mirror of https://github.com/F-Stack/f-stack.git
1327 lines
31 KiB
C
1327 lines
31 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
*
|
|
* Copyright (c) 1994, Sean Eric Fagan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Sean Eric Fagan.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/signalvar.h>
|
|
|
|
#include <machine/reg.h>
|
|
|
|
#include <security/audit/audit.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_param.h>
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
#include <sys/procfs.h>
|
|
#endif
|
|
|
|
/*
|
|
* Functions implemented using PROC_ACTION():
|
|
*
|
|
* proc_read_regs(proc, regs)
|
|
* Get the current user-visible register set from the process
|
|
* and copy it into the regs structure (<machine/reg.h>).
|
|
* The process is stopped at the time read_regs is called.
|
|
*
|
|
* proc_write_regs(proc, regs)
|
|
* Update the current register set from the passed in regs
|
|
* structure. Take care to avoid clobbering special CPU
|
|
* registers or privileged bits in the PSL.
|
|
* Depending on the architecture this may have fix-up work to do,
|
|
* especially if the IAR or PCW are modified.
|
|
* The process is stopped at the time write_regs is called.
|
|
*
|
|
* proc_read_fpregs, proc_write_fpregs
|
|
* deal with the floating point register set, otherwise as above.
|
|
*
|
|
* proc_read_dbregs, proc_write_dbregs
|
|
* deal with the processor debug register set, otherwise as above.
|
|
*
|
|
* proc_sstep(proc)
|
|
* Arrange for the process to trap after executing a single instruction.
|
|
*/
|
|
|
|
#define PROC_ACTION(action) do { \
|
|
int error; \
|
|
\
|
|
PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \
|
|
if ((td->td_proc->p_flag & P_INMEM) == 0) \
|
|
error = EIO; \
|
|
else \
|
|
error = (action); \
|
|
return (error); \
|
|
} while(0)
|
|
|
|
int
|
|
proc_read_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
|
|
PROC_ACTION(fill_regs(td, regs));
|
|
}
|
|
|
|
int
|
|
proc_write_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
|
|
PROC_ACTION(set_regs(td, regs));
|
|
}
|
|
|
|
int
|
|
proc_read_dbregs(struct thread *td, struct dbreg *dbregs)
|
|
{
|
|
|
|
PROC_ACTION(fill_dbregs(td, dbregs));
|
|
}
|
|
|
|
int
|
|
proc_write_dbregs(struct thread *td, struct dbreg *dbregs)
|
|
{
|
|
|
|
PROC_ACTION(set_dbregs(td, dbregs));
|
|
}
|
|
|
|
/*
|
|
* Ptrace doesn't support fpregs at all, and there are no security holes
|
|
* or translations for fpregs, so we can just copy them.
|
|
*/
|
|
int
|
|
proc_read_fpregs(struct thread *td, struct fpreg *fpregs)
|
|
{
|
|
|
|
PROC_ACTION(fill_fpregs(td, fpregs));
|
|
}
|
|
|
|
int
|
|
proc_write_fpregs(struct thread *td, struct fpreg *fpregs)
|
|
{
|
|
|
|
PROC_ACTION(set_fpregs(td, fpregs));
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
/* For 32 bit binaries, we need to expose the 32 bit regs layouts. */
|
|
int
|
|
proc_read_regs32(struct thread *td, struct reg32 *regs32)
|
|
{
|
|
|
|
PROC_ACTION(fill_regs32(td, regs32));
|
|
}
|
|
|
|
int
|
|
proc_write_regs32(struct thread *td, struct reg32 *regs32)
|
|
{
|
|
|
|
PROC_ACTION(set_regs32(td, regs32));
|
|
}
|
|
|
|
int
|
|
proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
|
|
{
|
|
|
|
PROC_ACTION(fill_dbregs32(td, dbregs32));
|
|
}
|
|
|
|
int
|
|
proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
|
|
{
|
|
|
|
PROC_ACTION(set_dbregs32(td, dbregs32));
|
|
}
|
|
|
|
int
|
|
proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
|
|
{
|
|
|
|
PROC_ACTION(fill_fpregs32(td, fpregs32));
|
|
}
|
|
|
|
int
|
|
proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
|
|
{
|
|
|
|
PROC_ACTION(set_fpregs32(td, fpregs32));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
proc_sstep(struct thread *td)
|
|
{
|
|
|
|
PROC_ACTION(ptrace_single_step(td));
|
|
}
|
|
|
|
int
|
|
proc_rwmem(struct proc *p, struct uio *uio)
|
|
{
|
|
vm_map_t map;
|
|
vm_offset_t pageno; /* page number */
|
|
vm_prot_t reqprot;
|
|
int error, fault_flags, page_offset, writing;
|
|
|
|
/*
|
|
* Assert that someone has locked this vmspace. (Should be
|
|
* curthread but we can't assert that.) This keeps the process
|
|
* from exiting out from under us until this operation completes.
|
|
*/
|
|
PROC_ASSERT_HELD(p);
|
|
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
|
|
|
|
/*
|
|
* The map we want...
|
|
*/
|
|
map = &p->p_vmspace->vm_map;
|
|
|
|
/*
|
|
* If we are writing, then we request vm_fault() to create a private
|
|
* copy of each page. Since these copies will not be writeable by the
|
|
* process, we must explicity request that they be dirtied.
|
|
*/
|
|
writing = uio->uio_rw == UIO_WRITE;
|
|
reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ;
|
|
fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL;
|
|
|
|
/*
|
|
* Only map in one page at a time. We don't have to, but it
|
|
* makes things easier. This way is trivial - right?
|
|
*/
|
|
do {
|
|
vm_offset_t uva;
|
|
u_int len;
|
|
vm_page_t m;
|
|
|
|
uva = (vm_offset_t)uio->uio_offset;
|
|
|
|
/*
|
|
* Get the page number of this segment.
|
|
*/
|
|
pageno = trunc_page(uva);
|
|
page_offset = uva - pageno;
|
|
|
|
/*
|
|
* How many bytes to copy
|
|
*/
|
|
len = min(PAGE_SIZE - page_offset, uio->uio_resid);
|
|
|
|
/*
|
|
* Fault and hold the page on behalf of the process.
|
|
*/
|
|
error = vm_fault(map, pageno, reqprot, fault_flags, &m);
|
|
if (error != KERN_SUCCESS) {
|
|
if (error == KERN_RESOURCE_SHORTAGE)
|
|
error = ENOMEM;
|
|
else
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Now do the i/o move.
|
|
*/
|
|
error = uiomove_fromphys(&m, page_offset, len, uio);
|
|
|
|
/* Make the I-cache coherent for breakpoints. */
|
|
if (writing && error == 0) {
|
|
vm_map_lock_read(map);
|
|
if (vm_map_check_protection(map, pageno, pageno +
|
|
PAGE_SIZE, VM_PROT_EXECUTE))
|
|
vm_sync_icache(map, uva, len);
|
|
vm_map_unlock_read(map);
|
|
}
|
|
|
|
/*
|
|
* Release the page.
|
|
*/
|
|
vm_page_unwire(m, PQ_ACTIVE);
|
|
|
|
} while (error == 0 && uio->uio_resid > 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static ssize_t
|
|
proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
|
|
size_t len, enum uio_rw rw)
|
|
{
|
|
struct iovec iov;
|
|
struct uio uio;
|
|
ssize_t slen;
|
|
|
|
MPASS(len < SSIZE_MAX);
|
|
slen = (ssize_t)len;
|
|
|
|
iov.iov_base = (caddr_t)buf;
|
|
iov.iov_len = len;
|
|
uio.uio_iov = &iov;
|
|
uio.uio_iovcnt = 1;
|
|
uio.uio_offset = va;
|
|
uio.uio_resid = slen;
|
|
uio.uio_segflg = UIO_SYSSPACE;
|
|
uio.uio_rw = rw;
|
|
uio.uio_td = td;
|
|
proc_rwmem(p, &uio);
|
|
if (uio.uio_resid == slen)
|
|
return (-1);
|
|
return (slen - uio.uio_resid);
|
|
}
|
|
|
|
ssize_t
|
|
proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
|
|
size_t len)
|
|
{
|
|
|
|
return (proc_iop(td, p, va, buf, len, UIO_READ));
|
|
}
|
|
|
|
ssize_t
|
|
proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
|
|
size_t len)
|
|
{
|
|
|
|
return (proc_iop(td, p, va, buf, len, UIO_WRITE));
|
|
}
|
|
|
|
static int
|
|
ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve)
|
|
{
|
|
struct vattr vattr;
|
|
vm_map_t map;
|
|
vm_map_entry_t entry;
|
|
vm_object_t obj, tobj, lobj;
|
|
struct vmspace *vm;
|
|
struct vnode *vp;
|
|
char *freepath, *fullpath;
|
|
u_int pathlen;
|
|
int error, index;
|
|
|
|
error = 0;
|
|
obj = NULL;
|
|
|
|
vm = vmspace_acquire_ref(p);
|
|
map = &vm->vm_map;
|
|
vm_map_lock_read(map);
|
|
|
|
do {
|
|
KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
|
|
("Submap in map header"));
|
|
index = 0;
|
|
VM_MAP_ENTRY_FOREACH(entry, map) {
|
|
if (index >= pve->pve_entry &&
|
|
(entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
|
|
break;
|
|
index++;
|
|
}
|
|
if (index < pve->pve_entry) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (entry == &map->header) {
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
/* We got an entry. */
|
|
pve->pve_entry = index + 1;
|
|
pve->pve_timestamp = map->timestamp;
|
|
pve->pve_start = entry->start;
|
|
pve->pve_end = entry->end - 1;
|
|
pve->pve_offset = entry->offset;
|
|
pve->pve_prot = entry->protection;
|
|
|
|
/* Backing object's path needed? */
|
|
if (pve->pve_pathlen == 0)
|
|
break;
|
|
|
|
pathlen = pve->pve_pathlen;
|
|
pve->pve_pathlen = 0;
|
|
|
|
obj = entry->object.vm_object;
|
|
if (obj != NULL)
|
|
VM_OBJECT_RLOCK(obj);
|
|
} while (0);
|
|
|
|
vm_map_unlock_read(map);
|
|
|
|
pve->pve_fsid = VNOVAL;
|
|
pve->pve_fileid = VNOVAL;
|
|
|
|
if (error == 0 && obj != NULL) {
|
|
lobj = obj;
|
|
for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
|
|
if (tobj != obj)
|
|
VM_OBJECT_RLOCK(tobj);
|
|
if (lobj != obj)
|
|
VM_OBJECT_RUNLOCK(lobj);
|
|
lobj = tobj;
|
|
pve->pve_offset += tobj->backing_object_offset;
|
|
}
|
|
vp = vm_object_vnode(lobj);
|
|
if (vp != NULL)
|
|
vref(vp);
|
|
if (lobj != obj)
|
|
VM_OBJECT_RUNLOCK(lobj);
|
|
VM_OBJECT_RUNLOCK(obj);
|
|
|
|
if (vp != NULL) {
|
|
freepath = NULL;
|
|
fullpath = NULL;
|
|
vn_fullpath(vp, &fullpath, &freepath);
|
|
vn_lock(vp, LK_SHARED | LK_RETRY);
|
|
if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) {
|
|
pve->pve_fileid = vattr.va_fileid;
|
|
pve->pve_fsid = vattr.va_fsid;
|
|
}
|
|
vput(vp);
|
|
|
|
if (fullpath != NULL) {
|
|
pve->pve_pathlen = strlen(fullpath) + 1;
|
|
if (pve->pve_pathlen <= pathlen) {
|
|
error = copyout(fullpath, pve->pve_path,
|
|
pve->pve_pathlen);
|
|
} else
|
|
error = ENAMETOOLONG;
|
|
}
|
|
if (freepath != NULL)
|
|
free(freepath, M_TEMP);
|
|
}
|
|
}
|
|
vmspace_free(vm);
|
|
if (error == 0)
|
|
CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p",
|
|
p->p_pid, pve->pve_entry, pve->pve_start);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Process debugging system call.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ptrace_args {
|
|
int req;
|
|
pid_t pid;
|
|
caddr_t addr;
|
|
int data;
|
|
};
|
|
#endif
|
|
|
|
int
|
|
sys_ptrace(struct thread *td, struct ptrace_args *uap)
|
|
{
|
|
/*
|
|
* XXX this obfuscation is to reduce stack usage, but the register
|
|
* structs may be too large to put on the stack anyway.
|
|
*/
|
|
union {
|
|
struct ptrace_io_desc piod;
|
|
struct ptrace_lwpinfo pl;
|
|
struct ptrace_vm_entry pve;
|
|
struct dbreg dbreg;
|
|
struct fpreg fpreg;
|
|
struct reg reg;
|
|
char args[sizeof(td->td_sa.args)];
|
|
struct ptrace_sc_ret psr;
|
|
int ptevents;
|
|
} r;
|
|
void *addr;
|
|
int error = 0;
|
|
|
|
AUDIT_ARG_PID(uap->pid);
|
|
AUDIT_ARG_CMD(uap->req);
|
|
AUDIT_ARG_VALUE(uap->data);
|
|
addr = &r;
|
|
switch (uap->req) {
|
|
case PT_GET_EVENT_MASK:
|
|
case PT_LWPINFO:
|
|
case PT_GET_SC_ARGS:
|
|
case PT_GET_SC_RET:
|
|
break;
|
|
case PT_GETREGS:
|
|
bzero(&r.reg, sizeof(r.reg));
|
|
break;
|
|
case PT_GETFPREGS:
|
|
bzero(&r.fpreg, sizeof(r.fpreg));
|
|
break;
|
|
case PT_GETDBREGS:
|
|
bzero(&r.dbreg, sizeof(r.dbreg));
|
|
break;
|
|
case PT_SETREGS:
|
|
error = copyin(uap->addr, &r.reg, sizeof(r.reg));
|
|
break;
|
|
case PT_SETFPREGS:
|
|
error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
|
|
break;
|
|
case PT_SETDBREGS:
|
|
error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
|
|
break;
|
|
case PT_SET_EVENT_MASK:
|
|
if (uap->data != sizeof(r.ptevents))
|
|
error = EINVAL;
|
|
else
|
|
error = copyin(uap->addr, &r.ptevents, uap->data);
|
|
break;
|
|
case PT_IO:
|
|
error = copyin(uap->addr, &r.piod, sizeof(r.piod));
|
|
break;
|
|
case PT_VM_ENTRY:
|
|
error = copyin(uap->addr, &r.pve, sizeof(r.pve));
|
|
break;
|
|
default:
|
|
addr = uap->addr;
|
|
break;
|
|
}
|
|
if (error)
|
|
return (error);
|
|
|
|
error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data);
|
|
if (error)
|
|
return (error);
|
|
|
|
switch (uap->req) {
|
|
case PT_VM_ENTRY:
|
|
error = copyout(&r.pve, uap->addr, sizeof(r.pve));
|
|
break;
|
|
case PT_IO:
|
|
error = copyout(&r.piod, uap->addr, sizeof(r.piod));
|
|
break;
|
|
case PT_GETREGS:
|
|
error = copyout(&r.reg, uap->addr, sizeof(r.reg));
|
|
break;
|
|
case PT_GETFPREGS:
|
|
error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
|
|
break;
|
|
case PT_GETDBREGS:
|
|
error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
|
|
break;
|
|
case PT_GET_EVENT_MASK:
|
|
/* NB: The size in uap->data is validated in kern_ptrace(). */
|
|
error = copyout(&r.ptevents, uap->addr, uap->data);
|
|
break;
|
|
case PT_LWPINFO:
|
|
/* NB: The size in uap->data is validated in kern_ptrace(). */
|
|
error = copyout(&r.pl, uap->addr, uap->data);
|
|
break;
|
|
case PT_GET_SC_ARGS:
|
|
error = copyout(r.args, uap->addr, MIN(uap->data,
|
|
sizeof(r.args)));
|
|
break;
|
|
case PT_GET_SC_RET:
|
|
error = copyout(&r.psr, uap->addr, MIN(uap->data,
|
|
sizeof(r.psr)));
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
/*
|
|
* PROC_READ(regs, td2, addr);
|
|
* becomes either:
|
|
* proc_read_regs(td2, addr);
|
|
* or
|
|
* proc_read_regs32(td2, addr);
|
|
* .. except this is done at runtime. There is an additional
|
|
* complication in that PROC_WRITE disallows 32 bit consumers
|
|
* from writing to 64 bit address space targets.
|
|
*/
|
|
#define PROC_READ(w, t, a) wrap32 ? \
|
|
proc_read_ ## w ## 32(t, a) : \
|
|
proc_read_ ## w (t, a)
|
|
#define PROC_WRITE(w, t, a) wrap32 ? \
|
|
(safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \
|
|
proc_write_ ## w (t, a)
|
|
#else
|
|
#define PROC_READ(w, t, a) proc_read_ ## w (t, a)
|
|
#define PROC_WRITE(w, t, a) proc_write_ ## w (t, a)
|
|
#endif
|
|
|
|
void
|
|
proc_set_traced(struct proc *p, bool stop)
|
|
{
|
|
|
|
sx_assert(&proctree_lock, SX_XLOCKED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
p->p_flag |= P_TRACED;
|
|
if (stop)
|
|
p->p_flag2 |= P2_PTRACE_FSTP;
|
|
p->p_ptevents = PTRACE_DEFAULT;
|
|
}
|
|
|
|
int
|
|
kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data)
|
|
{
|
|
struct iovec iov;
|
|
struct uio uio;
|
|
struct proc *curp, *p, *pp;
|
|
struct thread *td2 = NULL, *td3;
|
|
struct ptrace_io_desc *piod = NULL;
|
|
struct ptrace_lwpinfo *pl;
|
|
struct ptrace_sc_ret *psr;
|
|
int error, num, tmp;
|
|
int proctree_locked = 0;
|
|
lwpid_t tid = 0, *buf;
|
|
#ifdef COMPAT_FREEBSD32
|
|
int wrap32 = 0, safe = 0;
|
|
#endif
|
|
|
|
curp = td->td_proc;
|
|
|
|
/* Lock proctree before locking the process. */
|
|
switch (req) {
|
|
case PT_TRACE_ME:
|
|
case PT_ATTACH:
|
|
case PT_STEP:
|
|
case PT_CONTINUE:
|
|
case PT_TO_SCE:
|
|
case PT_TO_SCX:
|
|
case PT_SYSCALL:
|
|
case PT_FOLLOW_FORK:
|
|
case PT_LWP_EVENTS:
|
|
case PT_GET_EVENT_MASK:
|
|
case PT_SET_EVENT_MASK:
|
|
case PT_DETACH:
|
|
case PT_GET_SC_ARGS:
|
|
sx_xlock(&proctree_lock);
|
|
proctree_locked = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (req == PT_TRACE_ME) {
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
} else {
|
|
if (pid <= PID_MAX) {
|
|
if ((p = pfind(pid)) == NULL) {
|
|
if (proctree_locked)
|
|
sx_xunlock(&proctree_lock);
|
|
return (ESRCH);
|
|
}
|
|
} else {
|
|
td2 = tdfind(pid, -1);
|
|
if (td2 == NULL) {
|
|
if (proctree_locked)
|
|
sx_xunlock(&proctree_lock);
|
|
return (ESRCH);
|
|
}
|
|
p = td2->td_proc;
|
|
tid = pid;
|
|
pid = p->p_pid;
|
|
}
|
|
}
|
|
AUDIT_ARG_PROCESS(p);
|
|
|
|
if ((p->p_flag & P_WEXIT) != 0) {
|
|
error = ESRCH;
|
|
goto fail;
|
|
}
|
|
if ((error = p_cansee(td, p)) != 0)
|
|
goto fail;
|
|
|
|
if ((error = p_candebug(td, p)) != 0)
|
|
goto fail;
|
|
|
|
/*
|
|
* System processes can't be debugged.
|
|
*/
|
|
if ((p->p_flag & P_SYSTEM) != 0) {
|
|
error = EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
if (tid == 0) {
|
|
if ((p->p_flag & P_STOPPED_TRACE) != 0) {
|
|
KASSERT(p->p_xthread != NULL, ("NULL p_xthread"));
|
|
td2 = p->p_xthread;
|
|
} else {
|
|
td2 = FIRST_THREAD_IN_PROC(p);
|
|
}
|
|
tid = td2->td_tid;
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
/*
|
|
* Test if we're a 32 bit client and what the target is.
|
|
* Set the wrap controls accordingly.
|
|
*/
|
|
if (SV_CURPROC_FLAG(SV_ILP32)) {
|
|
if (SV_PROC_FLAG(td2->td_proc, SV_ILP32))
|
|
safe = 1;
|
|
wrap32 = 1;
|
|
}
|
|
#endif
|
|
/*
|
|
* Permissions check
|
|
*/
|
|
switch (req) {
|
|
case PT_TRACE_ME:
|
|
/*
|
|
* Always legal, when there is a parent process which
|
|
* could trace us. Otherwise, reject.
|
|
*/
|
|
if ((p->p_flag & P_TRACED) != 0) {
|
|
error = EBUSY;
|
|
goto fail;
|
|
}
|
|
if (p->p_pptr == initproc) {
|
|
error = EPERM;
|
|
goto fail;
|
|
}
|
|
break;
|
|
|
|
case PT_ATTACH:
|
|
/* Self */
|
|
if (p == td->td_proc) {
|
|
error = EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
/* Already traced */
|
|
if (p->p_flag & P_TRACED) {
|
|
error = EBUSY;
|
|
goto fail;
|
|
}
|
|
|
|
/* Can't trace an ancestor if you're being traced. */
|
|
if (curp->p_flag & P_TRACED) {
|
|
for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) {
|
|
if (pp == p) {
|
|
error = EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* OK */
|
|
break;
|
|
|
|
case PT_CLEARSTEP:
|
|
/* Allow thread to clear single step for itself */
|
|
if (td->td_tid == tid)
|
|
break;
|
|
|
|
/* FALLTHROUGH */
|
|
default:
|
|
/* not being traced... */
|
|
if ((p->p_flag & P_TRACED) == 0) {
|
|
error = EPERM;
|
|
goto fail;
|
|
}
|
|
|
|
/* not being traced by YOU */
|
|
if (p->p_pptr != td->td_proc) {
|
|
error = EBUSY;
|
|
goto fail;
|
|
}
|
|
|
|
/* not currently stopped */
|
|
if ((p->p_flag & P_STOPPED_TRACE) == 0 ||
|
|
p->p_suspcount != p->p_numthreads ||
|
|
(p->p_flag & P_WAITED) == 0) {
|
|
error = EBUSY;
|
|
goto fail;
|
|
}
|
|
|
|
/* OK */
|
|
break;
|
|
}
|
|
|
|
/* Keep this process around until we finish this request. */
|
|
_PHOLD(p);
|
|
|
|
#ifdef FIX_SSTEP
|
|
/*
|
|
* Single step fixup ala procfs
|
|
*/
|
|
FIX_SSTEP(td2);
|
|
#endif
|
|
|
|
/*
|
|
* Actually do the requests
|
|
*/
|
|
|
|
td->td_retval[0] = 0;
|
|
|
|
switch (req) {
|
|
case PT_TRACE_ME:
|
|
/* set my trace flag and "owner" so it can read/write me */
|
|
proc_set_traced(p, false);
|
|
if (p->p_flag & P_PPWAIT)
|
|
p->p_flag |= P_PPTRACE;
|
|
CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid);
|
|
break;
|
|
|
|
case PT_ATTACH:
|
|
/* security check done above */
|
|
/*
|
|
* It would be nice if the tracing relationship was separate
|
|
* from the parent relationship but that would require
|
|
* another set of links in the proc struct or for "wait"
|
|
* to scan the entire proc table. To make life easier,
|
|
* we just re-parent the process we're trying to trace.
|
|
* The old parent is remembered so we can put things back
|
|
* on a "detach".
|
|
*/
|
|
proc_set_traced(p, true);
|
|
proc_reparent(p, td->td_proc, false);
|
|
CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid,
|
|
p->p_oppid);
|
|
|
|
sx_xunlock(&proctree_lock);
|
|
proctree_locked = 0;
|
|
MPASS(p->p_xthread == NULL);
|
|
MPASS((p->p_flag & P_STOPPED_TRACE) == 0);
|
|
|
|
/*
|
|
* If already stopped due to a stop signal, clear the
|
|
* existing stop before triggering a traced SIGSTOP.
|
|
*/
|
|
if ((p->p_flag & P_STOPPED_SIG) != 0) {
|
|
PROC_SLOCK(p);
|
|
p->p_flag &= ~(P_STOPPED_SIG | P_WAITED);
|
|
thread_unsuspend(p);
|
|
PROC_SUNLOCK(p);
|
|
}
|
|
|
|
kern_psignal(p, SIGSTOP);
|
|
break;
|
|
|
|
case PT_CLEARSTEP:
|
|
CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
error = ptrace_clear_single_step(td2);
|
|
break;
|
|
|
|
case PT_SETSTEP:
|
|
CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
error = ptrace_single_step(td2);
|
|
break;
|
|
|
|
case PT_SUSPEND:
|
|
CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
td2->td_dbgflags |= TDB_SUSPEND;
|
|
thread_lock(td2);
|
|
td2->td_flags |= TDF_NEEDSUSPCHK;
|
|
thread_unlock(td2);
|
|
break;
|
|
|
|
case PT_RESUME:
|
|
CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
td2->td_dbgflags &= ~TDB_SUSPEND;
|
|
break;
|
|
|
|
case PT_FOLLOW_FORK:
|
|
CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid,
|
|
p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled",
|
|
data ? "enabled" : "disabled");
|
|
if (data)
|
|
p->p_ptevents |= PTRACE_FORK;
|
|
else
|
|
p->p_ptevents &= ~PTRACE_FORK;
|
|
break;
|
|
|
|
case PT_LWP_EVENTS:
|
|
CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid,
|
|
p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled",
|
|
data ? "enabled" : "disabled");
|
|
if (data)
|
|
p->p_ptevents |= PTRACE_LWP;
|
|
else
|
|
p->p_ptevents &= ~PTRACE_LWP;
|
|
break;
|
|
|
|
case PT_GET_EVENT_MASK:
|
|
if (data != sizeof(p->p_ptevents)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid,
|
|
p->p_ptevents);
|
|
*(int *)addr = p->p_ptevents;
|
|
break;
|
|
|
|
case PT_SET_EVENT_MASK:
|
|
if (data != sizeof(p->p_ptevents)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
tmp = *(int *)addr;
|
|
if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX |
|
|
PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x",
|
|
p->p_pid, p->p_ptevents, tmp);
|
|
p->p_ptevents = tmp;
|
|
break;
|
|
|
|
case PT_GET_SC_ARGS:
|
|
CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid);
|
|
if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0
|
|
#ifdef COMPAT_FREEBSD32
|
|
|| (wrap32 && !safe)
|
|
#endif
|
|
) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
bzero(addr, sizeof(td2->td_sa.args));
|
|
bcopy(td2->td_sa.args, addr, td2->td_sa.callp->sy_narg *
|
|
sizeof(register_t));
|
|
break;
|
|
|
|
case PT_GET_SC_RET:
|
|
if ((td2->td_dbgflags & (TDB_SCX)) == 0
|
|
#ifdef COMPAT_FREEBSD32
|
|
|| (wrap32 && !safe)
|
|
#endif
|
|
) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
psr = addr;
|
|
bzero(psr, sizeof(*psr));
|
|
psr->sr_error = td2->td_errno;
|
|
if (psr->sr_error == 0) {
|
|
psr->sr_retval[0] = td2->td_retval[0];
|
|
psr->sr_retval[1] = td2->td_retval[1];
|
|
}
|
|
CTR4(KTR_PTRACE,
|
|
"PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx",
|
|
p->p_pid, psr->sr_error, psr->sr_retval[0],
|
|
psr->sr_retval[1]);
|
|
break;
|
|
|
|
case PT_STEP:
|
|
case PT_CONTINUE:
|
|
case PT_TO_SCE:
|
|
case PT_TO_SCX:
|
|
case PT_SYSCALL:
|
|
case PT_DETACH:
|
|
/* Zero means do not send any signal */
|
|
if (data < 0 || data > _SIG_MAXSIG) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
switch (req) {
|
|
case PT_STEP:
|
|
CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d",
|
|
td2->td_tid, p->p_pid, data);
|
|
error = ptrace_single_step(td2);
|
|
if (error)
|
|
goto out;
|
|
break;
|
|
case PT_CONTINUE:
|
|
case PT_TO_SCE:
|
|
case PT_TO_SCX:
|
|
case PT_SYSCALL:
|
|
if (addr != (void *)1) {
|
|
error = ptrace_set_pc(td2,
|
|
(u_long)(uintfptr_t)addr);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
switch (req) {
|
|
case PT_TO_SCE:
|
|
p->p_ptevents |= PTRACE_SCE;
|
|
CTR4(KTR_PTRACE,
|
|
"PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d",
|
|
p->p_pid, p->p_ptevents,
|
|
(u_long)(uintfptr_t)addr, data);
|
|
break;
|
|
case PT_TO_SCX:
|
|
p->p_ptevents |= PTRACE_SCX;
|
|
CTR4(KTR_PTRACE,
|
|
"PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d",
|
|
p->p_pid, p->p_ptevents,
|
|
(u_long)(uintfptr_t)addr, data);
|
|
break;
|
|
case PT_SYSCALL:
|
|
p->p_ptevents |= PTRACE_SYSCALL;
|
|
CTR4(KTR_PTRACE,
|
|
"PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d",
|
|
p->p_pid, p->p_ptevents,
|
|
(u_long)(uintfptr_t)addr, data);
|
|
break;
|
|
case PT_CONTINUE:
|
|
CTR3(KTR_PTRACE,
|
|
"PT_CONTINUE: pid %d, PC = %#lx, sig = %d",
|
|
p->p_pid, (u_long)(uintfptr_t)addr, data);
|
|
break;
|
|
}
|
|
break;
|
|
case PT_DETACH:
|
|
/*
|
|
* Reset the process parent.
|
|
*
|
|
* NB: This clears P_TRACED before reparenting
|
|
* a detached process back to its original
|
|
* parent. Otherwise the debugee will be set
|
|
* as an orphan of the debugger.
|
|
*/
|
|
p->p_flag &= ~(P_TRACED | P_WAITED);
|
|
if (p->p_oppid != p->p_pptr->p_pid) {
|
|
PROC_LOCK(p->p_pptr);
|
|
sigqueue_take(p->p_ksi);
|
|
PROC_UNLOCK(p->p_pptr);
|
|
|
|
pp = proc_realparent(p);
|
|
proc_reparent(p, pp, false);
|
|
if (pp == initproc)
|
|
p->p_sigparent = SIGCHLD;
|
|
CTR3(KTR_PTRACE,
|
|
"PT_DETACH: pid %d reparented to pid %d, sig %d",
|
|
p->p_pid, pp->p_pid, data);
|
|
} else
|
|
CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d",
|
|
p->p_pid, data);
|
|
p->p_ptevents = 0;
|
|
FOREACH_THREAD_IN_PROC(p, td3) {
|
|
if ((td3->td_dbgflags & TDB_FSTP) != 0) {
|
|
sigqueue_delete(&td3->td_sigqueue,
|
|
SIGSTOP);
|
|
}
|
|
td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP |
|
|
TDB_SUSPEND);
|
|
}
|
|
|
|
if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) {
|
|
sigqueue_delete(&p->p_sigqueue, SIGSTOP);
|
|
p->p_flag2 &= ~P2_PTRACE_FSTP;
|
|
}
|
|
|
|
/* should we send SIGCHLD? */
|
|
/* childproc_continued(p); */
|
|
break;
|
|
}
|
|
|
|
sx_xunlock(&proctree_lock);
|
|
proctree_locked = 0;
|
|
|
|
sendsig:
|
|
MPASS(proctree_locked == 0);
|
|
|
|
/*
|
|
* Clear the pending event for the thread that just
|
|
* reported its event (p_xthread). This may not be
|
|
* the thread passed to PT_CONTINUE, PT_STEP, etc. if
|
|
* the debugger is resuming a different thread.
|
|
*
|
|
* Deliver any pending signal via the reporting thread.
|
|
*/
|
|
MPASS(p->p_xthread != NULL);
|
|
p->p_xthread->td_dbgflags &= ~TDB_XSIG;
|
|
p->p_xthread->td_xsig = data;
|
|
p->p_xthread = NULL;
|
|
p->p_xsig = data;
|
|
|
|
/*
|
|
* P_WKILLED is insurance that a PT_KILL/SIGKILL
|
|
* always works immediately, even if another thread is
|
|
* unsuspended first and attempts to handle a
|
|
* different signal or if the POSIX.1b style signal
|
|
* queue cannot accommodate any new signals.
|
|
*/
|
|
if (data == SIGKILL)
|
|
proc_wkilled(p);
|
|
|
|
/*
|
|
* Unsuspend all threads. To leave a thread
|
|
* suspended, use PT_SUSPEND to suspend it before
|
|
* continuing the process.
|
|
*/
|
|
PROC_SLOCK(p);
|
|
p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED);
|
|
thread_unsuspend(p);
|
|
PROC_SUNLOCK(p);
|
|
break;
|
|
|
|
case PT_WRITE_I:
|
|
case PT_WRITE_D:
|
|
td2->td_dbgflags |= TDB_USERWR;
|
|
PROC_UNLOCK(p);
|
|
error = 0;
|
|
if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data,
|
|
sizeof(int)) != sizeof(int))
|
|
error = ENOMEM;
|
|
else
|
|
CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x",
|
|
p->p_pid, addr, data);
|
|
PROC_LOCK(p);
|
|
break;
|
|
|
|
case PT_READ_I:
|
|
case PT_READ_D:
|
|
PROC_UNLOCK(p);
|
|
error = tmp = 0;
|
|
if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp,
|
|
sizeof(int)) != sizeof(int))
|
|
error = ENOMEM;
|
|
else
|
|
CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x",
|
|
p->p_pid, addr, tmp);
|
|
td->td_retval[0] = tmp;
|
|
PROC_LOCK(p);
|
|
break;
|
|
|
|
case PT_IO:
|
|
piod = addr;
|
|
iov.iov_base = piod->piod_addr;
|
|
iov.iov_len = piod->piod_len;
|
|
uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
|
|
uio.uio_resid = piod->piod_len;
|
|
uio.uio_iov = &iov;
|
|
uio.uio_iovcnt = 1;
|
|
uio.uio_segflg = UIO_USERSPACE;
|
|
uio.uio_td = td;
|
|
switch (piod->piod_op) {
|
|
case PIOD_READ_D:
|
|
case PIOD_READ_I:
|
|
CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)",
|
|
p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
|
|
uio.uio_rw = UIO_READ;
|
|
break;
|
|
case PIOD_WRITE_D:
|
|
case PIOD_WRITE_I:
|
|
CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)",
|
|
p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
|
|
td2->td_dbgflags |= TDB_USERWR;
|
|
uio.uio_rw = UIO_WRITE;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
error = proc_rwmem(p, &uio);
|
|
piod->piod_len -= uio.uio_resid;
|
|
PROC_LOCK(p);
|
|
break;
|
|
|
|
case PT_KILL:
|
|
CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid);
|
|
data = SIGKILL;
|
|
goto sendsig; /* in PT_CONTINUE above */
|
|
|
|
case PT_SETREGS:
|
|
CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
td2->td_dbgflags |= TDB_USERWR;
|
|
error = PROC_WRITE(regs, td2, addr);
|
|
break;
|
|
|
|
case PT_GETREGS:
|
|
CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
error = PROC_READ(regs, td2, addr);
|
|
break;
|
|
|
|
case PT_SETFPREGS:
|
|
CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
td2->td_dbgflags |= TDB_USERWR;
|
|
error = PROC_WRITE(fpregs, td2, addr);
|
|
break;
|
|
|
|
case PT_GETFPREGS:
|
|
CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
error = PROC_READ(fpregs, td2, addr);
|
|
break;
|
|
|
|
case PT_SETDBREGS:
|
|
CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
td2->td_dbgflags |= TDB_USERWR;
|
|
error = PROC_WRITE(dbregs, td2, addr);
|
|
break;
|
|
|
|
case PT_GETDBREGS:
|
|
CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid,
|
|
p->p_pid);
|
|
error = PROC_READ(dbregs, td2, addr);
|
|
break;
|
|
|
|
case PT_LWPINFO:
|
|
if (data <= 0 || data > sizeof(*pl)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
pl = addr;
|
|
bzero(pl, sizeof(*pl));
|
|
pl->pl_lwpid = td2->td_tid;
|
|
pl->pl_event = PL_EVENT_NONE;
|
|
pl->pl_flags = 0;
|
|
if (td2->td_dbgflags & TDB_XSIG) {
|
|
pl->pl_event = PL_EVENT_SIGNAL;
|
|
if (td2->td_si.si_signo != 0 &&
|
|
data >= offsetof(struct ptrace_lwpinfo, pl_siginfo)
|
|
+ sizeof(pl->pl_siginfo)){
|
|
pl->pl_flags |= PL_FLAG_SI;
|
|
pl->pl_siginfo = td2->td_si;
|
|
}
|
|
}
|
|
if (td2->td_dbgflags & TDB_SCE)
|
|
pl->pl_flags |= PL_FLAG_SCE;
|
|
else if (td2->td_dbgflags & TDB_SCX)
|
|
pl->pl_flags |= PL_FLAG_SCX;
|
|
if (td2->td_dbgflags & TDB_EXEC)
|
|
pl->pl_flags |= PL_FLAG_EXEC;
|
|
if (td2->td_dbgflags & TDB_FORK) {
|
|
pl->pl_flags |= PL_FLAG_FORKED;
|
|
pl->pl_child_pid = td2->td_dbg_forked;
|
|
if (td2->td_dbgflags & TDB_VFORK)
|
|
pl->pl_flags |= PL_FLAG_VFORKED;
|
|
} else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) ==
|
|
TDB_VFORK)
|
|
pl->pl_flags |= PL_FLAG_VFORK_DONE;
|
|
if (td2->td_dbgflags & TDB_CHILD)
|
|
pl->pl_flags |= PL_FLAG_CHILD;
|
|
if (td2->td_dbgflags & TDB_BORN)
|
|
pl->pl_flags |= PL_FLAG_BORN;
|
|
if (td2->td_dbgflags & TDB_EXIT)
|
|
pl->pl_flags |= PL_FLAG_EXITED;
|
|
pl->pl_sigmask = td2->td_sigmask;
|
|
pl->pl_siglist = td2->td_siglist;
|
|
strcpy(pl->pl_tdname, td2->td_name);
|
|
if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) {
|
|
pl->pl_syscall_code = td2->td_sa.code;
|
|
pl->pl_syscall_narg = td2->td_sa.callp->sy_narg;
|
|
} else {
|
|
pl->pl_syscall_code = 0;
|
|
pl->pl_syscall_narg = 0;
|
|
}
|
|
CTR6(KTR_PTRACE,
|
|
"PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d",
|
|
td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags,
|
|
pl->pl_child_pid, pl->pl_syscall_code);
|
|
break;
|
|
|
|
case PT_GETNUMLWPS:
|
|
CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid,
|
|
p->p_numthreads);
|
|
td->td_retval[0] = p->p_numthreads;
|
|
break;
|
|
|
|
case PT_GETLWPLIST:
|
|
CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d",
|
|
p->p_pid, data, p->p_numthreads);
|
|
if (data <= 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
num = imin(p->p_numthreads, data);
|
|
PROC_UNLOCK(p);
|
|
buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK);
|
|
tmp = 0;
|
|
PROC_LOCK(p);
|
|
FOREACH_THREAD_IN_PROC(p, td2) {
|
|
if (tmp >= num)
|
|
break;
|
|
buf[tmp++] = td2->td_tid;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
error = copyout(buf, addr, tmp * sizeof(lwpid_t));
|
|
free(buf, M_TEMP);
|
|
if (!error)
|
|
td->td_retval[0] = tmp;
|
|
PROC_LOCK(p);
|
|
break;
|
|
|
|
case PT_VM_TIMESTAMP:
|
|
CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d",
|
|
p->p_pid, p->p_vmspace->vm_map.timestamp);
|
|
td->td_retval[0] = p->p_vmspace->vm_map.timestamp;
|
|
break;
|
|
|
|
case PT_VM_ENTRY:
|
|
PROC_UNLOCK(p);
|
|
error = ptrace_vm_entry(td, p, addr);
|
|
PROC_LOCK(p);
|
|
break;
|
|
|
|
default:
|
|
#ifdef __HAVE_PTRACE_MACHDEP
|
|
if (req >= PT_FIRSTMACH) {
|
|
PROC_UNLOCK(p);
|
|
error = cpu_ptrace(td2, req, addr, data);
|
|
PROC_LOCK(p);
|
|
} else
|
|
#endif
|
|
/* Unknown request. */
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
out:
|
|
/* Drop our hold on this process now that the request has completed. */
|
|
_PRELE(p);
|
|
fail:
|
|
PROC_UNLOCK(p);
|
|
if (proctree_locked)
|
|
sx_xunlock(&proctree_lock);
|
|
return (error);
|
|
}
|
|
#undef PROC_READ
|
|
#undef PROC_WRITE
|