f-stack/freebsd/sys/smp.h

295 lines
8.9 KiB
C

/*-
* SPDX-License-Identifier: Beerware
*
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* <phk@FreeBSD.org> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
* ----------------------------------------------------------------------------
*
* $FreeBSD$
*/
#ifndef _SYS_SMP_H_
#define _SYS_SMP_H_
#ifdef _KERNEL
#ifndef LOCORE
#include <sys/cpuset.h>
#include <sys/queue.h>
/*
* Types of nodes in the topological tree.
*/
typedef enum {
/* No node has this type; can be used in topo API calls. */
TOPO_TYPE_DUMMY,
/* Processing unit aka computing unit aka logical CPU. */
TOPO_TYPE_PU,
/* Physical subdivision of a package. */
TOPO_TYPE_CORE,
/* CPU L1/L2/L3 cache. */
TOPO_TYPE_CACHE,
/* Package aka chip, equivalent to socket. */
TOPO_TYPE_PKG,
/* NUMA node. */
TOPO_TYPE_NODE,
/* Other logical or physical grouping of PUs. */
/* E.g. PUs on the same dye, or PUs sharing an FPU. */
TOPO_TYPE_GROUP,
/* The whole system. */
TOPO_TYPE_SYSTEM
} topo_node_type;
/* Hardware indenitifier of a topology component. */
typedef unsigned int hwid_t;
/* Logical CPU idenitifier. */
typedef int cpuid_t;
/* A node in the topology. */
struct topo_node {
struct topo_node *parent;
TAILQ_HEAD(topo_children, topo_node) children;
TAILQ_ENTRY(topo_node) siblings;
cpuset_t cpuset;
topo_node_type type;
uintptr_t subtype;
hwid_t hwid;
cpuid_t id;
int nchildren;
int cpu_count;
};
/*
* Scheduling topology of a NUMA or SMP system.
*
* The top level topology is an array of pointers to groups. Each group
* contains a bitmask of cpus in its group or subgroups. It may also
* contain a pointer to an array of child groups.
*
* The bitmasks at non leaf groups may be used by consumers who support
* a smaller depth than the hardware provides.
*
* The topology may be omitted by systems where all CPUs are equal.
*/
struct cpu_group {
struct cpu_group *cg_parent; /* Our parent group. */
struct cpu_group *cg_child; /* Optional children groups. */
cpuset_t cg_mask; /* Mask of cpus in this group. */
int32_t cg_count; /* Count of cpus in this group. */
int16_t cg_children; /* Number of children groups. */
int8_t cg_level; /* Shared cache level. */
int8_t cg_flags; /* Traversal modifiers. */
};
typedef struct cpu_group *cpu_group_t;
/*
* Defines common resources for CPUs in the group. The highest level
* resource should be used when multiple are shared.
*/
#define CG_SHARE_NONE 0
#define CG_SHARE_L1 1
#define CG_SHARE_L2 2
#define CG_SHARE_L3 3
#define MAX_CACHE_LEVELS CG_SHARE_L3
/*
* Behavior modifiers for load balancing and affinity.
*/
#define CG_FLAG_HTT 0x01 /* Schedule the alternate core last. */
#define CG_FLAG_SMT 0x02 /* New age htt, less crippled. */
#define CG_FLAG_THREAD (CG_FLAG_HTT | CG_FLAG_SMT) /* Any threading. */
/*
* Convenience routines for building and traversing topologies.
*/
#ifdef SMP
void topo_init_node(struct topo_node *node);
void topo_init_root(struct topo_node *root);
struct topo_node * topo_add_node_by_hwid(struct topo_node *parent, int hwid,
topo_node_type type, uintptr_t subtype);
struct topo_node * topo_find_node_by_hwid(struct topo_node *parent, int hwid,
topo_node_type type, uintptr_t subtype);
void topo_promote_child(struct topo_node *child);
struct topo_node * topo_next_node(struct topo_node *top,
struct topo_node *node);
struct topo_node * topo_next_nonchild_node(struct topo_node *top,
struct topo_node *node);
void topo_set_pu_id(struct topo_node *node, cpuid_t id);
enum topo_level {
TOPO_LEVEL_PKG = 0,
/*
* Some systems have useful sub-package core organizations. On these,
* a package has one or more subgroups. Each subgroup contains one or
* more cache groups (cores that share a last level cache).
*/
TOPO_LEVEL_GROUP,
TOPO_LEVEL_CACHEGROUP,
TOPO_LEVEL_CORE,
TOPO_LEVEL_THREAD,
TOPO_LEVEL_COUNT /* Must be last */
};
struct topo_analysis {
int entities[TOPO_LEVEL_COUNT];
};
int topo_analyze(struct topo_node *topo_root, int all,
struct topo_analysis *results);
#define TOPO_FOREACH(i, root) \
for (i = root; i != NULL; i = topo_next_node(root, i))
struct cpu_group *smp_topo(void);
struct cpu_group *smp_topo_alloc(u_int count);
struct cpu_group *smp_topo_none(void);
struct cpu_group *smp_topo_1level(int l1share, int l1count, int l1flags);
struct cpu_group *smp_topo_2level(int l2share, int l2count, int l1share,
int l1count, int l1flags);
struct cpu_group *smp_topo_find(struct cpu_group *top, int cpu);
extern void (*cpustop_restartfunc)(void);
/* The suspend/resume cpusets are x86 only, but minimize ifdefs. */
extern volatile cpuset_t resuming_cpus; /* woken up cpus in suspend pen */
extern volatile cpuset_t started_cpus; /* cpus to let out of stop pen */
extern volatile cpuset_t stopped_cpus; /* cpus in stop pen */
extern volatile cpuset_t suspended_cpus; /* cpus [near] sleeping in susp pen */
extern volatile cpuset_t toresume_cpus; /* cpus to let out of suspend pen */
extern cpuset_t hlt_cpus_mask; /* XXX 'mask' is detail in old impl */
extern cpuset_t logical_cpus_mask;
#endif /* SMP */
extern u_int mp_maxid;
extern int mp_maxcpus;
extern int mp_ncores;
extern int mp_ncpus;
extern int smp_cpus;
extern volatile int smp_started;
extern int smp_threads_per_core;
extern cpuset_t all_cpus;
extern cpuset_t cpuset_domain[MAXMEMDOM]; /* CPUs in each NUMA domain. */
/*
* Macro allowing us to determine whether a CPU is absent at any given
* time, thus permitting us to configure sparse maps of cpuid-dependent
* (per-CPU) structures.
*/
#define CPU_ABSENT(x_cpu) (!CPU_ISSET(x_cpu, &all_cpus))
/*
* Macros to iterate over non-absent CPUs. CPU_FOREACH() takes an
* integer iterator and iterates over the available set of CPUs.
* CPU_FIRST() returns the id of the first non-absent CPU. CPU_NEXT()
* returns the id of the next non-absent CPU. It will wrap back to
* CPU_FIRST() once the end of the list is reached. The iterators are
* currently implemented via inline functions.
*/
#define CPU_FOREACH(i) \
for ((i) = 0; (i) <= mp_maxid; (i)++) \
if (!CPU_ABSENT((i)))
static __inline int
cpu_first(void)
{
int i;
for (i = 0;; i++)
if (!CPU_ABSENT(i))
return (i);
}
static __inline int
cpu_next(int i)
{
for (;;) {
i++;
if (i > mp_maxid)
i = 0;
if (!CPU_ABSENT(i))
return (i);
}
}
#define CPU_FIRST() cpu_first()
#define CPU_NEXT(i) cpu_next((i))
#ifdef SMP
/*
* Machine dependent functions used to initialize MP support.
*
* The cpu_mp_probe() should check to see if MP support is present and return
* zero if it is not or non-zero if it is. If MP support is present, then
* cpu_mp_start() will be called so that MP can be enabled. This function
* should do things such as startup secondary processors. It should also
* setup mp_ncpus, all_cpus, and smp_cpus. It should also ensure that
* smp_started is initialized at the appropriate time.
* Once cpu_mp_start() returns, machine independent MP startup code will be
* executed and a simple message will be output to the console. Finally,
* cpu_mp_announce() will be called so that machine dependent messages about
* the MP support may be output to the console if desired.
*
* The cpu_setmaxid() function is called very early during the boot process
* so that the MD code may set mp_maxid to provide an upper bound on CPU IDs
* that other subsystems may use. If a platform is not able to determine
* the exact maximum ID that early, then it may set mp_maxid to MAXCPU - 1.
*/
struct thread;
struct cpu_group *cpu_topo(void);
void cpu_mp_announce(void);
int cpu_mp_probe(void);
void cpu_mp_setmaxid(void);
void cpu_mp_start(void);
void forward_signal(struct thread *);
int restart_cpus(cpuset_t);
int stop_cpus(cpuset_t);
int stop_cpus_hard(cpuset_t);
#if defined(__amd64__) || defined(__i386__)
int suspend_cpus(cpuset_t);
int resume_cpus(cpuset_t);
#endif
void smp_rendezvous_action(void);
extern struct mtx smp_ipi_mtx;
#endif /* SMP */
int quiesce_all_cpus(const char *, int);
int quiesce_cpus(cpuset_t, const char *, int);
void quiesce_all_critical(void);
void cpus_fence_seq_cst(void);
void smp_no_rendezvous_barrier(void *);
void smp_rendezvous(void (*)(void *),
void (*)(void *),
void (*)(void *),
void *arg);
void smp_rendezvous_cpus(cpuset_t,
void (*)(void *),
void (*)(void *),
void (*)(void *),
void *arg);
struct smp_rendezvous_cpus_retry_arg {
cpuset_t cpus;
};
void smp_rendezvous_cpus_retry(cpuset_t,
void (*)(void *),
void (*)(void *),
void (*)(void *),
void (*)(void *, int),
struct smp_rendezvous_cpus_retry_arg *);
void smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *);
#endif /* !LOCORE */
#endif /* _KERNEL */
#endif /* _SYS_SMP_H_ */