f-stack/dpdk/lib/gro/gro_tcp.h

200 lines
5.2 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2023 Intel Corporation
*/
#ifndef _GRO_TCP_H_
#define _GRO_TCP_H_
#define INVALID_ARRAY_INDEX 0xffffffffUL
#include <rte_tcp.h>
/*
* The max length of a IPv4 packet, which includes the length of the L3
* header, the L4 header and the data payload.
*/
#define MAX_IP_PKT_LENGTH UINT16_MAX
/* The maximum TCP header length */
#define MAX_TCP_HLEN 60
#define INVALID_TCP_HDRLEN(len) \
(((len) < sizeof(struct rte_tcp_hdr)) || ((len) > MAX_TCP_HLEN))
#define VALID_GRO_TCP_FLAGS (RTE_TCP_ACK_FLAG | RTE_TCP_PSH_FLAG | RTE_TCP_FIN_FLAG)
struct cmn_tcp_key {
struct rte_ether_addr eth_saddr;
struct rte_ether_addr eth_daddr;
uint32_t recv_ack;
uint16_t src_port;
uint16_t dst_port;
};
#define ASSIGN_COMMON_TCP_KEY(k1, k2) \
do {\
rte_ether_addr_copy(&(k1->eth_saddr), &(k2->eth_saddr)); \
rte_ether_addr_copy(&(k1->eth_daddr), &(k2->eth_daddr)); \
k2->recv_ack = k1->recv_ack; \
k2->src_port = k1->src_port; \
k2->dst_port = k1->dst_port; \
} while (0)
struct gro_tcp_item {
/*
* The first MBUF segment of the packet. If the value
* is NULL, it means the item is empty.
*/
struct rte_mbuf *firstseg;
/* The last MBUF segment of the packet */
struct rte_mbuf *lastseg;
/*
* The time when the first packet is inserted into the table.
* This value won't be updated, even if the packet is merged
* with other packets.
*/
uint64_t start_time;
/*
* next_pkt_idx is used to chain the packets that
* are in the same flow but can't be merged together
* (e.g. caused by packet reordering).
*/
uint32_t next_pkt_idx;
/* TCP sequence number of the packet */
uint32_t sent_seq;
union {
/* IPv4 ID of the packet */
uint16_t ip_id;
/* Unused field for IPv6 */
uint16_t unused;
} l3;
/* the number of merged packets */
uint16_t nb_merged;
/* Indicate if IPv4 ID can be ignored */
uint8_t is_atomic;
};
/*
* Merge two TCP packets without updating checksums.
* If cmp is larger than 0, append the new packet to the
* original packet. Otherwise, pre-pend the new packet to
* the original packet.
*/
static inline int
merge_two_tcp_packets(struct gro_tcp_item *item,
struct rte_mbuf *pkt,
int cmp,
uint32_t sent_seq,
uint8_t tcp_flags,
uint16_t ip_id,
uint16_t l2_offset)
{
struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
uint16_t hdr_len, l2_len;
struct rte_tcp_hdr *tcp_hdr;
if (cmp > 0) {
pkt_head = item->firstseg;
pkt_tail = pkt;
} else {
pkt_head = pkt;
pkt_tail = item->firstseg;
}
/* check if the IPv4 packet length is greater than the max value */
hdr_len = l2_offset + pkt_head->l2_len + pkt_head->l3_len +
pkt_head->l4_len;
l2_len = l2_offset > 0 ? pkt_head->outer_l2_len : pkt_head->l2_len;
if (unlikely(pkt_head->pkt_len - l2_len + pkt_tail->pkt_len -
hdr_len > MAX_IP_PKT_LENGTH))
return 0;
if (unlikely(pkt_head->nb_segs >= 20))
return 0;
/* remove the packet header for the tail packet */
rte_pktmbuf_adj(pkt_tail, hdr_len);
/* chain two packets together */
if (cmp > 0) {
item->lastseg->next = pkt;
item->lastseg = rte_pktmbuf_lastseg(pkt);
/* update IP ID to the larger value */
item->l3.ip_id = ip_id;
} else {
lastseg = rte_pktmbuf_lastseg(pkt);
lastseg->next = item->firstseg;
item->firstseg = pkt;
/* update sent_seq to the smaller value */
item->sent_seq = sent_seq;
item->l3.ip_id = ip_id;
}
item->nb_merged++;
/* update MBUF metadata for the merged packet */
pkt_head->nb_segs += pkt_tail->nb_segs;
pkt_head->pkt_len += pkt_tail->pkt_len;
if (tcp_flags != RTE_TCP_ACK_FLAG) {
tcp_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_tcp_hdr *,
l2_offset + pkt_head->l2_len + pkt_head->l3_len);
tcp_hdr->tcp_flags |= tcp_flags;
}
return 1;
}
/*
* Check if two TCP packets are neighbors.
*/
static inline int
check_seq_option(struct gro_tcp_item *item,
struct rte_tcp_hdr *tcph,
uint32_t sent_seq,
uint16_t ip_id,
uint16_t tcp_hl,
uint16_t tcp_dl,
uint16_t l2_offset,
uint8_t is_atomic)
{
struct rte_mbuf *pkt_orig = item->firstseg;
char *iph_orig;
struct rte_tcp_hdr *tcph_orig;
uint16_t len, tcp_hl_orig;
iph_orig = (char *)(rte_pktmbuf_mtod(pkt_orig, char *) +
l2_offset + pkt_orig->l2_len);
tcph_orig = (struct rte_tcp_hdr *)(iph_orig + pkt_orig->l3_len);
tcp_hl_orig = pkt_orig->l4_len;
/* Check if TCP option fields equal */
len = RTE_MAX(tcp_hl, tcp_hl_orig) - sizeof(struct rte_tcp_hdr);
if ((tcp_hl != tcp_hl_orig) || ((len > 0) &&
(memcmp(tcph + 1, tcph_orig + 1,
len) != 0)))
return 0;
/* Don't merge packets whose DF bits are different */
if (unlikely(item->is_atomic ^ is_atomic))
return 0;
/* check if the two packets are neighbors */
len = pkt_orig->pkt_len - l2_offset - pkt_orig->l2_len -
pkt_orig->l3_len - tcp_hl_orig;
if ((sent_seq == item->sent_seq + len) && (is_atomic ||
(ip_id == item->l3.ip_id + 1)))
/* append the new packet */
return 1;
else if ((sent_seq + tcp_dl == item->sent_seq) && (is_atomic ||
(ip_id + item->nb_merged == item->l3.ip_id)))
/* pre-pend the new packet */
return -1;
return 0;
}
static inline int
is_same_common_tcp_key(struct cmn_tcp_key *k1, struct cmn_tcp_key *k2)
{
return (!memcmp(k1, k2, sizeof(struct cmn_tcp_key)));
}
#endif