mirror of https://github.com/F-Stack/f-stack.git
807 lines
22 KiB
C
807 lines
22 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2001 Atsushi Onoe
|
|
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* IEEE 802.11 generic crypto support.
|
|
*/
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_media.h>
|
|
#include <net/ethernet.h> /* XXX ETHER_HDR_LEN */
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
|
|
MALLOC_DEFINE(M_80211_CRYPTO, "80211crypto", "802.11 crypto state");
|
|
|
|
static int _ieee80211_crypto_delkey(struct ieee80211vap *,
|
|
struct ieee80211_key *);
|
|
|
|
/*
|
|
* Table of registered cipher modules.
|
|
*/
|
|
static const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX];
|
|
|
|
/*
|
|
* Default "null" key management routines.
|
|
*/
|
|
static int
|
|
null_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
|
|
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
if (!(&vap->iv_nw_keys[0] <= k &&
|
|
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
|
|
/*
|
|
* Not in the global key table, the driver should handle this
|
|
* by allocating a slot in the h/w key table/cache. In
|
|
* lieu of that return key slot 0 for any unicast key
|
|
* request. We disallow the request if this is a group key.
|
|
* This default policy does the right thing for legacy hardware
|
|
* with a 4 key table. It also handles devices that pass
|
|
* packets through untouched when marked with the WEP bit
|
|
* and key index 0.
|
|
*/
|
|
if (k->wk_flags & IEEE80211_KEY_GROUP)
|
|
return 0;
|
|
*keyix = 0; /* NB: use key index 0 for ucast key */
|
|
} else {
|
|
*keyix = ieee80211_crypto_get_key_wepidx(vap, k);
|
|
}
|
|
*rxkeyix = IEEE80211_KEYIX_NONE; /* XXX maybe *keyix? */
|
|
return 1;
|
|
}
|
|
static int
|
|
null_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
|
|
{
|
|
return 1;
|
|
}
|
|
static int
|
|
null_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
|
|
{
|
|
return 1;
|
|
}
|
|
static void null_key_update(struct ieee80211vap *vap) {}
|
|
|
|
/*
|
|
* Write-arounds for common operations.
|
|
*/
|
|
static __inline void
|
|
cipher_detach(struct ieee80211_key *key)
|
|
{
|
|
key->wk_cipher->ic_detach(key);
|
|
}
|
|
|
|
static __inline void *
|
|
cipher_attach(struct ieee80211vap *vap, struct ieee80211_key *key)
|
|
{
|
|
return key->wk_cipher->ic_attach(vap, key);
|
|
}
|
|
|
|
/*
|
|
* Wrappers for driver key management methods.
|
|
*/
|
|
static __inline int
|
|
dev_key_alloc(struct ieee80211vap *vap,
|
|
struct ieee80211_key *key,
|
|
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
return vap->iv_key_alloc(vap, key, keyix, rxkeyix);
|
|
}
|
|
|
|
static __inline int
|
|
dev_key_delete(struct ieee80211vap *vap,
|
|
const struct ieee80211_key *key)
|
|
{
|
|
return vap->iv_key_delete(vap, key);
|
|
}
|
|
|
|
static __inline int
|
|
dev_key_set(struct ieee80211vap *vap, const struct ieee80211_key *key)
|
|
{
|
|
return vap->iv_key_set(vap, key);
|
|
}
|
|
|
|
/*
|
|
* Setup crypto support for a device/shared instance.
|
|
*/
|
|
void
|
|
ieee80211_crypto_attach(struct ieee80211com *ic)
|
|
{
|
|
/* NB: we assume everything is pre-zero'd */
|
|
ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none;
|
|
}
|
|
|
|
/*
|
|
* Teardown crypto support.
|
|
*/
|
|
void
|
|
ieee80211_crypto_detach(struct ieee80211com *ic)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Setup crypto support for a vap.
|
|
*/
|
|
void
|
|
ieee80211_crypto_vattach(struct ieee80211vap *vap)
|
|
{
|
|
int i;
|
|
|
|
/* NB: we assume everything is pre-zero'd */
|
|
vap->iv_max_keyix = IEEE80211_WEP_NKID;
|
|
vap->iv_def_txkey = IEEE80211_KEYIX_NONE;
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
ieee80211_crypto_resetkey(vap, &vap->iv_nw_keys[i],
|
|
IEEE80211_KEYIX_NONE);
|
|
/*
|
|
* Initialize the driver key support routines to noop entries.
|
|
* This is useful especially for the cipher test modules.
|
|
*/
|
|
vap->iv_key_alloc = null_key_alloc;
|
|
vap->iv_key_set = null_key_set;
|
|
vap->iv_key_delete = null_key_delete;
|
|
vap->iv_key_update_begin = null_key_update;
|
|
vap->iv_key_update_end = null_key_update;
|
|
}
|
|
|
|
/*
|
|
* Teardown crypto support for a vap.
|
|
*/
|
|
void
|
|
ieee80211_crypto_vdetach(struct ieee80211vap *vap)
|
|
{
|
|
ieee80211_crypto_delglobalkeys(vap);
|
|
}
|
|
|
|
/*
|
|
* Register a crypto cipher module.
|
|
*/
|
|
void
|
|
ieee80211_crypto_register(const struct ieee80211_cipher *cip)
|
|
{
|
|
if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
|
|
printf("%s: cipher %s has an invalid cipher index %u\n",
|
|
__func__, cip->ic_name, cip->ic_cipher);
|
|
return;
|
|
}
|
|
if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
|
|
printf("%s: cipher %s registered with a different template\n",
|
|
__func__, cip->ic_name);
|
|
return;
|
|
}
|
|
ciphers[cip->ic_cipher] = cip;
|
|
}
|
|
|
|
/*
|
|
* Unregister a crypto cipher module.
|
|
*/
|
|
void
|
|
ieee80211_crypto_unregister(const struct ieee80211_cipher *cip)
|
|
{
|
|
if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
|
|
printf("%s: cipher %s has an invalid cipher index %u\n",
|
|
__func__, cip->ic_name, cip->ic_cipher);
|
|
return;
|
|
}
|
|
if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
|
|
printf("%s: cipher %s registered with a different template\n",
|
|
__func__, cip->ic_name);
|
|
return;
|
|
}
|
|
/* NB: don't complain about not being registered */
|
|
/* XXX disallow if references */
|
|
ciphers[cip->ic_cipher] = NULL;
|
|
}
|
|
|
|
int
|
|
ieee80211_crypto_available(u_int cipher)
|
|
{
|
|
return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL;
|
|
}
|
|
|
|
/* XXX well-known names! */
|
|
static const char *cipher_modnames[IEEE80211_CIPHER_MAX] = {
|
|
[IEEE80211_CIPHER_WEP] = "wlan_wep",
|
|
[IEEE80211_CIPHER_TKIP] = "wlan_tkip",
|
|
[IEEE80211_CIPHER_AES_OCB] = "wlan_aes_ocb",
|
|
[IEEE80211_CIPHER_AES_CCM] = "wlan_ccmp",
|
|
[IEEE80211_CIPHER_TKIPMIC] = "#4", /* NB: reserved */
|
|
[IEEE80211_CIPHER_CKIP] = "wlan_ckip",
|
|
[IEEE80211_CIPHER_NONE] = "wlan_none",
|
|
};
|
|
|
|
/* NB: there must be no overlap between user-supplied and device-owned flags */
|
|
CTASSERT((IEEE80211_KEY_COMMON & IEEE80211_KEY_DEVICE) == 0);
|
|
|
|
/*
|
|
* Establish a relationship between the specified key and cipher
|
|
* and, if necessary, allocate a hardware index from the driver.
|
|
* Note that when a fixed key index is required it must be specified.
|
|
*
|
|
* This must be the first call applied to a key; all the other key
|
|
* routines assume wk_cipher is setup.
|
|
*
|
|
* Locking must be handled by the caller using:
|
|
* ieee80211_key_update_begin(vap);
|
|
* ieee80211_key_update_end(vap);
|
|
*/
|
|
int
|
|
ieee80211_crypto_newkey(struct ieee80211vap *vap,
|
|
int cipher, int flags, struct ieee80211_key *key)
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
const struct ieee80211_cipher *cip;
|
|
ieee80211_keyix keyix, rxkeyix;
|
|
void *keyctx;
|
|
int oflags;
|
|
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: cipher %u flags 0x%x keyix %u\n",
|
|
__func__, cipher, flags, key->wk_keyix);
|
|
|
|
/*
|
|
* Validate cipher and set reference to cipher routines.
|
|
*/
|
|
if (cipher >= IEEE80211_CIPHER_MAX) {
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: invalid cipher %u\n", __func__, cipher);
|
|
vap->iv_stats.is_crypto_badcipher++;
|
|
return 0;
|
|
}
|
|
cip = ciphers[cipher];
|
|
if (cip == NULL) {
|
|
/*
|
|
* Auto-load cipher module if we have a well-known name
|
|
* for it. It might be better to use string names rather
|
|
* than numbers and craft a module name based on the cipher
|
|
* name; e.g. wlan_cipher_<cipher-name>.
|
|
*/
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: unregistered cipher %u, load module %s\n",
|
|
__func__, cipher, cipher_modnames[cipher]);
|
|
ieee80211_load_module(cipher_modnames[cipher]);
|
|
/*
|
|
* If cipher module loaded it should immediately
|
|
* call ieee80211_crypto_register which will fill
|
|
* in the entry in the ciphers array.
|
|
*/
|
|
cip = ciphers[cipher];
|
|
if (cip == NULL) {
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: unable to load cipher %u, module %s\n",
|
|
__func__, cipher, cipher_modnames[cipher]);
|
|
vap->iv_stats.is_crypto_nocipher++;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
oflags = key->wk_flags;
|
|
flags &= IEEE80211_KEY_COMMON;
|
|
/* NB: preserve device attributes */
|
|
flags |= (oflags & IEEE80211_KEY_DEVICE);
|
|
/*
|
|
* If the hardware does not support the cipher then
|
|
* fallback to a host-based implementation.
|
|
*/
|
|
if ((ic->ic_cryptocaps & (1<<cipher)) == 0) {
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: no h/w support for cipher %s, falling back to s/w\n",
|
|
__func__, cip->ic_name);
|
|
flags |= IEEE80211_KEY_SWCRYPT;
|
|
}
|
|
/*
|
|
* Hardware TKIP with software MIC is an important
|
|
* combination; we handle it by flagging each key,
|
|
* the cipher modules honor it.
|
|
*/
|
|
if (cipher == IEEE80211_CIPHER_TKIP &&
|
|
(ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIPMIC) == 0) {
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: no h/w support for TKIP MIC, falling back to s/w\n",
|
|
__func__);
|
|
flags |= IEEE80211_KEY_SWMIC;
|
|
}
|
|
|
|
/*
|
|
* Bind cipher to key instance. Note we do this
|
|
* after checking the device capabilities so the
|
|
* cipher module can optimize space usage based on
|
|
* whether or not it needs to do the cipher work.
|
|
*/
|
|
if (key->wk_cipher != cip || key->wk_flags != flags) {
|
|
/*
|
|
* Fillin the flags so cipher modules can see s/w
|
|
* crypto requirements and potentially allocate
|
|
* different state and/or attach different method
|
|
* pointers.
|
|
*/
|
|
key->wk_flags = flags;
|
|
keyctx = cip->ic_attach(vap, key);
|
|
if (keyctx == NULL) {
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: unable to attach cipher %s\n",
|
|
__func__, cip->ic_name);
|
|
key->wk_flags = oflags; /* restore old flags */
|
|
vap->iv_stats.is_crypto_attachfail++;
|
|
return 0;
|
|
}
|
|
cipher_detach(key);
|
|
key->wk_cipher = cip; /* XXX refcnt? */
|
|
key->wk_private = keyctx;
|
|
}
|
|
|
|
/*
|
|
* Ask the driver for a key index if we don't have one.
|
|
* Note that entries in the global key table always have
|
|
* an index; this means it's safe to call this routine
|
|
* for these entries just to setup the reference to the
|
|
* cipher template. Note also that when using software
|
|
* crypto we also call the driver to give us a key index.
|
|
*/
|
|
if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) {
|
|
if (!dev_key_alloc(vap, key, &keyix, &rxkeyix)) {
|
|
/*
|
|
* Unable to setup driver state.
|
|
*/
|
|
vap->iv_stats.is_crypto_keyfail++;
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: unable to setup cipher %s\n",
|
|
__func__, cip->ic_name);
|
|
return 0;
|
|
}
|
|
if (key->wk_flags != flags) {
|
|
/*
|
|
* Driver overrode flags we setup; typically because
|
|
* resources were unavailable to handle _this_ key.
|
|
* Re-attach the cipher context to allow cipher
|
|
* modules to handle differing requirements.
|
|
*/
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: driver override for cipher %s, flags "
|
|
"0x%x -> 0x%x\n", __func__, cip->ic_name,
|
|
oflags, key->wk_flags);
|
|
keyctx = cip->ic_attach(vap, key);
|
|
if (keyctx == NULL) {
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: unable to attach cipher %s with "
|
|
"flags 0x%x\n", __func__, cip->ic_name,
|
|
key->wk_flags);
|
|
key->wk_flags = oflags; /* restore old flags */
|
|
vap->iv_stats.is_crypto_attachfail++;
|
|
return 0;
|
|
}
|
|
cipher_detach(key);
|
|
key->wk_cipher = cip; /* XXX refcnt? */
|
|
key->wk_private = keyctx;
|
|
}
|
|
key->wk_keyix = keyix;
|
|
key->wk_rxkeyix = rxkeyix;
|
|
key->wk_flags |= IEEE80211_KEY_DEVKEY;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Remove the key (no locking, for internal use).
|
|
*/
|
|
static int
|
|
_ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
|
|
{
|
|
KASSERT(key->wk_cipher != NULL, ("No cipher!"));
|
|
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n",
|
|
__func__, key->wk_cipher->ic_name,
|
|
key->wk_keyix, key->wk_flags,
|
|
key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
|
|
key->wk_keylen);
|
|
|
|
if (key->wk_flags & IEEE80211_KEY_DEVKEY) {
|
|
/*
|
|
* Remove hardware entry.
|
|
*/
|
|
/* XXX key cache */
|
|
if (!dev_key_delete(vap, key)) {
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: driver did not delete key index %u\n",
|
|
__func__, key->wk_keyix);
|
|
vap->iv_stats.is_crypto_delkey++;
|
|
/* XXX recovery? */
|
|
}
|
|
}
|
|
cipher_detach(key);
|
|
memset(key, 0, sizeof(*key));
|
|
ieee80211_crypto_resetkey(vap, key, IEEE80211_KEYIX_NONE);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Remove the specified key.
|
|
*/
|
|
int
|
|
ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
|
|
{
|
|
int status;
|
|
|
|
ieee80211_key_update_begin(vap);
|
|
status = _ieee80211_crypto_delkey(vap, key);
|
|
ieee80211_key_update_end(vap);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Clear the global key table.
|
|
*/
|
|
void
|
|
ieee80211_crypto_delglobalkeys(struct ieee80211vap *vap)
|
|
{
|
|
int i;
|
|
|
|
ieee80211_key_update_begin(vap);
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
(void) _ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[i]);
|
|
ieee80211_key_update_end(vap);
|
|
}
|
|
|
|
/*
|
|
* Set the contents of the specified key.
|
|
*
|
|
* Locking must be handled by the caller using:
|
|
* ieee80211_key_update_begin(vap);
|
|
* ieee80211_key_update_end(vap);
|
|
*/
|
|
int
|
|
ieee80211_crypto_setkey(struct ieee80211vap *vap, struct ieee80211_key *key)
|
|
{
|
|
const struct ieee80211_cipher *cip = key->wk_cipher;
|
|
|
|
KASSERT(cip != NULL, ("No cipher!"));
|
|
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: %s keyix %u flags 0x%x mac %s rsc %ju tsc %ju len %u\n",
|
|
__func__, cip->ic_name, key->wk_keyix,
|
|
key->wk_flags, ether_sprintf(key->wk_macaddr),
|
|
key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
|
|
key->wk_keylen);
|
|
|
|
if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) {
|
|
/* XXX nothing allocated, should not happen */
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: no device key setup done; should not happen!\n",
|
|
__func__);
|
|
vap->iv_stats.is_crypto_setkey_nokey++;
|
|
return 0;
|
|
}
|
|
/*
|
|
* Give cipher a chance to validate key contents.
|
|
* XXX should happen before modifying state.
|
|
*/
|
|
if (!cip->ic_setkey(key)) {
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
|
|
"%s: cipher %s rejected key index %u len %u flags 0x%x\n",
|
|
__func__, cip->ic_name, key->wk_keyix,
|
|
key->wk_keylen, key->wk_flags);
|
|
vap->iv_stats.is_crypto_setkey_cipher++;
|
|
return 0;
|
|
}
|
|
return dev_key_set(vap, key);
|
|
}
|
|
|
|
/*
|
|
* Return index if the key is a WEP key (0..3); -1 otherwise.
|
|
*
|
|
* This is different to "get_keyid" which defaults to returning
|
|
* 0 for unicast keys; it assumes that it won't be used for WEP.
|
|
*/
|
|
int
|
|
ieee80211_crypto_get_key_wepidx(const struct ieee80211vap *vap,
|
|
const struct ieee80211_key *k)
|
|
{
|
|
|
|
if (k >= &vap->iv_nw_keys[0] &&
|
|
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])
|
|
return (k - vap->iv_nw_keys);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Note: only supports a single unicast key (0).
|
|
*/
|
|
uint8_t
|
|
ieee80211_crypto_get_keyid(struct ieee80211vap *vap, struct ieee80211_key *k)
|
|
{
|
|
if (k >= &vap->iv_nw_keys[0] &&
|
|
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])
|
|
return (k - vap->iv_nw_keys);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
struct ieee80211_key *
|
|
ieee80211_crypto_get_txkey(struct ieee80211_node *ni, struct mbuf *m)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ieee80211_frame *wh;
|
|
|
|
/*
|
|
* Multicast traffic always uses the multicast key.
|
|
* Otherwise if a unicast key is set we use that and
|
|
* it is always key index 0. When no unicast key is
|
|
* set we fall back to the default transmit key.
|
|
*/
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
|
|
if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE) {
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
|
|
wh->i_addr1,
|
|
"no default transmit key (%s) deftxkey %u",
|
|
__func__, vap->iv_def_txkey);
|
|
vap->iv_stats.is_tx_nodefkey++;
|
|
return NULL;
|
|
}
|
|
return &vap->iv_nw_keys[vap->iv_def_txkey];
|
|
}
|
|
|
|
return &ni->ni_ucastkey;
|
|
}
|
|
|
|
/*
|
|
* Add privacy headers appropriate for the specified key.
|
|
*/
|
|
struct ieee80211_key *
|
|
ieee80211_crypto_encap(struct ieee80211_node *ni, struct mbuf *m)
|
|
{
|
|
struct ieee80211_key *k;
|
|
const struct ieee80211_cipher *cip;
|
|
|
|
if ((k = ieee80211_crypto_get_txkey(ni, m)) != NULL) {
|
|
cip = k->wk_cipher;
|
|
return (cip->ic_encap(k, m) ? k : NULL);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Validate and strip privacy headers (and trailer) for a
|
|
* received frame that has the WEP/Privacy bit set.
|
|
*/
|
|
int
|
|
ieee80211_crypto_decap(struct ieee80211_node *ni, struct mbuf *m, int hdrlen,
|
|
struct ieee80211_key **key)
|
|
{
|
|
#define IEEE80211_WEP_HDRLEN (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN)
|
|
#define IEEE80211_WEP_MINLEN \
|
|
(sizeof(struct ieee80211_frame) + \
|
|
IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN)
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ieee80211_key *k;
|
|
struct ieee80211_frame *wh;
|
|
const struct ieee80211_rx_stats *rxs;
|
|
const struct ieee80211_cipher *cip;
|
|
uint8_t keyid;
|
|
|
|
/*
|
|
* Check for hardware decryption and IV stripping.
|
|
* If the IV is stripped then we definitely can't find a key.
|
|
* Set the key to NULL but return true; upper layers
|
|
* will need to handle a NULL key for a successful
|
|
* decrypt.
|
|
*/
|
|
rxs = ieee80211_get_rx_params_ptr(m);
|
|
if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) {
|
|
if (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP) {
|
|
/*
|
|
* Hardware decrypted, IV stripped.
|
|
* We can't find a key with a stripped IV.
|
|
* Return successful.
|
|
*/
|
|
*key = NULL;
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/* NB: this minimum size data frame could be bigger */
|
|
if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) {
|
|
IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
|
|
"%s: WEP data frame too short, len %u\n",
|
|
__func__, m->m_pkthdr.len);
|
|
vap->iv_stats.is_rx_tooshort++; /* XXX need unique stat? */
|
|
*key = NULL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Locate the key. If unicast and there is no unicast
|
|
* key then we fall back to the key id in the header.
|
|
* This assumes unicast keys are only configured when
|
|
* the key id in the header is meaningless (typically 0).
|
|
*/
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
m_copydata(m, hdrlen + IEEE80211_WEP_IVLEN, sizeof(keyid), &keyid);
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey))
|
|
k = &vap->iv_nw_keys[keyid >> 6];
|
|
else
|
|
k = &ni->ni_ucastkey;
|
|
|
|
/*
|
|
* Insure crypto header is contiguous and long enough for all
|
|
* decap work.
|
|
*/
|
|
cip = k->wk_cipher;
|
|
if (m->m_len < hdrlen + cip->ic_header) {
|
|
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
|
|
"frame is too short (%d < %u) for crypto decap",
|
|
cip->ic_name, m->m_len, hdrlen + cip->ic_header);
|
|
vap->iv_stats.is_rx_tooshort++;
|
|
*key = NULL;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Attempt decryption.
|
|
*
|
|
* If we fail then don't return the key - return NULL
|
|
* and an error.
|
|
*/
|
|
if (cip->ic_decap(k, m, hdrlen)) {
|
|
/* success */
|
|
*key = k;
|
|
return (1);
|
|
}
|
|
|
|
/* Failure */
|
|
*key = NULL;
|
|
return (0);
|
|
#undef IEEE80211_WEP_MINLEN
|
|
#undef IEEE80211_WEP_HDRLEN
|
|
}
|
|
|
|
/*
|
|
* Check and remove any MIC.
|
|
*/
|
|
int
|
|
ieee80211_crypto_demic(struct ieee80211vap *vap, struct ieee80211_key *k,
|
|
struct mbuf *m, int force)
|
|
{
|
|
const struct ieee80211_cipher *cip;
|
|
const struct ieee80211_rx_stats *rxs;
|
|
struct ieee80211_frame *wh;
|
|
|
|
rxs = ieee80211_get_rx_params_ptr(m);
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
/*
|
|
* Handle demic / mic errors from hardware-decrypted offload devices.
|
|
*/
|
|
if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) {
|
|
if (rxs->c_pktflags & IEEE80211_RX_F_FAIL_MIC) {
|
|
/*
|
|
* Hardware has said MIC failed. We don't care about
|
|
* whether it was stripped or not.
|
|
*
|
|
* Eventually - teach the demic methods in crypto
|
|
* modules to handle a NULL key and not to dereference
|
|
* it.
|
|
*/
|
|
ieee80211_notify_michael_failure(vap, wh, -1);
|
|
return (0);
|
|
}
|
|
|
|
if (rxs->c_pktflags & IEEE80211_RX_F_MMIC_STRIP) {
|
|
/*
|
|
* Hardware has decrypted and not indicated a
|
|
* MIC failure and has stripped the MIC.
|
|
* We may not have a key, so for now just
|
|
* return OK.
|
|
*/
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we don't have a key at this point then we don't
|
|
* have to demic anything.
|
|
*/
|
|
if (k == NULL)
|
|
return (1);
|
|
|
|
cip = k->wk_cipher;
|
|
return (cip->ic_miclen > 0 ? cip->ic_demic(k, m, force) : 1);
|
|
}
|
|
|
|
static void
|
|
load_ucastkey(void *arg, struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ieee80211_key *k;
|
|
|
|
if (vap->iv_state != IEEE80211_S_RUN)
|
|
return;
|
|
k = &ni->ni_ucastkey;
|
|
if (k->wk_flags & IEEE80211_KEY_DEVKEY)
|
|
dev_key_set(vap, k);
|
|
}
|
|
|
|
/*
|
|
* Re-load all keys known to the 802.11 layer that may
|
|
* have hardware state backing them. This is used by
|
|
* drivers on resume to push keys down into the device.
|
|
*/
|
|
void
|
|
ieee80211_crypto_reload_keys(struct ieee80211com *ic)
|
|
{
|
|
struct ieee80211vap *vap;
|
|
int i;
|
|
|
|
/*
|
|
* Keys in the global key table of each vap.
|
|
*/
|
|
/* NB: used only during resume so don't lock for now */
|
|
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
|
|
if (vap->iv_state != IEEE80211_S_RUN)
|
|
continue;
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
const struct ieee80211_key *k = &vap->iv_nw_keys[i];
|
|
if (k->wk_flags & IEEE80211_KEY_DEVKEY)
|
|
dev_key_set(vap, k);
|
|
}
|
|
}
|
|
/*
|
|
* Unicast keys.
|
|
*/
|
|
ieee80211_iterate_nodes(&ic->ic_sta, load_ucastkey, NULL);
|
|
}
|
|
|
|
/*
|
|
* Set the default key index for WEP, or KEYIX_NONE for no default TX key.
|
|
*
|
|
* This should be done as part of a key update block (iv_key_update_begin /
|
|
* iv_key_update_end.)
|
|
*/
|
|
void
|
|
ieee80211_crypto_set_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
|
|
{
|
|
|
|
/* XXX TODO: assert we're in a key update block */
|
|
|
|
vap->iv_update_deftxkey(vap, kid);
|
|
}
|