mirror of https://github.com/F-Stack/f-stack.git
154 lines
4.5 KiB
C
154 lines
4.5 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2010-2011 Juniper Networks, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Robert N. M. Watson under contract
|
|
* to Juniper Networks, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet6.h"
|
|
#include "opt_rss.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/rss_config.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#ifdef INET6
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet6/in6_rss.h>
|
|
#endif /* INET6 */
|
|
|
|
/*
|
|
* Given a hash of whatever the covered tuple might be, return a pcbgroup
|
|
* index. Where RSS is supported, try to align bucket selection with RSS CPU
|
|
* affinity strategy.
|
|
*/
|
|
static __inline u_int
|
|
in6_pcbgroup_getbucket(struct inpcbinfo *pcbinfo, uint32_t hash)
|
|
{
|
|
|
|
#ifdef RSS
|
|
return (rss_getbucket(hash));
|
|
#else
|
|
return (hash % pcbinfo->ipi_npcbgroups);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Map a (hashtype, hash) tuple into a connection group, or NULL if the hash
|
|
* information is insufficient to identify the pcbgroup. This might occur if
|
|
* a TCP packet turnsup with a 2-tuple hash, or if an RSS hash is present but
|
|
* RSS is not compiled into the kernel.
|
|
*/
|
|
struct inpcbgroup *
|
|
in6_pcbgroup_byhash(struct inpcbinfo *pcbinfo, u_int hashtype, uint32_t hash)
|
|
{
|
|
|
|
#ifdef RSS
|
|
if ((pcbinfo->ipi_hashfields == IPI_HASHFIELDS_4TUPLE &&
|
|
hashtype == M_HASHTYPE_RSS_TCP_IPV6) ||
|
|
(pcbinfo->ipi_hashfields == IPI_HASHFIELDS_4TUPLE &&
|
|
hashtype == M_HASHTYPE_RSS_UDP_IPV6) ||
|
|
(pcbinfo->ipi_hashfields == IPI_HASHFIELDS_2TUPLE &&
|
|
hashtype == M_HASHTYPE_RSS_IPV6))
|
|
return (&pcbinfo->ipi_pcbgroups[
|
|
in6_pcbgroup_getbucket(pcbinfo, hash)]);
|
|
#endif
|
|
return (NULL);
|
|
}
|
|
|
|
struct inpcbgroup *
|
|
in6_pcbgroup_bymbuf(struct inpcbinfo *pcbinfo, struct mbuf *m)
|
|
{
|
|
|
|
return (in6_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
|
|
m->m_pkthdr.flowid));
|
|
}
|
|
|
|
struct inpcbgroup *
|
|
in6_pcbgroup_bytuple(struct inpcbinfo *pcbinfo, const struct in6_addr *laddrp,
|
|
u_short lport, const struct in6_addr *faddrp, u_short fport)
|
|
{
|
|
uint32_t hash;
|
|
|
|
/*
|
|
* RSS note: we pass foreign addr/port as source, and local addr/port
|
|
* as destination, as we want to align with what the hardware is
|
|
* doing.
|
|
*/
|
|
switch (pcbinfo->ipi_hashfields) {
|
|
case IPI_HASHFIELDS_4TUPLE:
|
|
#ifdef RSS
|
|
hash = rss_hash_ip6_4tuple(faddrp, fport, laddrp, lport);
|
|
#else
|
|
hash = faddrp->s6_addr32[3] ^ fport;
|
|
#endif
|
|
break;
|
|
|
|
case IPI_HASHFIELDS_2TUPLE:
|
|
#ifdef RSS
|
|
hash = rss_hash_ip6_2tuple(faddrp, laddrp);
|
|
#else
|
|
hash = faddrp->s6_addr32[3] ^ laddrp->s6_addr32[3];
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
hash = 0;
|
|
}
|
|
return (&pcbinfo->ipi_pcbgroups[in6_pcbgroup_getbucket(pcbinfo,
|
|
hash)]);
|
|
}
|
|
|
|
struct inpcbgroup *
|
|
in6_pcbgroup_byinpcb(struct inpcb *inp)
|
|
{
|
|
|
|
#ifdef RSS
|
|
/*
|
|
* Listen sockets with INP_RSS_BUCKET_SET set have a pre-determined
|
|
* RSS bucket and thus we should use this pcbgroup, rather than
|
|
* using a tuple or hash.
|
|
*
|
|
* XXX should verify that there's actually pcbgroups and inp_rss_listen_bucket
|
|
* fits in that!
|
|
*/
|
|
if (inp->inp_flags2 & INP_RSS_BUCKET_SET)
|
|
return (&inp->inp_pcbinfo->ipi_pcbgroups[inp->inp_rss_listen_bucket]);
|
|
#endif
|
|
|
|
return (in6_pcbgroup_bytuple(inp->inp_pcbinfo, &inp->in6p_laddr,
|
|
inp->inp_lport, &inp->in6p_faddr, inp->inp_fport));
|
|
}
|