f-stack/freebsd/net80211/ieee80211_mesh.c

3618 lines
105 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2009 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Rui Paulo under sponsorship from the
* FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifdef __FreeBSD__
__FBSDID("$FreeBSD$");
#endif
/*
* IEEE 802.11s Mesh Point (MBSS) support.
*
* Based on March 2009, D3.0 802.11s draft spec.
*/
#include "opt_inet.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/if_llc.h>
#include <net/ethernet.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_action.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#include <net80211/ieee80211_input.h>
#include <net80211/ieee80211_mesh.h>
static void mesh_rt_flush_invalid(struct ieee80211vap *);
static int mesh_select_proto_path(struct ieee80211vap *, const char *);
static int mesh_select_proto_metric(struct ieee80211vap *, const char *);
static void mesh_vattach(struct ieee80211vap *);
static int mesh_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void mesh_rt_cleanup_cb(void *);
static void mesh_gatemode_setup(struct ieee80211vap *);
static void mesh_gatemode_cb(void *);
static void mesh_linkchange(struct ieee80211_node *,
enum ieee80211_mesh_mlstate);
static void mesh_checkid(void *, struct ieee80211_node *);
static uint32_t mesh_generateid(struct ieee80211vap *);
static int mesh_checkpseq(struct ieee80211vap *,
const uint8_t [IEEE80211_ADDR_LEN], uint32_t);
static void mesh_transmit_to_gate(struct ieee80211vap *, struct mbuf *,
struct ieee80211_mesh_route *);
static void mesh_forward(struct ieee80211vap *, struct mbuf *,
const struct ieee80211_meshcntl *);
static int mesh_input(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_rx_stats *rxs, int, int);
static void mesh_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
const struct ieee80211_rx_stats *rxs, int, int);
static void mesh_recv_ctl(struct ieee80211_node *, struct mbuf *, int);
static void mesh_peer_timeout_setup(struct ieee80211_node *);
static void mesh_peer_timeout_backoff(struct ieee80211_node *);
static void mesh_peer_timeout_cb(void *);
static __inline void
mesh_peer_timeout_stop(struct ieee80211_node *);
static int mesh_verify_meshid(struct ieee80211vap *, const uint8_t *);
static int mesh_verify_meshconf(struct ieee80211vap *, const uint8_t *);
static int mesh_verify_meshpeer(struct ieee80211vap *, uint8_t,
const uint8_t *);
uint32_t mesh_airtime_calc(struct ieee80211_node *);
/*
* Timeout values come from the specification and are in milliseconds.
*/
static SYSCTL_NODE(_net_wlan, OID_AUTO, mesh, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"IEEE 802.11s parameters");
static int ieee80211_mesh_gateint = -1;
SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, gateint,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&ieee80211_mesh_gateint, 0, ieee80211_sysctl_msecs_ticks, "I",
"mesh gate interval (ms)");
static int ieee80211_mesh_retrytimeout = -1;
SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, retrytimeout,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&ieee80211_mesh_retrytimeout, 0, ieee80211_sysctl_msecs_ticks, "I",
"Retry timeout (msec)");
static int ieee80211_mesh_holdingtimeout = -1;
SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, holdingtimeout,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&ieee80211_mesh_holdingtimeout, 0, ieee80211_sysctl_msecs_ticks, "I",
"Holding state timeout (msec)");
static int ieee80211_mesh_confirmtimeout = -1;
SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, confirmtimeout,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&ieee80211_mesh_confirmtimeout, 0, ieee80211_sysctl_msecs_ticks, "I",
"Confirm state timeout (msec)");
static int ieee80211_mesh_backofftimeout = -1;
SYSCTL_PROC(_net_wlan_mesh, OID_AUTO, backofftimeout,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
&ieee80211_mesh_backofftimeout, 0, ieee80211_sysctl_msecs_ticks, "I",
"Backoff timeout (msec). This is to throutles peering forever when "
"not receiving answer or is rejected by a neighbor");
static int ieee80211_mesh_maxretries = 2;
SYSCTL_INT(_net_wlan_mesh, OID_AUTO, maxretries, CTLFLAG_RW,
&ieee80211_mesh_maxretries, 0,
"Maximum retries during peer link establishment");
static int ieee80211_mesh_maxholding = 2;
SYSCTL_INT(_net_wlan_mesh, OID_AUTO, maxholding, CTLFLAG_RW,
&ieee80211_mesh_maxholding, 0,
"Maximum times we are allowed to transition to HOLDING state before "
"backinoff during peer link establishment");
static const uint8_t broadcastaddr[IEEE80211_ADDR_LEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static ieee80211_recv_action_func mesh_recv_action_meshpeering_open;
static ieee80211_recv_action_func mesh_recv_action_meshpeering_confirm;
static ieee80211_recv_action_func mesh_recv_action_meshpeering_close;
static ieee80211_recv_action_func mesh_recv_action_meshlmetric;
static ieee80211_recv_action_func mesh_recv_action_meshgate;
static ieee80211_send_action_func mesh_send_action_meshpeering_open;
static ieee80211_send_action_func mesh_send_action_meshpeering_confirm;
static ieee80211_send_action_func mesh_send_action_meshpeering_close;
static ieee80211_send_action_func mesh_send_action_meshlmetric;
static ieee80211_send_action_func mesh_send_action_meshgate;
static const struct ieee80211_mesh_proto_metric mesh_metric_airtime = {
.mpm_descr = "AIRTIME",
.mpm_ie = IEEE80211_MESHCONF_METRIC_AIRTIME,
.mpm_metric = mesh_airtime_calc,
};
static struct ieee80211_mesh_proto_path mesh_proto_paths[4];
static struct ieee80211_mesh_proto_metric mesh_proto_metrics[4];
MALLOC_DEFINE(M_80211_MESH_PREQ, "80211preq", "802.11 MESH Path Request frame");
MALLOC_DEFINE(M_80211_MESH_PREP, "80211prep", "802.11 MESH Path Reply frame");
MALLOC_DEFINE(M_80211_MESH_PERR, "80211perr", "802.11 MESH Path Error frame");
/* The longer one of the lifetime should be stored as new lifetime */
#define MESH_ROUTE_LIFETIME_MAX(a, b) (a > b ? a : b)
MALLOC_DEFINE(M_80211_MESH_RT, "80211mesh_rt", "802.11s routing table");
MALLOC_DEFINE(M_80211_MESH_GT_RT, "80211mesh_gt", "802.11s known gates table");
/*
* Helper functions to manipulate the Mesh routing table.
*/
static struct ieee80211_mesh_route *
mesh_rt_find_locked(struct ieee80211_mesh_state *ms,
const uint8_t dest[IEEE80211_ADDR_LEN])
{
struct ieee80211_mesh_route *rt;
MESH_RT_LOCK_ASSERT(ms);
TAILQ_FOREACH(rt, &ms->ms_routes, rt_next) {
if (IEEE80211_ADDR_EQ(dest, rt->rt_dest))
return rt;
}
return NULL;
}
static struct ieee80211_mesh_route *
mesh_rt_add_locked(struct ieee80211vap *vap,
const uint8_t dest[IEEE80211_ADDR_LEN])
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt;
KASSERT(!IEEE80211_ADDR_EQ(broadcastaddr, dest),
("%s: adding broadcast to the routing table", __func__));
MESH_RT_LOCK_ASSERT(ms);
rt = IEEE80211_MALLOC(ALIGN(sizeof(struct ieee80211_mesh_route)) +
ms->ms_ppath->mpp_privlen, M_80211_MESH_RT,
IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
if (rt != NULL) {
rt->rt_vap = vap;
IEEE80211_ADDR_COPY(rt->rt_dest, dest);
rt->rt_priv = (void *)ALIGN(&rt[1]);
MESH_RT_ENTRY_LOCK_INIT(rt, "MBSS_RT");
callout_init(&rt->rt_discovery, 1);
rt->rt_updtime = ticks; /* create time */
TAILQ_INSERT_TAIL(&ms->ms_routes, rt, rt_next);
}
return rt;
}
struct ieee80211_mesh_route *
ieee80211_mesh_rt_find(struct ieee80211vap *vap,
const uint8_t dest[IEEE80211_ADDR_LEN])
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt;
MESH_RT_LOCK(ms);
rt = mesh_rt_find_locked(ms, dest);
MESH_RT_UNLOCK(ms);
return rt;
}
struct ieee80211_mesh_route *
ieee80211_mesh_rt_add(struct ieee80211vap *vap,
const uint8_t dest[IEEE80211_ADDR_LEN])
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt;
KASSERT(ieee80211_mesh_rt_find(vap, dest) == NULL,
("%s: duplicate entry in the routing table", __func__));
KASSERT(!IEEE80211_ADDR_EQ(vap->iv_myaddr, dest),
("%s: adding self to the routing table", __func__));
MESH_RT_LOCK(ms);
rt = mesh_rt_add_locked(vap, dest);
MESH_RT_UNLOCK(ms);
return rt;
}
/*
* Update the route lifetime and returns the updated lifetime.
* If new_lifetime is zero and route is timedout it will be invalidated.
* new_lifetime is in msec
*/
int
ieee80211_mesh_rt_update(struct ieee80211_mesh_route *rt, int new_lifetime)
{
int timesince, now;
uint32_t lifetime = 0;
KASSERT(rt != NULL, ("route is NULL"));
now = ticks;
MESH_RT_ENTRY_LOCK(rt);
/* dont clobber a proxy entry gated by us */
if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY && rt->rt_nhops == 0) {
MESH_RT_ENTRY_UNLOCK(rt);
return rt->rt_lifetime;
}
timesince = ticks_to_msecs(now - rt->rt_updtime);
rt->rt_updtime = now;
if (timesince >= rt->rt_lifetime) {
if (new_lifetime != 0) {
rt->rt_lifetime = new_lifetime;
}
else {
rt->rt_flags &= ~IEEE80211_MESHRT_FLAGS_VALID;
rt->rt_lifetime = 0;
}
} else {
/* update what is left of lifetime */
rt->rt_lifetime = rt->rt_lifetime - timesince;
rt->rt_lifetime = MESH_ROUTE_LIFETIME_MAX(
new_lifetime, rt->rt_lifetime);
}
lifetime = rt->rt_lifetime;
MESH_RT_ENTRY_UNLOCK(rt);
return lifetime;
}
/*
* Add a proxy route (as needed) for the specified destination.
*/
void
ieee80211_mesh_proxy_check(struct ieee80211vap *vap,
const uint8_t dest[IEEE80211_ADDR_LEN])
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt;
MESH_RT_LOCK(ms);
rt = mesh_rt_find_locked(ms, dest);
if (rt == NULL) {
rt = mesh_rt_add_locked(vap, dest);
if (rt == NULL) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest,
"%s", "unable to add proxy entry");
vap->iv_stats.is_mesh_rtaddfailed++;
} else {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest,
"%s", "add proxy entry");
IEEE80211_ADDR_COPY(rt->rt_mesh_gate, vap->iv_myaddr);
IEEE80211_ADDR_COPY(rt->rt_nexthop, vap->iv_myaddr);
rt->rt_flags |= IEEE80211_MESHRT_FLAGS_VALID
| IEEE80211_MESHRT_FLAGS_PROXY;
}
} else if ((rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0) {
KASSERT(rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY,
("no proxy flag for poxy entry"));
struct ieee80211com *ic = vap->iv_ic;
/*
* Fix existing entry created by received frames from
* stations that have some memory of dest. We also
* flush any frames held on the staging queue; delivering
* them is too much trouble right now.
*/
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest,
"%s", "fix proxy entry");
IEEE80211_ADDR_COPY(rt->rt_nexthop, vap->iv_myaddr);
rt->rt_flags |= IEEE80211_MESHRT_FLAGS_VALID
| IEEE80211_MESHRT_FLAGS_PROXY;
/* XXX belongs in hwmp */
ieee80211_ageq_drain_node(&ic->ic_stageq,
(void *)(uintptr_t) ieee80211_mac_hash(ic, dest));
/* XXX stat? */
}
MESH_RT_UNLOCK(ms);
}
static __inline void
mesh_rt_del(struct ieee80211_mesh_state *ms, struct ieee80211_mesh_route *rt)
{
TAILQ_REMOVE(&ms->ms_routes, rt, rt_next);
/*
* Grab the lock before destroying it, to be sure no one else
* is holding the route.
*/
MESH_RT_ENTRY_LOCK(rt);
callout_drain(&rt->rt_discovery);
MESH_RT_ENTRY_LOCK_DESTROY(rt);
IEEE80211_FREE(rt, M_80211_MESH_RT);
}
void
ieee80211_mesh_rt_del(struct ieee80211vap *vap,
const uint8_t dest[IEEE80211_ADDR_LEN])
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt, *next;
MESH_RT_LOCK(ms);
TAILQ_FOREACH_SAFE(rt, &ms->ms_routes, rt_next, next) {
if (IEEE80211_ADDR_EQ(rt->rt_dest, dest)) {
if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
ms->ms_ppath->mpp_senderror(vap, dest, rt,
IEEE80211_REASON_MESH_PERR_NO_PROXY);
} else {
ms->ms_ppath->mpp_senderror(vap, dest, rt,
IEEE80211_REASON_MESH_PERR_DEST_UNREACH);
}
mesh_rt_del(ms, rt);
MESH_RT_UNLOCK(ms);
return;
}
}
MESH_RT_UNLOCK(ms);
}
void
ieee80211_mesh_rt_flush(struct ieee80211vap *vap)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt, *next;
if (ms == NULL)
return;
MESH_RT_LOCK(ms);
TAILQ_FOREACH_SAFE(rt, &ms->ms_routes, rt_next, next)
mesh_rt_del(ms, rt);
MESH_RT_UNLOCK(ms);
}
void
ieee80211_mesh_rt_flush_peer(struct ieee80211vap *vap,
const uint8_t peer[IEEE80211_ADDR_LEN])
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt, *next;
MESH_RT_LOCK(ms);
TAILQ_FOREACH_SAFE(rt, &ms->ms_routes, rt_next, next) {
if (IEEE80211_ADDR_EQ(rt->rt_nexthop, peer))
mesh_rt_del(ms, rt);
}
MESH_RT_UNLOCK(ms);
}
/*
* Flush expired routing entries, i.e. those in invalid state for
* some time.
*/
static void
mesh_rt_flush_invalid(struct ieee80211vap *vap)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt, *next;
if (ms == NULL)
return;
MESH_RT_LOCK(ms);
TAILQ_FOREACH_SAFE(rt, &ms->ms_routes, rt_next, next) {
/* Discover paths will be deleted by their own callout */
if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_DISCOVER)
continue;
ieee80211_mesh_rt_update(rt, 0);
if ((rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0)
mesh_rt_del(ms, rt);
}
MESH_RT_UNLOCK(ms);
}
int
ieee80211_mesh_register_proto_path(const struct ieee80211_mesh_proto_path *mpp)
{
int i, firstempty = -1;
for (i = 0; i < nitems(mesh_proto_paths); i++) {
if (strncmp(mpp->mpp_descr, mesh_proto_paths[i].mpp_descr,
IEEE80211_MESH_PROTO_DSZ) == 0)
return EEXIST;
if (!mesh_proto_paths[i].mpp_active && firstempty == -1)
firstempty = i;
}
if (firstempty < 0)
return ENOSPC;
memcpy(&mesh_proto_paths[firstempty], mpp, sizeof(*mpp));
mesh_proto_paths[firstempty].mpp_active = 1;
return 0;
}
int
ieee80211_mesh_register_proto_metric(const struct
ieee80211_mesh_proto_metric *mpm)
{
int i, firstempty = -1;
for (i = 0; i < nitems(mesh_proto_metrics); i++) {
if (strncmp(mpm->mpm_descr, mesh_proto_metrics[i].mpm_descr,
IEEE80211_MESH_PROTO_DSZ) == 0)
return EEXIST;
if (!mesh_proto_metrics[i].mpm_active && firstempty == -1)
firstempty = i;
}
if (firstempty < 0)
return ENOSPC;
memcpy(&mesh_proto_metrics[firstempty], mpm, sizeof(*mpm));
mesh_proto_metrics[firstempty].mpm_active = 1;
return 0;
}
static int
mesh_select_proto_path(struct ieee80211vap *vap, const char *name)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
int i;
for (i = 0; i < nitems(mesh_proto_paths); i++) {
if (strcasecmp(mesh_proto_paths[i].mpp_descr, name) == 0) {
ms->ms_ppath = &mesh_proto_paths[i];
return 0;
}
}
return ENOENT;
}
static int
mesh_select_proto_metric(struct ieee80211vap *vap, const char *name)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
int i;
for (i = 0; i < nitems(mesh_proto_metrics); i++) {
if (strcasecmp(mesh_proto_metrics[i].mpm_descr, name) == 0) {
ms->ms_pmetric = &mesh_proto_metrics[i];
return 0;
}
}
return ENOENT;
}
static void
mesh_gatemode_setup(struct ieee80211vap *vap)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
/*
* NB: When a mesh gate is running as a ROOT it shall
* not send out periodic GANNs but instead mark the
* mesh gate flag for the corresponding proactive PREQ
* and RANN frames.
*/
if (ms->ms_flags & IEEE80211_MESHFLAGS_ROOT ||
(ms->ms_flags & IEEE80211_MESHFLAGS_GATE) == 0) {
callout_drain(&ms->ms_gatetimer);
return ;
}
callout_reset(&ms->ms_gatetimer, ieee80211_mesh_gateint,
mesh_gatemode_cb, vap);
}
static void
mesh_gatemode_cb(void *arg)
{
struct ieee80211vap *vap = (struct ieee80211vap *)arg;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_meshgann_ie gann;
gann.gann_flags = 0; /* Reserved */
gann.gann_hopcount = 0;
gann.gann_ttl = ms->ms_ttl;
IEEE80211_ADDR_COPY(gann.gann_addr, vap->iv_myaddr);
gann.gann_seq = ms->ms_gateseq++;
gann.gann_interval = ieee80211_mesh_gateint;
IEEE80211_NOTE(vap, IEEE80211_MSG_MESH, vap->iv_bss,
"send broadcast GANN (seq %u)", gann.gann_seq);
ieee80211_send_action(vap->iv_bss, IEEE80211_ACTION_CAT_MESH,
IEEE80211_ACTION_MESH_GANN, &gann);
mesh_gatemode_setup(vap);
}
static void
ieee80211_mesh_init(void)
{
memset(mesh_proto_paths, 0, sizeof(mesh_proto_paths));
memset(mesh_proto_metrics, 0, sizeof(mesh_proto_metrics));
/*
* Setup mesh parameters that depends on the clock frequency.
*/
ieee80211_mesh_gateint = msecs_to_ticks(10000);
ieee80211_mesh_retrytimeout = msecs_to_ticks(40);
ieee80211_mesh_holdingtimeout = msecs_to_ticks(40);
ieee80211_mesh_confirmtimeout = msecs_to_ticks(40);
ieee80211_mesh_backofftimeout = msecs_to_ticks(5000);
/*
* Register action frame handlers.
*/
ieee80211_recv_action_register(IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_OPEN,
mesh_recv_action_meshpeering_open);
ieee80211_recv_action_register(IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CONFIRM,
mesh_recv_action_meshpeering_confirm);
ieee80211_recv_action_register(IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
mesh_recv_action_meshpeering_close);
ieee80211_recv_action_register(IEEE80211_ACTION_CAT_MESH,
IEEE80211_ACTION_MESH_LMETRIC, mesh_recv_action_meshlmetric);
ieee80211_recv_action_register(IEEE80211_ACTION_CAT_MESH,
IEEE80211_ACTION_MESH_GANN, mesh_recv_action_meshgate);
ieee80211_send_action_register(IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_OPEN,
mesh_send_action_meshpeering_open);
ieee80211_send_action_register(IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CONFIRM,
mesh_send_action_meshpeering_confirm);
ieee80211_send_action_register(IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
mesh_send_action_meshpeering_close);
ieee80211_send_action_register(IEEE80211_ACTION_CAT_MESH,
IEEE80211_ACTION_MESH_LMETRIC,
mesh_send_action_meshlmetric);
ieee80211_send_action_register(IEEE80211_ACTION_CAT_MESH,
IEEE80211_ACTION_MESH_GANN,
mesh_send_action_meshgate);
/*
* Register Airtime Link Metric.
*/
ieee80211_mesh_register_proto_metric(&mesh_metric_airtime);
}
SYSINIT(wlan_mesh, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_mesh_init, NULL);
void
ieee80211_mesh_attach(struct ieee80211com *ic)
{
ic->ic_vattach[IEEE80211_M_MBSS] = mesh_vattach;
}
void
ieee80211_mesh_detach(struct ieee80211com *ic)
{
}
static void
mesh_vdetach_peers(void *arg, struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
uint16_t args[3];
if (ni->ni_mlstate == IEEE80211_NODE_MESH_ESTABLISHED) {
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
args[2] = IEEE80211_REASON_PEER_LINK_CANCELED;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
}
callout_drain(&ni->ni_mltimer);
/* XXX belongs in hwmp */
ieee80211_ageq_drain_node(&ic->ic_stageq,
(void *)(uintptr_t) ieee80211_mac_hash(ic, ni->ni_macaddr));
}
static void
mesh_vdetach(struct ieee80211vap *vap)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
callout_drain(&ms->ms_cleantimer);
ieee80211_iterate_nodes(&vap->iv_ic->ic_sta, mesh_vdetach_peers,
NULL);
ieee80211_mesh_rt_flush(vap);
MESH_RT_LOCK_DESTROY(ms);
ms->ms_ppath->mpp_vdetach(vap);
IEEE80211_FREE(vap->iv_mesh, M_80211_VAP);
vap->iv_mesh = NULL;
}
static void
mesh_vattach(struct ieee80211vap *vap)
{
struct ieee80211_mesh_state *ms;
vap->iv_newstate = mesh_newstate;
vap->iv_input = mesh_input;
vap->iv_opdetach = mesh_vdetach;
vap->iv_recv_mgmt = mesh_recv_mgmt;
vap->iv_recv_ctl = mesh_recv_ctl;
ms = IEEE80211_MALLOC(sizeof(struct ieee80211_mesh_state), M_80211_VAP,
IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
if (ms == NULL) {
printf("%s: couldn't alloc MBSS state\n", __func__);
return;
}
vap->iv_mesh = ms;
ms->ms_seq = 0;
ms->ms_flags = (IEEE80211_MESHFLAGS_AP | IEEE80211_MESHFLAGS_FWD);
ms->ms_ttl = IEEE80211_MESH_DEFAULT_TTL;
TAILQ_INIT(&ms->ms_known_gates);
TAILQ_INIT(&ms->ms_routes);
MESH_RT_LOCK_INIT(ms, "MBSS");
callout_init(&ms->ms_cleantimer, 1);
callout_init(&ms->ms_gatetimer, 1);
ms->ms_gateseq = 0;
mesh_select_proto_metric(vap, "AIRTIME");
KASSERT(ms->ms_pmetric, ("ms_pmetric == NULL"));
mesh_select_proto_path(vap, "HWMP");
KASSERT(ms->ms_ppath, ("ms_ppath == NULL"));
ms->ms_ppath->mpp_vattach(vap);
}
/*
* IEEE80211_M_MBSS vap state machine handler.
*/
static int
mesh_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_node *ni;
enum ieee80211_state ostate;
IEEE80211_LOCK_ASSERT(ic);
ostate = vap->iv_state;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (%d)\n",
__func__, ieee80211_state_name[ostate],
ieee80211_state_name[nstate], arg);
vap->iv_state = nstate; /* state transition */
if (ostate != IEEE80211_S_SCAN)
ieee80211_cancel_scan(vap); /* background scan */
ni = vap->iv_bss; /* NB: no reference held */
if (nstate != IEEE80211_S_RUN && ostate == IEEE80211_S_RUN) {
callout_drain(&ms->ms_cleantimer);
callout_drain(&ms->ms_gatetimer);
}
switch (nstate) {
case IEEE80211_S_INIT:
switch (ostate) {
case IEEE80211_S_SCAN:
ieee80211_cancel_scan(vap);
break;
case IEEE80211_S_CAC:
ieee80211_dfs_cac_stop(vap);
break;
case IEEE80211_S_RUN:
ieee80211_iterate_nodes(&ic->ic_sta,
mesh_vdetach_peers, NULL);
break;
default:
break;
}
if (ostate != IEEE80211_S_INIT) {
/* NB: optimize INIT -> INIT case */
ieee80211_reset_bss(vap);
ieee80211_mesh_rt_flush(vap);
}
break;
case IEEE80211_S_SCAN:
switch (ostate) {
case IEEE80211_S_INIT:
if (vap->iv_des_chan != IEEE80211_CHAN_ANYC &&
!IEEE80211_IS_CHAN_RADAR(vap->iv_des_chan) &&
ms->ms_idlen != 0) {
/*
* Already have a channel and a mesh ID; bypass
* the scan and startup immediately.
*/
ieee80211_create_ibss(vap, vap->iv_des_chan);
break;
}
/*
* Initiate a scan. We can come here as a result
* of an IEEE80211_IOC_SCAN_REQ too in which case
* the vap will be marked with IEEE80211_FEXT_SCANREQ
* and the scan request parameters will be present
* in iv_scanreq. Otherwise we do the default.
*/
if (vap->iv_flags_ext & IEEE80211_FEXT_SCANREQ) {
ieee80211_check_scan(vap,
vap->iv_scanreq_flags,
vap->iv_scanreq_duration,
vap->iv_scanreq_mindwell,
vap->iv_scanreq_maxdwell,
vap->iv_scanreq_nssid, vap->iv_scanreq_ssid);
vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANREQ;
} else
ieee80211_check_scan_current(vap);
break;
default:
break;
}
break;
case IEEE80211_S_CAC:
/*
* Start CAC on a DFS channel. We come here when starting
* a bss on a DFS channel (see ieee80211_create_ibss).
*/
ieee80211_dfs_cac_start(vap);
break;
case IEEE80211_S_RUN:
switch (ostate) {
case IEEE80211_S_INIT:
/*
* Already have a channel; bypass the
* scan and startup immediately.
* Note that ieee80211_create_ibss will call
* back to do a RUN->RUN state change.
*/
ieee80211_create_ibss(vap,
ieee80211_ht_adjust_channel(ic,
ic->ic_curchan, vap->iv_flags_ht));
/* NB: iv_bss is changed on return */
break;
case IEEE80211_S_CAC:
/*
* NB: This is the normal state change when CAC
* expires and no radar was detected; no need to
* clear the CAC timer as it's already expired.
*/
/* fall thru... */
case IEEE80211_S_CSA:
#if 0
/*
* Shorten inactivity timer of associated stations
* to weed out sta's that don't follow a CSA.
*/
ieee80211_iterate_nodes(&ic->ic_sta, sta_csa, vap);
#endif
/*
* Update bss node channel to reflect where
* we landed after CSA.
*/
ieee80211_node_set_chan(ni,
ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
ieee80211_htchanflags(ni->ni_chan)));
/* XXX bypass debug msgs */
break;
case IEEE80211_S_SCAN:
case IEEE80211_S_RUN:
#ifdef IEEE80211_DEBUG
if (ieee80211_msg_debug(vap)) {
ieee80211_note(vap,
"synchronized with %s meshid ",
ether_sprintf(ni->ni_meshid));
ieee80211_print_essid(ni->ni_meshid,
ni->ni_meshidlen);
/* XXX MCS/HT */
printf(" channel %d\n",
ieee80211_chan2ieee(ic, ic->ic_curchan));
}
#endif
break;
default:
break;
}
ieee80211_node_authorize(ni);
callout_reset(&ms->ms_cleantimer, ms->ms_ppath->mpp_inact,
mesh_rt_cleanup_cb, vap);
mesh_gatemode_setup(vap);
break;
default:
break;
}
/* NB: ostate not nstate */
ms->ms_ppath->mpp_newstate(vap, ostate, arg);
return 0;
}
static void
mesh_rt_cleanup_cb(void *arg)
{
struct ieee80211vap *vap = arg;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
mesh_rt_flush_invalid(vap);
callout_reset(&ms->ms_cleantimer, ms->ms_ppath->mpp_inact,
mesh_rt_cleanup_cb, vap);
}
/*
* Mark a mesh STA as gate and return a pointer to it.
* If this is first time, we create a new gate route.
* Always update the path route to this mesh gate.
*/
struct ieee80211_mesh_gate_route *
ieee80211_mesh_mark_gate(struct ieee80211vap *vap, const uint8_t *addr,
struct ieee80211_mesh_route *rt)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_gate_route *gr = NULL, *next;
int found = 0;
MESH_RT_LOCK(ms);
TAILQ_FOREACH_SAFE(gr, &ms->ms_known_gates, gr_next, next) {
if (IEEE80211_ADDR_EQ(gr->gr_addr, addr)) {
found = 1;
break;
}
}
if (!found) {
/* New mesh gate add it to known table. */
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, addr,
"%s", "stored new gate information from pro-PREQ.");
gr = IEEE80211_MALLOC(ALIGN(sizeof(struct ieee80211_mesh_gate_route)),
M_80211_MESH_GT_RT,
IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
IEEE80211_ADDR_COPY(gr->gr_addr, addr);
TAILQ_INSERT_TAIL(&ms->ms_known_gates, gr, gr_next);
}
gr->gr_route = rt;
/* TODO: link from path route to gate route */
MESH_RT_UNLOCK(ms);
return gr;
}
/*
* Helper function to note the Mesh Peer Link FSM change.
*/
static void
mesh_linkchange(struct ieee80211_node *ni, enum ieee80211_mesh_mlstate state)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
#ifdef IEEE80211_DEBUG
static const char *meshlinkstates[] = {
[IEEE80211_NODE_MESH_IDLE] = "IDLE",
[IEEE80211_NODE_MESH_OPENSNT] = "OPEN SENT",
[IEEE80211_NODE_MESH_OPENRCV] = "OPEN RECEIVED",
[IEEE80211_NODE_MESH_CONFIRMRCV] = "CONFIRM RECEIVED",
[IEEE80211_NODE_MESH_ESTABLISHED] = "ESTABLISHED",
[IEEE80211_NODE_MESH_HOLDING] = "HOLDING"
};
#endif
IEEE80211_NOTE(vap, IEEE80211_MSG_MESH,
ni, "peer link: %s -> %s",
meshlinkstates[ni->ni_mlstate], meshlinkstates[state]);
/* track neighbor count */
if (state == IEEE80211_NODE_MESH_ESTABLISHED &&
ni->ni_mlstate != IEEE80211_NODE_MESH_ESTABLISHED) {
KASSERT(ms->ms_neighbors < 65535, ("neighbor count overflow"));
ms->ms_neighbors++;
ieee80211_beacon_notify(vap, IEEE80211_BEACON_MESHCONF);
} else if (ni->ni_mlstate == IEEE80211_NODE_MESH_ESTABLISHED &&
state != IEEE80211_NODE_MESH_ESTABLISHED) {
KASSERT(ms->ms_neighbors > 0, ("neighbor count 0"));
ms->ms_neighbors--;
ieee80211_beacon_notify(vap, IEEE80211_BEACON_MESHCONF);
}
ni->ni_mlstate = state;
switch (state) {
case IEEE80211_NODE_MESH_HOLDING:
ms->ms_ppath->mpp_peerdown(ni);
break;
case IEEE80211_NODE_MESH_ESTABLISHED:
ieee80211_mesh_discover(vap, ni->ni_macaddr, NULL);
break;
default:
break;
}
}
/*
* Helper function to generate a unique local ID required for mesh
* peer establishment.
*/
static void
mesh_checkid(void *arg, struct ieee80211_node *ni)
{
uint16_t *r = arg;
if (*r == ni->ni_mllid)
*(uint16_t *)arg = 0;
}
static uint32_t
mesh_generateid(struct ieee80211vap *vap)
{
int maxiter = 4;
uint16_t r;
do {
get_random_bytes(&r, 2);
ieee80211_iterate_nodes(&vap->iv_ic->ic_sta, mesh_checkid, &r);
maxiter--;
} while (r == 0 && maxiter > 0);
return r;
}
/*
* Verifies if we already received this packet by checking its
* sequence number.
* Returns 0 if the frame is to be accepted, 1 otherwise.
*/
static int
mesh_checkpseq(struct ieee80211vap *vap,
const uint8_t source[IEEE80211_ADDR_LEN], uint32_t seq)
{
struct ieee80211_mesh_route *rt;
rt = ieee80211_mesh_rt_find(vap, source);
if (rt == NULL) {
rt = ieee80211_mesh_rt_add(vap, source);
if (rt == NULL) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, source,
"%s", "add mcast route failed");
vap->iv_stats.is_mesh_rtaddfailed++;
return 1;
}
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, source,
"add mcast route, mesh seqno %d", seq);
rt->rt_lastmseq = seq;
return 0;
}
if (IEEE80211_MESH_SEQ_GEQ(rt->rt_lastmseq, seq)) {
return 1;
} else {
rt->rt_lastmseq = seq;
return 0;
}
}
/*
* Iterate the routing table and locate the next hop.
*/
struct ieee80211_node *
ieee80211_mesh_find_txnode(struct ieee80211vap *vap,
const uint8_t dest[IEEE80211_ADDR_LEN])
{
struct ieee80211_mesh_route *rt;
rt = ieee80211_mesh_rt_find(vap, dest);
if (rt == NULL)
return NULL;
if ((rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest,
"%s: !valid, flags 0x%x", __func__, rt->rt_flags);
/* XXX stat */
return NULL;
}
if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
rt = ieee80211_mesh_rt_find(vap, rt->rt_mesh_gate);
if (rt == NULL) return NULL;
if ((rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, dest,
"%s: meshgate !valid, flags 0x%x", __func__,
rt->rt_flags);
/* XXX stat */
return NULL;
}
}
return ieee80211_find_txnode(vap, rt->rt_nexthop);
}
static void
mesh_transmit_to_gate(struct ieee80211vap *vap, struct mbuf *m,
struct ieee80211_mesh_route *rt_gate)
{
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211_node *ni;
IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
ni = ieee80211_mesh_find_txnode(vap, rt_gate->rt_dest);
if (ni == NULL) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
return;
}
/*
* Send through the VAP packet transmit path.
* This consumes the node ref grabbed above and
* the mbuf, regardless of whether there's a problem
* or not.
*/
(void) ieee80211_vap_pkt_send_dest(vap, m, ni);
}
/*
* Forward the queued frames to known valid mesh gates.
* Assume destination to be outside the MBSS (i.e. proxy entry),
* If no valid mesh gates are known silently discard queued frames.
* After transmitting frames to all known valid mesh gates, this route
* will be marked invalid, and a new path discovery will happen in the hopes
* that (at least) one of the mesh gates have a new proxy entry for us to use.
*/
void
ieee80211_mesh_forward_to_gates(struct ieee80211vap *vap,
struct ieee80211_mesh_route *rt_dest)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt_gate;
struct ieee80211_mesh_gate_route *gr = NULL, *gr_next;
struct mbuf *m, *mcopy, *next;
IEEE80211_TX_UNLOCK_ASSERT(ic);
KASSERT( rt_dest->rt_flags == IEEE80211_MESHRT_FLAGS_DISCOVER,
("Route is not marked with IEEE80211_MESHRT_FLAGS_DISCOVER"));
/* XXX: send to more than one valid mash gate */
MESH_RT_LOCK(ms);
m = ieee80211_ageq_remove(&ic->ic_stageq,
(struct ieee80211_node *)(uintptr_t)
ieee80211_mac_hash(ic, rt_dest->rt_dest));
TAILQ_FOREACH_SAFE(gr, &ms->ms_known_gates, gr_next, gr_next) {
rt_gate = gr->gr_route;
if (rt_gate == NULL) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_HWMP,
rt_dest->rt_dest,
"mesh gate with no path %6D",
gr->gr_addr, ":");
continue;
}
if ((rt_gate->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) == 0)
continue;
KASSERT(rt_gate->rt_flags & IEEE80211_MESHRT_FLAGS_GATE,
("route not marked as a mesh gate"));
KASSERT((rt_gate->rt_flags &
IEEE80211_MESHRT_FLAGS_PROXY) == 0,
("found mesh gate that is also marked porxy"));
/*
* convert route to a proxy route gated by the current
* mesh gate, this is needed so encap can built data
* frame with correct address.
*/
rt_dest->rt_flags = IEEE80211_MESHRT_FLAGS_PROXY |
IEEE80211_MESHRT_FLAGS_VALID;
rt_dest->rt_ext_seq = 1; /* random value */
IEEE80211_ADDR_COPY(rt_dest->rt_mesh_gate, rt_gate->rt_dest);
IEEE80211_ADDR_COPY(rt_dest->rt_nexthop, rt_gate->rt_nexthop);
rt_dest->rt_metric = rt_gate->rt_metric;
rt_dest->rt_nhops = rt_gate->rt_nhops;
ieee80211_mesh_rt_update(rt_dest, ms->ms_ppath->mpp_inact);
MESH_RT_UNLOCK(ms);
/* XXX: lock?? */
mcopy = m_dup(m, M_NOWAIT);
for (; mcopy != NULL; mcopy = next) {
next = mcopy->m_nextpkt;
mcopy->m_nextpkt = NULL;
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_HWMP,
rt_dest->rt_dest,
"flush queued frame %p len %d", mcopy,
mcopy->m_pkthdr.len);
mesh_transmit_to_gate(vap, mcopy, rt_gate);
}
MESH_RT_LOCK(ms);
}
rt_dest->rt_flags = 0; /* Mark invalid */
m_freem(m);
MESH_RT_UNLOCK(ms);
}
/*
* Forward the specified frame.
* Decrement the TTL and set TA to our MAC address.
*/
static void
mesh_forward(struct ieee80211vap *vap, struct mbuf *m,
const struct ieee80211_meshcntl *mc)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ifnet *ifp = vap->iv_ifp;
const struct ieee80211_frame *wh =
mtod(m, const struct ieee80211_frame *);
struct mbuf *mcopy;
struct ieee80211_meshcntl *mccopy;
struct ieee80211_frame *whcopy;
struct ieee80211_node *ni;
int err;
/* This is called from the RX path - don't hold this lock */
IEEE80211_TX_UNLOCK_ASSERT(ic);
/*
* mesh ttl of 1 means we are the last one receiving it,
* according to amendment we decrement and then check if
* 0, if so we dont forward.
*/
if (mc->mc_ttl < 1) {
IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh,
"%s", "frame not fwd'd, ttl 1");
vap->iv_stats.is_mesh_fwd_ttl++;
return;
}
if (!(ms->ms_flags & IEEE80211_MESHFLAGS_FWD)) {
IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh,
"%s", "frame not fwd'd, fwding disabled");
vap->iv_stats.is_mesh_fwd_disabled++;
return;
}
mcopy = m_dup(m, M_NOWAIT);
if (mcopy == NULL) {
IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh,
"%s", "frame not fwd'd, cannot dup");
vap->iv_stats.is_mesh_fwd_nobuf++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return;
}
mcopy = m_pullup(mcopy, ieee80211_hdrspace(ic, wh) +
sizeof(struct ieee80211_meshcntl));
if (mcopy == NULL) {
IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh,
"%s", "frame not fwd'd, too short");
vap->iv_stats.is_mesh_fwd_tooshort++;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(mcopy);
return;
}
whcopy = mtod(mcopy, struct ieee80211_frame *);
mccopy = (struct ieee80211_meshcntl *)
(mtod(mcopy, uint8_t *) + ieee80211_hdrspace(ic, wh));
/* XXX clear other bits? */
whcopy->i_fc[1] &= ~IEEE80211_FC1_RETRY;
IEEE80211_ADDR_COPY(whcopy->i_addr2, vap->iv_myaddr);
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
ni = ieee80211_ref_node(vap->iv_bss);
mcopy->m_flags |= M_MCAST;
} else {
ni = ieee80211_mesh_find_txnode(vap, whcopy->i_addr3);
if (ni == NULL) {
/*
* [Optional] any of the following three actions:
* o silently discard
* o trigger a path discovery
* o inform TA that meshDA is unknown.
*/
IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_MESH, wh,
"%s", "frame not fwd'd, no path");
ms->ms_ppath->mpp_senderror(vap, whcopy->i_addr3, NULL,
IEEE80211_REASON_MESH_PERR_NO_FI);
vap->iv_stats.is_mesh_fwd_nopath++;
m_freem(mcopy);
return;
}
IEEE80211_ADDR_COPY(whcopy->i_addr1, ni->ni_macaddr);
}
KASSERT(mccopy->mc_ttl > 0, ("%s called with wrong ttl", __func__));
mccopy->mc_ttl--;
/* XXX calculate priority so drivers can find the tx queue */
M_WME_SETAC(mcopy, WME_AC_BE);
/* XXX do we know m_nextpkt is NULL? */
MPASS((mcopy->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
mcopy->m_pkthdr.rcvif = (void *) ni;
/*
* XXX this bypasses all of the VAP TX handling; it passes frames
* directly to the parent interface.
*
* Because of this, there's no TX lock being held as there's no
* encaps state being used.
*
* Doing a direct parent transmit may not be the correct thing
* to do here; we'll have to re-think this soon.
*/
IEEE80211_TX_LOCK(ic);
err = ieee80211_parent_xmitpkt(ic, mcopy);
IEEE80211_TX_UNLOCK(ic);
if (!err)
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
}
static struct mbuf *
mesh_decap(struct ieee80211vap *vap, struct mbuf *m, int hdrlen, int meshdrlen)
{
#define WHDIR(wh) ((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK)
#define MC01(mc) ((const struct ieee80211_meshcntl_ae01 *)mc)
uint8_t b[sizeof(struct ieee80211_qosframe_addr4) +
sizeof(struct ieee80211_meshcntl_ae10)];
const struct ieee80211_qosframe_addr4 *wh;
const struct ieee80211_meshcntl_ae10 *mc;
struct ether_header *eh;
struct llc *llc;
int ae;
if (m->m_len < hdrlen + sizeof(*llc) &&
(m = m_pullup(m, hdrlen + sizeof(*llc))) == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
"discard data frame: %s", "m_pullup failed");
vap->iv_stats.is_rx_tooshort++;
return NULL;
}
memcpy(b, mtod(m, caddr_t), hdrlen);
wh = (const struct ieee80211_qosframe_addr4 *)&b[0];
mc = (const struct ieee80211_meshcntl_ae10 *)&b[hdrlen - meshdrlen];
KASSERT(WHDIR(wh) == IEEE80211_FC1_DIR_FROMDS ||
WHDIR(wh) == IEEE80211_FC1_DIR_DSTODS,
("bogus dir, fc 0x%x:0x%x", wh->i_fc[0], wh->i_fc[1]));
llc = (struct llc *)(mtod(m, caddr_t) + hdrlen);
if (llc->llc_dsap == LLC_SNAP_LSAP && llc->llc_ssap == LLC_SNAP_LSAP &&
llc->llc_control == LLC_UI && llc->llc_snap.org_code[0] == 0 &&
llc->llc_snap.org_code[1] == 0 && llc->llc_snap.org_code[2] == 0 &&
/* NB: preserve AppleTalk frames that have a native SNAP hdr */
!(llc->llc_snap.ether_type == htons(ETHERTYPE_AARP) ||
llc->llc_snap.ether_type == htons(ETHERTYPE_IPX))) {
m_adj(m, hdrlen + sizeof(struct llc) - sizeof(*eh));
llc = NULL;
} else {
m_adj(m, hdrlen - sizeof(*eh));
}
eh = mtod(m, struct ether_header *);
ae = mc->mc_flags & IEEE80211_MESH_AE_MASK;
if (WHDIR(wh) == IEEE80211_FC1_DIR_FROMDS) {
IEEE80211_ADDR_COPY(eh->ether_dhost, wh->i_addr1);
if (ae == IEEE80211_MESH_AE_00) {
IEEE80211_ADDR_COPY(eh->ether_shost, wh->i_addr3);
} else if (ae == IEEE80211_MESH_AE_01) {
IEEE80211_ADDR_COPY(eh->ether_shost,
MC01(mc)->mc_addr4);
} else {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
(const struct ieee80211_frame *)wh, NULL,
"bad AE %d", ae);
vap->iv_stats.is_mesh_badae++;
m_freem(m);
return NULL;
}
} else {
if (ae == IEEE80211_MESH_AE_00) {
IEEE80211_ADDR_COPY(eh->ether_dhost, wh->i_addr3);
IEEE80211_ADDR_COPY(eh->ether_shost, wh->i_addr4);
} else if (ae == IEEE80211_MESH_AE_10) {
IEEE80211_ADDR_COPY(eh->ether_dhost, mc->mc_addr5);
IEEE80211_ADDR_COPY(eh->ether_shost, mc->mc_addr6);
} else {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
(const struct ieee80211_frame *)wh, NULL,
"bad AE %d", ae);
vap->iv_stats.is_mesh_badae++;
m_freem(m);
return NULL;
}
}
#ifndef __NO_STRICT_ALIGNMENT
if (!ALIGNED_POINTER(mtod(m, caddr_t) + sizeof(*eh), uint32_t)) {
m = ieee80211_realign(vap, m, sizeof(*eh));
if (m == NULL)
return NULL;
}
#endif /* !__NO_STRICT_ALIGNMENT */
if (llc != NULL) {
eh = mtod(m, struct ether_header *);
eh->ether_type = htons(m->m_pkthdr.len - sizeof(*eh));
}
return m;
#undef WDIR
#undef MC01
}
/*
* Return non-zero if the unicast mesh data frame should be processed
* locally. Frames that are not proxy'd have our address, otherwise
* we need to consult the routing table to look for a proxy entry.
*/
static __inline int
mesh_isucastforme(struct ieee80211vap *vap, const struct ieee80211_frame *wh,
const struct ieee80211_meshcntl *mc)
{
int ae = mc->mc_flags & 3;
KASSERT((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS,
("bad dir 0x%x:0x%x", wh->i_fc[0], wh->i_fc[1]));
KASSERT(ae == IEEE80211_MESH_AE_00 || ae == IEEE80211_MESH_AE_10,
("bad AE %d", ae));
if (ae == IEEE80211_MESH_AE_10) { /* ucast w/ proxy */
const struct ieee80211_meshcntl_ae10 *mc10 =
(const struct ieee80211_meshcntl_ae10 *) mc;
struct ieee80211_mesh_route *rt =
ieee80211_mesh_rt_find(vap, mc10->mc_addr5);
/* check for proxy route to ourself */
return (rt != NULL &&
(rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY));
} else /* ucast w/o proxy */
return IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_myaddr);
}
/*
* Verifies transmitter, updates lifetime, precursor list and forwards data.
* > 0 means we have forwarded data and no need to process locally
* == 0 means we want to process locally (and we may have forwarded data
* < 0 means there was an error and data should be discarded
*/
static int
mesh_recv_indiv_data_to_fwrd(struct ieee80211vap *vap, struct mbuf *m,
struct ieee80211_frame *wh, const struct ieee80211_meshcntl *mc)
{
struct ieee80211_qosframe_addr4 *qwh;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt_meshda, *rt_meshsa;
/* This is called from the RX path - don't hold this lock */
IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
qwh = (struct ieee80211_qosframe_addr4 *)wh;
/*
* TODO:
* o verify addr2 is a legitimate transmitter
* o lifetime of precursor of addr3 (addr2) is max(init, curr)
* o lifetime of precursor of addr4 (nexthop) is max(init, curr)
*/
/* set lifetime of addr3 (meshDA) to initial value */
rt_meshda = ieee80211_mesh_rt_find(vap, qwh->i_addr3);
if (rt_meshda == NULL) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, qwh->i_addr2,
"no route to meshDA(%6D)", qwh->i_addr3, ":");
/*
* [Optional] any of the following three actions:
* o silently discard [X]
* o trigger a path discovery [ ]
* o inform TA that meshDA is unknown. [ ]
*/
/* XXX: stats */
return (-1);
}
ieee80211_mesh_rt_update(rt_meshda, ticks_to_msecs(
ms->ms_ppath->mpp_inact));
/* set lifetime of addr4 (meshSA) to initial value */
rt_meshsa = ieee80211_mesh_rt_find(vap, qwh->i_addr4);
KASSERT(rt_meshsa != NULL, ("no route"));
ieee80211_mesh_rt_update(rt_meshsa, ticks_to_msecs(
ms->ms_ppath->mpp_inact));
mesh_forward(vap, m, mc);
return (1); /* dont process locally */
}
/*
* Verifies transmitter, updates lifetime, precursor list and process data
* locally, if data is proxy with AE = 10 it could mean data should go
* on another mesh path or data should be forwarded to the DS.
*
* > 0 means we have forwarded data and no need to process locally
* == 0 means we want to process locally (and we may have forwarded data
* < 0 means there was an error and data should be discarded
*/
static int
mesh_recv_indiv_data_to_me(struct ieee80211vap *vap, struct mbuf *m,
struct ieee80211_frame *wh, const struct ieee80211_meshcntl *mc)
{
struct ieee80211_qosframe_addr4 *qwh;
const struct ieee80211_meshcntl_ae10 *mc10;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_route *rt;
int ae;
/* This is called from the RX path - don't hold this lock */
IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
qwh = (struct ieee80211_qosframe_addr4 *)wh;
mc10 = (const struct ieee80211_meshcntl_ae10 *)mc;
/*
* TODO:
* o verify addr2 is a legitimate transmitter
* o lifetime of precursor entry is max(init, curr)
*/
/* set lifetime of addr4 (meshSA) to initial value */
rt = ieee80211_mesh_rt_find(vap, qwh->i_addr4);
KASSERT(rt != NULL, ("no route"));
ieee80211_mesh_rt_update(rt, ticks_to_msecs(ms->ms_ppath->mpp_inact));
rt = NULL;
ae = mc10->mc_flags & IEEE80211_MESH_AE_MASK;
KASSERT(ae == IEEE80211_MESH_AE_00 ||
ae == IEEE80211_MESH_AE_10, ("bad AE %d", ae));
if (ae == IEEE80211_MESH_AE_10) {
if (IEEE80211_ADDR_EQ(mc10->mc_addr5, qwh->i_addr3)) {
return (0); /* process locally */
}
rt = ieee80211_mesh_rt_find(vap, mc10->mc_addr5);
if (rt != NULL &&
(rt->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) &&
(rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) == 0) {
/*
* Forward on another mesh-path, according to
* amendment as specified in 9.32.4.1
*/
IEEE80211_ADDR_COPY(qwh->i_addr3, mc10->mc_addr5);
mesh_forward(vap, m,
(const struct ieee80211_meshcntl *)mc10);
return (1); /* dont process locally */
}
/*
* All other cases: forward of MSDUs from the MBSS to DS indiv.
* addressed according to 13.11.3.2.
*/
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, qwh->i_addr2,
"forward frame to DS, SA(%6D) DA(%6D)",
mc10->mc_addr6, ":", mc10->mc_addr5, ":");
}
return (0); /* process locally */
}
/*
* Try to forward the group addressed data on to other mesh STAs, and
* also to the DS.
*
* > 0 means we have forwarded data and no need to process locally
* == 0 means we want to process locally (and we may have forwarded data
* < 0 means there was an error and data should be discarded
*/
static int
mesh_recv_group_data(struct ieee80211vap *vap, struct mbuf *m,
struct ieee80211_frame *wh, const struct ieee80211_meshcntl *mc)
{
#define MC01(mc) ((const struct ieee80211_meshcntl_ae01 *)mc)
struct ieee80211_mesh_state *ms = vap->iv_mesh;
/* This is called from the RX path - don't hold this lock */
IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
mesh_forward(vap, m, mc);
if(mc->mc_ttl > 0) {
if (mc->mc_flags & IEEE80211_MESH_AE_01) {
/*
* Forward of MSDUs from the MBSS to DS group addressed
* (according to 13.11.3.2)
* This happens by delivering the packet, and a bridge
* will sent it on another port member.
*/
if (ms->ms_flags & IEEE80211_MESHFLAGS_GATE &&
ms->ms_flags & IEEE80211_MESHFLAGS_FWD) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH,
MC01(mc)->mc_addr4, "%s",
"forward from MBSS to the DS");
}
}
}
return (0); /* process locally */
#undef MC01
}
static int
mesh_input(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_rx_stats *rxs, int rssi, int nf)
{
#define HAS_SEQ(type) ((type & 0x4) == 0)
#define MC01(mc) ((const struct ieee80211_meshcntl_ae01 *)mc)
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211_frame *wh;
const struct ieee80211_meshcntl *mc;
int hdrspace, meshdrlen, need_tap, error;
uint8_t dir, type, subtype, ae;
uint32_t seq;
const uint8_t *addr;
uint8_t qos[2];
KASSERT(ni != NULL, ("null node"));
ni->ni_inact = ni->ni_inact_reload;
need_tap = 1; /* mbuf need to be tapped. */
type = -1; /* undefined */
/* This is called from the RX path - don't hold this lock */
IEEE80211_TX_UNLOCK_ASSERT(ic);
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_min)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, NULL,
"too short (1): len %u", m->m_pkthdr.len);
vap->iv_stats.is_rx_tooshort++;
goto out;
}
/*
* Bit of a cheat here, we use a pointer for a 3-address
* frame format but don't reference fields past outside
* ieee80211_frame_min w/o first validating the data is
* present.
*/
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
IEEE80211_FC0_VERSION_0) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, NULL, "wrong version %x", wh->i_fc[0]);
vap->iv_stats.is_rx_badversion++;
goto err;
}
dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
IEEE80211_RSSI_LPF(ni->ni_avgrssi, rssi);
ni->ni_noise = nf;
if (HAS_SEQ(type)) {
uint8_t tid = ieee80211_gettid(wh);
if (IEEE80211_QOS_HAS_SEQ(wh) &&
TID_TO_WME_AC(tid) >= WME_AC_VI)
ic->ic_wme.wme_hipri_traffic++;
if (! ieee80211_check_rxseq(ni, wh, wh->i_addr1, rxs))
goto out;
}
}
#ifdef IEEE80211_DEBUG
/*
* It's easier, but too expensive, to simulate different mesh
* topologies by consulting the ACL policy very early, so do this
* only under DEBUG.
*
* NB: this check is also done upon peering link initiation.
*/
if (vap->iv_acl != NULL && !vap->iv_acl->iac_check(vap, wh)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ACL,
wh, NULL, "%s", "disallowed by ACL");
vap->iv_stats.is_rx_acl++;
goto out;
}
#endif
switch (type) {
case IEEE80211_FC0_TYPE_DATA:
if (ni == vap->iv_bss)
goto out;
if (ni->ni_mlstate != IEEE80211_NODE_MESH_ESTABLISHED) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_MESH,
ni->ni_macaddr, NULL,
"peer link not yet established (%d)",
ni->ni_mlstate);
vap->iv_stats.is_mesh_nolink++;
goto out;
}
if (dir != IEEE80211_FC1_DIR_FROMDS &&
dir != IEEE80211_FC1_DIR_DSTODS) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "data", "incorrect dir 0x%x", dir);
vap->iv_stats.is_rx_wrongdir++;
goto err;
}
/* All Mesh data frames are QoS subtype */
if (!HAS_SEQ(type)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "data", "incorrect subtype 0x%x", subtype);
vap->iv_stats.is_rx_badsubtype++;
goto err;
}
/*
* Next up, any fragmentation.
* XXX: we defrag before we even try to forward,
* Mesh Control field is not present in sub-sequent
* fragmented frames. This is in contrast to Draft 4.0.
*/
hdrspace = ieee80211_hdrspace(ic, wh);
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
m = ieee80211_defrag(ni, m, hdrspace);
if (m == NULL) {
/* Fragment dropped or frame not complete yet */
goto out;
}
}
wh = mtod(m, struct ieee80211_frame *); /* NB: after defrag */
/*
* Now we have a complete Mesh Data frame.
*/
/*
* Only fromDStoDS data frames use 4 address qos frames
* as specified in amendment. Otherwise addr4 is located
* in the Mesh Control field and a 3 address qos frame
* is used.
*/
*(uint16_t *)qos = *(uint16_t *)ieee80211_getqos(wh);
/*
* NB: The mesh STA sets the Mesh Control Present
* subfield to 1 in the Mesh Data frame containing
* an unfragmented MSDU, an A-MSDU, or the first
* fragment of an MSDU.
* After defrag it should always be present.
*/
if (!(qos[1] & IEEE80211_QOS_MC)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_MESH,
ni->ni_macaddr, NULL,
"%s", "Mesh control field not present");
vap->iv_stats.is_rx_elem_missing++; /* XXX: kinda */
goto err;
}
/* pull up enough to get to the mesh control */
if (m->m_len < hdrspace + sizeof(struct ieee80211_meshcntl) &&
(m = m_pullup(m, hdrspace +
sizeof(struct ieee80211_meshcntl))) == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, NULL,
"data too short: expecting %u", hdrspace);
vap->iv_stats.is_rx_tooshort++;
goto out; /* XXX */
}
/*
* Now calculate the full extent of the headers. Note
* mesh_decap will pull up anything we didn't get
* above when it strips the 802.11 headers.
*/
mc = (const struct ieee80211_meshcntl *)
(mtod(m, const uint8_t *) + hdrspace);
ae = mc->mc_flags & IEEE80211_MESH_AE_MASK;
meshdrlen = sizeof(struct ieee80211_meshcntl) +
ae * IEEE80211_ADDR_LEN;
hdrspace += meshdrlen;
/* pull complete hdrspace = ieee80211_hdrspace + meshcontrol */
if ((meshdrlen > sizeof(struct ieee80211_meshcntl)) &&
(m->m_len < hdrspace) &&
((m = m_pullup(m, hdrspace)) == NULL)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, NULL,
"data too short: expecting %u", hdrspace);
vap->iv_stats.is_rx_tooshort++;
goto out; /* XXX */
}
/* XXX: are we sure there is no reallocating after m_pullup? */
seq = le32dec(mc->mc_seq);
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
addr = wh->i_addr3;
else if (ae == IEEE80211_MESH_AE_01)
addr = MC01(mc)->mc_addr4;
else
addr = ((struct ieee80211_qosframe_addr4 *)wh)->i_addr4;
if (IEEE80211_ADDR_EQ(vap->iv_myaddr, addr)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
addr, "data", "%s", "not to me");
vap->iv_stats.is_rx_wrongbss++; /* XXX kinda */
goto out;
}
if (mesh_checkpseq(vap, addr, seq) != 0) {
vap->iv_stats.is_rx_dup++;
goto out;
}
/* This code "routes" the frame to the right control path */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
if (IEEE80211_ADDR_EQ(vap->iv_myaddr, wh->i_addr3))
error =
mesh_recv_indiv_data_to_me(vap, m, wh, mc);
else if (IEEE80211_IS_MULTICAST(wh->i_addr3))
error = mesh_recv_group_data(vap, m, wh, mc);
else
error = mesh_recv_indiv_data_to_fwrd(vap, m,
wh, mc);
} else
error = mesh_recv_group_data(vap, m, wh, mc);
if (error < 0)
goto err;
else if (error > 0)
goto out;
if (ieee80211_radiotap_active_vap(vap))
ieee80211_radiotap_rx(vap, m);
need_tap = 0;
/*
* Finally, strip the 802.11 header.
*/
m = mesh_decap(vap, m, hdrspace, meshdrlen);
if (m == NULL) {
/* XXX mask bit to check for both */
/* don't count Null data frames as errors */
if (subtype == IEEE80211_FC0_SUBTYPE_NODATA ||
subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL)
goto out;
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT,
ni->ni_macaddr, "data", "%s", "decap error");
vap->iv_stats.is_rx_decap++;
IEEE80211_NODE_STAT(ni, rx_decap);
goto err;
}
if (qos[0] & IEEE80211_QOS_AMSDU) {
m = ieee80211_decap_amsdu(ni, m);
if (m == NULL)
return IEEE80211_FC0_TYPE_DATA;
}
ieee80211_deliver_data(vap, ni, m);
return type;
case IEEE80211_FC0_TYPE_MGT:
vap->iv_stats.is_rx_mgmt++;
IEEE80211_NODE_STAT(ni, rx_mgmt);
if (dir != IEEE80211_FC1_DIR_NODS) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "mgt", "incorrect dir 0x%x", dir);
vap->iv_stats.is_rx_wrongdir++;
goto err;
}
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "mgt", "too short: len %u",
m->m_pkthdr.len);
vap->iv_stats.is_rx_tooshort++;
goto out;
}
#ifdef IEEE80211_DEBUG
if ((ieee80211_msg_debug(vap) &&
(vap->iv_ic->ic_flags & IEEE80211_F_SCAN)) ||
ieee80211_msg_dumppkts(vap)) {
if_printf(ifp, "received %s from %s rssi %d\n",
ieee80211_mgt_subtype_name(subtype),
ether_sprintf(wh->i_addr2), rssi);
}
#endif
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "%s", "WEP set but not permitted");
vap->iv_stats.is_rx_mgtdiscard++; /* XXX */
goto out;
}
vap->iv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
goto out;
case IEEE80211_FC0_TYPE_CTL:
vap->iv_stats.is_rx_ctl++;
IEEE80211_NODE_STAT(ni, rx_ctrl);
goto out;
default:
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, "bad", "frame type 0x%x", type);
/* should not come here */
break;
}
err:
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
out:
if (m != NULL) {
if (need_tap && ieee80211_radiotap_active_vap(vap))
ieee80211_radiotap_rx(vap, m);
m_freem(m);
}
return type;
#undef HAS_SEQ
#undef MC01
}
static void
mesh_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m0, int subtype,
const struct ieee80211_rx_stats *rxs, int rssi, int nf)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_channel *rxchan = ic->ic_curchan;
struct ieee80211_frame *wh;
struct ieee80211_mesh_route *rt;
uint8_t *frm, *efrm;
wh = mtod(m0, struct ieee80211_frame *);
frm = (uint8_t *)&wh[1];
efrm = mtod(m0, uint8_t *) + m0->m_len;
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
case IEEE80211_FC0_SUBTYPE_BEACON:
{
struct ieee80211_scanparams scan;
struct ieee80211_channel *c;
/*
* We process beacon/probe response
* frames to discover neighbors.
*/
if (rxs != NULL) {
c = ieee80211_lookup_channel_rxstatus(vap, rxs);
if (c != NULL)
rxchan = c;
}
if (ieee80211_parse_beacon(ni, m0, rxchan, &scan) != 0)
return;
/*
* Count frame now that we know it's to be processed.
*/
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
vap->iv_stats.is_rx_beacon++; /* XXX remove */
IEEE80211_NODE_STAT(ni, rx_beacons);
} else
IEEE80211_NODE_STAT(ni, rx_proberesp);
/*
* If scanning, just pass information to the scan module.
*/
if (ic->ic_flags & IEEE80211_F_SCAN) {
if (ic->ic_flags_ext & IEEE80211_FEXT_PROBECHAN) {
/*
* Actively scanning a channel marked passive;
* send a probe request now that we know there
* is 802.11 traffic present.
*
* XXX check if the beacon we recv'd gives
* us what we need and suppress the probe req
*/
ieee80211_probe_curchan(vap, 1);
ic->ic_flags_ext &= ~IEEE80211_FEXT_PROBECHAN;
}
ieee80211_add_scan(vap, rxchan, &scan, wh,
subtype, rssi, nf);
return;
}
/* The rest of this code assumes we are running */
if (vap->iv_state != IEEE80211_S_RUN)
return;
/*
* Ignore non-mesh STAs.
*/
if ((scan.capinfo &
(IEEE80211_CAPINFO_ESS|IEEE80211_CAPINFO_IBSS)) ||
scan.meshid == NULL || scan.meshconf == NULL) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "beacon", "%s", "not a mesh sta");
vap->iv_stats.is_mesh_wrongmesh++;
return;
}
/*
* Ignore STAs for other mesh networks.
*/
if (memcmp(scan.meshid+2, ms->ms_id, ms->ms_idlen) != 0 ||
mesh_verify_meshconf(vap, scan.meshconf)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, "beacon", "%s", "not for our mesh");
vap->iv_stats.is_mesh_wrongmesh++;
return;
}
/*
* Peer only based on the current ACL policy.
*/
if (vap->iv_acl != NULL && !vap->iv_acl->iac_check(vap, wh)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ACL,
wh, NULL, "%s", "disallowed by ACL");
vap->iv_stats.is_rx_acl++;
return;
}
/*
* Do neighbor discovery.
*/
if (!IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr)) {
/*
* Create a new entry in the neighbor table.
*/
ni = ieee80211_add_neighbor(vap, wh, &scan);
}
/*
* Automatically peer with discovered nodes if possible.
*/
if (ni != vap->iv_bss &&
(ms->ms_flags & IEEE80211_MESHFLAGS_AP)) {
switch (ni->ni_mlstate) {
case IEEE80211_NODE_MESH_IDLE:
{
uint16_t args[1];
/* Wait for backoff callout to reset counter */
if (ni->ni_mlhcnt >= ieee80211_mesh_maxholding)
return;
ni->ni_mlpid = mesh_generateid(vap);
if (ni->ni_mlpid == 0)
return;
mesh_linkchange(ni, IEEE80211_NODE_MESH_OPENSNT);
args[0] = ni->ni_mlpid;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_OPEN, args);
ni->ni_mlrcnt = 0;
mesh_peer_timeout_setup(ni);
break;
}
case IEEE80211_NODE_MESH_ESTABLISHED:
{
/*
* Valid beacon from a peer mesh STA
* bump TA lifetime
*/
rt = ieee80211_mesh_rt_find(vap, wh->i_addr2);
if(rt != NULL) {
ieee80211_mesh_rt_update(rt,
ticks_to_msecs(
ms->ms_ppath->mpp_inact));
}
break;
}
default:
break; /* ignore */
}
}
break;
}
case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
{
uint8_t *ssid, *meshid, *rates, *xrates;
if (vap->iv_state != IEEE80211_S_RUN) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "wrong state %s",
ieee80211_state_name[vap->iv_state]);
vap->iv_stats.is_rx_mgtdiscard++;
return;
}
if (IEEE80211_IS_MULTICAST(wh->i_addr2)) {
/* frame must be directed */
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "%s", "not unicast");
vap->iv_stats.is_rx_mgtdiscard++; /* XXX stat */
return;
}
/*
* prreq frame format
* [tlv] ssid
* [tlv] supported rates
* [tlv] extended supported rates
* [tlv] mesh id
*/
ssid = meshid = rates = xrates = NULL;
while (efrm - frm > 1) {
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
switch (*frm) {
case IEEE80211_ELEMID_SSID:
ssid = frm;
break;
case IEEE80211_ELEMID_RATES:
rates = frm;
break;
case IEEE80211_ELEMID_XRATES:
xrates = frm;
break;
case IEEE80211_ELEMID_MESHID:
meshid = frm;
break;
}
frm += frm[1] + 2;
}
IEEE80211_VERIFY_ELEMENT(ssid, IEEE80211_NWID_LEN, return);
IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE, return);
if (xrates != NULL)
IEEE80211_VERIFY_ELEMENT(xrates,
IEEE80211_RATE_MAXSIZE - rates[1], return);
if (meshid != NULL) {
IEEE80211_VERIFY_ELEMENT(meshid,
IEEE80211_MESHID_LEN, return);
/* NB: meshid, not ssid */
IEEE80211_VERIFY_SSID(vap->iv_bss, meshid, return);
}
/* XXX find a better class or define it's own */
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_INPUT, wh->i_addr2,
"%s", "recv probe req");
/*
* Some legacy 11b clients cannot hack a complete
* probe response frame. When the request includes
* only a bare-bones rate set, communicate this to
* the transmit side.
*/
ieee80211_send_proberesp(vap, wh->i_addr2, 0);
break;
}
case IEEE80211_FC0_SUBTYPE_ACTION:
case IEEE80211_FC0_SUBTYPE_ACTION_NOACK:
if (ni == vap->iv_bss) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "%s", "unknown node");
vap->iv_stats.is_rx_mgtdiscard++;
} else if (!IEEE80211_ADDR_EQ(vap->iv_myaddr, wh->i_addr1) &&
!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "%s", "not for us");
vap->iv_stats.is_rx_mgtdiscard++;
} else if (vap->iv_state != IEEE80211_S_RUN) {
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "wrong state %s",
ieee80211_state_name[vap->iv_state]);
vap->iv_stats.is_rx_mgtdiscard++;
} else {
if (ieee80211_parse_action(ni, m0) == 0)
(void)ic->ic_recv_action(ni, wh, frm, efrm);
}
break;
case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
case IEEE80211_FC0_SUBTYPE_TIMING_ADV:
case IEEE80211_FC0_SUBTYPE_ATIM:
case IEEE80211_FC0_SUBTYPE_DISASSOC:
case IEEE80211_FC0_SUBTYPE_AUTH:
case IEEE80211_FC0_SUBTYPE_DEAUTH:
IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT,
wh, NULL, "%s", "not handled");
vap->iv_stats.is_rx_mgtdiscard++;
break;
default:
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
wh, "mgt", "subtype 0x%x not handled", subtype);
vap->iv_stats.is_rx_badsubtype++;
break;
}
}
static void
mesh_recv_ctl(struct ieee80211_node *ni, struct mbuf *m, int subtype)
{
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_BAR:
ieee80211_recv_bar(ni, m);
break;
}
}
/*
* Parse meshpeering action ie's for MPM frames
*/
static const struct ieee80211_meshpeer_ie *
mesh_parse_meshpeering_action(struct ieee80211_node *ni,
const struct ieee80211_frame *wh, /* XXX for VERIFY_LENGTH */
const uint8_t *frm, const uint8_t *efrm,
struct ieee80211_meshpeer_ie *mp, uint8_t subtype)
{
struct ieee80211vap *vap = ni->ni_vap;
const struct ieee80211_meshpeer_ie *mpie;
uint16_t args[3];
const uint8_t *meshid, *meshconf;
uint8_t sendclose = 0; /* 1 = MPM frame rejected, close will be sent */
meshid = meshconf = NULL;
while (efrm - frm > 1) {
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return NULL);
switch (*frm) {
case IEEE80211_ELEMID_MESHID:
meshid = frm;
break;
case IEEE80211_ELEMID_MESHCONF:
meshconf = frm;
break;
case IEEE80211_ELEMID_MESHPEER:
mpie = (const struct ieee80211_meshpeer_ie *) frm;
memset(mp, 0, sizeof(*mp));
mp->peer_len = mpie->peer_len;
mp->peer_proto = le16dec(&mpie->peer_proto);
mp->peer_llinkid = le16dec(&mpie->peer_llinkid);
switch (subtype) {
case IEEE80211_ACTION_MESHPEERING_CONFIRM:
mp->peer_linkid =
le16dec(&mpie->peer_linkid);
break;
case IEEE80211_ACTION_MESHPEERING_CLOSE:
/* NB: peer link ID is optional */
if (mpie->peer_len ==
(IEEE80211_MPM_BASE_SZ + 2)) {
mp->peer_linkid = 0;
mp->peer_rcode =
le16dec(&mpie->peer_linkid);
} else {
mp->peer_linkid =
le16dec(&mpie->peer_linkid);
mp->peer_rcode =
le16dec(&mpie->peer_rcode);
}
break;
}
break;
}
frm += frm[1] + 2;
}
/*
* Verify the contents of the frame.
* If it fails validation, close the peer link.
*/
if (mesh_verify_meshpeer(vap, subtype, (const uint8_t *)mp)) {
sendclose = 1;
IEEE80211_DISCARD(vap,
IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH,
wh, NULL, "%s", "MPM validation failed");
}
/* If meshid is not the same reject any frames type. */
if (sendclose == 0 && mesh_verify_meshid(vap, meshid)) {
sendclose = 1;
IEEE80211_DISCARD(vap,
IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH,
wh, NULL, "%s", "not for our mesh");
if (subtype == IEEE80211_ACTION_MESHPEERING_CLOSE) {
/*
* Standard not clear about this, if we dont ignore
* there will be an endless loop between nodes sending
* CLOSE frames between each other with wrong meshid.
* Discard and timers will bring FSM to IDLE state.
*/
return NULL;
}
}
/*
* Close frames are accepted if meshid is the same.
* Verify the other two types.
*/
if (sendclose == 0 && subtype != IEEE80211_ACTION_MESHPEERING_CLOSE &&
mesh_verify_meshconf(vap, meshconf)) {
sendclose = 1;
IEEE80211_DISCARD(vap,
IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH,
wh, NULL, "%s", "configuration missmatch");
}
if (sendclose) {
vap->iv_stats.is_rx_mgtdiscard++;
switch (ni->ni_mlstate) {
case IEEE80211_NODE_MESH_IDLE:
case IEEE80211_NODE_MESH_ESTABLISHED:
case IEEE80211_NODE_MESH_HOLDING:
/* ignore */
break;
case IEEE80211_NODE_MESH_OPENSNT:
case IEEE80211_NODE_MESH_OPENRCV:
case IEEE80211_NODE_MESH_CONFIRMRCV:
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
/* Reason codes for rejection */
switch (subtype) {
case IEEE80211_ACTION_MESHPEERING_OPEN:
args[2] = IEEE80211_REASON_MESH_CPVIOLATION;
break;
case IEEE80211_ACTION_MESHPEERING_CONFIRM:
args[2] = IEEE80211_REASON_MESH_INCONS_PARAMS;
break;
}
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING);
mesh_peer_timeout_setup(ni);
break;
}
return NULL;
}
return (const struct ieee80211_meshpeer_ie *) mp;
}
static int
mesh_recv_action_meshpeering_open(struct ieee80211_node *ni,
const struct ieee80211_frame *wh,
const uint8_t *frm, const uint8_t *efrm)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_meshpeer_ie ie;
const struct ieee80211_meshpeer_ie *meshpeer;
uint16_t args[3];
/* +2+2 for action + code + capabilites */
meshpeer = mesh_parse_meshpeering_action(ni, wh, frm+2+2, efrm, &ie,
IEEE80211_ACTION_MESHPEERING_OPEN);
if (meshpeer == NULL) {
return 0;
}
/* XXX move up */
IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni,
"recv PEER OPEN, lid 0x%x", meshpeer->peer_llinkid);
switch (ni->ni_mlstate) {
case IEEE80211_NODE_MESH_IDLE:
/* Reject open request if reached our maximum neighbor count */
if (ms->ms_neighbors >= IEEE80211_MESH_MAX_NEIGHBORS) {
args[0] = meshpeer->peer_llinkid;
args[1] = 0;
args[2] = IEEE80211_REASON_MESH_MAX_PEERS;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
/* stay in IDLE state */
return (0);
}
/* Open frame accepted */
mesh_linkchange(ni, IEEE80211_NODE_MESH_OPENRCV);
ni->ni_mllid = meshpeer->peer_llinkid;
ni->ni_mlpid = mesh_generateid(vap);
if (ni->ni_mlpid == 0)
return 0; /* XXX */
args[0] = ni->ni_mlpid;
/* Announce we're open too... */
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_OPEN, args);
/* ...and confirm the link. */
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CONFIRM,
args);
mesh_peer_timeout_setup(ni);
break;
case IEEE80211_NODE_MESH_OPENRCV:
/* Wrong Link ID */
if (ni->ni_mllid != meshpeer->peer_llinkid) {
args[0] = ni->ni_mllid;
args[1] = ni->ni_mlpid;
args[2] = IEEE80211_REASON_PEER_LINK_CANCELED;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING);
mesh_peer_timeout_setup(ni);
break;
}
/* Duplicate open, confirm again. */
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CONFIRM,
args);
break;
case IEEE80211_NODE_MESH_OPENSNT:
ni->ni_mllid = meshpeer->peer_llinkid;
mesh_linkchange(ni, IEEE80211_NODE_MESH_OPENRCV);
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CONFIRM,
args);
/* NB: don't setup/clear any timeout */
break;
case IEEE80211_NODE_MESH_CONFIRMRCV:
if (ni->ni_mlpid != meshpeer->peer_linkid ||
ni->ni_mllid != meshpeer->peer_llinkid) {
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
args[2] = IEEE80211_REASON_PEER_LINK_CANCELED;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
mesh_linkchange(ni,
IEEE80211_NODE_MESH_HOLDING);
mesh_peer_timeout_setup(ni);
break;
}
mesh_linkchange(ni, IEEE80211_NODE_MESH_ESTABLISHED);
ni->ni_mllid = meshpeer->peer_llinkid;
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CONFIRM,
args);
mesh_peer_timeout_stop(ni);
break;
case IEEE80211_NODE_MESH_ESTABLISHED:
if (ni->ni_mllid != meshpeer->peer_llinkid) {
args[0] = ni->ni_mllid;
args[1] = ni->ni_mlpid;
args[2] = IEEE80211_REASON_PEER_LINK_CANCELED;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING);
mesh_peer_timeout_setup(ni);
break;
}
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CONFIRM,
args);
break;
case IEEE80211_NODE_MESH_HOLDING:
args[0] = ni->ni_mlpid;
args[1] = meshpeer->peer_llinkid;
/* Standard not clear about what the reaason code should be */
args[2] = IEEE80211_REASON_PEER_LINK_CANCELED;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
break;
}
return 0;
}
static int
mesh_recv_action_meshpeering_confirm(struct ieee80211_node *ni,
const struct ieee80211_frame *wh,
const uint8_t *frm, const uint8_t *efrm)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_meshpeer_ie ie;
const struct ieee80211_meshpeer_ie *meshpeer;
uint16_t args[3];
/* +2+2+2+2 for action + code + capabilites + status code + AID */
meshpeer = mesh_parse_meshpeering_action(ni, wh, frm+2+2+2+2, efrm, &ie,
IEEE80211_ACTION_MESHPEERING_CONFIRM);
if (meshpeer == NULL) {
return 0;
}
IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni,
"recv PEER CONFIRM, local id 0x%x, peer id 0x%x",
meshpeer->peer_llinkid, meshpeer->peer_linkid);
switch (ni->ni_mlstate) {
case IEEE80211_NODE_MESH_OPENRCV:
mesh_linkchange(ni, IEEE80211_NODE_MESH_ESTABLISHED);
mesh_peer_timeout_stop(ni);
break;
case IEEE80211_NODE_MESH_OPENSNT:
mesh_linkchange(ni, IEEE80211_NODE_MESH_CONFIRMRCV);
mesh_peer_timeout_setup(ni);
break;
case IEEE80211_NODE_MESH_HOLDING:
args[0] = ni->ni_mlpid;
args[1] = meshpeer->peer_llinkid;
/* Standard not clear about what the reaason code should be */
args[2] = IEEE80211_REASON_PEER_LINK_CANCELED;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
break;
case IEEE80211_NODE_MESH_CONFIRMRCV:
if (ni->ni_mllid != meshpeer->peer_llinkid) {
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
args[2] = IEEE80211_REASON_PEER_LINK_CANCELED;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING);
mesh_peer_timeout_setup(ni);
}
break;
default:
IEEE80211_DISCARD(vap,
IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH,
wh, NULL, "received confirm in invalid state %d",
ni->ni_mlstate);
vap->iv_stats.is_rx_mgtdiscard++;
break;
}
return 0;
}
static int
mesh_recv_action_meshpeering_close(struct ieee80211_node *ni,
const struct ieee80211_frame *wh,
const uint8_t *frm, const uint8_t *efrm)
{
struct ieee80211_meshpeer_ie ie;
const struct ieee80211_meshpeer_ie *meshpeer;
uint16_t args[3];
/* +2 for action + code */
meshpeer = mesh_parse_meshpeering_action(ni, wh, frm+2, efrm, &ie,
IEEE80211_ACTION_MESHPEERING_CLOSE);
if (meshpeer == NULL) {
return 0;
}
/*
* XXX: check reason code, for example we could receive
* IEEE80211_REASON_MESH_MAX_PEERS then we should not attempt
* to peer again.
*/
IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH,
ni, "%s", "recv PEER CLOSE");
switch (ni->ni_mlstate) {
case IEEE80211_NODE_MESH_IDLE:
/* ignore */
break;
case IEEE80211_NODE_MESH_OPENRCV:
case IEEE80211_NODE_MESH_OPENSNT:
case IEEE80211_NODE_MESH_CONFIRMRCV:
case IEEE80211_NODE_MESH_ESTABLISHED:
args[0] = ni->ni_mlpid;
args[1] = ni->ni_mllid;
args[2] = IEEE80211_REASON_MESH_CLOSE_RCVD;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args);
mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING);
mesh_peer_timeout_setup(ni);
break;
case IEEE80211_NODE_MESH_HOLDING:
mesh_linkchange(ni, IEEE80211_NODE_MESH_IDLE);
mesh_peer_timeout_stop(ni);
break;
}
return 0;
}
/*
* Link Metric handling.
*/
static int
mesh_recv_action_meshlmetric(struct ieee80211_node *ni,
const struct ieee80211_frame *wh,
const uint8_t *frm, const uint8_t *efrm)
{
const struct ieee80211_meshlmetric_ie *ie =
(const struct ieee80211_meshlmetric_ie *)
(frm+2); /* action + code */
struct ieee80211_meshlmetric_ie lm_rep;
if (ie->lm_flags & IEEE80211_MESH_LMETRIC_FLAGS_REQ) {
lm_rep.lm_flags = 0;
lm_rep.lm_metric = mesh_airtime_calc(ni);
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_MESH,
IEEE80211_ACTION_MESH_LMETRIC,
&lm_rep);
}
/* XXX: else do nothing for now */
return 0;
}
/*
* Parse meshgate action ie's for GANN frames.
* Returns -1 if parsing fails, otherwise 0.
*/
static int
mesh_parse_meshgate_action(struct ieee80211_node *ni,
const struct ieee80211_frame *wh, /* XXX for VERIFY_LENGTH */
struct ieee80211_meshgann_ie *ie, const uint8_t *frm, const uint8_t *efrm)
{
struct ieee80211vap *vap = ni->ni_vap;
const struct ieee80211_meshgann_ie *gannie;
while (efrm - frm > 1) {
IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return -1);
switch (*frm) {
case IEEE80211_ELEMID_MESHGANN:
gannie = (const struct ieee80211_meshgann_ie *) frm;
memset(ie, 0, sizeof(*ie));
ie->gann_ie = gannie->gann_ie;
ie->gann_len = gannie->gann_len;
ie->gann_flags = gannie->gann_flags;
ie->gann_hopcount = gannie->gann_hopcount;
ie->gann_ttl = gannie->gann_ttl;
IEEE80211_ADDR_COPY(ie->gann_addr, gannie->gann_addr);
ie->gann_seq = le32dec(&gannie->gann_seq);
ie->gann_interval = le16dec(&gannie->gann_interval);
break;
}
frm += frm[1] + 2;
}
return 0;
}
/*
* Mesh Gate Announcement handling.
*/
static int
mesh_recv_action_meshgate(struct ieee80211_node *ni,
const struct ieee80211_frame *wh,
const uint8_t *frm, const uint8_t *efrm)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
struct ieee80211_mesh_gate_route *gr, *next;
struct ieee80211_mesh_route *rt_gate;
struct ieee80211_meshgann_ie pgann;
struct ieee80211_meshgann_ie ie;
int found = 0;
/* +2 for action + code */
if (mesh_parse_meshgate_action(ni, wh, &ie, frm+2, efrm) != 0) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_MESH,
ni->ni_macaddr, NULL, "%s",
"GANN parsing failed");
vap->iv_stats.is_rx_mgtdiscard++;
return (0);
}
if (IEEE80211_ADDR_EQ(vap->iv_myaddr, ie.gann_addr))
return 0;
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, ni->ni_macaddr,
"received GANN, meshgate: %6D (seq %u)", ie.gann_addr, ":",
ie.gann_seq);
if (ms == NULL)
return (0);
MESH_RT_LOCK(ms);
TAILQ_FOREACH_SAFE(gr, &ms->ms_known_gates, gr_next, next) {
if (!IEEE80211_ADDR_EQ(gr->gr_addr, ie.gann_addr))
continue;
if (ie.gann_seq <= gr->gr_lastseq) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_MESH,
ni->ni_macaddr, NULL,
"GANN old seqno %u <= %u",
ie.gann_seq, gr->gr_lastseq);
MESH_RT_UNLOCK(ms);
return (0);
}
/* corresponding mesh gate found & GANN accepted */
found = 1;
break;
}
if (found == 0) {
/* this GANN is from a new mesh Gate add it to known table. */
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, ie.gann_addr,
"stored new GANN information, seq %u.", ie.gann_seq);
gr = IEEE80211_MALLOC(ALIGN(sizeof(struct ieee80211_mesh_gate_route)),
M_80211_MESH_GT_RT,
IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
IEEE80211_ADDR_COPY(gr->gr_addr, ie.gann_addr);
TAILQ_INSERT_TAIL(&ms->ms_known_gates, gr, gr_next);
}
gr->gr_lastseq = ie.gann_seq;
/* check if we have a path to this gate */
rt_gate = mesh_rt_find_locked(ms, gr->gr_addr);
if (rt_gate != NULL &&
rt_gate->rt_flags & IEEE80211_MESHRT_FLAGS_VALID) {
gr->gr_route = rt_gate;
rt_gate->rt_flags |= IEEE80211_MESHRT_FLAGS_GATE;
}
MESH_RT_UNLOCK(ms);
/* popagate only if decremented ttl >= 1 && forwarding is enabled */
if ((ie.gann_ttl - 1) < 1 && !(ms->ms_flags & IEEE80211_MESHFLAGS_FWD))
return 0;
pgann.gann_flags = ie.gann_flags; /* Reserved */
pgann.gann_hopcount = ie.gann_hopcount + 1;
pgann.gann_ttl = ie.gann_ttl - 1;
IEEE80211_ADDR_COPY(pgann.gann_addr, ie.gann_addr);
pgann.gann_seq = ie.gann_seq;
pgann.gann_interval = ie.gann_interval;
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, ie.gann_addr,
"%s", "propagate GANN");
ieee80211_send_action(vap->iv_bss, IEEE80211_ACTION_CAT_MESH,
IEEE80211_ACTION_MESH_GANN, &pgann);
return 0;
}
static int
mesh_send_action(struct ieee80211_node *ni,
const uint8_t sa[IEEE80211_ADDR_LEN],
const uint8_t da[IEEE80211_ADDR_LEN],
struct mbuf *m)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_bpf_params params;
int ret;
KASSERT(ni != NULL, ("null node"));
if (vap->iv_state == IEEE80211_S_CAC) {
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
"block %s frame in CAC state", "Mesh action");
vap->iv_stats.is_tx_badstate++;
ieee80211_free_node(ni);
m_freem(m);
return EIO; /* XXX */
}
M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
if (m == NULL) {
ieee80211_free_node(ni);
return ENOMEM;
}
IEEE80211_TX_LOCK(ic);
ieee80211_send_setup(ni, m,
IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_ACTION,
IEEE80211_NONQOS_TID, sa, da, sa);
m->m_flags |= M_ENCAP; /* mark encapsulated */
memset(&params, 0, sizeof(params));
params.ibp_pri = WME_AC_VO;
params.ibp_rate0 = ni->ni_txparms->mgmtrate;
if (IEEE80211_IS_MULTICAST(da))
params.ibp_try0 = 1;
else
params.ibp_try0 = ni->ni_txparms->maxretry;
params.ibp_power = ni->ni_txpower;
IEEE80211_NODE_STAT(ni, tx_mgmt);
ret = ieee80211_raw_output(vap, ni, m, &params);
IEEE80211_TX_UNLOCK(ic);
return (ret);
}
#define ADDSHORT(frm, v) do { \
frm[0] = (v) & 0xff; \
frm[1] = (v) >> 8; \
frm += 2; \
} while (0)
#define ADDWORD(frm, v) do { \
frm[0] = (v) & 0xff; \
frm[1] = ((v) >> 8) & 0xff; \
frm[2] = ((v) >> 16) & 0xff; \
frm[3] = ((v) >> 24) & 0xff; \
frm += 4; \
} while (0)
static int
mesh_send_action_meshpeering_open(struct ieee80211_node *ni,
int category, int action, void *args0)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
uint16_t *args = args0;
const struct ieee80211_rateset *rs;
struct mbuf *m;
uint8_t *frm;
IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni,
"send PEER OPEN action: localid 0x%x", args[0]);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t) /* action+category */
+ sizeof(uint16_t) /* capabilites */
+ 2 + IEEE80211_RATE_SIZE
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ 2 + IEEE80211_MESHID_LEN
+ sizeof(struct ieee80211_meshconf_ie)
+ sizeof(struct ieee80211_meshpeer_ie)
);
if (m != NULL) {
/*
* mesh peer open action frame format:
* [1] category
* [1] action
* [2] capabilities
* [tlv] rates
* [tlv] xrates
* [tlv] mesh id
* [tlv] mesh conf
* [tlv] mesh peer link mgmt
*/
*frm++ = category;
*frm++ = action;
ADDSHORT(frm, ieee80211_getcapinfo(vap, ni->ni_chan));
rs = ieee80211_get_suprates(ic, ic->ic_curchan);
frm = ieee80211_add_rates(frm, rs);
frm = ieee80211_add_xrates(frm, rs);
frm = ieee80211_add_meshid(frm, vap);
frm = ieee80211_add_meshconf(frm, vap);
frm = ieee80211_add_meshpeer(frm, IEEE80211_ACTION_MESHPEERING_OPEN,
args[0], 0, 0);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
return mesh_send_action(ni, vap->iv_myaddr, ni->ni_macaddr, m);
} else {
vap->iv_stats.is_tx_nobuf++;
ieee80211_free_node(ni);
return ENOMEM;
}
}
static int
mesh_send_action_meshpeering_confirm(struct ieee80211_node *ni,
int category, int action, void *args0)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
uint16_t *args = args0;
const struct ieee80211_rateset *rs;
struct mbuf *m;
uint8_t *frm;
IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni,
"send PEER CONFIRM action: localid 0x%x, peerid 0x%x",
args[0], args[1]);
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t) /* action+category */
+ sizeof(uint16_t) /* capabilites */
+ sizeof(uint16_t) /* status code */
+ sizeof(uint16_t) /* AID */
+ 2 + IEEE80211_RATE_SIZE
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
+ 2 + IEEE80211_MESHID_LEN
+ sizeof(struct ieee80211_meshconf_ie)
+ sizeof(struct ieee80211_meshpeer_ie)
);
if (m != NULL) {
/*
* mesh peer confirm action frame format:
* [1] category
* [1] action
* [2] capabilities
* [2] status code
* [2] association id (peer ID)
* [tlv] rates
* [tlv] xrates
* [tlv] mesh id
* [tlv] mesh conf
* [tlv] mesh peer link mgmt
*/
*frm++ = category;
*frm++ = action;
ADDSHORT(frm, ieee80211_getcapinfo(vap, ni->ni_chan));
ADDSHORT(frm, 0); /* status code */
ADDSHORT(frm, args[1]); /* AID */
rs = ieee80211_get_suprates(ic, ic->ic_curchan);
frm = ieee80211_add_rates(frm, rs);
frm = ieee80211_add_xrates(frm, rs);
frm = ieee80211_add_meshid(frm, vap);
frm = ieee80211_add_meshconf(frm, vap);
frm = ieee80211_add_meshpeer(frm,
IEEE80211_ACTION_MESHPEERING_CONFIRM,
args[0], args[1], 0);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
return mesh_send_action(ni, vap->iv_myaddr, ni->ni_macaddr, m);
} else {
vap->iv_stats.is_tx_nobuf++;
ieee80211_free_node(ni);
return ENOMEM;
}
}
static int
mesh_send_action_meshpeering_close(struct ieee80211_node *ni,
int category, int action, void *args0)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
uint16_t *args = args0;
struct mbuf *m;
uint8_t *frm;
IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH, ni,
"send PEER CLOSE action: localid 0x%x, peerid 0x%x reason %d (%s)",
args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t) /* action+category */
+ sizeof(uint16_t) /* reason code */
+ 2 + IEEE80211_MESHID_LEN
+ sizeof(struct ieee80211_meshpeer_ie)
);
if (m != NULL) {
/*
* mesh peer close action frame format:
* [1] category
* [1] action
* [tlv] mesh id
* [tlv] mesh peer link mgmt
*/
*frm++ = category;
*frm++ = action;
frm = ieee80211_add_meshid(frm, vap);
frm = ieee80211_add_meshpeer(frm,
IEEE80211_ACTION_MESHPEERING_CLOSE,
args[0], args[1], args[2]);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
return mesh_send_action(ni, vap->iv_myaddr, ni->ni_macaddr, m);
} else {
vap->iv_stats.is_tx_nobuf++;
ieee80211_free_node(ni);
return ENOMEM;
}
}
static int
mesh_send_action_meshlmetric(struct ieee80211_node *ni,
int category, int action, void *arg0)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_meshlmetric_ie *ie = arg0;
struct mbuf *m;
uint8_t *frm;
if (ie->lm_flags & IEEE80211_MESH_LMETRIC_FLAGS_REQ) {
IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH,
ni, "%s", "send LINK METRIC REQUEST action");
} else {
IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH,
ni, "send LINK METRIC REPLY action: metric 0x%x",
ie->lm_metric);
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t) + /* action+category */
sizeof(struct ieee80211_meshlmetric_ie)
);
if (m != NULL) {
/*
* mesh link metric
* [1] category
* [1] action
* [tlv] mesh link metric
*/
*frm++ = category;
*frm++ = action;
frm = ieee80211_add_meshlmetric(frm,
ie->lm_flags, ie->lm_metric);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
return mesh_send_action(ni, vap->iv_myaddr, ni->ni_macaddr, m);
} else {
vap->iv_stats.is_tx_nobuf++;
ieee80211_free_node(ni);
return ENOMEM;
}
}
static int
mesh_send_action_meshgate(struct ieee80211_node *ni,
int category, int action, void *arg0)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_meshgann_ie *ie = arg0;
struct mbuf *m;
uint8_t *frm;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
ieee80211_ref_node(ni);
m = ieee80211_getmgtframe(&frm,
ic->ic_headroom + sizeof(struct ieee80211_frame),
sizeof(uint16_t) + /* action+category */
IEEE80211_MESHGANN_BASE_SZ
);
if (m != NULL) {
/*
* mesh link metric
* [1] category
* [1] action
* [tlv] mesh gate annoucement
*/
*frm++ = category;
*frm++ = action;
frm = ieee80211_add_meshgate(frm, ie);
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
return mesh_send_action(ni, vap->iv_myaddr, broadcastaddr, m);
} else {
vap->iv_stats.is_tx_nobuf++;
ieee80211_free_node(ni);
return ENOMEM;
}
}
static void
mesh_peer_timeout_setup(struct ieee80211_node *ni)
{
switch (ni->ni_mlstate) {
case IEEE80211_NODE_MESH_HOLDING:
ni->ni_mltval = ieee80211_mesh_holdingtimeout;
break;
case IEEE80211_NODE_MESH_CONFIRMRCV:
ni->ni_mltval = ieee80211_mesh_confirmtimeout;
break;
case IEEE80211_NODE_MESH_IDLE:
ni->ni_mltval = 0;
break;
default:
ni->ni_mltval = ieee80211_mesh_retrytimeout;
break;
}
if (ni->ni_mltval)
callout_reset(&ni->ni_mltimer, ni->ni_mltval,
mesh_peer_timeout_cb, ni);
}
/*
* Same as above but backoffs timer statisically 50%.
*/
static void
mesh_peer_timeout_backoff(struct ieee80211_node *ni)
{
uint32_t r;
r = arc4random();
ni->ni_mltval += r % ni->ni_mltval;
callout_reset(&ni->ni_mltimer, ni->ni_mltval, mesh_peer_timeout_cb,
ni);
}
static __inline void
mesh_peer_timeout_stop(struct ieee80211_node *ni)
{
callout_drain(&ni->ni_mltimer);
}
static void
mesh_peer_backoff_cb(void *arg)
{
struct ieee80211_node *ni = (struct ieee80211_node *)arg;
/* After backoff timeout, try to peer automatically again. */
ni->ni_mlhcnt = 0;
}
/*
* Mesh Peer Link Management FSM timeout handling.
*/
static void
mesh_peer_timeout_cb(void *arg)
{
struct ieee80211_node *ni = (struct ieee80211_node *)arg;
uint16_t args[3];
IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_MESH,
ni, "mesh link timeout, state %d, retry counter %d",
ni->ni_mlstate, ni->ni_mlrcnt);
switch (ni->ni_mlstate) {
case IEEE80211_NODE_MESH_IDLE:
case IEEE80211_NODE_MESH_ESTABLISHED:
break;
case IEEE80211_NODE_MESH_OPENSNT:
case IEEE80211_NODE_MESH_OPENRCV:
if (ni->ni_mlrcnt == ieee80211_mesh_maxretries) {
args[0] = ni->ni_mlpid;
args[2] = IEEE80211_REASON_MESH_MAX_RETRIES;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE, args);
ni->ni_mlrcnt = 0;
mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING);
mesh_peer_timeout_setup(ni);
} else {
args[0] = ni->ni_mlpid;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_OPEN, args);
ni->ni_mlrcnt++;
mesh_peer_timeout_backoff(ni);
}
break;
case IEEE80211_NODE_MESH_CONFIRMRCV:
args[0] = ni->ni_mlpid;
args[2] = IEEE80211_REASON_MESH_CONFIRM_TIMEOUT;
ieee80211_send_action(ni,
IEEE80211_ACTION_CAT_SELF_PROT,
IEEE80211_ACTION_MESHPEERING_CLOSE, args);
mesh_linkchange(ni, IEEE80211_NODE_MESH_HOLDING);
mesh_peer_timeout_setup(ni);
break;
case IEEE80211_NODE_MESH_HOLDING:
ni->ni_mlhcnt++;
if (ni->ni_mlhcnt >= ieee80211_mesh_maxholding)
callout_reset(&ni->ni_mlhtimer,
ieee80211_mesh_backofftimeout,
mesh_peer_backoff_cb, ni);
mesh_linkchange(ni, IEEE80211_NODE_MESH_IDLE);
break;
}
}
static int
mesh_verify_meshid(struct ieee80211vap *vap, const uint8_t *ie)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
if (ie == NULL || ie[1] != ms->ms_idlen)
return 1;
return memcmp(ms->ms_id, ie + 2, ms->ms_idlen);
}
/*
* Check if we are using the same algorithms for this mesh.
*/
static int
mesh_verify_meshconf(struct ieee80211vap *vap, const uint8_t *ie)
{
const struct ieee80211_meshconf_ie *meshconf =
(const struct ieee80211_meshconf_ie *) ie;
const struct ieee80211_mesh_state *ms = vap->iv_mesh;
if (meshconf == NULL)
return 1;
if (meshconf->conf_pselid != ms->ms_ppath->mpp_ie) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH,
"unknown path selection algorithm: 0x%x\n",
meshconf->conf_pselid);
return 1;
}
if (meshconf->conf_pmetid != ms->ms_pmetric->mpm_ie) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH,
"unknown path metric algorithm: 0x%x\n",
meshconf->conf_pmetid);
return 1;
}
if (meshconf->conf_ccid != 0) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH,
"unknown congestion control algorithm: 0x%x\n",
meshconf->conf_ccid);
return 1;
}
if (meshconf->conf_syncid != IEEE80211_MESHCONF_SYNC_NEIGHOFF) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH,
"unknown sync algorithm: 0x%x\n",
meshconf->conf_syncid);
return 1;
}
if (meshconf->conf_authid != 0) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH,
"unknown auth auth algorithm: 0x%x\n",
meshconf->conf_pselid);
return 1;
}
/* Not accepting peers */
if (!(meshconf->conf_cap & IEEE80211_MESHCONF_CAP_AP)) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_MESH,
"not accepting peers: 0x%x\n", meshconf->conf_cap);
return 1;
}
return 0;
}
static int
mesh_verify_meshpeer(struct ieee80211vap *vap, uint8_t subtype,
const uint8_t *ie)
{
const struct ieee80211_meshpeer_ie *meshpeer =
(const struct ieee80211_meshpeer_ie *) ie;
if (meshpeer == NULL ||
meshpeer->peer_len < IEEE80211_MPM_BASE_SZ ||
meshpeer->peer_len > IEEE80211_MPM_MAX_SZ)
return 1;
if (meshpeer->peer_proto != IEEE80211_MPPID_MPM) {
IEEE80211_DPRINTF(vap,
IEEE80211_MSG_ACTION | IEEE80211_MSG_MESH,
"Only MPM protocol is supported (proto: 0x%02X)",
meshpeer->peer_proto);
return 1;
}
switch (subtype) {
case IEEE80211_ACTION_MESHPEERING_OPEN:
if (meshpeer->peer_len != IEEE80211_MPM_BASE_SZ)
return 1;
break;
case IEEE80211_ACTION_MESHPEERING_CONFIRM:
if (meshpeer->peer_len != IEEE80211_MPM_BASE_SZ + 2)
return 1;
break;
case IEEE80211_ACTION_MESHPEERING_CLOSE:
if (meshpeer->peer_len < IEEE80211_MPM_BASE_SZ + 2)
return 1;
if (meshpeer->peer_len == (IEEE80211_MPM_BASE_SZ + 2) &&
meshpeer->peer_linkid != 0)
return 1;
if (meshpeer->peer_rcode == 0)
return 1;
break;
}
return 0;
}
/*
* Add a Mesh ID IE to a frame.
*/
uint8_t *
ieee80211_add_meshid(uint8_t *frm, struct ieee80211vap *vap)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
KASSERT(vap->iv_opmode == IEEE80211_M_MBSS, ("not a mbss vap"));
*frm++ = IEEE80211_ELEMID_MESHID;
*frm++ = ms->ms_idlen;
memcpy(frm, ms->ms_id, ms->ms_idlen);
return frm + ms->ms_idlen;
}
/*
* Add a Mesh Configuration IE to a frame.
* For now just use HWMP routing, Airtime link metric, Null Congestion
* Signaling, Null Sync Protocol and Null Authentication.
*/
uint8_t *
ieee80211_add_meshconf(uint8_t *frm, struct ieee80211vap *vap)
{
const struct ieee80211_mesh_state *ms = vap->iv_mesh;
uint16_t caps;
KASSERT(vap->iv_opmode == IEEE80211_M_MBSS, ("not a MBSS vap"));
*frm++ = IEEE80211_ELEMID_MESHCONF;
*frm++ = IEEE80211_MESH_CONF_SZ;
*frm++ = ms->ms_ppath->mpp_ie; /* path selection */
*frm++ = ms->ms_pmetric->mpm_ie; /* link metric */
*frm++ = IEEE80211_MESHCONF_CC_DISABLED;
*frm++ = IEEE80211_MESHCONF_SYNC_NEIGHOFF;
*frm++ = IEEE80211_MESHCONF_AUTH_DISABLED;
/* NB: set the number of neighbors before the rest */
*frm = (ms->ms_neighbors > IEEE80211_MESH_MAX_NEIGHBORS ?
IEEE80211_MESH_MAX_NEIGHBORS : ms->ms_neighbors) << 1;
if (ms->ms_flags & IEEE80211_MESHFLAGS_GATE)
*frm |= IEEE80211_MESHCONF_FORM_GATE;
frm += 1;
caps = 0;
if (ms->ms_flags & IEEE80211_MESHFLAGS_AP)
caps |= IEEE80211_MESHCONF_CAP_AP;
if (ms->ms_flags & IEEE80211_MESHFLAGS_FWD)
caps |= IEEE80211_MESHCONF_CAP_FWRD;
*frm++ = caps;
return frm;
}
/*
* Add a Mesh Peer Management IE to a frame.
*/
uint8_t *
ieee80211_add_meshpeer(uint8_t *frm, uint8_t subtype, uint16_t localid,
uint16_t peerid, uint16_t reason)
{
KASSERT(localid != 0, ("localid == 0"));
*frm++ = IEEE80211_ELEMID_MESHPEER;
switch (subtype) {
case IEEE80211_ACTION_MESHPEERING_OPEN:
*frm++ = IEEE80211_MPM_BASE_SZ; /* length */
ADDSHORT(frm, IEEE80211_MPPID_MPM); /* proto */
ADDSHORT(frm, localid); /* local ID */
break;
case IEEE80211_ACTION_MESHPEERING_CONFIRM:
KASSERT(peerid != 0, ("sending peer confirm without peer id"));
*frm++ = IEEE80211_MPM_BASE_SZ + 2; /* length */
ADDSHORT(frm, IEEE80211_MPPID_MPM); /* proto */
ADDSHORT(frm, localid); /* local ID */
ADDSHORT(frm, peerid); /* peer ID */
break;
case IEEE80211_ACTION_MESHPEERING_CLOSE:
if (peerid)
*frm++ = IEEE80211_MPM_MAX_SZ; /* length */
else
*frm++ = IEEE80211_MPM_BASE_SZ + 2; /* length */
ADDSHORT(frm, IEEE80211_MPPID_MPM); /* proto */
ADDSHORT(frm, localid); /* local ID */
if (peerid)
ADDSHORT(frm, peerid); /* peer ID */
ADDSHORT(frm, reason);
break;
}
return frm;
}
/*
* Compute an Airtime Link Metric for the link with this node.
*
* Based on Draft 3.0 spec (11B.10, p.149).
*/
/*
* Max 802.11s overhead.
*/
#define IEEE80211_MESH_MAXOVERHEAD \
(sizeof(struct ieee80211_qosframe_addr4) \
+ sizeof(struct ieee80211_meshcntl_ae10) \
+ sizeof(struct llc) \
+ IEEE80211_ADDR_LEN \
+ IEEE80211_WEP_IVLEN \
+ IEEE80211_WEP_KIDLEN \
+ IEEE80211_WEP_CRCLEN \
+ IEEE80211_WEP_MICLEN \
+ IEEE80211_CRC_LEN)
uint32_t
mesh_airtime_calc(struct ieee80211_node *ni)
{
#define M_BITS 8
#define S_FACTOR (2 * M_BITS)
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ni->ni_vap->iv_ifp;
const static int nbits = 8192 << M_BITS;
uint32_t overhead, rate, errrate;
uint64_t res;
/* Time to transmit a frame */
rate = ni->ni_txrate;
overhead = ieee80211_compute_duration(ic->ic_rt,
ifp->if_mtu + IEEE80211_MESH_MAXOVERHEAD, rate, 0) << M_BITS;
/* Error rate in percentage */
/* XXX assuming small failures are ok */
errrate = (((ifp->if_get_counter(ifp, IFCOUNTER_OERRORS) +
ifp->if_get_counter(ifp, IFCOUNTER_IERRORS)) / 100) << M_BITS)
/ 100;
res = (overhead + (nbits / rate)) *
((1 << S_FACTOR) / ((1 << M_BITS) - errrate));
return (uint32_t)(res >> S_FACTOR);
#undef M_BITS
#undef S_FACTOR
}
/*
* Add a Mesh Link Metric report IE to a frame.
*/
uint8_t *
ieee80211_add_meshlmetric(uint8_t *frm, uint8_t flags, uint32_t metric)
{
*frm++ = IEEE80211_ELEMID_MESHLINK;
*frm++ = 5;
*frm++ = flags;
ADDWORD(frm, metric);
return frm;
}
/*
* Add a Mesh Gate Announcement IE to a frame.
*/
uint8_t *
ieee80211_add_meshgate(uint8_t *frm, struct ieee80211_meshgann_ie *ie)
{
*frm++ = IEEE80211_ELEMID_MESHGANN; /* ie */
*frm++ = IEEE80211_MESHGANN_BASE_SZ; /* len */
*frm++ = ie->gann_flags;
*frm++ = ie->gann_hopcount;
*frm++ = ie->gann_ttl;
IEEE80211_ADDR_COPY(frm, ie->gann_addr);
frm += 6;
ADDWORD(frm, ie->gann_seq);
ADDSHORT(frm, ie->gann_interval);
return frm;
}
#undef ADDSHORT
#undef ADDWORD
/*
* Initialize any mesh-specific node state.
*/
void
ieee80211_mesh_node_init(struct ieee80211vap *vap, struct ieee80211_node *ni)
{
ni->ni_flags |= IEEE80211_NODE_QOS;
callout_init(&ni->ni_mltimer, 1);
callout_init(&ni->ni_mlhtimer, 1);
}
/*
* Cleanup any mesh-specific node state.
*/
void
ieee80211_mesh_node_cleanup(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_mesh_state *ms = vap->iv_mesh;
callout_drain(&ni->ni_mltimer);
callout_drain(&ni->ni_mlhtimer);
/* NB: short-circuit callbacks after mesh_vdetach */
if (vap->iv_mesh != NULL)
ms->ms_ppath->mpp_peerdown(ni);
}
void
ieee80211_parse_meshid(struct ieee80211_node *ni, const uint8_t *ie)
{
ni->ni_meshidlen = ie[1];
memcpy(ni->ni_meshid, ie + 2, ie[1]);
}
/*
* Setup mesh-specific node state on neighbor discovery.
*/
void
ieee80211_mesh_init_neighbor(struct ieee80211_node *ni,
const struct ieee80211_frame *wh,
const struct ieee80211_scanparams *sp)
{
ieee80211_parse_meshid(ni, sp->meshid);
}
void
ieee80211_mesh_update_beacon(struct ieee80211vap *vap,
struct ieee80211_beacon_offsets *bo)
{
KASSERT(vap->iv_opmode == IEEE80211_M_MBSS, ("not a MBSS vap"));
if (isset(bo->bo_flags, IEEE80211_BEACON_MESHCONF)) {
(void)ieee80211_add_meshconf(bo->bo_meshconf, vap);
clrbit(bo->bo_flags, IEEE80211_BEACON_MESHCONF);
}
}
static int
mesh_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
uint8_t tmpmeshid[IEEE80211_NWID_LEN];
struct ieee80211_mesh_route *rt;
struct ieee80211req_mesh_route *imr;
size_t len, off;
uint8_t *p;
int error;
if (vap->iv_opmode != IEEE80211_M_MBSS)
return ENOSYS;
error = 0;
switch (ireq->i_type) {
case IEEE80211_IOC_MESH_ID:
ireq->i_len = ms->ms_idlen;
memcpy(tmpmeshid, ms->ms_id, ireq->i_len);
error = copyout(tmpmeshid, ireq->i_data, ireq->i_len);
break;
case IEEE80211_IOC_MESH_AP:
ireq->i_val = (ms->ms_flags & IEEE80211_MESHFLAGS_AP) != 0;
break;
case IEEE80211_IOC_MESH_FWRD:
ireq->i_val = (ms->ms_flags & IEEE80211_MESHFLAGS_FWD) != 0;
break;
case IEEE80211_IOC_MESH_GATE:
ireq->i_val = (ms->ms_flags & IEEE80211_MESHFLAGS_GATE) != 0;
break;
case IEEE80211_IOC_MESH_TTL:
ireq->i_val = ms->ms_ttl;
break;
case IEEE80211_IOC_MESH_RTCMD:
switch (ireq->i_val) {
case IEEE80211_MESH_RTCMD_LIST:
len = 0;
MESH_RT_LOCK(ms);
TAILQ_FOREACH(rt, &ms->ms_routes, rt_next) {
len += sizeof(*imr);
}
MESH_RT_UNLOCK(ms);
if (len > ireq->i_len || ireq->i_len < sizeof(*imr)) {
ireq->i_len = len;
return ENOMEM;
}
ireq->i_len = len;
/* XXX M_WAIT? */
p = IEEE80211_MALLOC(len, M_TEMP,
IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
if (p == NULL)
return ENOMEM;
off = 0;
MESH_RT_LOCK(ms);
TAILQ_FOREACH(rt, &ms->ms_routes, rt_next) {
if (off >= len)
break;
imr = (struct ieee80211req_mesh_route *)
(p + off);
IEEE80211_ADDR_COPY(imr->imr_dest,
rt->rt_dest);
IEEE80211_ADDR_COPY(imr->imr_nexthop,
rt->rt_nexthop);
imr->imr_metric = rt->rt_metric;
imr->imr_nhops = rt->rt_nhops;
imr->imr_lifetime =
ieee80211_mesh_rt_update(rt, 0);
imr->imr_lastmseq = rt->rt_lastmseq;
imr->imr_flags = rt->rt_flags; /* last */
off += sizeof(*imr);
}
MESH_RT_UNLOCK(ms);
error = copyout(p, (uint8_t *)ireq->i_data,
ireq->i_len);
IEEE80211_FREE(p, M_TEMP);
break;
case IEEE80211_MESH_RTCMD_FLUSH:
case IEEE80211_MESH_RTCMD_ADD:
case IEEE80211_MESH_RTCMD_DELETE:
return EINVAL;
default:
return ENOSYS;
}
break;
case IEEE80211_IOC_MESH_PR_METRIC:
len = strlen(ms->ms_pmetric->mpm_descr);
if (ireq->i_len < len)
return EINVAL;
ireq->i_len = len;
error = copyout(ms->ms_pmetric->mpm_descr,
(uint8_t *)ireq->i_data, len);
break;
case IEEE80211_IOC_MESH_PR_PATH:
len = strlen(ms->ms_ppath->mpp_descr);
if (ireq->i_len < len)
return EINVAL;
ireq->i_len = len;
error = copyout(ms->ms_ppath->mpp_descr,
(uint8_t *)ireq->i_data, len);
break;
default:
return ENOSYS;
}
return error;
}
IEEE80211_IOCTL_GET(mesh, mesh_ioctl_get80211);
static int
mesh_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
{
struct ieee80211_mesh_state *ms = vap->iv_mesh;
uint8_t tmpmeshid[IEEE80211_NWID_LEN];
uint8_t tmpaddr[IEEE80211_ADDR_LEN];
char tmpproto[IEEE80211_MESH_PROTO_DSZ];
int error;
if (vap->iv_opmode != IEEE80211_M_MBSS)
return ENOSYS;
error = 0;
switch (ireq->i_type) {
case IEEE80211_IOC_MESH_ID:
if (ireq->i_val != 0 || ireq->i_len > IEEE80211_MESHID_LEN)
return EINVAL;
error = copyin(ireq->i_data, tmpmeshid, ireq->i_len);
if (error != 0)
break;
memset(ms->ms_id, 0, IEEE80211_NWID_LEN);
ms->ms_idlen = ireq->i_len;
memcpy(ms->ms_id, tmpmeshid, ireq->i_len);
error = ENETRESET;
break;
case IEEE80211_IOC_MESH_AP:
if (ireq->i_val)
ms->ms_flags |= IEEE80211_MESHFLAGS_AP;
else
ms->ms_flags &= ~IEEE80211_MESHFLAGS_AP;
error = ENETRESET;
break;
case IEEE80211_IOC_MESH_FWRD:
if (ireq->i_val)
ms->ms_flags |= IEEE80211_MESHFLAGS_FWD;
else
ms->ms_flags &= ~IEEE80211_MESHFLAGS_FWD;
mesh_gatemode_setup(vap);
break;
case IEEE80211_IOC_MESH_GATE:
if (ireq->i_val)
ms->ms_flags |= IEEE80211_MESHFLAGS_GATE;
else
ms->ms_flags &= ~IEEE80211_MESHFLAGS_GATE;
break;
case IEEE80211_IOC_MESH_TTL:
ms->ms_ttl = (uint8_t) ireq->i_val;
break;
case IEEE80211_IOC_MESH_RTCMD:
switch (ireq->i_val) {
case IEEE80211_MESH_RTCMD_LIST:
return EINVAL;
case IEEE80211_MESH_RTCMD_FLUSH:
ieee80211_mesh_rt_flush(vap);
break;
case IEEE80211_MESH_RTCMD_ADD:
error = copyin(ireq->i_data, tmpaddr,
IEEE80211_ADDR_LEN);
if (error != 0)
break;
if (IEEE80211_ADDR_EQ(vap->iv_myaddr, tmpaddr) ||
IEEE80211_ADDR_EQ(broadcastaddr, tmpaddr))
return EINVAL;
ieee80211_mesh_discover(vap, tmpaddr, NULL);
break;
case IEEE80211_MESH_RTCMD_DELETE:
error = copyin(ireq->i_data, tmpaddr,
IEEE80211_ADDR_LEN);
if (error != 0)
break;
ieee80211_mesh_rt_del(vap, tmpaddr);
break;
default:
return ENOSYS;
}
break;
case IEEE80211_IOC_MESH_PR_METRIC:
error = copyin(ireq->i_data, tmpproto, sizeof(tmpproto));
if (error == 0) {
error = mesh_select_proto_metric(vap, tmpproto);
if (error == 0)
error = ENETRESET;
}
break;
case IEEE80211_IOC_MESH_PR_PATH:
error = copyin(ireq->i_data, tmpproto, sizeof(tmpproto));
if (error == 0) {
error = mesh_select_proto_path(vap, tmpproto);
if (error == 0)
error = ENETRESET;
}
break;
default:
return ENOSYS;
}
return error;
}
IEEE80211_IOCTL_SET(mesh, mesh_ioctl_set80211);