay trees and rank-balanced trees.
*
* A splay tree is a self-organizing data structure. Every operation
* on the tree causes a splay to happen. The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree. On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n). The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A rank-balanced tree is a binary search tree with an integer
* rank-difference as an attribute of each pointer from parent to child.
* The sum of the rank-differences on any path from a node down to null is
* the same, and defines the rank of that node. The rank of the null node
* is -1.
*
* Different additional conditions define different sorts of balanced
* trees, including "red-black" and "AVL" trees. The set of conditions
* applied here are the "weak-AVL" conditions of Haeupler, Sen and Tarjan:
* - every rank-difference is 1 or 2.
* - the rank of any leaf is 1.
*
* For historical reasons, rank differences that are even are associated
* with the color red (Rank-Even-Difference), and the child that a red edge
* points to is called a red child.
*
* Every operation on a rank-balanced tree is bounded as O(lg n).
* The maximum height of a rank-balanced tree is 2lg (n+1).
*/
#define SPLAY_HEAD(name, type) \
struct name { \
struct type *sph_root; /* root of the tree */ \
}
#define SPLAY_INITIALIZER(root) \
{ NULL }
#define SPLAY_INIT(root) do { \
(root)->sph_root = NULL; \
} while (/*CONSTCOND*/ 0)
#define SPLAY_ENTRY(type) \
struct { \
struct type *spe_left; /* left element */ \
struct type *spe_right; /* right element */ \
}
#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
#define SPLAY_ROOT(head) (head)->sph_root
#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (/*CONSTCOND*/ 0)
#define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (/*CONSTCOND*/ 0)
#define SPLAY_LINKLEFT(head, tmp, field) do { \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
} while (/*CONSTCOND*/ 0)
#define SPLAY_LINKRIGHT(head, tmp, field) do { \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
} while (/*CONSTCOND*/ 0)
#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
} while (/*CONSTCOND*/ 0)
/* Generates prototypes and inline functions */
#define SPLAY_PROTOTYPE(name, type, field, cmp) \
void name##_SPLAY(struct name *, struct type *); \
void name##_SPLAY_MINMAX(struct name *, int); \
struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
\
/* Finds the node with the same key as elm */ \
static __unused __inline struct type * \
name##_SPLAY_FIND(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) \
return(NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) \
return (head->sph_root); \
return (NULL); \
} \
\
static __unused __inline struct type * \
name##_SPLAY_NEXT(struct name *head, struct type *elm) \
{ \
name##_SPLAY(head, elm); \
if (SPLAY_RIGHT(elm, field) != NULL) { \
elm = SPLAY_RIGHT(elm, field); \
while (SPLAY_LEFT(elm, field) != NULL) { \
elm = SPLAY_LEFT(elm, field); \
} \
} else \
elm = NULL; \
return (elm); \
} \
\
static __unused __inline struct type * \
name##_SPLAY_MIN_MAX(struct name *head, int val) \
{ \
name##_SPLAY_MINMAX(head, val); \
return (SPLAY_ROOT(head)); \
}
/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define SPLAY_GENERATE(name, type, field, cmp) \
struct type * \
name##_SPLAY_INSERT(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) { \
SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
} else { \
int __comp; \
name##_SPLAY(head, elm); \
__comp = (cmp)(elm, (head)->sph_root); \
if(__comp < 0) { \
SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
SPLAY_RIGHT(elm, field) = (head)->sph_root; \
SPLAY_LEFT((head)->sph_root, field) = NULL; \
} else if (__comp > 0) { \
SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT(elm, field) = (head)->sph_root; \
SPLAY_RIGHT((head)->sph_root, field) = NULL; \
} else \
return ((head)->sph_root); \
} \
(head)->sph_root = (elm); \
return (NULL); \
} \
\
struct type * \
name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *__tmp; \
if (SPLAY_EMPTY(head)) \
return (NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) { \
if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
} else { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
name##_SPLAY(head, elm); \
SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
} \
return (elm); \
} \
return (NULL); \
} \
\
void \
name##_SPLAY(struct name *head, struct type *elm) \
{ \
struct type __node, *__left, *__right, *__tmp; \
int __comp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) > 0){ \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
} \
\
/* Splay with either the minimum or the maximum element \
* Used to find minimum or maximum element in tree. \
*/ \
void name##_SPLAY_MINMAX(struct name *head, int __comp) \
{ \
struct type __node, *__left, *__right, *__tmp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while (1) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp > 0) { \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
}
#define SPLAY_NEGINF -1
#define SPLAY_INF 1
#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
#define SPLAY_FOREACH(x, name, head) \
for ((x) = SPLAY_MIN(name, head); \
(x) != NULL; \
(x) = SPLAY_NEXT(name, head, x))
/* Macros that define a rank-balanced tree */
#define RB_HEAD(name, type) \
struct name { \
struct type *rbh_root; /* root of the tree */ \
}
#define RB_INITIALIZER(root) \
{ NULL }
#define RB_INIT(root) do { \
(root)->rbh_root = NULL; \
} while (/*CONSTCOND*/ 0)
#define RB_ENTRY(type) \
struct { \
struct type *rbe_left; /* left element */ \
struct type *rbe_right; /* right element */ \
struct type *rbe_parent; /* parent element */ \
}
#define RB_LEFT(elm, field) (elm)->field.rbe_left
#define RB_RIGHT(elm, field) (elm)->field.rbe_right
/*
* With the expectation that any object of struct type has an
* address that is a multiple of 4, and that therefore the
* 2 least significant bits of a pointer to struct type are
* always zero, this implementation sets those bits to indicate
* that the left or right child of the tree node is "red".
*/
#define RB_UP(elm, field) (elm)->field.rbe_parent
#define RB_BITS(elm, field) (*(__uintptr_t *)&RB_UP(elm, field))
#define RB_RED_L ((__uintptr_t)1)
#define RB_RED_R ((__uintptr_t)2)
#define RB_RED_MASK ((__uintptr_t)3)
#define RB_FLIP_LEFT(elm, field) (RB_BITS(elm, field) ^= RB_RED_L)
#define RB_FLIP_RIGHT(elm, field) (RB_BITS(elm, field) ^= RB_RED_R)
#define RB_RED_LEFT(elm, field) ((RB_BITS(elm, field) & RB_RED_L) != 0)
#define RB_RED_RIGHT(elm, field) ((RB_BITS(elm, field) & RB_RED_R) != 0)
#define RB_PARENT(elm, field) ((__typeof(RB_UP(elm, field))) \
(RB_BITS(elm, field) & ~RB_RED_MASK))
#define RB_ROOT(head) (head)->rbh_root
#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
#define RB_SET_PARENT(dst, src, field) do { \
RB_BITS(dst, field) &= RB_RED_MASK; \
RB_BITS(dst, field) |= (__uintptr_t)src; \
} while (/*CONSTCOND*/ 0)
#define RB_SET(elm, parent, field) do { \
RB_UP(elm, field) = parent; \
RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
} while (/*CONSTCOND*/ 0)
#define RB_COLOR(elm, field) (RB_PARENT(elm, field) == NULL ? 0 : \
RB_LEFT(RB_PARENT(elm, field), field) == elm ? \
RB_RED_LEFT(RB_PARENT(elm, field), field) : \
RB_RED_RIGHT(RB_PARENT(elm, field), field))
/*
* Something to be invoked in a loop at the root of every modified subtree,
* from the bottom up to the root, to update augmented node data.
*/
#ifndef RB_AUGMENT
#define RB_AUGMENT(x) break
#endif
#define RB_SWAP_CHILD(head, out, in, field) do { \
if (RB_PARENT(out, field) == NULL) \
RB_ROOT(head) = (in); \
else if ((out) == RB_LEFT(RB_PARENT(out, field), field)) \
RB_LEFT(RB_PARENT(out, field), field) = (in); \
else \
RB_RIGHT(RB_PARENT(out, field), field) = (in); \
} while (/*CONSTCOND*/ 0)
#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
(tmp) = RB_RIGHT(elm, field); \
if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \
RB_SET_PARENT(RB_RIGHT(elm, field), elm, field); \
} \
RB_SET_PARENT(tmp, RB_PARENT(elm, field), field); \
RB_SWAP_CHILD(head, elm, tmp, field); \
RB_LEFT(tmp, field) = (elm); \
RB_SET_PARENT(elm, tmp, field); \
RB_AUGMENT(elm); \
} while (/*CONSTCOND*/ 0)
#define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
(tmp) = RB_LEFT(elm, field); \
if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \
RB_SET_PARENT(RB_LEFT(elm, field), elm, field); \
} \
RB_SET_PARENT(tmp, RB_PARENT(elm, field), field); \
RB_SWAP_CHILD(head, elm, tmp, field); \
RB_RIGHT(tmp, field) = (elm); \
RB_SET_PARENT(elm, tmp, field); \
RB_AUGMENT(elm); \
} while (/*CONSTCOND*/ 0)
/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, type, field, cmp) \
RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
#define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
RB_PROTOTYPE_INSERT_COLOR(name, type, attr); \
RB_PROTOTYPE_REMOVE_COLOR(name, type, attr); \
RB_PROTOTYPE_INSERT(name, type, attr); \
RB_PROTOTYPE_REMOVE(name, type, attr); \
RB_PROTOTYPE_FIND(name, type, attr); \
RB_PROTOTYPE_NFIND(name, type, attr); \
RB_PROTOTYPE_NEXT(name, type, attr); \
RB_PROTOTYPE_PREV(name, type, attr); \
RB_PROTOTYPE_MINMAX(name, type, attr); \
RB_PROTOTYPE_REINSERT(name, type, attr);
#define RB_PROTOTYPE_INSERT_COLOR(name, type, attr) \
attr void name##_RB_INSERT_COLOR(struct name *, struct type *)
#define RB_PROTOTYPE_REMOVE_COLOR(name, type, attr) \
attr void name##_RB_REMOVE_COLOR(struct name *, \
struct type *, struct type *)
#define RB_PROTOTYPE_REMOVE(name, type, attr) \
attr struct type *name##_RB_REMOVE(struct name *, struct type *)
#define RB_PROTOTYPE_INSERT(name, type, attr) \
attr struct type *name##_RB_INSERT(struct name *, struct type *)
#define RB_PROTOTYPE_FIND(name, type, attr) \
attr struct type *name##_RB_FIND(struct name *, struct type *)
#define RB_PROTOTYPE_NFIND(name, type, attr) \
attr struct type *name##_RB_NFIND(struct name *, struct type *)
#define RB_PROTOTYPE_NEXT(name, type, attr) \
attr struct type *name##_RB_NEXT(struct type *)
#define RB_PROTOTYPE_PREV(name, type, attr) \
attr struct type *name##_RB_PREV(struct type *)
#define RB_PROTOTYPE_MINMAX(name, type, attr) \
attr struct type *name##_RB_MINMAX(struct name *, int)
#define RB_PROTOTYPE_REINSERT(name, type, attr) \
attr struct type *name##_RB_REINSERT(struct name *, struct type *)
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE(name, type, field, cmp) \
RB_GENERATE_INTERNAL(name, type, field, cmp,)
#define RB_GENERATE_STATIC(name, type, field, cmp) \
RB_GENERATE_INTERNAL(name, type, field, cmp, __unused static)
#define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \
RB_GENERATE_INSERT_COLOR(name, type, field, attr) \
RB_GENERATE_REMOVE_COLOR(name, type, field, attr) \
RB_GENERATE_INSERT(name, type, field, cmp, attr) \
RB_GENERATE_REMOVE(name, type, field, attr) \
RB_GENERATE_FIND(name, type, field, cmp, attr) \
RB_GENERATE_NFIND(name, type, field, cmp, attr) \
RB_GENERATE_NEXT(name, type, field, attr) \
RB_GENERATE_PREV(name, type, field, attr) \
RB_GENERATE_MINMAX(name, type, field, attr) \
RB_GENERATE_REINSERT(name, type, field, cmp, attr)
#define RB_GENERATE_INSERT_COLOR(name, type, field, attr) \
attr void \
name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
{ \
struct type *child, *parent; \
while ((parent = RB_PARENT(elm, field)) != NULL) { \
if (RB_LEFT(parent, field) == elm) { \
if (RB_RED_LEFT(parent, field)) { \
RB_FLIP_LEFT(parent, field); \
return; \
} \
RB_FLIP_RIGHT(parent, field); \
if (RB_RED_RIGHT(parent, field)) { \
elm = parent; \
continue; \
} \
if (!RB_RED_RIGHT(elm, field)) { \
RB_FLIP_LEFT(elm, field); \
RB_ROTATE_LEFT(head, elm, child, field);\
if (RB_RED_LEFT(child, field)) \
RB_FLIP_RIGHT(elm, field); \
else if (RB_RED_RIGHT(child, field)) \
RB_FLIP_LEFT(parent, field); \
elm = child; \
} \
RB_ROTATE_RIGHT(head, parent, elm, field); \
} else { \
if (RB_RED_RIGHT(parent, field)) { \
RB_FLIP_RIGHT(parent, field); \
return; \
} \
RB_FLIP_LEFT(parent, field); \
if (RB_RED_LEFT(parent, field)) { \
elm = parent; \
continue; \
} \
if (!RB_RED_LEFT(elm, field)) { \
RB_FLIP_RIGHT(elm, field); \
RB_ROTATE_RIGHT(head, elm, child, field);\
if (RB_RED_RIGHT(child, field)) \
RB_FLIP_LEFT(elm, field); \
else if (RB_RED_LEFT(child, field)) \
RB_FLIP_RIGHT(parent, field); \
elm = child; \
} \
RB_ROTATE_LEFT(head, parent, elm, field); \
} \
RB_BITS(elm, field) &= ~RB_RED_MASK; \
break; \
} \
}
#define RB_GENERATE_REMOVE_COLOR(name, type, field, attr) \
attr void \
name##_RB_REMOVE_COLOR(struct name *head, \
struct type *parent, struct type *elm) \
{ \
struct type *sib; \
if (RB_LEFT(parent, field) == elm && \
RB_RIGHT(parent, field) == elm) { \
RB_BITS(parent, field) &= ~RB_RED_MASK; \
elm = parent; \
parent = RB_PARENT(elm, field); \
if (parent == NULL) \
return; \
} \
do { \
if (RB_LEFT(parent, field) == elm) { \
if (!RB_RED_LEFT(parent, field)) { \
RB_FLIP_LEFT(parent, field); \
return; \
} \
if (RB_RED_RIGHT(parent, field)) { \
RB_FLIP_RIGHT(parent, field); \
elm = parent; \
continue; \
} \
sib = RB_RIGHT(parent, field); \
if ((~RB_BITS(sib, field) & RB_RED_MASK) == 0) {\
RB_BITS(sib, field) &= ~RB_RED_MASK; \
elm = parent; \
continue; \
} \
RB_FLIP_RIGHT(sib, field); \
if (RB_RED_LEFT(sib, field)) \
RB_FLIP_LEFT(parent, field); \
else if (!RB_RED_RIGHT(sib, field)) { \
RB_FLIP_LEFT(parent, field); \
RB_ROTATE_RIGHT(head, sib, elm, field); \
if (RB_RED_RIGHT(elm, field)) \
RB_FLIP_LEFT(sib, field); \
if (RB_RED_LEFT(elm, field)) \
RB_FLIP_RIGHT(parent, field); \
RB_BITS(elm, field) |= RB_RED_MASK; \
sib = elm; \
} \
RB_ROTATE_LEFT(head, parent, sib, field); \
} else { \
if (!RB_RED_RIGHT(parent, field)) { \
RB_FLIP_RIGHT(parent, field); \
return; \
} \
if (RB_RED_LEFT(parent, field)) { \
RB_FLIP_LEFT(parent, field); \
elm = parent; \
continue; \
} \
sib = RB_LEFT(parent, field); \
if ((~RB_BITS(sib, field) & RB_RED_MASK) == 0) {\
RB_BITS(sib, field) &= ~RB_RED_MASK; \
elm = parent; \
continue; \
} \
RB_FLIP_LEFT(sib, field); \
if (RB_RED_RIGHT(sib, field)) \
RB_FLIP_RIGHT(parent, field); \
else if (!RB_RED_LEFT(sib, field)) { \
RB_FLIP_RIGHT(parent, field); \
RB_ROTATE_LEFT(head, sib, elm, field); \
if (RB_RED_LEFT(elm, field)) \
RB_FLIP_RIGHT(sib, field); \
if (RB_RED_RIGHT(elm, field)) \
RB_FLIP_LEFT(parent, field); \
RB_BITS(elm, field) |= RB_RED_MASK; \
sib = elm; \
} \
RB_ROTATE_RIGHT(head, parent, sib, field); \
} \
break; \
} while ((parent = RB_PARENT(elm, field)) != NULL); \
}
#define RB_GENERATE_REMOVE(name, type, field, attr) \
attr struct type * \
name##_RB_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *child, *old, *parent, *right; \
\
old = elm; \
parent = RB_PARENT(elm, field); \
right = RB_RIGHT(elm, field); \
if (RB_LEFT(elm, field) == NULL) \
elm = child = right; \
else if (right == NULL) \
elm = child = RB_LEFT(elm, field); \
else { \
if ((child = RB_LEFT(right, field)) == NULL) { \
child = RB_RIGHT(right, field); \
RB_RIGHT(old, field) = child; \
parent = elm = right; \
} else { \
do \
elm = child; \
while ((child = RB_LEFT(elm, field)) != NULL); \
child = RB_RIGHT(elm, field); \
parent = RB_PARENT(elm, field); \
RB_LEFT(parent, field) = child; \
RB_SET_PARENT(RB_RIGHT(old, field), elm, field);\
} \
RB_SET_PARENT(RB_LEFT(old, field), elm, field); \
elm->field = old->field; \
} \
RB_SWAP_CHILD(head, old, elm, field); \
if (child != NULL) \
RB_SET_PARENT(child, parent, field); \
if (parent != NULL) \
name##_RB_REMOVE_COLOR(head, parent, child); \
while (parent != NULL) { \
RB_AUGMENT(parent); \
parent = RB_PARENT(parent, field); \
} \
return (old); \
}
#define RB_GENERATE_INSERT(name, type, field, cmp, attr) \
/* Inserts a node into the RB tree */ \
attr struct type * \
name##_RB_INSERT(struct name *head, struct type *elm) \
{ \
struct type *tmp; \
struct type *parent = NULL; \
int comp = 0; \
tmp = RB_ROOT(head); \
while (tmp) { \
parent = tmp; \
comp = (cmp)(elm, parent); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
RB_SET(elm, parent, field); \
if (parent == NULL) \
RB_ROOT(head) = elm; \
else if (comp < 0) \
RB_LEFT(parent, field) = elm; \
else \
RB_RIGHT(parent, field) = elm; \
name##_RB_INSERT_COLOR(head, elm); \
while (elm != NULL) { \
RB_AUGMENT(elm); \
elm = RB_PARENT(elm, field); \
} \
return (NULL); \
}
#define RB_GENERATE_FIND(name, type, field, cmp, attr) \
/* Finds the node with the same key as elm */ \
attr struct type * \
name##_RB_FIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
}
#define RB_GENERATE_NFIND(name, type, field, cmp, attr) \
/* Finds the first node greater than or equal to the search key */ \
attr struct type * \
name##_RB_NFIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *res = NULL; \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) { \
res = tmp; \
tmp = RB_LEFT(tmp, field); \
} \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (res); \
}
#define RB_GENERATE_NEXT(name, type, field, attr) \
/* ARGSUSED */ \
attr struct type * \
name##_RB_NEXT(struct type *elm) \
{ \
if (RB_RIGHT(elm, field)) { \
elm = RB_RIGHT(elm, field); \
while (RB_LEFT(elm, field)) \
elm = RB_LEFT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
}
#define RB_GENERATE_PREV(name, type, field, attr) \
/* ARGSUSED */ \
attr struct type * \
name##_RB_PREV(struct type *elm) \
{ \
if (RB_LEFT(elm, field)) { \
elm = RB_LEFT(elm, field); \
while (RB_RIGHT(elm, field)) \
elm = RB_RIGHT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field)))\
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
}
#define RB_GENERATE_MINMAX(name, type, field, attr) \
attr struct type * \
name##_RB_MINMAX(struct name *head, int val) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *parent = NULL; \
while (tmp) { \
parent = tmp; \
if (val < 0) \
tmp = RB_LEFT(tmp, field); \
else \
tmp = RB_RIGHT(tmp, field); \
} \
return (parent); \
}
#define RB_GENERATE_REINSERT(name, type, field, cmp, attr) \
attr struct type * \
name##_RB_REINSERT(struct name *head, struct type *elm) \
{ \
struct type *cmpelm; \
if (((cmpelm = RB_PREV(name, head, elm)) != NULL && \
cmp(cmpelm, elm) >= 0) || \
((cmpelm = RB_NEXT(name, head, elm)) != NULL && \
cmp(elm, cmpelm) >= 0)) { \
/* XXXLAS: Remove/insert is heavy handed. */ \
RB_REMOVE(name, head, elm); \
return (RB_INSERT(name, head, elm)); \
} \
return (NULL); \
} \
#define RB_NEGINF -1
#define RB_INF 1
#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
#define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
#define RB_PREV(name, x, y) name##_RB_PREV(y)
#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
#define RB_REINSERT(name, x, y) name##_RB_REINSERT(x, y)
#define RB_FOREACH(x, name, head) \
for ((x) = RB_MIN(name, head); \
(x) != NULL; \
(x) = name##_RB_NEXT(x))
#define RB_FOREACH_FROM(x, name, y) \
for ((x) = (y); \
((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_SAFE(x, name, head, y) \
for ((x) = RB_MIN(name, head); \
((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_REVERSE(x, name, head) \
for ((x) = RB_MAX(name, head); \
(x) != NULL; \
(x) = name##_RB_PREV(x))
#define RB_FOREACH_REVERSE_FROM(x, name, y) \
for ((x) = (y); \
((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \
for ((x) = RB_MAX(name, head); \
((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
(x) = (y))
#endif /* _SYS_TREE_H_ */