mirror of https://github.com/F-Stack/f-stack.git
4561 lines
106 KiB
C
4561 lines
106 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1980, 1986, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)if.c 8.5 (Berkeley) 1/9/95
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_bpf.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/domainset.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/epoch.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/priv.h>
|
|
|
|
#include <machine/stdarg.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_clone.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_vlan_var.h>
|
|
#include <net/radix.h>
|
|
#include <net/route.h>
|
|
#include <net/route/route_ctl.h>
|
|
#include <net/vnet.h>
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
#include <net/ethernet.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_carp.h>
|
|
#ifdef INET
|
|
#include <net/debugnet.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet6/in6_ifattach.h>
|
|
#endif /* INET6 */
|
|
#endif /* INET || INET6 */
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
/*
|
|
* Consumers of struct ifreq such as tcpdump assume no pad between ifr_name
|
|
* and ifr_ifru when it is used in SIOCGIFCONF.
|
|
*/
|
|
_Static_assert(sizeof(((struct ifreq *)0)->ifr_name) ==
|
|
offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru");
|
|
|
|
__read_mostly epoch_t net_epoch_preempt;
|
|
#ifdef COMPAT_FREEBSD32
|
|
#include <sys/mount.h>
|
|
#include <compat/freebsd32/freebsd32.h>
|
|
|
|
struct ifreq_buffer32 {
|
|
uint32_t length; /* (size_t) */
|
|
uint32_t buffer; /* (void *) */
|
|
};
|
|
|
|
/*
|
|
* Interface request structure used for socket
|
|
* ioctl's. All interface ioctl's must have parameter
|
|
* definitions which begin with ifr_name. The
|
|
* remainder may be interface specific.
|
|
*/
|
|
struct ifreq32 {
|
|
char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
|
|
union {
|
|
struct sockaddr ifru_addr;
|
|
struct sockaddr ifru_dstaddr;
|
|
struct sockaddr ifru_broadaddr;
|
|
struct ifreq_buffer32 ifru_buffer;
|
|
short ifru_flags[2];
|
|
short ifru_index;
|
|
int ifru_jid;
|
|
int ifru_metric;
|
|
int ifru_mtu;
|
|
int ifru_phys;
|
|
int ifru_media;
|
|
uint32_t ifru_data;
|
|
int ifru_cap[2];
|
|
u_int ifru_fib;
|
|
u_char ifru_vlan_pcp;
|
|
} ifr_ifru;
|
|
};
|
|
CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32));
|
|
CTASSERT(__offsetof(struct ifreq, ifr_ifru) ==
|
|
__offsetof(struct ifreq32, ifr_ifru));
|
|
|
|
struct ifgroupreq32 {
|
|
char ifgr_name[IFNAMSIZ];
|
|
u_int ifgr_len;
|
|
union {
|
|
char ifgru_group[IFNAMSIZ];
|
|
uint32_t ifgru_groups;
|
|
} ifgr_ifgru;
|
|
};
|
|
|
|
struct ifmediareq32 {
|
|
char ifm_name[IFNAMSIZ];
|
|
int ifm_current;
|
|
int ifm_mask;
|
|
int ifm_status;
|
|
int ifm_active;
|
|
int ifm_count;
|
|
uint32_t ifm_ulist; /* (int *) */
|
|
};
|
|
#define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32)
|
|
#define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32)
|
|
|
|
#define _CASE_IOC_IFGROUPREQ_32(cmd) \
|
|
_IOC_NEWTYPE((cmd), struct ifgroupreq32): case
|
|
#else /* !COMPAT_FREEBSD32 */
|
|
#define _CASE_IOC_IFGROUPREQ_32(cmd)
|
|
#endif /* !COMPAT_FREEBSD32 */
|
|
|
|
#define CASE_IOC_IFGROUPREQ(cmd) \
|
|
_CASE_IOC_IFGROUPREQ_32(cmd) \
|
|
(cmd)
|
|
|
|
union ifreq_union {
|
|
struct ifreq ifr;
|
|
#ifdef COMPAT_FREEBSD32
|
|
struct ifreq32 ifr32;
|
|
#endif
|
|
};
|
|
|
|
union ifgroupreq_union {
|
|
struct ifgroupreq ifgr;
|
|
#ifdef COMPAT_FREEBSD32
|
|
struct ifgroupreq32 ifgr32;
|
|
#endif
|
|
};
|
|
|
|
SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Link layers");
|
|
SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Generic link-management");
|
|
|
|
SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
|
|
&ifqmaxlen, 0, "max send queue size");
|
|
|
|
/* Log link state change events */
|
|
static int log_link_state_change = 1;
|
|
|
|
SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
|
|
&log_link_state_change, 0,
|
|
"log interface link state change events");
|
|
|
|
/* Log promiscuous mode change events */
|
|
static int log_promisc_mode_change = 1;
|
|
|
|
SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
|
|
&log_promisc_mode_change, 1,
|
|
"log promiscuous mode change events");
|
|
|
|
/* Interface description */
|
|
static unsigned int ifdescr_maxlen = 1024;
|
|
SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
|
|
&ifdescr_maxlen, 0,
|
|
"administrative maximum length for interface description");
|
|
|
|
static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
|
|
|
|
/* global sx for non-critical path ifdescr */
|
|
static struct sx ifdescr_sx;
|
|
SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
|
|
|
|
void (*ng_ether_link_state_p)(struct ifnet *ifp, int state);
|
|
void (*lagg_linkstate_p)(struct ifnet *ifp, int state);
|
|
/* These are external hooks for CARP. */
|
|
void (*carp_linkstate_p)(struct ifnet *ifp);
|
|
void (*carp_demote_adj_p)(int, char *);
|
|
int (*carp_master_p)(struct ifaddr *);
|
|
#if defined(INET) || defined(INET6)
|
|
int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
|
|
int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
|
|
const struct sockaddr *sa);
|
|
int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);
|
|
int (*carp_attach_p)(struct ifaddr *, int);
|
|
void (*carp_detach_p)(struct ifaddr *, bool);
|
|
#endif
|
|
#ifdef INET
|
|
int (*carp_iamatch_p)(struct ifaddr *, uint8_t **);
|
|
#endif
|
|
#ifdef INET6
|
|
struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
|
|
caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
|
|
const struct in6_addr *taddr);
|
|
#endif
|
|
|
|
struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
|
|
|
|
/*
|
|
* XXX: Style; these should be sorted alphabetically, and unprototyped
|
|
* static functions should be prototyped. Currently they are sorted by
|
|
* declaration order.
|
|
*/
|
|
static void if_attachdomain(void *);
|
|
static void if_attachdomain1(struct ifnet *);
|
|
static int ifconf(u_long, caddr_t);
|
|
static void *if_grow(void);
|
|
static void if_input_default(struct ifnet *, struct mbuf *);
|
|
static int if_requestencap_default(struct ifnet *, struct if_encap_req *);
|
|
static void if_route(struct ifnet *, int flag, int fam);
|
|
static int if_setflag(struct ifnet *, int, int, int *, int);
|
|
static int if_transmit(struct ifnet *ifp, struct mbuf *m);
|
|
static void if_unroute(struct ifnet *, int flag, int fam);
|
|
static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
|
|
static void do_link_state_change(void *, int);
|
|
static int if_getgroup(struct ifgroupreq *, struct ifnet *);
|
|
static int if_getgroupmembers(struct ifgroupreq *);
|
|
static void if_delgroups(struct ifnet *);
|
|
static void if_attach_internal(struct ifnet *, int, struct if_clone *);
|
|
static int if_detach_internal(struct ifnet *, int, struct if_clone **);
|
|
static void if_siocaddmulti(void *, int);
|
|
static void if_link_ifnet(struct ifnet *);
|
|
static bool if_unlink_ifnet(struct ifnet *, bool);
|
|
#ifdef VIMAGE
|
|
static int if_vmove(struct ifnet *, struct vnet *);
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
/*
|
|
* XXX: declare here to avoid to include many inet6 related files..
|
|
* should be more generalized?
|
|
*/
|
|
extern void nd6_setmtu(struct ifnet *);
|
|
#endif
|
|
|
|
/* ipsec helper hooks */
|
|
VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
|
|
VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
|
|
|
|
VNET_DEFINE(int, if_index);
|
|
int ifqmaxlen = IFQ_MAXLEN;
|
|
VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */
|
|
VNET_DEFINE(struct ifgrouphead, ifg_head);
|
|
|
|
VNET_DEFINE_STATIC(int, if_indexlim) = 8;
|
|
|
|
/* Table of ifnet by index. */
|
|
VNET_DEFINE(struct ifnet **, ifindex_table);
|
|
|
|
#define V_if_indexlim VNET(if_indexlim)
|
|
#define V_ifindex_table VNET(ifindex_table)
|
|
|
|
/*
|
|
* The global network interface list (V_ifnet) and related state (such as
|
|
* if_index, if_indexlim, and ifindex_table) are protected by an sxlock.
|
|
* This may be acquired to stabilise the list, or we may rely on NET_EPOCH.
|
|
*/
|
|
struct sx ifnet_sxlock;
|
|
SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
|
|
|
|
struct sx ifnet_detach_sxlock;
|
|
SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx",
|
|
SX_RECURSE);
|
|
|
|
/*
|
|
* The allocation of network interfaces is a rather non-atomic affair; we
|
|
* need to select an index before we are ready to expose the interface for
|
|
* use, so will use this pointer value to indicate reservation.
|
|
*/
|
|
#define IFNET_HOLD (void *)(uintptr_t)(-1)
|
|
|
|
#ifdef VIMAGE
|
|
#define VNET_IS_SHUTTING_DOWN(_vnet) \
|
|
((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE)
|
|
#endif
|
|
|
|
static if_com_alloc_t *if_com_alloc[256];
|
|
static if_com_free_t *if_com_free[256];
|
|
|
|
static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
|
|
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
|
|
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
|
|
|
|
struct ifnet *
|
|
ifnet_byindex(u_short idx)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
if (__predict_false(idx > V_if_index))
|
|
return (NULL);
|
|
|
|
ifp = *(struct ifnet * const volatile *)(V_ifindex_table + idx);
|
|
return (__predict_false(ifp == IFNET_HOLD) ? NULL : ifp);
|
|
}
|
|
|
|
struct ifnet *
|
|
ifnet_byindex_ref(u_short idx)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
ifp = ifnet_byindex(idx);
|
|
if (ifp == NULL || (ifp->if_flags & IFF_DYING))
|
|
return (NULL);
|
|
if_ref(ifp);
|
|
return (ifp);
|
|
}
|
|
|
|
/*
|
|
* Allocate an ifindex array entry; return 0 on success or an error on
|
|
* failure.
|
|
*/
|
|
static u_short
|
|
ifindex_alloc(void **old)
|
|
{
|
|
u_short idx;
|
|
|
|
IFNET_WLOCK_ASSERT();
|
|
/*
|
|
* Try to find an empty slot below V_if_index. If we fail, take the
|
|
* next slot.
|
|
*/
|
|
for (idx = 1; idx <= V_if_index; idx++) {
|
|
if (V_ifindex_table[idx] == NULL)
|
|
break;
|
|
}
|
|
|
|
/* Catch if_index overflow. */
|
|
if (idx >= V_if_indexlim) {
|
|
*old = if_grow();
|
|
return (USHRT_MAX);
|
|
}
|
|
if (idx > V_if_index)
|
|
V_if_index = idx;
|
|
return (idx);
|
|
}
|
|
|
|
static void
|
|
ifindex_free_locked(u_short idx)
|
|
{
|
|
|
|
IFNET_WLOCK_ASSERT();
|
|
|
|
V_ifindex_table[idx] = NULL;
|
|
while (V_if_index > 0 &&
|
|
V_ifindex_table[V_if_index] == NULL)
|
|
V_if_index--;
|
|
}
|
|
|
|
static void
|
|
ifindex_free(u_short idx)
|
|
{
|
|
|
|
IFNET_WLOCK();
|
|
ifindex_free_locked(idx);
|
|
IFNET_WUNLOCK();
|
|
}
|
|
|
|
static void
|
|
ifnet_setbyindex(u_short idx, struct ifnet *ifp)
|
|
{
|
|
|
|
V_ifindex_table[idx] = ifp;
|
|
}
|
|
|
|
struct ifaddr *
|
|
ifaddr_byindex(u_short idx)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa = NULL;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
ifp = ifnet_byindex(idx);
|
|
if (ifp != NULL && (ifa = ifp->if_addr) != NULL)
|
|
ifa_ref(ifa);
|
|
return (ifa);
|
|
}
|
|
|
|
/*
|
|
* Network interface utility routines.
|
|
*
|
|
* Routines with ifa_ifwith* names take sockaddr *'s as
|
|
* parameters.
|
|
*/
|
|
|
|
static void
|
|
vnet_if_init(const void *unused __unused)
|
|
{
|
|
void *old;
|
|
|
|
CK_STAILQ_INIT(&V_ifnet);
|
|
CK_STAILQ_INIT(&V_ifg_head);
|
|
IFNET_WLOCK();
|
|
old = if_grow(); /* create initial table */
|
|
IFNET_WUNLOCK();
|
|
epoch_wait_preempt(net_epoch_preempt);
|
|
free(old, M_IFNET);
|
|
vnet_if_clone_init();
|
|
}
|
|
VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
|
|
NULL);
|
|
|
|
#ifdef VIMAGE
|
|
static void
|
|
vnet_if_uninit(const void *unused __unused)
|
|
{
|
|
|
|
VNET_ASSERT(CK_STAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p "
|
|
"not empty", __func__, __LINE__, &V_ifnet));
|
|
VNET_ASSERT(CK_STAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p "
|
|
"not empty", __func__, __LINE__, &V_ifg_head));
|
|
|
|
free((caddr_t)V_ifindex_table, M_IFNET);
|
|
}
|
|
VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
|
|
vnet_if_uninit, NULL);
|
|
#endif
|
|
|
|
static void
|
|
if_link_ifnet(struct ifnet *ifp)
|
|
{
|
|
|
|
IFNET_WLOCK();
|
|
CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
|
|
#ifdef VIMAGE
|
|
curvnet->vnet_ifcnt++;
|
|
#endif
|
|
IFNET_WUNLOCK();
|
|
}
|
|
|
|
static bool
|
|
if_unlink_ifnet(struct ifnet *ifp, bool vmove)
|
|
{
|
|
struct ifnet *iter;
|
|
int found = 0;
|
|
|
|
IFNET_WLOCK();
|
|
CK_STAILQ_FOREACH(iter, &V_ifnet, if_link)
|
|
if (iter == ifp) {
|
|
CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link);
|
|
if (!vmove)
|
|
ifp->if_flags |= IFF_DYING;
|
|
found = 1;
|
|
break;
|
|
}
|
|
#ifdef VIMAGE
|
|
curvnet->vnet_ifcnt--;
|
|
#endif
|
|
IFNET_WUNLOCK();
|
|
|
|
return (found);
|
|
}
|
|
|
|
#ifdef VIMAGE
|
|
static void
|
|
vnet_if_return(const void *unused __unused)
|
|
{
|
|
struct ifnet *ifp, *nifp;
|
|
struct ifnet **pending;
|
|
int found, i;
|
|
|
|
i = 0;
|
|
|
|
/*
|
|
* We need to protect our access to the V_ifnet tailq. Ordinarily we'd
|
|
* enter NET_EPOCH, but that's not possible, because if_vmove() calls
|
|
* if_detach_internal(), which waits for NET_EPOCH callbacks to
|
|
* complete. We can't do that from within NET_EPOCH.
|
|
*
|
|
* However, we can also use the IFNET_xLOCK, which is the V_ifnet
|
|
* read/write lock. We cannot hold the lock as we call if_vmove()
|
|
* though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib
|
|
* ctx lock.
|
|
*/
|
|
IFNET_WLOCK();
|
|
|
|
pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt,
|
|
M_IFNET, M_WAITOK | M_ZERO);
|
|
|
|
/* Return all inherited interfaces to their parent vnets. */
|
|
CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
|
|
if (ifp->if_home_vnet != ifp->if_vnet) {
|
|
found = if_unlink_ifnet(ifp, true);
|
|
MPASS(found);
|
|
|
|
pending[i++] = ifp;
|
|
}
|
|
}
|
|
IFNET_WUNLOCK();
|
|
|
|
for (int j = 0; j < i; j++) {
|
|
if_vmove(pending[j], pending[j]->if_home_vnet);
|
|
}
|
|
|
|
free(pending, M_IFNET);
|
|
}
|
|
VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
|
|
vnet_if_return, NULL);
|
|
#endif
|
|
|
|
static void *
|
|
if_grow(void)
|
|
{
|
|
int oldlim;
|
|
u_int n;
|
|
struct ifnet **e;
|
|
void *old;
|
|
|
|
old = NULL;
|
|
IFNET_WLOCK_ASSERT();
|
|
oldlim = V_if_indexlim;
|
|
IFNET_WUNLOCK();
|
|
n = (oldlim << 1) * sizeof(*e);
|
|
e = malloc(n, M_IFNET, M_WAITOK | M_ZERO);
|
|
IFNET_WLOCK();
|
|
if (V_if_indexlim != oldlim) {
|
|
free(e, M_IFNET);
|
|
return (NULL);
|
|
}
|
|
if (V_ifindex_table != NULL) {
|
|
memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2);
|
|
old = V_ifindex_table;
|
|
}
|
|
V_if_indexlim <<= 1;
|
|
V_ifindex_table = e;
|
|
return (old);
|
|
}
|
|
|
|
/*
|
|
* Allocate a struct ifnet and an index for an interface. A layer 2
|
|
* common structure will also be allocated if an allocation routine is
|
|
* registered for the passed type.
|
|
*/
|
|
struct ifnet *
|
|
if_alloc_domain(u_char type, int numa_domain)
|
|
{
|
|
struct ifnet *ifp;
|
|
u_short idx;
|
|
void *old = NULL;
|
|
|
|
KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large"));
|
|
if (numa_domain == IF_NODOM)
|
|
ifp = malloc(sizeof(struct ifnet), M_IFNET,
|
|
M_WAITOK | M_ZERO);
|
|
else
|
|
ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET,
|
|
DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO);
|
|
restart:
|
|
IFNET_WLOCK();
|
|
idx = ifindex_alloc(&old);
|
|
if (__predict_false(idx == USHRT_MAX)) {
|
|
IFNET_WUNLOCK();
|
|
epoch_wait_preempt(net_epoch_preempt);
|
|
free(old, M_IFNET);
|
|
goto restart;
|
|
}
|
|
ifnet_setbyindex(idx, IFNET_HOLD);
|
|
IFNET_WUNLOCK();
|
|
ifp->if_index = idx;
|
|
ifp->if_type = type;
|
|
ifp->if_alloctype = type;
|
|
ifp->if_numa_domain = numa_domain;
|
|
#ifdef VIMAGE
|
|
ifp->if_vnet = curvnet;
|
|
#endif
|
|
if (if_com_alloc[type] != NULL) {
|
|
ifp->if_l2com = if_com_alloc[type](type, ifp);
|
|
if (ifp->if_l2com == NULL) {
|
|
free(ifp, M_IFNET);
|
|
ifindex_free(idx);
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
IF_ADDR_LOCK_INIT(ifp);
|
|
TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
|
|
TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp);
|
|
ifp->if_afdata_initialized = 0;
|
|
IF_AFDATA_LOCK_INIT(ifp);
|
|
CK_STAILQ_INIT(&ifp->if_addrhead);
|
|
CK_STAILQ_INIT(&ifp->if_multiaddrs);
|
|
CK_STAILQ_INIT(&ifp->if_groups);
|
|
#ifdef MAC
|
|
mac_ifnet_init(ifp);
|
|
#endif
|
|
ifq_init(&ifp->if_snd, ifp);
|
|
|
|
refcount_init(&ifp->if_refcount, 1); /* Index reference. */
|
|
for (int i = 0; i < IFCOUNTERS; i++)
|
|
ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
|
|
ifp->if_get_counter = if_get_counter_default;
|
|
ifp->if_pcp = IFNET_PCP_NONE;
|
|
ifnet_setbyindex(ifp->if_index, ifp);
|
|
return (ifp);
|
|
}
|
|
|
|
struct ifnet *
|
|
if_alloc_dev(u_char type, device_t dev)
|
|
{
|
|
int numa_domain;
|
|
|
|
if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0)
|
|
return (if_alloc_domain(type, IF_NODOM));
|
|
return (if_alloc_domain(type, numa_domain));
|
|
}
|
|
|
|
struct ifnet *
|
|
if_alloc(u_char type)
|
|
{
|
|
|
|
return (if_alloc_domain(type, IF_NODOM));
|
|
}
|
|
/*
|
|
* Do the actual work of freeing a struct ifnet, and layer 2 common
|
|
* structure. This call is made when the last reference to an
|
|
* interface is released.
|
|
*/
|
|
static void
|
|
if_free_internal(struct ifnet *ifp)
|
|
{
|
|
|
|
KASSERT((ifp->if_flags & IFF_DYING),
|
|
("if_free_internal: interface not dying"));
|
|
|
|
if (if_com_free[ifp->if_alloctype] != NULL)
|
|
if_com_free[ifp->if_alloctype](ifp->if_l2com,
|
|
ifp->if_alloctype);
|
|
|
|
#ifdef MAC
|
|
mac_ifnet_destroy(ifp);
|
|
#endif /* MAC */
|
|
IF_AFDATA_DESTROY(ifp);
|
|
IF_ADDR_LOCK_DESTROY(ifp);
|
|
ifq_delete(&ifp->if_snd);
|
|
|
|
for (int i = 0; i < IFCOUNTERS; i++)
|
|
counter_u64_free(ifp->if_counters[i]);
|
|
|
|
free(ifp->if_description, M_IFDESCR);
|
|
free(ifp->if_hw_addr, M_IFADDR);
|
|
free(ifp, M_IFNET);
|
|
}
|
|
|
|
static void
|
|
if_destroy(epoch_context_t ctx)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ifp = __containerof(ctx, struct ifnet, if_epoch_ctx);
|
|
if_free_internal(ifp);
|
|
}
|
|
|
|
/*
|
|
* Deregister an interface and free the associated storage.
|
|
*/
|
|
void
|
|
if_free(struct ifnet *ifp)
|
|
{
|
|
|
|
ifp->if_flags |= IFF_DYING; /* XXX: Locking */
|
|
|
|
CURVNET_SET_QUIET(ifp->if_vnet);
|
|
IFNET_WLOCK();
|
|
KASSERT(ifp == ifnet_byindex(ifp->if_index),
|
|
("%s: freeing unallocated ifnet", ifp->if_xname));
|
|
|
|
ifindex_free_locked(ifp->if_index);
|
|
IFNET_WUNLOCK();
|
|
|
|
if (refcount_release(&ifp->if_refcount))
|
|
NET_EPOCH_CALL(if_destroy, &ifp->if_epoch_ctx);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Interfaces to keep an ifnet type-stable despite the possibility of the
|
|
* driver calling if_free(). If there are additional references, we defer
|
|
* freeing the underlying data structure.
|
|
*/
|
|
void
|
|
if_ref(struct ifnet *ifp)
|
|
{
|
|
|
|
/* We don't assert the ifnet list lock here, but arguably should. */
|
|
refcount_acquire(&ifp->if_refcount);
|
|
}
|
|
|
|
void
|
|
if_rele(struct ifnet *ifp)
|
|
{
|
|
|
|
if (!refcount_release(&ifp->if_refcount))
|
|
return;
|
|
NET_EPOCH_CALL(if_destroy, &ifp->if_epoch_ctx);
|
|
}
|
|
|
|
void
|
|
ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
|
|
{
|
|
|
|
mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
|
|
|
|
if (ifq->ifq_maxlen == 0)
|
|
ifq->ifq_maxlen = ifqmaxlen;
|
|
|
|
ifq->altq_type = 0;
|
|
ifq->altq_disc = NULL;
|
|
ifq->altq_flags &= ALTQF_CANTCHANGE;
|
|
ifq->altq_tbr = NULL;
|
|
ifq->altq_ifp = ifp;
|
|
}
|
|
|
|
void
|
|
ifq_delete(struct ifaltq *ifq)
|
|
{
|
|
mtx_destroy(&ifq->ifq_mtx);
|
|
}
|
|
|
|
/*
|
|
* Perform generic interface initialization tasks and attach the interface
|
|
* to the list of "active" interfaces. If vmove flag is set on entry
|
|
* to if_attach_internal(), perform only a limited subset of initialization
|
|
* tasks, given that we are moving from one vnet to another an ifnet which
|
|
* has already been fully initialized.
|
|
*
|
|
* Note that if_detach_internal() removes group membership unconditionally
|
|
* even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
|
|
* Thus, when if_vmove() is applied to a cloned interface, group membership
|
|
* is lost while a cloned one always joins a group whose name is
|
|
* ifc->ifc_name. To recover this after if_detach_internal() and
|
|
* if_attach_internal(), the cloner should be specified to
|
|
* if_attach_internal() via ifc. If it is non-NULL, if_attach_internal()
|
|
* attempts to join a group whose name is ifc->ifc_name.
|
|
*
|
|
* XXX:
|
|
* - The decision to return void and thus require this function to
|
|
* succeed is questionable.
|
|
* - We should probably do more sanity checking. For instance we don't
|
|
* do anything to insure if_xname is unique or non-empty.
|
|
*/
|
|
void
|
|
if_attach(struct ifnet *ifp)
|
|
{
|
|
|
|
if_attach_internal(ifp, 0, NULL);
|
|
}
|
|
|
|
/*
|
|
* Compute the least common TSO limit.
|
|
*/
|
|
void
|
|
if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
|
|
{
|
|
/*
|
|
* 1) If there is no limit currently, take the limit from
|
|
* the network adapter.
|
|
*
|
|
* 2) If the network adapter has a limit below the current
|
|
* limit, apply it.
|
|
*/
|
|
if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
|
|
ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
|
|
pmax->tsomaxbytes = ifp->if_hw_tsomax;
|
|
}
|
|
if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
|
|
ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
|
|
pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
|
|
}
|
|
if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
|
|
ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
|
|
pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update TSO limit of a network adapter.
|
|
*
|
|
* Returns zero if no change. Else non-zero.
|
|
*/
|
|
int
|
|
if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
|
|
{
|
|
int retval = 0;
|
|
if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
|
|
ifp->if_hw_tsomax = pmax->tsomaxbytes;
|
|
retval++;
|
|
}
|
|
if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
|
|
ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
|
|
retval++;
|
|
}
|
|
if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
|
|
ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
|
|
retval++;
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
static void
|
|
if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc)
|
|
{
|
|
unsigned socksize, ifasize;
|
|
int namelen, masklen;
|
|
struct sockaddr_dl *sdl;
|
|
struct ifaddr *ifa;
|
|
|
|
if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index))
|
|
panic ("%s: BUG: if_attach called without if_alloc'd input()\n",
|
|
ifp->if_xname);
|
|
|
|
#ifdef VIMAGE
|
|
ifp->if_vnet = curvnet;
|
|
if (ifp->if_home_vnet == NULL)
|
|
ifp->if_home_vnet = curvnet;
|
|
#endif
|
|
|
|
if_addgroup(ifp, IFG_ALL);
|
|
|
|
/* Restore group membership for cloned interfaces. */
|
|
if (vmove && ifc != NULL)
|
|
if_clone_addgroup(ifp, ifc);
|
|
|
|
getmicrotime(&ifp->if_lastchange);
|
|
ifp->if_epoch = time_uptime;
|
|
|
|
KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
|
|
(ifp->if_transmit != NULL && ifp->if_qflush != NULL),
|
|
("transmit and qflush must both either be set or both be NULL"));
|
|
if (ifp->if_transmit == NULL) {
|
|
ifp->if_transmit = if_transmit;
|
|
ifp->if_qflush = if_qflush;
|
|
}
|
|
if (ifp->if_input == NULL)
|
|
ifp->if_input = if_input_default;
|
|
|
|
if (ifp->if_requestencap == NULL)
|
|
ifp->if_requestencap = if_requestencap_default;
|
|
|
|
if (!vmove) {
|
|
#ifdef MAC
|
|
mac_ifnet_create(ifp);
|
|
#endif
|
|
|
|
/*
|
|
* Create a Link Level name for this device.
|
|
*/
|
|
namelen = strlen(ifp->if_xname);
|
|
/*
|
|
* Always save enough space for any possiable name so we
|
|
* can do a rename in place later.
|
|
*/
|
|
masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
|
|
socksize = masklen + ifp->if_addrlen;
|
|
if (socksize < sizeof(*sdl))
|
|
socksize = sizeof(*sdl);
|
|
socksize = roundup2(socksize, sizeof(long));
|
|
ifasize = sizeof(*ifa) + 2 * socksize;
|
|
ifa = ifa_alloc(ifasize, M_WAITOK);
|
|
sdl = (struct sockaddr_dl *)(ifa + 1);
|
|
sdl->sdl_len = socksize;
|
|
sdl->sdl_family = AF_LINK;
|
|
bcopy(ifp->if_xname, sdl->sdl_data, namelen);
|
|
sdl->sdl_nlen = namelen;
|
|
sdl->sdl_index = ifp->if_index;
|
|
sdl->sdl_type = ifp->if_type;
|
|
ifp->if_addr = ifa;
|
|
ifa->ifa_ifp = ifp;
|
|
ifa->ifa_addr = (struct sockaddr *)sdl;
|
|
sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
|
|
ifa->ifa_netmask = (struct sockaddr *)sdl;
|
|
sdl->sdl_len = masklen;
|
|
while (namelen != 0)
|
|
sdl->sdl_data[--namelen] = 0xff;
|
|
CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
|
|
/* Reliably crash if used uninitialized. */
|
|
ifp->if_broadcastaddr = NULL;
|
|
|
|
if (ifp->if_type == IFT_ETHER) {
|
|
ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR,
|
|
M_WAITOK | M_ZERO);
|
|
}
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
/* Use defaults for TSO, if nothing is set */
|
|
if (ifp->if_hw_tsomax == 0 &&
|
|
ifp->if_hw_tsomaxsegcount == 0 &&
|
|
ifp->if_hw_tsomaxsegsize == 0) {
|
|
/*
|
|
* The TSO defaults needs to be such that an
|
|
* NFS mbuf list of 35 mbufs totalling just
|
|
* below 64K works and that a chain of mbufs
|
|
* can be defragged into at most 32 segments:
|
|
*/
|
|
ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
|
|
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
|
|
ifp->if_hw_tsomaxsegcount = 35;
|
|
ifp->if_hw_tsomaxsegsize = 2048; /* 2K */
|
|
|
|
/* XXX some drivers set IFCAP_TSO after ethernet attach */
|
|
if (ifp->if_capabilities & IFCAP_TSO) {
|
|
if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
|
|
ifp->if_hw_tsomax,
|
|
ifp->if_hw_tsomaxsegcount,
|
|
ifp->if_hw_tsomaxsegsize);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#ifdef VIMAGE
|
|
else {
|
|
/*
|
|
* Update the interface index in the link layer address
|
|
* of the interface.
|
|
*/
|
|
for (ifa = ifp->if_addr; ifa != NULL;
|
|
ifa = CK_STAILQ_NEXT(ifa, ifa_link)) {
|
|
if (ifa->ifa_addr->sa_family == AF_LINK) {
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
sdl->sdl_index = ifp->if_index;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if_link_ifnet(ifp);
|
|
|
|
if (domain_init_status >= 2)
|
|
if_attachdomain1(ifp);
|
|
|
|
EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
|
|
if (IS_DEFAULT_VNET(curvnet))
|
|
devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
|
|
|
|
/* Announce the interface. */
|
|
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
|
|
}
|
|
|
|
static void
|
|
if_epochalloc(void *dummy __unused)
|
|
{
|
|
|
|
net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT);
|
|
}
|
|
SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL);
|
|
|
|
static void
|
|
if_attachdomain(void *dummy)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link)
|
|
if_attachdomain1(ifp);
|
|
}
|
|
SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
|
|
if_attachdomain, NULL);
|
|
|
|
static void
|
|
if_attachdomain1(struct ifnet *ifp)
|
|
{
|
|
struct domain *dp;
|
|
|
|
/*
|
|
* Since dp->dom_ifattach calls malloc() with M_WAITOK, we
|
|
* cannot lock ifp->if_afdata initialization, entirely.
|
|
*/
|
|
IF_AFDATA_LOCK(ifp);
|
|
if (ifp->if_afdata_initialized >= domain_init_status) {
|
|
IF_AFDATA_UNLOCK(ifp);
|
|
log(LOG_WARNING, "%s called more than once on %s\n",
|
|
__func__, ifp->if_xname);
|
|
return;
|
|
}
|
|
ifp->if_afdata_initialized = domain_init_status;
|
|
IF_AFDATA_UNLOCK(ifp);
|
|
|
|
/* address family dependent data region */
|
|
bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
|
|
for (dp = domains; dp; dp = dp->dom_next) {
|
|
if (dp->dom_ifattach)
|
|
ifp->if_afdata[dp->dom_family] =
|
|
(*dp->dom_ifattach)(ifp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove any unicast or broadcast network addresses from an interface.
|
|
*/
|
|
void
|
|
if_purgeaddrs(struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
while (1) {
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != AF_LINK)
|
|
break;
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
if (ifa == NULL)
|
|
break;
|
|
#ifdef INET
|
|
/* XXX: Ugly!! ad hoc just for INET */
|
|
if (ifa->ifa_addr->sa_family == AF_INET) {
|
|
struct ifaliasreq ifr;
|
|
|
|
bzero(&ifr, sizeof(ifr));
|
|
ifr.ifra_addr = *ifa->ifa_addr;
|
|
if (ifa->ifa_dstaddr)
|
|
ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
|
|
if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
|
|
NULL) == 0)
|
|
continue;
|
|
}
|
|
#endif /* INET */
|
|
#ifdef INET6
|
|
if (ifa->ifa_addr->sa_family == AF_INET6) {
|
|
in6_purgeifaddr((struct in6_ifaddr *)ifa);
|
|
/* ifp_addrhead is already updated */
|
|
continue;
|
|
}
|
|
#endif /* INET6 */
|
|
IF_ADDR_WLOCK(ifp);
|
|
CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
ifa_free(ifa);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove any multicast network addresses from an interface when an ifnet
|
|
* is going away.
|
|
*/
|
|
static void
|
|
if_purgemaddrs(struct ifnet *ifp)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
|
|
IF_ADDR_WLOCK(ifp);
|
|
while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) {
|
|
ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs);
|
|
CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
|
|
if_delmulti_locked(ifp, ifma, 1);
|
|
}
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
}
|
|
|
|
/*
|
|
* Detach an interface, removing it from the list of "active" interfaces.
|
|
* If vmove flag is set on entry to if_detach_internal(), perform only a
|
|
* limited subset of cleanup tasks, given that we are moving an ifnet from
|
|
* one vnet to another, where it must be fully operational.
|
|
*
|
|
* XXXRW: There are some significant questions about event ordering, and
|
|
* how to prevent things from starting to use the interface during detach.
|
|
*/
|
|
void
|
|
if_detach(struct ifnet *ifp)
|
|
{
|
|
bool found;
|
|
|
|
CURVNET_SET_QUIET(ifp->if_vnet);
|
|
found = if_unlink_ifnet(ifp, false);
|
|
if (found) {
|
|
sx_xlock(&ifnet_detach_sxlock);
|
|
if_detach_internal(ifp, 0, NULL);
|
|
sx_xunlock(&ifnet_detach_sxlock);
|
|
}
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* The vmove flag, if set, indicates that we are called from a callpath
|
|
* that is moving an interface to a different vnet instance.
|
|
*
|
|
* The shutdown flag, if set, indicates that we are called in the
|
|
* process of shutting down a vnet instance. Currently only the
|
|
* vnet_if_return SYSUNINIT function sets it. Note: we can be called
|
|
* on a vnet instance shutdown without this flag being set, e.g., when
|
|
* the cloned interfaces are destoyed as first thing of teardown.
|
|
*/
|
|
static int
|
|
if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
int i;
|
|
struct domain *dp;
|
|
#ifdef VIMAGE
|
|
bool shutdown;
|
|
|
|
shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
|
|
#endif
|
|
|
|
/*
|
|
* At this point we know the interface still was on the ifnet list
|
|
* and we removed it so we are in a stable state.
|
|
*/
|
|
epoch_wait_preempt(net_epoch_preempt);
|
|
|
|
/*
|
|
* Ensure all pending EPOCH(9) callbacks have been executed. This
|
|
* fixes issues about late destruction of multicast options
|
|
* which lead to leave group calls, which in turn access the
|
|
* belonging ifnet structure:
|
|
*/
|
|
epoch_drain_callbacks(net_epoch_preempt);
|
|
|
|
/*
|
|
* In any case (destroy or vmove) detach us from the groups
|
|
* and remove/wait for pending events on the taskq.
|
|
* XXX-BZ in theory an interface could still enqueue a taskq change?
|
|
*/
|
|
if_delgroups(ifp);
|
|
|
|
taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
|
|
taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask);
|
|
|
|
/*
|
|
* Check if this is a cloned interface or not. Must do even if
|
|
* shutting down as a if_vmove_reclaim() would move the ifp and
|
|
* the if_clone_addgroup() will have a corrupted string overwise
|
|
* from a gibberish pointer.
|
|
*/
|
|
if (vmove && ifcp != NULL)
|
|
*ifcp = if_clone_findifc(ifp);
|
|
|
|
if_down(ifp);
|
|
|
|
#ifdef VIMAGE
|
|
/*
|
|
* On VNET shutdown abort here as the stack teardown will do all
|
|
* the work top-down for us.
|
|
*/
|
|
if (shutdown) {
|
|
/* Give interface users the chance to clean up. */
|
|
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
|
|
|
|
/*
|
|
* In case of a vmove we are done here without error.
|
|
* If we would signal an error it would lead to the same
|
|
* abort as if we did not find the ifnet anymore.
|
|
* if_detach() calls us in void context and does not care
|
|
* about an early abort notification, so life is splendid :)
|
|
*/
|
|
goto finish_vnet_shutdown;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* At this point we are not tearing down a VNET and are either
|
|
* going to destroy or vmove the interface and have to cleanup
|
|
* accordingly.
|
|
*/
|
|
|
|
/*
|
|
* Remove routes and flush queues.
|
|
*/
|
|
#ifdef ALTQ
|
|
if (ALTQ_IS_ENABLED(&ifp->if_snd))
|
|
altq_disable(&ifp->if_snd);
|
|
if (ALTQ_IS_ATTACHED(&ifp->if_snd))
|
|
altq_detach(&ifp->if_snd);
|
|
#endif
|
|
|
|
if_purgeaddrs(ifp);
|
|
|
|
#ifdef INET
|
|
in_ifdetach(ifp);
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
/*
|
|
* Remove all IPv6 kernel structs related to ifp. This should be done
|
|
* before removing routing entries below, since IPv6 interface direct
|
|
* routes are expected to be removed by the IPv6-specific kernel API.
|
|
* Otherwise, the kernel will detect some inconsistency and bark it.
|
|
*/
|
|
in6_ifdetach(ifp);
|
|
#endif
|
|
if_purgemaddrs(ifp);
|
|
|
|
/* Announce that the interface is gone. */
|
|
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
|
|
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
|
|
if (IS_DEFAULT_VNET(curvnet))
|
|
devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
|
|
|
|
if (!vmove) {
|
|
/*
|
|
* Prevent further calls into the device driver via ifnet.
|
|
*/
|
|
if_dead(ifp);
|
|
|
|
/*
|
|
* Clean up all addresses.
|
|
*/
|
|
IF_ADDR_WLOCK(ifp);
|
|
if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) {
|
|
ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
|
|
CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
ifa_free(ifa);
|
|
} else
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
}
|
|
|
|
rt_flushifroutes(ifp);
|
|
|
|
#ifdef VIMAGE
|
|
finish_vnet_shutdown:
|
|
#endif
|
|
/*
|
|
* We cannot hold the lock over dom_ifdetach calls as they might
|
|
* sleep, for example trying to drain a callout, thus open up the
|
|
* theoretical race with re-attaching.
|
|
*/
|
|
IF_AFDATA_LOCK(ifp);
|
|
i = ifp->if_afdata_initialized;
|
|
ifp->if_afdata_initialized = 0;
|
|
IF_AFDATA_UNLOCK(ifp);
|
|
for (dp = domains; i > 0 && dp; dp = dp->dom_next) {
|
|
if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
|
|
(*dp->dom_ifdetach)(ifp,
|
|
ifp->if_afdata[dp->dom_family]);
|
|
ifp->if_afdata[dp->dom_family] = NULL;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef VIMAGE
|
|
/*
|
|
* if_vmove() performs a limited version of if_detach() in current
|
|
* vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
|
|
* An attempt is made to shrink if_index in current vnet, find an
|
|
* unused if_index in target vnet and calls if_grow() if necessary,
|
|
* and finally find an unused if_xname for the target vnet.
|
|
*/
|
|
static int
|
|
if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
|
|
{
|
|
struct if_clone *ifc;
|
|
#ifdef DEV_BPF
|
|
u_int bif_dlt, bif_hdrlen;
|
|
#endif
|
|
void *old;
|
|
int rc;
|
|
|
|
#ifdef DEV_BPF
|
|
/*
|
|
* if_detach_internal() will call the eventhandler to notify
|
|
* interface departure. That will detach if_bpf. We need to
|
|
* safe the dlt and hdrlen so we can re-attach it later.
|
|
*/
|
|
bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen);
|
|
#endif
|
|
|
|
/*
|
|
* Detach from current vnet, but preserve LLADDR info, do not
|
|
* mark as dead etc. so that the ifnet can be reattached later.
|
|
* If we cannot find it, we lost the race to someone else.
|
|
*/
|
|
rc = if_detach_internal(ifp, 1, &ifc);
|
|
if (rc != 0)
|
|
return (rc);
|
|
|
|
/*
|
|
* Unlink the ifnet from ifindex_table[] in current vnet, and shrink
|
|
* the if_index for that vnet if possible.
|
|
*
|
|
* NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized,
|
|
* or we'd lock on one vnet and unlock on another.
|
|
*/
|
|
IFNET_WLOCK();
|
|
ifindex_free_locked(ifp->if_index);
|
|
IFNET_WUNLOCK();
|
|
|
|
/*
|
|
* Perform interface-specific reassignment tasks, if provided by
|
|
* the driver.
|
|
*/
|
|
if (ifp->if_reassign != NULL)
|
|
ifp->if_reassign(ifp, new_vnet, NULL);
|
|
|
|
/*
|
|
* Switch to the context of the target vnet.
|
|
*/
|
|
CURVNET_SET_QUIET(new_vnet);
|
|
restart:
|
|
IFNET_WLOCK();
|
|
ifp->if_index = ifindex_alloc(&old);
|
|
if (__predict_false(ifp->if_index == USHRT_MAX)) {
|
|
IFNET_WUNLOCK();
|
|
epoch_wait_preempt(net_epoch_preempt);
|
|
free(old, M_IFNET);
|
|
goto restart;
|
|
}
|
|
ifnet_setbyindex(ifp->if_index, ifp);
|
|
IFNET_WUNLOCK();
|
|
|
|
if_attach_internal(ifp, 1, ifc);
|
|
|
|
#ifdef DEV_BPF
|
|
if (ifp->if_bpf == NULL)
|
|
bpfattach(ifp, bif_dlt, bif_hdrlen);
|
|
#endif
|
|
|
|
CURVNET_RESTORE();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Move an ifnet to or from another child prison/vnet, specified by the jail id.
|
|
*/
|
|
static int
|
|
if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
|
|
{
|
|
struct prison *pr;
|
|
struct ifnet *difp;
|
|
int error;
|
|
bool found;
|
|
bool shutdown;
|
|
|
|
/* Try to find the prison within our visibility. */
|
|
sx_slock(&allprison_lock);
|
|
pr = prison_find_child(td->td_ucred->cr_prison, jid);
|
|
sx_sunlock(&allprison_lock);
|
|
if (pr == NULL)
|
|
return (ENXIO);
|
|
prison_hold_locked(pr);
|
|
mtx_unlock(&pr->pr_mtx);
|
|
|
|
/* Do not try to move the iface from and to the same prison. */
|
|
if (pr->pr_vnet == ifp->if_vnet) {
|
|
prison_free(pr);
|
|
return (EEXIST);
|
|
}
|
|
|
|
/* Make sure the named iface does not exists in the dst. prison/vnet. */
|
|
/* XXX Lock interfaces to avoid races. */
|
|
CURVNET_SET_QUIET(pr->pr_vnet);
|
|
difp = ifunit(ifname);
|
|
if (difp != NULL) {
|
|
CURVNET_RESTORE();
|
|
prison_free(pr);
|
|
return (EEXIST);
|
|
}
|
|
|
|
/* Make sure the VNET is stable. */
|
|
shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
|
|
if (shutdown) {
|
|
CURVNET_RESTORE();
|
|
prison_free(pr);
|
|
return (EBUSY);
|
|
}
|
|
CURVNET_RESTORE();
|
|
|
|
found = if_unlink_ifnet(ifp, true);
|
|
MPASS(found);
|
|
|
|
/* Move the interface into the child jail/vnet. */
|
|
error = if_vmove(ifp, pr->pr_vnet);
|
|
|
|
/* Report the new if_xname back to the userland on success. */
|
|
if (error == 0)
|
|
sprintf(ifname, "%s", ifp->if_xname);
|
|
|
|
prison_free(pr);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
if_vmove_reclaim(struct thread *td, char *ifname, int jid)
|
|
{
|
|
struct prison *pr;
|
|
struct vnet *vnet_dst;
|
|
struct ifnet *ifp;
|
|
int error, found;
|
|
bool shutdown;
|
|
|
|
/* Try to find the prison within our visibility. */
|
|
sx_slock(&allprison_lock);
|
|
pr = prison_find_child(td->td_ucred->cr_prison, jid);
|
|
sx_sunlock(&allprison_lock);
|
|
if (pr == NULL)
|
|
return (ENXIO);
|
|
prison_hold_locked(pr);
|
|
mtx_unlock(&pr->pr_mtx);
|
|
|
|
/* Make sure the named iface exists in the source prison/vnet. */
|
|
CURVNET_SET(pr->pr_vnet);
|
|
ifp = ifunit(ifname); /* XXX Lock to avoid races. */
|
|
if (ifp == NULL) {
|
|
CURVNET_RESTORE();
|
|
prison_free(pr);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Do not try to move the iface from and to the same prison. */
|
|
vnet_dst = TD_TO_VNET(td);
|
|
if (vnet_dst == ifp->if_vnet) {
|
|
CURVNET_RESTORE();
|
|
prison_free(pr);
|
|
return (EEXIST);
|
|
}
|
|
|
|
/* Make sure the VNET is stable. */
|
|
shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
|
|
if (shutdown) {
|
|
CURVNET_RESTORE();
|
|
prison_free(pr);
|
|
return (EBUSY);
|
|
}
|
|
|
|
/* Get interface back from child jail/vnet. */
|
|
found = if_unlink_ifnet(ifp, true);
|
|
MPASS(found);
|
|
error = if_vmove(ifp, vnet_dst);
|
|
CURVNET_RESTORE();
|
|
|
|
/* Report the new if_xname back to the userland on success. */
|
|
if (error == 0)
|
|
sprintf(ifname, "%s", ifp->if_xname);
|
|
|
|
prison_free(pr);
|
|
return (error);
|
|
}
|
|
#endif /* VIMAGE */
|
|
|
|
/*
|
|
* Add a group to an interface
|
|
*/
|
|
int
|
|
if_addgroup(struct ifnet *ifp, const char *groupname)
|
|
{
|
|
struct ifg_list *ifgl;
|
|
struct ifg_group *ifg = NULL;
|
|
struct ifg_member *ifgm;
|
|
int new = 0;
|
|
|
|
if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
|
|
groupname[strlen(groupname) - 1] <= '9')
|
|
return (EINVAL);
|
|
|
|
IFNET_WLOCK();
|
|
CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
|
|
if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
|
|
IFNET_WUNLOCK();
|
|
return (EEXIST);
|
|
}
|
|
|
|
if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) {
|
|
IFNET_WUNLOCK();
|
|
return (ENOMEM);
|
|
}
|
|
|
|
if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
|
|
free(ifgl, M_TEMP);
|
|
IFNET_WUNLOCK();
|
|
return (ENOMEM);
|
|
}
|
|
|
|
CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
|
|
if (!strcmp(ifg->ifg_group, groupname))
|
|
break;
|
|
|
|
if (ifg == NULL) {
|
|
if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) {
|
|
free(ifgl, M_TEMP);
|
|
free(ifgm, M_TEMP);
|
|
IFNET_WUNLOCK();
|
|
return (ENOMEM);
|
|
}
|
|
strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
|
|
ifg->ifg_refcnt = 0;
|
|
CK_STAILQ_INIT(&ifg->ifg_members);
|
|
CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
|
|
new = 1;
|
|
}
|
|
|
|
ifg->ifg_refcnt++;
|
|
ifgl->ifgl_group = ifg;
|
|
ifgm->ifgm_ifp = ifp;
|
|
|
|
IF_ADDR_WLOCK(ifp);
|
|
CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
|
|
CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
|
|
IFNET_WUNLOCK();
|
|
|
|
if (new)
|
|
EVENTHANDLER_INVOKE(group_attach_event, ifg);
|
|
EVENTHANDLER_INVOKE(group_change_event, groupname);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Helper function to remove a group out of an interface. Expects the global
|
|
* ifnet lock to be write-locked, and drops it before returning.
|
|
*/
|
|
static void
|
|
_if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl,
|
|
const char *groupname)
|
|
{
|
|
struct ifg_member *ifgm;
|
|
bool freeifgl;
|
|
|
|
IFNET_WLOCK_ASSERT();
|
|
|
|
IF_ADDR_WLOCK(ifp);
|
|
CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next);
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
|
|
CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
|
|
if (ifgm->ifgm_ifp == ifp) {
|
|
CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm,
|
|
ifg_member, ifgm_next);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (--ifgl->ifgl_group->ifg_refcnt == 0) {
|
|
CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group,
|
|
ifg_next);
|
|
freeifgl = true;
|
|
} else {
|
|
freeifgl = false;
|
|
}
|
|
IFNET_WUNLOCK();
|
|
|
|
epoch_wait_preempt(net_epoch_preempt);
|
|
if (freeifgl) {
|
|
EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
|
|
free(ifgl->ifgl_group, M_TEMP);
|
|
}
|
|
free(ifgm, M_TEMP);
|
|
free(ifgl, M_TEMP);
|
|
|
|
EVENTHANDLER_INVOKE(group_change_event, groupname);
|
|
}
|
|
|
|
/*
|
|
* Remove a group from an interface
|
|
*/
|
|
int
|
|
if_delgroup(struct ifnet *ifp, const char *groupname)
|
|
{
|
|
struct ifg_list *ifgl;
|
|
|
|
IFNET_WLOCK();
|
|
CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
|
|
if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
|
|
break;
|
|
if (ifgl == NULL) {
|
|
IFNET_WUNLOCK();
|
|
return (ENOENT);
|
|
}
|
|
|
|
_if_delgroup_locked(ifp, ifgl, groupname);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove an interface from all groups
|
|
*/
|
|
static void
|
|
if_delgroups(struct ifnet *ifp)
|
|
{
|
|
struct ifg_list *ifgl;
|
|
char groupname[IFNAMSIZ];
|
|
|
|
IFNET_WLOCK();
|
|
while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) {
|
|
strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
|
|
_if_delgroup_locked(ifp, ifgl, groupname);
|
|
IFNET_WLOCK();
|
|
}
|
|
IFNET_WUNLOCK();
|
|
}
|
|
|
|
static char *
|
|
ifgr_group_get(void *ifgrp)
|
|
{
|
|
union ifgroupreq_union *ifgrup;
|
|
|
|
ifgrup = ifgrp;
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_CURPROC_FLAG(SV_ILP32))
|
|
return (&ifgrup->ifgr32.ifgr_ifgru.ifgru_group[0]);
|
|
#endif
|
|
return (&ifgrup->ifgr.ifgr_ifgru.ifgru_group[0]);
|
|
}
|
|
|
|
static struct ifg_req *
|
|
ifgr_groups_get(void *ifgrp)
|
|
{
|
|
union ifgroupreq_union *ifgrup;
|
|
|
|
ifgrup = ifgrp;
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_CURPROC_FLAG(SV_ILP32))
|
|
return ((struct ifg_req *)(uintptr_t)
|
|
ifgrup->ifgr32.ifgr_ifgru.ifgru_groups);
|
|
#endif
|
|
return (ifgrup->ifgr.ifgr_ifgru.ifgru_groups);
|
|
}
|
|
|
|
/*
|
|
* Stores all groups from an interface in memory pointed to by ifgr.
|
|
*/
|
|
static int
|
|
if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp)
|
|
{
|
|
int len, error;
|
|
struct ifg_list *ifgl;
|
|
struct ifg_req ifgrq, *ifgp;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
if (ifgr->ifgr_len == 0) {
|
|
CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
|
|
ifgr->ifgr_len += sizeof(struct ifg_req);
|
|
return (0);
|
|
}
|
|
|
|
len = ifgr->ifgr_len;
|
|
ifgp = ifgr_groups_get(ifgr);
|
|
/* XXX: wire */
|
|
CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
|
|
if (len < sizeof(ifgrq))
|
|
return (EINVAL);
|
|
bzero(&ifgrq, sizeof ifgrq);
|
|
strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
|
|
sizeof(ifgrq.ifgrq_group));
|
|
if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req))))
|
|
return (error);
|
|
len -= sizeof(ifgrq);
|
|
ifgp++;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Stores all members of a group in memory pointed to by igfr
|
|
*/
|
|
static int
|
|
if_getgroupmembers(struct ifgroupreq *ifgr)
|
|
{
|
|
struct ifg_group *ifg;
|
|
struct ifg_member *ifgm;
|
|
struct ifg_req ifgrq, *ifgp;
|
|
int len, error;
|
|
|
|
IFNET_RLOCK();
|
|
CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
|
|
if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
|
|
break;
|
|
if (ifg == NULL) {
|
|
IFNET_RUNLOCK();
|
|
return (ENOENT);
|
|
}
|
|
|
|
if (ifgr->ifgr_len == 0) {
|
|
CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
|
|
ifgr->ifgr_len += sizeof(ifgrq);
|
|
IFNET_RUNLOCK();
|
|
return (0);
|
|
}
|
|
|
|
len = ifgr->ifgr_len;
|
|
ifgp = ifgr_groups_get(ifgr);
|
|
CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
|
|
if (len < sizeof(ifgrq)) {
|
|
IFNET_RUNLOCK();
|
|
return (EINVAL);
|
|
}
|
|
bzero(&ifgrq, sizeof ifgrq);
|
|
strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
|
|
sizeof(ifgrq.ifgrq_member));
|
|
if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
|
|
IFNET_RUNLOCK();
|
|
return (error);
|
|
}
|
|
len -= sizeof(ifgrq);
|
|
ifgp++;
|
|
}
|
|
IFNET_RUNLOCK();
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return counter values from counter(9)s stored in ifnet.
|
|
*/
|
|
uint64_t
|
|
if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
|
|
{
|
|
|
|
KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
|
|
|
|
return (counter_u64_fetch(ifp->if_counters[cnt]));
|
|
}
|
|
|
|
/*
|
|
* Increase an ifnet counter. Usually used for counters shared
|
|
* between the stack and a driver, but function supports them all.
|
|
*/
|
|
void
|
|
if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
|
|
{
|
|
|
|
KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
|
|
|
|
counter_u64_add(ifp->if_counters[cnt], inc);
|
|
}
|
|
|
|
/*
|
|
* Copy data from ifnet to userland API structure if_data.
|
|
*/
|
|
void
|
|
if_data_copy(struct ifnet *ifp, struct if_data *ifd)
|
|
{
|
|
|
|
ifd->ifi_type = ifp->if_type;
|
|
ifd->ifi_physical = 0;
|
|
ifd->ifi_addrlen = ifp->if_addrlen;
|
|
ifd->ifi_hdrlen = ifp->if_hdrlen;
|
|
ifd->ifi_link_state = ifp->if_link_state;
|
|
ifd->ifi_vhid = 0;
|
|
ifd->ifi_datalen = sizeof(struct if_data);
|
|
ifd->ifi_mtu = ifp->if_mtu;
|
|
ifd->ifi_metric = ifp->if_metric;
|
|
ifd->ifi_baudrate = ifp->if_baudrate;
|
|
ifd->ifi_hwassist = ifp->if_hwassist;
|
|
ifd->ifi_epoch = ifp->if_epoch;
|
|
ifd->ifi_lastchange = ifp->if_lastchange;
|
|
|
|
ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
|
|
ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
|
|
ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
|
|
ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
|
|
ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
|
|
ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
|
|
ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
|
|
ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
|
|
ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
|
|
ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
|
|
ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
|
|
ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
|
|
}
|
|
|
|
/*
|
|
* Initialization, destruction and refcounting functions for ifaddrs.
|
|
*/
|
|
struct ifaddr *
|
|
ifa_alloc(size_t size, int flags)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
KASSERT(size >= sizeof(struct ifaddr),
|
|
("%s: invalid size %zu", __func__, size));
|
|
|
|
ifa = malloc(size, M_IFADDR, M_ZERO | flags);
|
|
if (ifa == NULL)
|
|
return (NULL);
|
|
|
|
if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
|
|
goto fail;
|
|
if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
|
|
goto fail;
|
|
if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
|
|
goto fail;
|
|
if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
|
|
goto fail;
|
|
|
|
refcount_init(&ifa->ifa_refcnt, 1);
|
|
|
|
return (ifa);
|
|
|
|
fail:
|
|
/* free(NULL) is okay */
|
|
counter_u64_free(ifa->ifa_opackets);
|
|
counter_u64_free(ifa->ifa_ipackets);
|
|
counter_u64_free(ifa->ifa_obytes);
|
|
counter_u64_free(ifa->ifa_ibytes);
|
|
free(ifa, M_IFADDR);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
ifa_ref(struct ifaddr *ifa)
|
|
{
|
|
|
|
refcount_acquire(&ifa->ifa_refcnt);
|
|
}
|
|
|
|
static void
|
|
ifa_destroy(epoch_context_t ctx)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx);
|
|
counter_u64_free(ifa->ifa_opackets);
|
|
counter_u64_free(ifa->ifa_ipackets);
|
|
counter_u64_free(ifa->ifa_obytes);
|
|
counter_u64_free(ifa->ifa_ibytes);
|
|
free(ifa, M_IFADDR);
|
|
}
|
|
|
|
void
|
|
ifa_free(struct ifaddr *ifa)
|
|
{
|
|
|
|
if (refcount_release(&ifa->ifa_refcnt))
|
|
NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx);
|
|
}
|
|
|
|
/*
|
|
* XXX: Because sockaddr_dl has deeper structure than the sockaddr
|
|
* structs used to represent other address families, it is necessary
|
|
* to perform a different comparison.
|
|
*/
|
|
|
|
#define sa_dl_equal(a1, a2) \
|
|
((((const struct sockaddr_dl *)(a1))->sdl_len == \
|
|
((const struct sockaddr_dl *)(a2))->sdl_len) && \
|
|
(bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \
|
|
CLLADDR((const struct sockaddr_dl *)(a2)), \
|
|
((const struct sockaddr_dl *)(a1))->sdl_alen) == 0))
|
|
|
|
/*
|
|
* Locate an interface based on a complete address.
|
|
*/
|
|
/*ARGSUSED*/
|
|
struct ifaddr *
|
|
ifa_ifwithaddr(const struct sockaddr *addr)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != addr->sa_family)
|
|
continue;
|
|
if (sa_equal(addr, ifa->ifa_addr)) {
|
|
goto done;
|
|
}
|
|
/* IP6 doesn't have broadcast */
|
|
if ((ifp->if_flags & IFF_BROADCAST) &&
|
|
ifa->ifa_broadaddr &&
|
|
ifa->ifa_broadaddr->sa_len != 0 &&
|
|
sa_equal(ifa->ifa_broadaddr, addr)) {
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
ifa = NULL;
|
|
done:
|
|
return (ifa);
|
|
}
|
|
|
|
int
|
|
ifa_ifwithaddr_check(const struct sockaddr *addr)
|
|
{
|
|
struct epoch_tracker et;
|
|
int rc;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
rc = (ifa_ifwithaddr(addr) != NULL);
|
|
NET_EPOCH_EXIT(et);
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* Locate an interface based on the broadcast address.
|
|
*/
|
|
/* ARGSUSED */
|
|
struct ifaddr *
|
|
ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
|
|
if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
|
|
continue;
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != addr->sa_family)
|
|
continue;
|
|
if ((ifp->if_flags & IFF_BROADCAST) &&
|
|
ifa->ifa_broadaddr &&
|
|
ifa->ifa_broadaddr->sa_len != 0 &&
|
|
sa_equal(ifa->ifa_broadaddr, addr)) {
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
ifa = NULL;
|
|
done:
|
|
return (ifa);
|
|
}
|
|
|
|
/*
|
|
* Locate the point to point interface with a given destination address.
|
|
*/
|
|
/*ARGSUSED*/
|
|
struct ifaddr *
|
|
ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
|
|
continue;
|
|
if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
|
|
continue;
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != addr->sa_family)
|
|
continue;
|
|
if (ifa->ifa_dstaddr != NULL &&
|
|
sa_equal(addr, ifa->ifa_dstaddr)) {
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
ifa = NULL;
|
|
done:
|
|
return (ifa);
|
|
}
|
|
|
|
/*
|
|
* Find an interface on a specific network. If many, choice
|
|
* is most specific found.
|
|
*/
|
|
struct ifaddr *
|
|
ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
struct ifaddr *ifa_maybe = NULL;
|
|
u_int af = addr->sa_family;
|
|
const char *addr_data = addr->sa_data, *cplim;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
/*
|
|
* AF_LINK addresses can be looked up directly by their index number,
|
|
* so do that if we can.
|
|
*/
|
|
if (af == AF_LINK) {
|
|
const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)addr;
|
|
if (sdl->sdl_index && sdl->sdl_index <= V_if_index)
|
|
return (ifaddr_byindex(sdl->sdl_index));
|
|
}
|
|
|
|
/*
|
|
* Scan though each interface, looking for ones that have addresses
|
|
* in this address family and the requested fib.
|
|
*/
|
|
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
|
|
if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
|
|
continue;
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
const char *cp, *cp2, *cp3;
|
|
|
|
if (ifa->ifa_addr->sa_family != af)
|
|
next: continue;
|
|
if (af == AF_INET &&
|
|
ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
|
|
/*
|
|
* This is a bit broken as it doesn't
|
|
* take into account that the remote end may
|
|
* be a single node in the network we are
|
|
* looking for.
|
|
* The trouble is that we don't know the
|
|
* netmask for the remote end.
|
|
*/
|
|
if (ifa->ifa_dstaddr != NULL &&
|
|
sa_equal(addr, ifa->ifa_dstaddr)) {
|
|
goto done;
|
|
}
|
|
} else {
|
|
/*
|
|
* Scan all the bits in the ifa's address.
|
|
* If a bit dissagrees with what we are
|
|
* looking for, mask it with the netmask
|
|
* to see if it really matters.
|
|
* (A byte at a time)
|
|
*/
|
|
if (ifa->ifa_netmask == 0)
|
|
continue;
|
|
cp = addr_data;
|
|
cp2 = ifa->ifa_addr->sa_data;
|
|
cp3 = ifa->ifa_netmask->sa_data;
|
|
cplim = ifa->ifa_netmask->sa_len
|
|
+ (char *)ifa->ifa_netmask;
|
|
while (cp3 < cplim)
|
|
if ((*cp++ ^ *cp2++) & *cp3++)
|
|
goto next; /* next address! */
|
|
/*
|
|
* If the netmask of what we just found
|
|
* is more specific than what we had before
|
|
* (if we had one), or if the virtual status
|
|
* of new prefix is better than of the old one,
|
|
* then remember the new one before continuing
|
|
* to search for an even better one.
|
|
*/
|
|
if (ifa_maybe == NULL ||
|
|
ifa_preferred(ifa_maybe, ifa) ||
|
|
rn_refines((caddr_t)ifa->ifa_netmask,
|
|
(caddr_t)ifa_maybe->ifa_netmask)) {
|
|
ifa_maybe = ifa;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ifa = ifa_maybe;
|
|
ifa_maybe = NULL;
|
|
done:
|
|
return (ifa);
|
|
}
|
|
|
|
/*
|
|
* Find an interface address specific to an interface best matching
|
|
* a given address.
|
|
*/
|
|
struct ifaddr *
|
|
ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
|
|
{
|
|
struct ifaddr *ifa;
|
|
const char *cp, *cp2, *cp3;
|
|
char *cplim;
|
|
struct ifaddr *ifa_maybe = NULL;
|
|
u_int af = addr->sa_family;
|
|
|
|
if (af >= AF_MAX)
|
|
return (NULL);
|
|
|
|
NET_EPOCH_ASSERT();
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != af)
|
|
continue;
|
|
if (ifa_maybe == NULL)
|
|
ifa_maybe = ifa;
|
|
if (ifa->ifa_netmask == 0) {
|
|
if (sa_equal(addr, ifa->ifa_addr) ||
|
|
(ifa->ifa_dstaddr &&
|
|
sa_equal(addr, ifa->ifa_dstaddr)))
|
|
goto done;
|
|
continue;
|
|
}
|
|
if (ifp->if_flags & IFF_POINTOPOINT) {
|
|
if (sa_equal(addr, ifa->ifa_dstaddr))
|
|
goto done;
|
|
} else {
|
|
cp = addr->sa_data;
|
|
cp2 = ifa->ifa_addr->sa_data;
|
|
cp3 = ifa->ifa_netmask->sa_data;
|
|
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
|
|
for (; cp3 < cplim; cp3++)
|
|
if ((*cp++ ^ *cp2++) & *cp3)
|
|
break;
|
|
if (cp3 == cplim)
|
|
goto done;
|
|
}
|
|
}
|
|
ifa = ifa_maybe;
|
|
done:
|
|
return (ifa);
|
|
}
|
|
|
|
/*
|
|
* See whether new ifa is better than current one:
|
|
* 1) A non-virtual one is preferred over virtual.
|
|
* 2) A virtual in master state preferred over any other state.
|
|
*
|
|
* Used in several address selecting functions.
|
|
*/
|
|
int
|
|
ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
|
|
{
|
|
|
|
return (cur->ifa_carp && (!next->ifa_carp ||
|
|
((*carp_master_p)(next) && !(*carp_master_p)(cur))));
|
|
}
|
|
|
|
struct sockaddr_dl *
|
|
link_alloc_sdl(size_t size, int flags)
|
|
{
|
|
|
|
return (malloc(size, M_TEMP, flags));
|
|
}
|
|
|
|
void
|
|
link_free_sdl(struct sockaddr *sa)
|
|
{
|
|
free(sa, M_TEMP);
|
|
}
|
|
|
|
/*
|
|
* Fills in given sdl with interface basic info.
|
|
* Returns pointer to filled sdl.
|
|
*/
|
|
struct sockaddr_dl *
|
|
link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
|
|
{
|
|
struct sockaddr_dl *sdl;
|
|
|
|
sdl = (struct sockaddr_dl *)paddr;
|
|
memset(sdl, 0, sizeof(struct sockaddr_dl));
|
|
sdl->sdl_len = sizeof(struct sockaddr_dl);
|
|
sdl->sdl_family = AF_LINK;
|
|
sdl->sdl_index = ifp->if_index;
|
|
sdl->sdl_type = iftype;
|
|
|
|
return (sdl);
|
|
}
|
|
|
|
/*
|
|
* Mark an interface down and notify protocols of
|
|
* the transition.
|
|
*/
|
|
static void
|
|
if_unroute(struct ifnet *ifp, int flag, int fam)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
|
|
|
|
ifp->if_flags &= ~flag;
|
|
getmicrotime(&ifp->if_lastchange);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
|
|
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
|
|
pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
|
|
ifp->if_qflush(ifp);
|
|
|
|
if (ifp->if_carp)
|
|
(*carp_linkstate_p)(ifp);
|
|
rt_ifmsg(ifp);
|
|
}
|
|
|
|
/*
|
|
* Mark an interface up and notify protocols of
|
|
* the transition.
|
|
*/
|
|
static void
|
|
if_route(struct ifnet *ifp, int flag, int fam)
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP"));
|
|
|
|
ifp->if_flags |= flag;
|
|
getmicrotime(&ifp->if_lastchange);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
|
|
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
|
|
pfctlinput(PRC_IFUP, ifa->ifa_addr);
|
|
if (ifp->if_carp)
|
|
(*carp_linkstate_p)(ifp);
|
|
rt_ifmsg(ifp);
|
|
#ifdef INET6
|
|
in6_if_up(ifp);
|
|
#endif
|
|
}
|
|
|
|
void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */
|
|
void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */
|
|
struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
|
|
struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
|
|
int (*vlan_tag_p)(struct ifnet *, uint16_t *);
|
|
int (*vlan_pcp_p)(struct ifnet *, uint16_t *);
|
|
int (*vlan_setcookie_p)(struct ifnet *, void *);
|
|
void *(*vlan_cookie_p)(struct ifnet *);
|
|
|
|
/*
|
|
* Handle a change in the interface link state. To avoid LORs
|
|
* between driver lock and upper layer locks, as well as possible
|
|
* recursions, we post event to taskqueue, and all job
|
|
* is done in static do_link_state_change().
|
|
*/
|
|
void
|
|
if_link_state_change(struct ifnet *ifp, int link_state)
|
|
{
|
|
/* Return if state hasn't changed. */
|
|
if (ifp->if_link_state == link_state)
|
|
return;
|
|
|
|
ifp->if_link_state = link_state;
|
|
|
|
/* XXXGL: reference ifp? */
|
|
taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
|
|
}
|
|
|
|
static void
|
|
do_link_state_change(void *arg, int pending)
|
|
{
|
|
struct ifnet *ifp;
|
|
int link_state;
|
|
|
|
ifp = arg;
|
|
link_state = ifp->if_link_state;
|
|
|
|
CURVNET_SET(ifp->if_vnet);
|
|
rt_ifmsg(ifp);
|
|
if (ifp->if_vlantrunk != NULL)
|
|
(*vlan_link_state_p)(ifp);
|
|
|
|
if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
|
|
ifp->if_l2com != NULL)
|
|
(*ng_ether_link_state_p)(ifp, link_state);
|
|
if (ifp->if_carp)
|
|
(*carp_linkstate_p)(ifp);
|
|
if (ifp->if_bridge)
|
|
ifp->if_bridge_linkstate(ifp);
|
|
if (ifp->if_lagg)
|
|
(*lagg_linkstate_p)(ifp, link_state);
|
|
|
|
if (IS_DEFAULT_VNET(curvnet))
|
|
devctl_notify("IFNET", ifp->if_xname,
|
|
(link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
|
|
NULL);
|
|
if (pending > 1)
|
|
if_printf(ifp, "%d link states coalesced\n", pending);
|
|
if (log_link_state_change)
|
|
if_printf(ifp, "link state changed to %s\n",
|
|
(link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
|
|
EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Mark an interface down and notify protocols of
|
|
* the transition.
|
|
*/
|
|
void
|
|
if_down(struct ifnet *ifp)
|
|
{
|
|
|
|
EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
|
|
if_unroute(ifp, IFF_UP, AF_UNSPEC);
|
|
}
|
|
|
|
/*
|
|
* Mark an interface up and notify protocols of
|
|
* the transition.
|
|
*/
|
|
void
|
|
if_up(struct ifnet *ifp)
|
|
{
|
|
|
|
if_route(ifp, IFF_UP, AF_UNSPEC);
|
|
EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
|
|
}
|
|
|
|
/*
|
|
* Flush an interface queue.
|
|
*/
|
|
void
|
|
if_qflush(struct ifnet *ifp)
|
|
{
|
|
struct mbuf *m, *n;
|
|
struct ifaltq *ifq;
|
|
|
|
ifq = &ifp->if_snd;
|
|
IFQ_LOCK(ifq);
|
|
#ifdef ALTQ
|
|
if (ALTQ_IS_ENABLED(ifq))
|
|
ALTQ_PURGE(ifq);
|
|
#endif
|
|
n = ifq->ifq_head;
|
|
while ((m = n) != NULL) {
|
|
n = m->m_nextpkt;
|
|
m_freem(m);
|
|
}
|
|
ifq->ifq_head = 0;
|
|
ifq->ifq_tail = 0;
|
|
ifq->ifq_len = 0;
|
|
IFQ_UNLOCK(ifq);
|
|
}
|
|
|
|
/*
|
|
* Map interface name to interface structure pointer, with or without
|
|
* returning a reference.
|
|
*/
|
|
struct ifnet *
|
|
ifunit_ref(const char *name)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifnet *ifp;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
|
|
if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
|
|
!(ifp->if_flags & IFF_DYING))
|
|
break;
|
|
}
|
|
if (ifp != NULL)
|
|
if_ref(ifp);
|
|
NET_EPOCH_EXIT(et);
|
|
return (ifp);
|
|
}
|
|
|
|
struct ifnet *
|
|
ifunit(const char *name)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifnet *ifp;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
|
|
if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
|
|
break;
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
return (ifp);
|
|
}
|
|
|
|
void *
|
|
ifr_buffer_get_buffer(void *data)
|
|
{
|
|
union ifreq_union *ifrup;
|
|
|
|
ifrup = data;
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_CURPROC_FLAG(SV_ILP32))
|
|
return ((void *)(uintptr_t)
|
|
ifrup->ifr32.ifr_ifru.ifru_buffer.buffer);
|
|
#endif
|
|
return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer);
|
|
}
|
|
|
|
static void
|
|
ifr_buffer_set_buffer_null(void *data)
|
|
{
|
|
union ifreq_union *ifrup;
|
|
|
|
ifrup = data;
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_CURPROC_FLAG(SV_ILP32))
|
|
ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0;
|
|
else
|
|
#endif
|
|
ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL;
|
|
}
|
|
|
|
size_t
|
|
ifr_buffer_get_length(void *data)
|
|
{
|
|
union ifreq_union *ifrup;
|
|
|
|
ifrup = data;
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_CURPROC_FLAG(SV_ILP32))
|
|
return (ifrup->ifr32.ifr_ifru.ifru_buffer.length);
|
|
#endif
|
|
return (ifrup->ifr.ifr_ifru.ifru_buffer.length);
|
|
}
|
|
|
|
static void
|
|
ifr_buffer_set_length(void *data, size_t len)
|
|
{
|
|
union ifreq_union *ifrup;
|
|
|
|
ifrup = data;
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_CURPROC_FLAG(SV_ILP32))
|
|
ifrup->ifr32.ifr_ifru.ifru_buffer.length = len;
|
|
else
|
|
#endif
|
|
ifrup->ifr.ifr_ifru.ifru_buffer.length = len;
|
|
}
|
|
|
|
void *
|
|
ifr_data_get_ptr(void *ifrp)
|
|
{
|
|
union ifreq_union *ifrup;
|
|
|
|
ifrup = ifrp;
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (SV_CURPROC_FLAG(SV_ILP32))
|
|
return ((void *)(uintptr_t)
|
|
ifrup->ifr32.ifr_ifru.ifru_data);
|
|
#endif
|
|
return (ifrup->ifr.ifr_ifru.ifru_data);
|
|
}
|
|
|
|
/*
|
|
* Hardware specific interface ioctls.
|
|
*/
|
|
int
|
|
ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
|
|
{
|
|
struct ifreq *ifr;
|
|
int error = 0, do_ifup = 0;
|
|
int new_flags, temp_flags;
|
|
size_t namelen, onamelen;
|
|
size_t descrlen;
|
|
char *descrbuf, *odescrbuf;
|
|
char new_name[IFNAMSIZ];
|
|
struct ifaddr *ifa;
|
|
struct sockaddr_dl *sdl;
|
|
|
|
ifr = (struct ifreq *)data;
|
|
switch (cmd) {
|
|
case SIOCGIFINDEX:
|
|
ifr->ifr_index = ifp->if_index;
|
|
break;
|
|
|
|
case SIOCGIFFLAGS:
|
|
temp_flags = ifp->if_flags | ifp->if_drv_flags;
|
|
ifr->ifr_flags = temp_flags & 0xffff;
|
|
ifr->ifr_flagshigh = temp_flags >> 16;
|
|
break;
|
|
|
|
case SIOCGIFCAP:
|
|
ifr->ifr_reqcap = ifp->if_capabilities;
|
|
ifr->ifr_curcap = ifp->if_capenable;
|
|
break;
|
|
|
|
case SIOCGIFDATA:
|
|
{
|
|
struct if_data ifd;
|
|
|
|
/* Ensure uninitialised padding is not leaked. */
|
|
memset(&ifd, 0, sizeof(ifd));
|
|
|
|
if_data_copy(ifp, &ifd);
|
|
error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd));
|
|
break;
|
|
}
|
|
|
|
#ifdef MAC
|
|
case SIOCGIFMAC:
|
|
error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
|
|
break;
|
|
#endif
|
|
|
|
case SIOCGIFMETRIC:
|
|
ifr->ifr_metric = ifp->if_metric;
|
|
break;
|
|
|
|
case SIOCGIFMTU:
|
|
ifr->ifr_mtu = ifp->if_mtu;
|
|
break;
|
|
|
|
case SIOCGIFPHYS:
|
|
/* XXXGL: did this ever worked? */
|
|
ifr->ifr_phys = 0;
|
|
break;
|
|
|
|
case SIOCGIFDESCR:
|
|
error = 0;
|
|
sx_slock(&ifdescr_sx);
|
|
if (ifp->if_description == NULL)
|
|
error = ENOMSG;
|
|
else {
|
|
/* space for terminating nul */
|
|
descrlen = strlen(ifp->if_description) + 1;
|
|
if (ifr_buffer_get_length(ifr) < descrlen)
|
|
ifr_buffer_set_buffer_null(ifr);
|
|
else
|
|
error = copyout(ifp->if_description,
|
|
ifr_buffer_get_buffer(ifr), descrlen);
|
|
ifr_buffer_set_length(ifr, descrlen);
|
|
}
|
|
sx_sunlock(&ifdescr_sx);
|
|
break;
|
|
|
|
case SIOCSIFDESCR:
|
|
error = priv_check(td, PRIV_NET_SETIFDESCR);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Copy only (length-1) bytes to make sure that
|
|
* if_description is always nul terminated. The
|
|
* length parameter is supposed to count the
|
|
* terminating nul in.
|
|
*/
|
|
if (ifr_buffer_get_length(ifr) > ifdescr_maxlen)
|
|
return (ENAMETOOLONG);
|
|
else if (ifr_buffer_get_length(ifr) == 0)
|
|
descrbuf = NULL;
|
|
else {
|
|
descrbuf = malloc(ifr_buffer_get_length(ifr),
|
|
M_IFDESCR, M_WAITOK | M_ZERO);
|
|
error = copyin(ifr_buffer_get_buffer(ifr), descrbuf,
|
|
ifr_buffer_get_length(ifr) - 1);
|
|
if (error) {
|
|
free(descrbuf, M_IFDESCR);
|
|
break;
|
|
}
|
|
}
|
|
|
|
sx_xlock(&ifdescr_sx);
|
|
odescrbuf = ifp->if_description;
|
|
ifp->if_description = descrbuf;
|
|
sx_xunlock(&ifdescr_sx);
|
|
|
|
getmicrotime(&ifp->if_lastchange);
|
|
free(odescrbuf, M_IFDESCR);
|
|
break;
|
|
|
|
case SIOCGIFFIB:
|
|
ifr->ifr_fib = ifp->if_fib;
|
|
break;
|
|
|
|
case SIOCSIFFIB:
|
|
error = priv_check(td, PRIV_NET_SETIFFIB);
|
|
if (error)
|
|
return (error);
|
|
if (ifr->ifr_fib >= rt_numfibs)
|
|
return (EINVAL);
|
|
|
|
ifp->if_fib = ifr->ifr_fib;
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
error = priv_check(td, PRIV_NET_SETIFFLAGS);
|
|
if (error)
|
|
return (error);
|
|
/*
|
|
* Currently, no driver owned flags pass the IFF_CANTCHANGE
|
|
* check, so we don't need special handling here yet.
|
|
*/
|
|
new_flags = (ifr->ifr_flags & 0xffff) |
|
|
(ifr->ifr_flagshigh << 16);
|
|
if (ifp->if_flags & IFF_UP &&
|
|
(new_flags & IFF_UP) == 0) {
|
|
if_down(ifp);
|
|
} else if (new_flags & IFF_UP &&
|
|
(ifp->if_flags & IFF_UP) == 0) {
|
|
do_ifup = 1;
|
|
}
|
|
/* See if permanently promiscuous mode bit is about to flip */
|
|
if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
|
|
if (new_flags & IFF_PPROMISC)
|
|
ifp->if_flags |= IFF_PROMISC;
|
|
else if (ifp->if_pcount == 0)
|
|
ifp->if_flags &= ~IFF_PROMISC;
|
|
if (log_promisc_mode_change)
|
|
if_printf(ifp, "permanently promiscuous mode %s\n",
|
|
((new_flags & IFF_PPROMISC) ?
|
|
"enabled" : "disabled"));
|
|
}
|
|
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
|
|
(new_flags &~ IFF_CANTCHANGE);
|
|
if (ifp->if_ioctl) {
|
|
(void) (*ifp->if_ioctl)(ifp, cmd, data);
|
|
}
|
|
if (do_ifup)
|
|
if_up(ifp);
|
|
getmicrotime(&ifp->if_lastchange);
|
|
break;
|
|
|
|
case SIOCSIFCAP:
|
|
error = priv_check(td, PRIV_NET_SETIFCAP);
|
|
if (error)
|
|
return (error);
|
|
if (ifp->if_ioctl == NULL)
|
|
return (EOPNOTSUPP);
|
|
if (ifr->ifr_reqcap & ~ifp->if_capabilities)
|
|
return (EINVAL);
|
|
error = (*ifp->if_ioctl)(ifp, cmd, data);
|
|
if (error == 0)
|
|
getmicrotime(&ifp->if_lastchange);
|
|
break;
|
|
|
|
#ifdef MAC
|
|
case SIOCSIFMAC:
|
|
error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
|
|
break;
|
|
#endif
|
|
|
|
case SIOCSIFNAME:
|
|
error = priv_check(td, PRIV_NET_SETIFNAME);
|
|
if (error)
|
|
return (error);
|
|
error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ,
|
|
NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
if (new_name[0] == '\0')
|
|
return (EINVAL);
|
|
if (new_name[IFNAMSIZ-1] != '\0') {
|
|
new_name[IFNAMSIZ-1] = '\0';
|
|
if (strlen(new_name) == IFNAMSIZ-1)
|
|
return (EINVAL);
|
|
}
|
|
if (strcmp(new_name, ifp->if_xname) == 0)
|
|
break;
|
|
if (ifunit(new_name) != NULL)
|
|
return (EEXIST);
|
|
|
|
/*
|
|
* XXX: Locking. Nothing else seems to lock if_flags,
|
|
* and there are numerous other races with the
|
|
* ifunit() checks not being atomic with namespace
|
|
* changes (renames, vmoves, if_attach, etc).
|
|
*/
|
|
ifp->if_flags |= IFF_RENAMING;
|
|
|
|
/* Announce the departure of the interface. */
|
|
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
|
|
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
|
|
|
|
if_printf(ifp, "changing name to '%s'\n", new_name);
|
|
|
|
IF_ADDR_WLOCK(ifp);
|
|
strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
|
|
ifa = ifp->if_addr;
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
namelen = strlen(new_name);
|
|
onamelen = sdl->sdl_nlen;
|
|
/*
|
|
* Move the address if needed. This is safe because we
|
|
* allocate space for a name of length IFNAMSIZ when we
|
|
* create this in if_attach().
|
|
*/
|
|
if (namelen != onamelen) {
|
|
bcopy(sdl->sdl_data + onamelen,
|
|
sdl->sdl_data + namelen, sdl->sdl_alen);
|
|
}
|
|
bcopy(new_name, sdl->sdl_data, namelen);
|
|
sdl->sdl_nlen = namelen;
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
|
|
bzero(sdl->sdl_data, onamelen);
|
|
while (namelen != 0)
|
|
sdl->sdl_data[--namelen] = 0xff;
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
|
|
EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
|
|
/* Announce the return of the interface. */
|
|
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
|
|
|
|
ifp->if_flags &= ~IFF_RENAMING;
|
|
break;
|
|
|
|
#ifdef VIMAGE
|
|
case SIOCSIFVNET:
|
|
error = priv_check(td, PRIV_NET_SETIFVNET);
|
|
if (error)
|
|
return (error);
|
|
error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
|
|
break;
|
|
#endif
|
|
|
|
case SIOCSIFMETRIC:
|
|
error = priv_check(td, PRIV_NET_SETIFMETRIC);
|
|
if (error)
|
|
return (error);
|
|
ifp->if_metric = ifr->ifr_metric;
|
|
getmicrotime(&ifp->if_lastchange);
|
|
break;
|
|
|
|
case SIOCSIFPHYS:
|
|
error = priv_check(td, PRIV_NET_SETIFPHYS);
|
|
if (error)
|
|
return (error);
|
|
if (ifp->if_ioctl == NULL)
|
|
return (EOPNOTSUPP);
|
|
error = (*ifp->if_ioctl)(ifp, cmd, data);
|
|
if (error == 0)
|
|
getmicrotime(&ifp->if_lastchange);
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
{
|
|
u_long oldmtu = ifp->if_mtu;
|
|
|
|
error = priv_check(td, PRIV_NET_SETIFMTU);
|
|
if (error)
|
|
return (error);
|
|
if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
|
|
return (EINVAL);
|
|
if (ifp->if_ioctl == NULL)
|
|
return (EOPNOTSUPP);
|
|
error = (*ifp->if_ioctl)(ifp, cmd, data);
|
|
if (error == 0) {
|
|
getmicrotime(&ifp->if_lastchange);
|
|
rt_ifmsg(ifp);
|
|
#ifdef INET
|
|
DEBUGNET_NOTIFY_MTU(ifp);
|
|
#endif
|
|
}
|
|
/*
|
|
* If the link MTU changed, do network layer specific procedure.
|
|
*/
|
|
if (ifp->if_mtu != oldmtu) {
|
|
#ifdef INET6
|
|
nd6_setmtu(ifp);
|
|
#endif
|
|
rt_updatemtu(ifp);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (cmd == SIOCADDMULTI)
|
|
error = priv_check(td, PRIV_NET_ADDMULTI);
|
|
else
|
|
error = priv_check(td, PRIV_NET_DELMULTI);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Don't allow group membership on non-multicast interfaces. */
|
|
if ((ifp->if_flags & IFF_MULTICAST) == 0)
|
|
return (EOPNOTSUPP);
|
|
|
|
/* Don't let users screw up protocols' entries. */
|
|
if (ifr->ifr_addr.sa_family != AF_LINK)
|
|
return (EINVAL);
|
|
|
|
if (cmd == SIOCADDMULTI) {
|
|
struct epoch_tracker et;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
/*
|
|
* Userland is only permitted to join groups once
|
|
* via the if_addmulti() KPI, because it cannot hold
|
|
* struct ifmultiaddr * between calls. It may also
|
|
* lose a race while we check if the membership
|
|
* already exists.
|
|
*/
|
|
NET_EPOCH_ENTER(et);
|
|
ifma = if_findmulti(ifp, &ifr->ifr_addr);
|
|
NET_EPOCH_EXIT(et);
|
|
if (ifma != NULL)
|
|
error = EADDRINUSE;
|
|
else
|
|
error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
|
|
} else {
|
|
error = if_delmulti(ifp, &ifr->ifr_addr);
|
|
}
|
|
if (error == 0)
|
|
getmicrotime(&ifp->if_lastchange);
|
|
break;
|
|
|
|
case SIOCSIFPHYADDR:
|
|
case SIOCDIFPHYADDR:
|
|
#ifdef INET6
|
|
case SIOCSIFPHYADDR_IN6:
|
|
#endif
|
|
case SIOCSIFMEDIA:
|
|
case SIOCSIFGENERIC:
|
|
error = priv_check(td, PRIV_NET_HWIOCTL);
|
|
if (error)
|
|
return (error);
|
|
if (ifp->if_ioctl == NULL)
|
|
return (EOPNOTSUPP);
|
|
error = (*ifp->if_ioctl)(ifp, cmd, data);
|
|
if (error == 0)
|
|
getmicrotime(&ifp->if_lastchange);
|
|
break;
|
|
|
|
case SIOCGIFSTATUS:
|
|
case SIOCGIFPSRCADDR:
|
|
case SIOCGIFPDSTADDR:
|
|
case SIOCGIFMEDIA:
|
|
case SIOCGIFXMEDIA:
|
|
case SIOCGIFGENERIC:
|
|
case SIOCGIFRSSKEY:
|
|
case SIOCGIFRSSHASH:
|
|
case SIOCGIFDOWNREASON:
|
|
if (ifp->if_ioctl == NULL)
|
|
return (EOPNOTSUPP);
|
|
error = (*ifp->if_ioctl)(ifp, cmd, data);
|
|
break;
|
|
|
|
case SIOCSIFLLADDR:
|
|
error = priv_check(td, PRIV_NET_SETLLADDR);
|
|
if (error)
|
|
return (error);
|
|
error = if_setlladdr(ifp,
|
|
ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
|
|
break;
|
|
|
|
case SIOCGHWADDR:
|
|
error = if_gethwaddr(ifp, ifr);
|
|
break;
|
|
|
|
case CASE_IOC_IFGROUPREQ(SIOCAIFGROUP):
|
|
error = priv_check(td, PRIV_NET_ADDIFGROUP);
|
|
if (error)
|
|
return (error);
|
|
if ((error = if_addgroup(ifp,
|
|
ifgr_group_get((struct ifgroupreq *)data))))
|
|
return (error);
|
|
break;
|
|
|
|
case CASE_IOC_IFGROUPREQ(SIOCGIFGROUP):
|
|
{
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
error = if_getgroup((struct ifgroupreq *)data, ifp);
|
|
NET_EPOCH_EXIT(et);
|
|
break;
|
|
}
|
|
|
|
case CASE_IOC_IFGROUPREQ(SIOCDIFGROUP):
|
|
error = priv_check(td, PRIV_NET_DELIFGROUP);
|
|
if (error)
|
|
return (error);
|
|
if ((error = if_delgroup(ifp,
|
|
ifgr_group_get((struct ifgroupreq *)data))))
|
|
return (error);
|
|
break;
|
|
|
|
default:
|
|
error = ENOIOCTL;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
struct ifconf32 {
|
|
int32_t ifc_len;
|
|
union {
|
|
uint32_t ifcu_buf;
|
|
uint32_t ifcu_req;
|
|
} ifc_ifcu;
|
|
};
|
|
#define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32)
|
|
#endif
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
static void
|
|
ifmr_init(struct ifmediareq *ifmr, caddr_t data)
|
|
{
|
|
struct ifmediareq32 *ifmr32;
|
|
|
|
ifmr32 = (struct ifmediareq32 *)data;
|
|
memcpy(ifmr->ifm_name, ifmr32->ifm_name,
|
|
sizeof(ifmr->ifm_name));
|
|
ifmr->ifm_current = ifmr32->ifm_current;
|
|
ifmr->ifm_mask = ifmr32->ifm_mask;
|
|
ifmr->ifm_status = ifmr32->ifm_status;
|
|
ifmr->ifm_active = ifmr32->ifm_active;
|
|
ifmr->ifm_count = ifmr32->ifm_count;
|
|
ifmr->ifm_ulist = (int *)(uintptr_t)ifmr32->ifm_ulist;
|
|
}
|
|
|
|
static void
|
|
ifmr_update(const struct ifmediareq *ifmr, caddr_t data)
|
|
{
|
|
struct ifmediareq32 *ifmr32;
|
|
|
|
ifmr32 = (struct ifmediareq32 *)data;
|
|
ifmr32->ifm_current = ifmr->ifm_current;
|
|
ifmr32->ifm_mask = ifmr->ifm_mask;
|
|
ifmr32->ifm_status = ifmr->ifm_status;
|
|
ifmr32->ifm_active = ifmr->ifm_active;
|
|
ifmr32->ifm_count = ifmr->ifm_count;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Interface ioctls.
|
|
*/
|
|
int
|
|
ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
|
|
{
|
|
#ifdef COMPAT_FREEBSD32
|
|
caddr_t saved_data = NULL;
|
|
struct ifmediareq ifmr;
|
|
struct ifmediareq *ifmrp = NULL;
|
|
#endif
|
|
struct ifnet *ifp;
|
|
struct ifreq *ifr;
|
|
int error;
|
|
int oif_flags;
|
|
#ifdef VIMAGE
|
|
bool shutdown;
|
|
#endif
|
|
|
|
CURVNET_SET(so->so_vnet);
|
|
#ifdef VIMAGE
|
|
/* Make sure the VNET is stable. */
|
|
shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet);
|
|
if (shutdown) {
|
|
CURVNET_RESTORE();
|
|
return (EBUSY);
|
|
}
|
|
#endif
|
|
|
|
switch (cmd) {
|
|
case SIOCGIFCONF:
|
|
error = ifconf(cmd, data);
|
|
goto out_noref;
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
case SIOCGIFCONF32:
|
|
{
|
|
struct ifconf32 *ifc32;
|
|
struct ifconf ifc;
|
|
|
|
ifc32 = (struct ifconf32 *)data;
|
|
ifc.ifc_len = ifc32->ifc_len;
|
|
ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
|
|
|
|
error = ifconf(SIOCGIFCONF, (void *)&ifc);
|
|
if (error == 0)
|
|
ifc32->ifc_len = ifc.ifc_len;
|
|
goto out_noref;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
switch (cmd) {
|
|
case SIOCGIFMEDIA32:
|
|
case SIOCGIFXMEDIA32:
|
|
ifmrp = &ifmr;
|
|
ifmr_init(ifmrp, data);
|
|
cmd = _IOC_NEWTYPE(cmd, struct ifmediareq);
|
|
saved_data = data;
|
|
data = (caddr_t)ifmrp;
|
|
}
|
|
#endif
|
|
|
|
ifr = (struct ifreq *)data;
|
|
switch (cmd) {
|
|
#ifdef VIMAGE
|
|
case SIOCSIFRVNET:
|
|
error = priv_check(td, PRIV_NET_SETIFVNET);
|
|
if (error == 0)
|
|
error = if_vmove_reclaim(td, ifr->ifr_name,
|
|
ifr->ifr_jid);
|
|
goto out_noref;
|
|
#endif
|
|
case SIOCIFCREATE:
|
|
case SIOCIFCREATE2:
|
|
error = priv_check(td, PRIV_NET_IFCREATE);
|
|
if (error == 0)
|
|
error = if_clone_create(ifr->ifr_name,
|
|
sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ?
|
|
ifr_data_get_ptr(ifr) : NULL);
|
|
goto out_noref;
|
|
case SIOCIFDESTROY:
|
|
error = priv_check(td, PRIV_NET_IFDESTROY);
|
|
|
|
if (error == 0) {
|
|
sx_xlock(&ifnet_detach_sxlock);
|
|
error = if_clone_destroy(ifr->ifr_name);
|
|
sx_xunlock(&ifnet_detach_sxlock);
|
|
}
|
|
goto out_noref;
|
|
|
|
case SIOCIFGCLONERS:
|
|
error = if_clone_list((struct if_clonereq *)data);
|
|
goto out_noref;
|
|
|
|
case CASE_IOC_IFGROUPREQ(SIOCGIFGMEMB):
|
|
error = if_getgroupmembers((struct ifgroupreq *)data);
|
|
goto out_noref;
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
case SIOCSVH:
|
|
case SIOCGVH:
|
|
if (carp_ioctl_p == NULL)
|
|
error = EPROTONOSUPPORT;
|
|
else
|
|
error = (*carp_ioctl_p)(ifr, cmd, td);
|
|
goto out_noref;
|
|
#endif
|
|
}
|
|
|
|
ifp = ifunit_ref(ifr->ifr_name);
|
|
if (ifp == NULL) {
|
|
error = ENXIO;
|
|
goto out_noref;
|
|
}
|
|
|
|
error = ifhwioctl(cmd, ifp, data, td);
|
|
if (error != ENOIOCTL)
|
|
goto out_ref;
|
|
|
|
oif_flags = ifp->if_flags;
|
|
if (so->so_proto == NULL) {
|
|
error = EOPNOTSUPP;
|
|
goto out_ref;
|
|
}
|
|
|
|
/*
|
|
* Pass the request on to the socket control method, and if the
|
|
* latter returns EOPNOTSUPP, directly to the interface.
|
|
*
|
|
* Make an exception for the legacy SIOCSIF* requests. Drivers
|
|
* trust SIOCSIFADDR et al to come from an already privileged
|
|
* layer, and do not perform any credentials checks or input
|
|
* validation.
|
|
*/
|
|
error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data,
|
|
ifp, td));
|
|
if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
|
|
cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
|
|
cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
|
|
error = (*ifp->if_ioctl)(ifp, cmd, data);
|
|
|
|
if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
|
|
#ifdef INET6
|
|
if (ifp->if_flags & IFF_UP)
|
|
in6_if_up(ifp);
|
|
#endif
|
|
}
|
|
|
|
out_ref:
|
|
if_rele(ifp);
|
|
out_noref:
|
|
#ifdef COMPAT_FREEBSD32
|
|
if (ifmrp != NULL) {
|
|
KASSERT((cmd == SIOCGIFMEDIA || cmd == SIOCGIFXMEDIA),
|
|
("ifmrp non-NULL, but cmd is not an ifmedia req 0x%lx",
|
|
cmd));
|
|
data = saved_data;
|
|
ifmr_update(ifmrp, data);
|
|
}
|
|
#endif
|
|
CURVNET_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* The code common to handling reference counted flags,
|
|
* e.g., in ifpromisc() and if_allmulti().
|
|
* The "pflag" argument can specify a permanent mode flag to check,
|
|
* such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
|
|
*
|
|
* Only to be used on stack-owned flags, not driver-owned flags.
|
|
*/
|
|
static int
|
|
if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
|
|
{
|
|
struct ifreq ifr;
|
|
int error;
|
|
int oldflags, oldcount;
|
|
|
|
/* Sanity checks to catch programming errors */
|
|
KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
|
|
("%s: setting driver-owned flag %d", __func__, flag));
|
|
|
|
if (onswitch)
|
|
KASSERT(*refcount >= 0,
|
|
("%s: increment negative refcount %d for flag %d",
|
|
__func__, *refcount, flag));
|
|
else
|
|
KASSERT(*refcount > 0,
|
|
("%s: decrement non-positive refcount %d for flag %d",
|
|
__func__, *refcount, flag));
|
|
|
|
/* In case this mode is permanent, just touch refcount */
|
|
if (ifp->if_flags & pflag) {
|
|
*refcount += onswitch ? 1 : -1;
|
|
return (0);
|
|
}
|
|
|
|
/* Save ifnet parameters for if_ioctl() may fail */
|
|
oldcount = *refcount;
|
|
oldflags = ifp->if_flags;
|
|
|
|
/*
|
|
* See if we aren't the only and touching refcount is enough.
|
|
* Actually toggle interface flag if we are the first or last.
|
|
*/
|
|
if (onswitch) {
|
|
if ((*refcount)++)
|
|
return (0);
|
|
ifp->if_flags |= flag;
|
|
} else {
|
|
if (--(*refcount))
|
|
return (0);
|
|
ifp->if_flags &= ~flag;
|
|
}
|
|
|
|
/* Call down the driver since we've changed interface flags */
|
|
if (ifp->if_ioctl == NULL) {
|
|
error = EOPNOTSUPP;
|
|
goto recover;
|
|
}
|
|
ifr.ifr_flags = ifp->if_flags & 0xffff;
|
|
ifr.ifr_flagshigh = ifp->if_flags >> 16;
|
|
error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
|
|
if (error)
|
|
goto recover;
|
|
/* Notify userland that interface flags have changed */
|
|
rt_ifmsg(ifp);
|
|
return (0);
|
|
|
|
recover:
|
|
/* Recover after driver error */
|
|
*refcount = oldcount;
|
|
ifp->if_flags = oldflags;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set/clear promiscuous mode on interface ifp based on the truth value
|
|
* of pswitch. The calls are reference counted so that only the first
|
|
* "on" request actually has an effect, as does the final "off" request.
|
|
* Results are undefined if the "off" and "on" requests are not matched.
|
|
*/
|
|
int
|
|
ifpromisc(struct ifnet *ifp, int pswitch)
|
|
{
|
|
int error;
|
|
int oldflags = ifp->if_flags;
|
|
|
|
error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
|
|
&ifp->if_pcount, pswitch);
|
|
/* If promiscuous mode status has changed, log a message */
|
|
if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
|
|
log_promisc_mode_change)
|
|
if_printf(ifp, "promiscuous mode %s\n",
|
|
(ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return interface configuration
|
|
* of system. List may be used
|
|
* in later ioctl's (above) to get
|
|
* other information.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static int
|
|
ifconf(u_long cmd, caddr_t data)
|
|
{
|
|
struct ifconf *ifc = (struct ifconf *)data;
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
struct ifreq ifr;
|
|
struct sbuf *sb;
|
|
int error, full = 0, valid_len, max_len;
|
|
|
|
/* Limit initial buffer size to maxphys to avoid DoS from userspace. */
|
|
max_len = maxphys - 1;
|
|
|
|
/* Prevent hostile input from being able to crash the system */
|
|
if (ifc->ifc_len <= 0)
|
|
return (EINVAL);
|
|
|
|
again:
|
|
if (ifc->ifc_len <= max_len) {
|
|
max_len = ifc->ifc_len;
|
|
full = 1;
|
|
}
|
|
sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
|
|
max_len = 0;
|
|
valid_len = 0;
|
|
|
|
IFNET_RLOCK();
|
|
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
|
|
struct epoch_tracker et;
|
|
int addrs;
|
|
|
|
/*
|
|
* Zero the ifr to make sure we don't disclose the contents
|
|
* of the stack.
|
|
*/
|
|
memset(&ifr, 0, sizeof(ifr));
|
|
|
|
if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
|
|
>= sizeof(ifr.ifr_name)) {
|
|
sbuf_delete(sb);
|
|
IFNET_RUNLOCK();
|
|
return (ENAMETOOLONG);
|
|
}
|
|
|
|
addrs = 0;
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
struct sockaddr *sa = ifa->ifa_addr;
|
|
|
|
if (prison_if(curthread->td_ucred, sa) != 0)
|
|
continue;
|
|
addrs++;
|
|
if (sa->sa_len <= sizeof(*sa)) {
|
|
if (sa->sa_len < sizeof(*sa)) {
|
|
memset(&ifr.ifr_ifru.ifru_addr, 0,
|
|
sizeof(ifr.ifr_ifru.ifru_addr));
|
|
memcpy(&ifr.ifr_ifru.ifru_addr, sa,
|
|
sa->sa_len);
|
|
} else
|
|
ifr.ifr_ifru.ifru_addr = *sa;
|
|
sbuf_bcat(sb, &ifr, sizeof(ifr));
|
|
max_len += sizeof(ifr);
|
|
} else {
|
|
sbuf_bcat(sb, &ifr,
|
|
offsetof(struct ifreq, ifr_addr));
|
|
max_len += offsetof(struct ifreq, ifr_addr);
|
|
sbuf_bcat(sb, sa, sa->sa_len);
|
|
max_len += sa->sa_len;
|
|
}
|
|
|
|
if (sbuf_error(sb) == 0)
|
|
valid_len = sbuf_len(sb);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
if (addrs == 0) {
|
|
sbuf_bcat(sb, &ifr, sizeof(ifr));
|
|
max_len += sizeof(ifr);
|
|
|
|
if (sbuf_error(sb) == 0)
|
|
valid_len = sbuf_len(sb);
|
|
}
|
|
}
|
|
IFNET_RUNLOCK();
|
|
|
|
/*
|
|
* If we didn't allocate enough space (uncommon), try again. If
|
|
* we have already allocated as much space as we are allowed,
|
|
* return what we've got.
|
|
*/
|
|
if (valid_len != max_len && !full) {
|
|
sbuf_delete(sb);
|
|
goto again;
|
|
}
|
|
|
|
ifc->ifc_len = valid_len;
|
|
sbuf_finish(sb);
|
|
error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
|
|
sbuf_delete(sb);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Just like ifpromisc(), but for all-multicast-reception mode.
|
|
*/
|
|
int
|
|
if_allmulti(struct ifnet *ifp, int onswitch)
|
|
{
|
|
|
|
return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch));
|
|
}
|
|
|
|
struct ifmultiaddr *
|
|
if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
|
|
IF_ADDR_LOCK_ASSERT(ifp);
|
|
|
|
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (sa->sa_family == AF_LINK) {
|
|
if (sa_dl_equal(ifma->ifma_addr, sa))
|
|
break;
|
|
} else {
|
|
if (sa_equal(ifma->ifma_addr, sa))
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ifma;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new ifmultiaddr and initialize based on passed arguments. We
|
|
* make copies of passed sockaddrs. The ifmultiaddr will not be added to
|
|
* the ifnet multicast address list here, so the caller must do that and
|
|
* other setup work (such as notifying the device driver). The reference
|
|
* count is initialized to 1.
|
|
*/
|
|
static struct ifmultiaddr *
|
|
if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
|
|
int mflags)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
struct sockaddr *dupsa;
|
|
|
|
ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
|
|
M_ZERO);
|
|
if (ifma == NULL)
|
|
return (NULL);
|
|
|
|
dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
|
|
if (dupsa == NULL) {
|
|
free(ifma, M_IFMADDR);
|
|
return (NULL);
|
|
}
|
|
bcopy(sa, dupsa, sa->sa_len);
|
|
ifma->ifma_addr = dupsa;
|
|
|
|
ifma->ifma_ifp = ifp;
|
|
ifma->ifma_refcount = 1;
|
|
ifma->ifma_protospec = NULL;
|
|
|
|
if (llsa == NULL) {
|
|
ifma->ifma_lladdr = NULL;
|
|
return (ifma);
|
|
}
|
|
|
|
dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
|
|
if (dupsa == NULL) {
|
|
free(ifma->ifma_addr, M_IFMADDR);
|
|
free(ifma, M_IFMADDR);
|
|
return (NULL);
|
|
}
|
|
bcopy(llsa, dupsa, llsa->sa_len);
|
|
ifma->ifma_lladdr = dupsa;
|
|
|
|
return (ifma);
|
|
}
|
|
|
|
/*
|
|
* if_freemulti: free ifmultiaddr structure and possibly attached related
|
|
* addresses. The caller is responsible for implementing reference
|
|
* counting, notifying the driver, handling routing messages, and releasing
|
|
* any dependent link layer state.
|
|
*/
|
|
#ifdef MCAST_VERBOSE
|
|
extern void kdb_backtrace(void);
|
|
#endif
|
|
static void
|
|
if_freemulti_internal(struct ifmultiaddr *ifma)
|
|
{
|
|
|
|
KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
|
|
ifma->ifma_refcount));
|
|
|
|
if (ifma->ifma_lladdr != NULL)
|
|
free(ifma->ifma_lladdr, M_IFMADDR);
|
|
#ifdef MCAST_VERBOSE
|
|
kdb_backtrace();
|
|
printf("%s freeing ifma: %p\n", __func__, ifma);
|
|
#endif
|
|
free(ifma->ifma_addr, M_IFMADDR);
|
|
free(ifma, M_IFMADDR);
|
|
}
|
|
|
|
static void
|
|
if_destroymulti(epoch_context_t ctx)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
|
|
ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx);
|
|
if_freemulti_internal(ifma);
|
|
}
|
|
|
|
void
|
|
if_freemulti(struct ifmultiaddr *ifma)
|
|
{
|
|
KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d",
|
|
ifma->ifma_refcount));
|
|
|
|
NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx);
|
|
}
|
|
|
|
/*
|
|
* Register an additional multicast address with a network interface.
|
|
*
|
|
* - If the address is already present, bump the reference count on the
|
|
* address and return.
|
|
* - If the address is not link-layer, look up a link layer address.
|
|
* - Allocate address structures for one or both addresses, and attach to the
|
|
* multicast address list on the interface. If automatically adding a link
|
|
* layer address, the protocol address will own a reference to the link
|
|
* layer address, to be freed when it is freed.
|
|
* - Notify the network device driver of an addition to the multicast address
|
|
* list.
|
|
*
|
|
* 'sa' points to caller-owned memory with the desired multicast address.
|
|
*
|
|
* 'retifma' will be used to return a pointer to the resulting multicast
|
|
* address reference, if desired.
|
|
*/
|
|
int
|
|
if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
|
|
struct ifmultiaddr **retifma)
|
|
{
|
|
struct ifmultiaddr *ifma, *ll_ifma;
|
|
struct sockaddr *llsa;
|
|
struct sockaddr_dl sdl;
|
|
int error;
|
|
|
|
#ifdef INET
|
|
IN_MULTI_LIST_UNLOCK_ASSERT();
|
|
#endif
|
|
#ifdef INET6
|
|
IN6_MULTI_LIST_UNLOCK_ASSERT();
|
|
#endif
|
|
/*
|
|
* If the address is already present, return a new reference to it;
|
|
* otherwise, allocate storage and set up a new address.
|
|
*/
|
|
IF_ADDR_WLOCK(ifp);
|
|
ifma = if_findmulti(ifp, sa);
|
|
if (ifma != NULL) {
|
|
ifma->ifma_refcount++;
|
|
if (retifma != NULL)
|
|
*retifma = ifma;
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The address isn't already present; resolve the protocol address
|
|
* into a link layer address, and then look that up, bump its
|
|
* refcount or allocate an ifma for that also.
|
|
* Most link layer resolving functions returns address data which
|
|
* fits inside default sockaddr_dl structure. However callback
|
|
* can allocate another sockaddr structure, in that case we need to
|
|
* free it later.
|
|
*/
|
|
llsa = NULL;
|
|
ll_ifma = NULL;
|
|
if (ifp->if_resolvemulti != NULL) {
|
|
/* Provide called function with buffer size information */
|
|
sdl.sdl_len = sizeof(sdl);
|
|
llsa = (struct sockaddr *)&sdl;
|
|
error = ifp->if_resolvemulti(ifp, &llsa, sa);
|
|
if (error)
|
|
goto unlock_out;
|
|
}
|
|
|
|
/*
|
|
* Allocate the new address. Don't hook it up yet, as we may also
|
|
* need to allocate a link layer multicast address.
|
|
*/
|
|
ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
|
|
if (ifma == NULL) {
|
|
error = ENOMEM;
|
|
goto free_llsa_out;
|
|
}
|
|
|
|
/*
|
|
* If a link layer address is found, we'll need to see if it's
|
|
* already present in the address list, or allocate is as well.
|
|
* When this block finishes, the link layer address will be on the
|
|
* list.
|
|
*/
|
|
if (llsa != NULL) {
|
|
ll_ifma = if_findmulti(ifp, llsa);
|
|
if (ll_ifma == NULL) {
|
|
ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
|
|
if (ll_ifma == NULL) {
|
|
--ifma->ifma_refcount;
|
|
if_freemulti(ifma);
|
|
error = ENOMEM;
|
|
goto free_llsa_out;
|
|
}
|
|
ll_ifma->ifma_flags |= IFMA_F_ENQUEUED;
|
|
CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
|
|
ifma_link);
|
|
} else
|
|
ll_ifma->ifma_refcount++;
|
|
ifma->ifma_llifma = ll_ifma;
|
|
}
|
|
|
|
/*
|
|
* We now have a new multicast address, ifma, and possibly a new or
|
|
* referenced link layer address. Add the primary address to the
|
|
* ifnet address list.
|
|
*/
|
|
ifma->ifma_flags |= IFMA_F_ENQUEUED;
|
|
CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
|
|
|
|
if (retifma != NULL)
|
|
*retifma = ifma;
|
|
|
|
/*
|
|
* Must generate the message while holding the lock so that 'ifma'
|
|
* pointer is still valid.
|
|
*/
|
|
rt_newmaddrmsg(RTM_NEWMADDR, ifma);
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
|
|
/*
|
|
* We are certain we have added something, so call down to the
|
|
* interface to let them know about it.
|
|
*/
|
|
if (ifp->if_ioctl != NULL) {
|
|
if (THREAD_CAN_SLEEP())
|
|
(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
|
|
else
|
|
taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask);
|
|
}
|
|
|
|
if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
|
|
link_free_sdl(llsa);
|
|
|
|
return (0);
|
|
|
|
free_llsa_out:
|
|
if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
|
|
link_free_sdl(llsa);
|
|
|
|
unlock_out:
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
if_siocaddmulti(void *arg, int pending)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ifp = arg;
|
|
#ifdef DIAGNOSTIC
|
|
if (pending > 1)
|
|
if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending);
|
|
#endif
|
|
CURVNET_SET(ifp->if_vnet);
|
|
(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Delete a multicast group membership by network-layer group address.
|
|
*
|
|
* Returns ENOENT if the entry could not be found. If ifp no longer
|
|
* exists, results are undefined. This entry point should only be used
|
|
* from subsystems which do appropriate locking to hold ifp for the
|
|
* duration of the call.
|
|
* Network-layer protocol domains must use if_delmulti_ifma().
|
|
*/
|
|
int
|
|
if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
int lastref;
|
|
|
|
KASSERT(ifp, ("%s: NULL ifp", __func__));
|
|
|
|
IF_ADDR_WLOCK(ifp);
|
|
lastref = 0;
|
|
ifma = if_findmulti(ifp, sa);
|
|
if (ifma != NULL)
|
|
lastref = if_delmulti_locked(ifp, ifma, 0);
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
|
|
if (ifma == NULL)
|
|
return (ENOENT);
|
|
|
|
if (lastref && ifp->if_ioctl != NULL) {
|
|
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Delete all multicast group membership for an interface.
|
|
* Should be used to quickly flush all multicast filters.
|
|
*/
|
|
void
|
|
if_delallmulti(struct ifnet *ifp)
|
|
{
|
|
struct ifmultiaddr *ifma;
|
|
struct ifmultiaddr *next;
|
|
|
|
IF_ADDR_WLOCK(ifp);
|
|
CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
|
|
if_delmulti_locked(ifp, ifma, 0);
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
}
|
|
|
|
void
|
|
if_delmulti_ifma(struct ifmultiaddr *ifma)
|
|
{
|
|
if_delmulti_ifma_flags(ifma, 0);
|
|
}
|
|
|
|
/*
|
|
* Delete a multicast group membership by group membership pointer.
|
|
* Network-layer protocol domains must use this routine.
|
|
*
|
|
* It is safe to call this routine if the ifp disappeared.
|
|
*/
|
|
void
|
|
if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags)
|
|
{
|
|
struct ifnet *ifp;
|
|
int lastref;
|
|
MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma);
|
|
#ifdef INET
|
|
IN_MULTI_LIST_UNLOCK_ASSERT();
|
|
#endif
|
|
ifp = ifma->ifma_ifp;
|
|
#ifdef DIAGNOSTIC
|
|
if (ifp == NULL) {
|
|
printf("%s: ifma_ifp seems to be detached\n", __func__);
|
|
} else {
|
|
struct epoch_tracker et;
|
|
struct ifnet *oifp;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link)
|
|
if (ifp == oifp)
|
|
break;
|
|
NET_EPOCH_EXIT(et);
|
|
if (ifp != oifp)
|
|
ifp = NULL;
|
|
}
|
|
#endif
|
|
/*
|
|
* If and only if the ifnet instance exists: Acquire the address lock.
|
|
*/
|
|
if (ifp != NULL)
|
|
IF_ADDR_WLOCK(ifp);
|
|
|
|
lastref = if_delmulti_locked(ifp, ifma, flags);
|
|
|
|
if (ifp != NULL) {
|
|
/*
|
|
* If and only if the ifnet instance exists:
|
|
* Release the address lock.
|
|
* If the group was left: update the hardware hash filter.
|
|
*/
|
|
IF_ADDR_WUNLOCK(ifp);
|
|
if (lastref && ifp->if_ioctl != NULL) {
|
|
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform deletion of network-layer and/or link-layer multicast address.
|
|
*
|
|
* Return 0 if the reference count was decremented.
|
|
* Return 1 if the final reference was released, indicating that the
|
|
* hardware hash filter should be reprogrammed.
|
|
*/
|
|
static int
|
|
if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
|
|
{
|
|
struct ifmultiaddr *ll_ifma;
|
|
|
|
if (ifp != NULL && ifma->ifma_ifp != NULL) {
|
|
KASSERT(ifma->ifma_ifp == ifp,
|
|
("%s: inconsistent ifp %p", __func__, ifp));
|
|
IF_ADDR_WLOCK_ASSERT(ifp);
|
|
}
|
|
|
|
ifp = ifma->ifma_ifp;
|
|
MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : "");
|
|
|
|
/*
|
|
* If the ifnet is detaching, null out references to ifnet,
|
|
* so that upper protocol layers will notice, and not attempt
|
|
* to obtain locks for an ifnet which no longer exists. The
|
|
* routing socket announcement must happen before the ifnet
|
|
* instance is detached from the system.
|
|
*/
|
|
if (detaching) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("%s: detaching ifnet instance %p\n", __func__, ifp);
|
|
#endif
|
|
/*
|
|
* ifp may already be nulled out if we are being reentered
|
|
* to delete the ll_ifma.
|
|
*/
|
|
if (ifp != NULL) {
|
|
rt_newmaddrmsg(RTM_DELMADDR, ifma);
|
|
ifma->ifma_ifp = NULL;
|
|
}
|
|
}
|
|
|
|
if (--ifma->ifma_refcount > 0)
|
|
return 0;
|
|
|
|
if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) {
|
|
CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
|
|
ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
|
|
}
|
|
/*
|
|
* If this ifma is a network-layer ifma, a link-layer ifma may
|
|
* have been associated with it. Release it first if so.
|
|
*/
|
|
ll_ifma = ifma->ifma_llifma;
|
|
if (ll_ifma != NULL) {
|
|
KASSERT(ifma->ifma_lladdr != NULL,
|
|
("%s: llifma w/o lladdr", __func__));
|
|
if (detaching)
|
|
ll_ifma->ifma_ifp = NULL; /* XXX */
|
|
if (--ll_ifma->ifma_refcount == 0) {
|
|
if (ifp != NULL) {
|
|
if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
|
|
CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr,
|
|
ifma_link);
|
|
ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
|
|
}
|
|
}
|
|
if_freemulti(ll_ifma);
|
|
}
|
|
}
|
|
#ifdef INVARIANTS
|
|
if (ifp) {
|
|
struct ifmultiaddr *ifmatmp;
|
|
|
|
CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link)
|
|
MPASS(ifma != ifmatmp);
|
|
}
|
|
#endif
|
|
if_freemulti(ifma);
|
|
/*
|
|
* The last reference to this instance of struct ifmultiaddr
|
|
* was released; the hardware should be notified of this change.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Set the link layer address on an interface.
|
|
*
|
|
* At this time we only support certain types of interfaces,
|
|
* and we don't allow the length of the address to change.
|
|
*
|
|
* Set noinline to be dtrace-friendly
|
|
*/
|
|
__noinline int
|
|
if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
|
|
{
|
|
struct sockaddr_dl *sdl;
|
|
struct ifaddr *ifa;
|
|
struct ifreq ifr;
|
|
|
|
ifa = ifp->if_addr;
|
|
if (ifa == NULL)
|
|
return (EINVAL);
|
|
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
if (sdl == NULL)
|
|
return (EINVAL);
|
|
|
|
if (len != sdl->sdl_alen) /* don't allow length to change */
|
|
return (EINVAL);
|
|
|
|
switch (ifp->if_type) {
|
|
case IFT_ETHER:
|
|
case IFT_XETHER:
|
|
case IFT_L2VLAN:
|
|
case IFT_BRIDGE:
|
|
case IFT_IEEE8023ADLAG:
|
|
bcopy(lladdr, LLADDR(sdl), len);
|
|
break;
|
|
default:
|
|
return (ENODEV);
|
|
}
|
|
|
|
/*
|
|
* If the interface is already up, we need
|
|
* to re-init it in order to reprogram its
|
|
* address filter.
|
|
*/
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if (ifp->if_ioctl) {
|
|
ifp->if_flags &= ~IFF_UP;
|
|
ifr.ifr_flags = ifp->if_flags & 0xffff;
|
|
ifr.ifr_flagshigh = ifp->if_flags >> 16;
|
|
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
|
|
ifp->if_flags |= IFF_UP;
|
|
ifr.ifr_flags = ifp->if_flags & 0xffff;
|
|
ifr.ifr_flagshigh = ifp->if_flags >> 16;
|
|
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
|
|
}
|
|
}
|
|
EVENTHANDLER_INVOKE(iflladdr_event, ifp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Compat function for handling basic encapsulation requests.
|
|
* Not converted stacks (FDDI, IB, ..) supports traditional
|
|
* output model: ARP (and other similar L2 protocols) are handled
|
|
* inside output routine, arpresolve/nd6_resolve() returns MAC
|
|
* address instead of full prepend.
|
|
*
|
|
* This function creates calculated header==MAC for IPv4/IPv6 and
|
|
* returns EAFNOSUPPORT (which is then handled in ARP code) for other
|
|
* address families.
|
|
*/
|
|
static int
|
|
if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
|
|
{
|
|
|
|
if (req->rtype != IFENCAP_LL)
|
|
return (EOPNOTSUPP);
|
|
|
|
if (req->bufsize < req->lladdr_len)
|
|
return (ENOMEM);
|
|
|
|
switch (req->family) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
break;
|
|
default:
|
|
return (EAFNOSUPPORT);
|
|
}
|
|
|
|
/* Copy lladdr to storage as is */
|
|
memmove(req->buf, req->lladdr, req->lladdr_len);
|
|
req->bufsize = req->lladdr_len;
|
|
req->lladdr_off = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Tunnel interfaces can nest, also they may cause infinite recursion
|
|
* calls when misconfigured. We'll prevent this by detecting loops.
|
|
* High nesting level may cause stack exhaustion. We'll prevent this
|
|
* by introducing upper limit.
|
|
*
|
|
* Return 0, if tunnel nesting count is equal or less than limit.
|
|
*/
|
|
int
|
|
if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie,
|
|
int limit)
|
|
{
|
|
struct m_tag *mtag;
|
|
int count;
|
|
|
|
count = 1;
|
|
mtag = NULL;
|
|
while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) {
|
|
if (*(struct ifnet **)(mtag + 1) == ifp) {
|
|
log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp));
|
|
return (EIO);
|
|
}
|
|
count++;
|
|
}
|
|
if (count > limit) {
|
|
log(LOG_NOTICE,
|
|
"%s: if_output recursively called too many times(%d)\n",
|
|
if_name(ifp), count);
|
|
return (EIO);
|
|
}
|
|
mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT);
|
|
if (mtag == NULL)
|
|
return (ENOMEM);
|
|
*(struct ifnet **)(mtag + 1) = ifp;
|
|
m_tag_prepend(m, mtag);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get the link layer address that was read from the hardware at attach.
|
|
*
|
|
* This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type
|
|
* their component interfaces as IFT_IEEE8023ADLAG.
|
|
*/
|
|
int
|
|
if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr)
|
|
{
|
|
|
|
if (ifp->if_hw_addr == NULL)
|
|
return (ENODEV);
|
|
|
|
switch (ifp->if_type) {
|
|
case IFT_ETHER:
|
|
case IFT_IEEE8023ADLAG:
|
|
bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen);
|
|
return (0);
|
|
default:
|
|
return (ENODEV);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The name argument must be a pointer to storage which will last as
|
|
* long as the interface does. For physical devices, the result of
|
|
* device_get_name(dev) is a good choice and for pseudo-devices a
|
|
* static string works well.
|
|
*/
|
|
void
|
|
if_initname(struct ifnet *ifp, const char *name, int unit)
|
|
{
|
|
ifp->if_dname = name;
|
|
ifp->if_dunit = unit;
|
|
if (unit != IF_DUNIT_NONE)
|
|
snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
|
|
else
|
|
strlcpy(ifp->if_xname, name, IFNAMSIZ);
|
|
}
|
|
|
|
int
|
|
if_printf(struct ifnet *ifp, const char *fmt, ...)
|
|
{
|
|
char if_fmt[256];
|
|
va_list ap;
|
|
|
|
snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
|
|
va_start(ap, fmt);
|
|
vlog(LOG_INFO, if_fmt, ap);
|
|
va_end(ap);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
if_start(struct ifnet *ifp)
|
|
{
|
|
|
|
(*(ifp)->if_start)(ifp);
|
|
}
|
|
|
|
/*
|
|
* Backwards compatibility interface for drivers
|
|
* that have not implemented it
|
|
*/
|
|
static int
|
|
if_transmit(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
int error;
|
|
|
|
IFQ_HANDOFF(ifp, m, error);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
|
|
{
|
|
|
|
m_freem(m);
|
|
}
|
|
|
|
int
|
|
if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
|
|
{
|
|
int active = 0;
|
|
|
|
IF_LOCK(ifq);
|
|
if (_IF_QFULL(ifq)) {
|
|
IF_UNLOCK(ifq);
|
|
if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
if (ifp != NULL) {
|
|
if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
|
|
if (m->m_flags & (M_BCAST|M_MCAST))
|
|
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
|
|
active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
|
|
}
|
|
_IF_ENQUEUE(ifq, m);
|
|
IF_UNLOCK(ifq);
|
|
if (ifp != NULL && !active)
|
|
(*(ifp)->if_start)(ifp);
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
if_register_com_alloc(u_char type,
|
|
if_com_alloc_t *a, if_com_free_t *f)
|
|
{
|
|
|
|
KASSERT(if_com_alloc[type] == NULL,
|
|
("if_register_com_alloc: %d already registered", type));
|
|
KASSERT(if_com_free[type] == NULL,
|
|
("if_register_com_alloc: %d free already registered", type));
|
|
|
|
if_com_alloc[type] = a;
|
|
if_com_free[type] = f;
|
|
}
|
|
|
|
void
|
|
if_deregister_com_alloc(u_char type)
|
|
{
|
|
|
|
KASSERT(if_com_alloc[type] != NULL,
|
|
("if_deregister_com_alloc: %d not registered", type));
|
|
KASSERT(if_com_free[type] != NULL,
|
|
("if_deregister_com_alloc: %d free not registered", type));
|
|
if_com_alloc[type] = NULL;
|
|
if_com_free[type] = NULL;
|
|
}
|
|
|
|
/* API for driver access to network stack owned ifnet.*/
|
|
uint64_t
|
|
if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
|
|
{
|
|
uint64_t oldbrate;
|
|
|
|
oldbrate = ifp->if_baudrate;
|
|
ifp->if_baudrate = baudrate;
|
|
return (oldbrate);
|
|
}
|
|
|
|
uint64_t
|
|
if_getbaudrate(if_t ifp)
|
|
{
|
|
|
|
return (((struct ifnet *)ifp)->if_baudrate);
|
|
}
|
|
|
|
int
|
|
if_setcapabilities(if_t ifp, int capabilities)
|
|
{
|
|
((struct ifnet *)ifp)->if_capabilities = capabilities;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
|
|
{
|
|
((struct ifnet *)ifp)->if_capabilities |= setbit;
|
|
((struct ifnet *)ifp)->if_capabilities &= ~clearbit;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_getcapabilities(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_capabilities;
|
|
}
|
|
|
|
int
|
|
if_setcapenable(if_t ifp, int capabilities)
|
|
{
|
|
((struct ifnet *)ifp)->if_capenable = capabilities;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_setcapenablebit(if_t ifp, int setcap, int clearcap)
|
|
{
|
|
if(setcap)
|
|
((struct ifnet *)ifp)->if_capenable |= setcap;
|
|
if(clearcap)
|
|
((struct ifnet *)ifp)->if_capenable &= ~clearcap;
|
|
|
|
return (0);
|
|
}
|
|
|
|
const char *
|
|
if_getdname(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_dname;
|
|
}
|
|
|
|
int
|
|
if_togglecapenable(if_t ifp, int togglecap)
|
|
{
|
|
((struct ifnet *)ifp)->if_capenable ^= togglecap;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_getcapenable(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_capenable;
|
|
}
|
|
|
|
/*
|
|
* This is largely undesirable because it ties ifnet to a device, but does
|
|
* provide flexiblity for an embedded product vendor. Should be used with
|
|
* the understanding that it violates the interface boundaries, and should be
|
|
* a last resort only.
|
|
*/
|
|
int
|
|
if_setdev(if_t ifp, void *dev)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
|
|
{
|
|
((struct ifnet *)ifp)->if_drv_flags |= set_flags;
|
|
((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_getdrvflags(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_drv_flags;
|
|
}
|
|
|
|
int
|
|
if_setdrvflags(if_t ifp, int flags)
|
|
{
|
|
((struct ifnet *)ifp)->if_drv_flags = flags;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_setflags(if_t ifp, int flags)
|
|
{
|
|
|
|
ifp->if_flags = flags;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_setflagbits(if_t ifp, int set, int clear)
|
|
{
|
|
((struct ifnet *)ifp)->if_flags |= set;
|
|
((struct ifnet *)ifp)->if_flags &= ~clear;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_getflags(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_flags;
|
|
}
|
|
|
|
int
|
|
if_clearhwassist(if_t ifp)
|
|
{
|
|
((struct ifnet *)ifp)->if_hwassist = 0;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_sethwassistbits(if_t ifp, int toset, int toclear)
|
|
{
|
|
((struct ifnet *)ifp)->if_hwassist |= toset;
|
|
((struct ifnet *)ifp)->if_hwassist &= ~toclear;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_sethwassist(if_t ifp, int hwassist_bit)
|
|
{
|
|
((struct ifnet *)ifp)->if_hwassist = hwassist_bit;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_gethwassist(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_hwassist;
|
|
}
|
|
|
|
int
|
|
if_setmtu(if_t ifp, int mtu)
|
|
{
|
|
((struct ifnet *)ifp)->if_mtu = mtu;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_getmtu(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_mtu;
|
|
}
|
|
|
|
int
|
|
if_getmtu_family(if_t ifp, int family)
|
|
{
|
|
struct domain *dp;
|
|
|
|
for (dp = domains; dp; dp = dp->dom_next) {
|
|
if (dp->dom_family == family && dp->dom_ifmtu != NULL)
|
|
return (dp->dom_ifmtu((struct ifnet *)ifp));
|
|
}
|
|
|
|
return (((struct ifnet *)ifp)->if_mtu);
|
|
}
|
|
|
|
/*
|
|
* Methods for drivers to access interface unicast and multicast
|
|
* link level addresses. Driver shall not know 'struct ifaddr' neither
|
|
* 'struct ifmultiaddr'.
|
|
*/
|
|
u_int
|
|
if_lladdr_count(if_t ifp)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifaddr *ifa;
|
|
u_int count;
|
|
|
|
count = 0;
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
|
|
if (ifa->ifa_addr->sa_family == AF_LINK)
|
|
count++;
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
return (count);
|
|
}
|
|
|
|
u_int
|
|
if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifaddr *ifa;
|
|
u_int count;
|
|
|
|
MPASS(cb);
|
|
|
|
count = 0;
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
if (ifa->ifa_addr->sa_family != AF_LINK)
|
|
continue;
|
|
count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr,
|
|
count);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
return (count);
|
|
}
|
|
|
|
u_int
|
|
if_llmaddr_count(if_t ifp)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifmultiaddr *ifma;
|
|
int count;
|
|
|
|
count = 0;
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
|
|
if (ifma->ifma_addr->sa_family == AF_LINK)
|
|
count++;
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
return (count);
|
|
}
|
|
|
|
u_int
|
|
if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ifmultiaddr *ifma;
|
|
u_int count;
|
|
|
|
MPASS(cb);
|
|
|
|
count = 0;
|
|
NET_EPOCH_ENTER(et);
|
|
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr,
|
|
count);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
return (count);
|
|
}
|
|
|
|
int
|
|
if_setsoftc(if_t ifp, void *softc)
|
|
{
|
|
((struct ifnet *)ifp)->if_softc = softc;
|
|
return (0);
|
|
}
|
|
|
|
void *
|
|
if_getsoftc(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_softc;
|
|
}
|
|
|
|
void
|
|
if_setrcvif(struct mbuf *m, if_t ifp)
|
|
{
|
|
|
|
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
|
|
m->m_pkthdr.rcvif = (struct ifnet *)ifp;
|
|
}
|
|
|
|
void
|
|
if_setvtag(struct mbuf *m, uint16_t tag)
|
|
{
|
|
m->m_pkthdr.ether_vtag = tag;
|
|
}
|
|
|
|
uint16_t
|
|
if_getvtag(struct mbuf *m)
|
|
{
|
|
|
|
return (m->m_pkthdr.ether_vtag);
|
|
}
|
|
|
|
int
|
|
if_sendq_empty(if_t ifp)
|
|
{
|
|
return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd);
|
|
}
|
|
|
|
struct ifaddr *
|
|
if_getifaddr(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_addr;
|
|
}
|
|
|
|
int
|
|
if_getamcount(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_amcount;
|
|
}
|
|
|
|
int
|
|
if_setsendqready(if_t ifp)
|
|
{
|
|
IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_setsendqlen(if_t ifp, int tx_desc_count)
|
|
{
|
|
IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count);
|
|
((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_vlantrunkinuse(if_t ifp)
|
|
{
|
|
return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0;
|
|
}
|
|
|
|
int
|
|
if_input(if_t ifp, struct mbuf* sendmp)
|
|
{
|
|
(*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp);
|
|
return (0);
|
|
|
|
}
|
|
|
|
struct mbuf *
|
|
if_dequeue(if_t ifp)
|
|
{
|
|
struct mbuf *m;
|
|
IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m);
|
|
|
|
return (m);
|
|
}
|
|
|
|
int
|
|
if_sendq_prepend(if_t ifp, struct mbuf *m)
|
|
{
|
|
IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_setifheaderlen(if_t ifp, int len)
|
|
{
|
|
((struct ifnet *)ifp)->if_hdrlen = len;
|
|
return (0);
|
|
}
|
|
|
|
caddr_t
|
|
if_getlladdr(if_t ifp)
|
|
{
|
|
return (IF_LLADDR((struct ifnet *)ifp));
|
|
}
|
|
|
|
void *
|
|
if_gethandle(u_char type)
|
|
{
|
|
return (if_alloc(type));
|
|
}
|
|
|
|
void
|
|
if_bpfmtap(if_t ifh, struct mbuf *m)
|
|
{
|
|
struct ifnet *ifp = (struct ifnet *)ifh;
|
|
|
|
BPF_MTAP(ifp, m);
|
|
}
|
|
|
|
void
|
|
if_etherbpfmtap(if_t ifh, struct mbuf *m)
|
|
{
|
|
struct ifnet *ifp = (struct ifnet *)ifh;
|
|
|
|
ETHER_BPF_MTAP(ifp, m);
|
|
}
|
|
|
|
void
|
|
if_vlancap(if_t ifh)
|
|
{
|
|
struct ifnet *ifp = (struct ifnet *)ifh;
|
|
VLAN_CAPABILITIES(ifp);
|
|
}
|
|
|
|
int
|
|
if_sethwtsomax(if_t ifp, u_int if_hw_tsomax)
|
|
{
|
|
|
|
((struct ifnet *)ifp)->if_hw_tsomax = if_hw_tsomax;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount)
|
|
{
|
|
|
|
((struct ifnet *)ifp)->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize)
|
|
{
|
|
|
|
((struct ifnet *)ifp)->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize;
|
|
return (0);
|
|
}
|
|
|
|
u_int
|
|
if_gethwtsomax(if_t ifp)
|
|
{
|
|
|
|
return (((struct ifnet *)ifp)->if_hw_tsomax);
|
|
}
|
|
|
|
u_int
|
|
if_gethwtsomaxsegcount(if_t ifp)
|
|
{
|
|
|
|
return (((struct ifnet *)ifp)->if_hw_tsomaxsegcount);
|
|
}
|
|
|
|
u_int
|
|
if_gethwtsomaxsegsize(if_t ifp)
|
|
{
|
|
|
|
return (((struct ifnet *)ifp)->if_hw_tsomaxsegsize);
|
|
}
|
|
|
|
void
|
|
if_setinitfn(if_t ifp, void (*init_fn)(void *))
|
|
{
|
|
((struct ifnet *)ifp)->if_init = init_fn;
|
|
}
|
|
|
|
void
|
|
if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t))
|
|
{
|
|
((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn;
|
|
}
|
|
|
|
void
|
|
if_setstartfn(if_t ifp, void (*start_fn)(if_t))
|
|
{
|
|
((struct ifnet *)ifp)->if_start = (void *)start_fn;
|
|
}
|
|
|
|
void
|
|
if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
|
|
{
|
|
((struct ifnet *)ifp)->if_transmit = start_fn;
|
|
}
|
|
|
|
void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
|
|
{
|
|
((struct ifnet *)ifp)->if_qflush = flush_fn;
|
|
|
|
}
|
|
|
|
void
|
|
if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
|
|
{
|
|
|
|
ifp->if_get_counter = fn;
|
|
}
|
|
|
|
/* Revisit these - These are inline functions originally. */
|
|
int
|
|
drbr_inuse_drv(if_t ifh, struct buf_ring *br)
|
|
{
|
|
return drbr_inuse(ifh, br);
|
|
}
|
|
|
|
struct mbuf*
|
|
drbr_dequeue_drv(if_t ifh, struct buf_ring *br)
|
|
{
|
|
return drbr_dequeue(ifh, br);
|
|
}
|
|
|
|
int
|
|
drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br)
|
|
{
|
|
return drbr_needs_enqueue(ifh, br);
|
|
}
|
|
|
|
int
|
|
drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m)
|
|
{
|
|
return drbr_enqueue(ifh, br, m);
|
|
|
|
}
|