f-stack/dpdk/drivers/crypto/mlx5/mlx5_crypto_xts.c

645 lines
19 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2023 NVIDIA Corporation & Affiliates
*/
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_eal_paging.h>
#include <rte_errno.h>
#include <rte_log.h>
#include <bus_pci_driver.h>
#include <rte_memory.h>
#include <mlx5_glue.h>
#include <mlx5_common.h>
#include <mlx5_devx_cmds.h>
#include <mlx5_common_os.h>
#include "mlx5_crypto_utils.h"
#include "mlx5_crypto.h"
const struct rte_cryptodev_capabilities mlx5_crypto_caps[] = {
{ /* AES XTS */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_XTS,
.block_size = 16,
.key_size = {
.min = 32,
.max = 64,
.increment = 32
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
},
.dataunit_set =
RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES |
RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES |
RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_1_MEGABYTES,
}, }
}, }
},
};
int
mlx5_crypto_dek_fill_xts_attr(struct mlx5_crypto_dek *dek,
struct mlx5_devx_dek_attr *dek_attr,
void *cb_ctx)
{
struct mlx5_crypto_dek_ctx *ctx = cb_ctx;
struct rte_crypto_cipher_xform *cipher_ctx = &ctx->xform->cipher;
bool is_wrapped = ctx->priv->is_wrapped_mode;
if (cipher_ctx->algo != RTE_CRYPTO_CIPHER_AES_XTS) {
DRV_LOG(ERR, "Only AES-XTS algo supported.");
return -EINVAL;
}
dek_attr->key_purpose = MLX5_CRYPTO_KEY_PURPOSE_AES_XTS;
dek_attr->has_keytag = 1;
if (is_wrapped) {
switch (cipher_ctx->key.length) {
case 48:
dek->size = 48;
dek_attr->key_size = MLX5_CRYPTO_KEY_SIZE_128b;
break;
case 80:
dek->size = 80;
dek_attr->key_size = MLX5_CRYPTO_KEY_SIZE_256b;
break;
default:
DRV_LOG(ERR, "Wrapped key size not supported.");
return -EINVAL;
}
} else {
switch (cipher_ctx->key.length) {
case 32:
dek->size = 40;
dek_attr->key_size = MLX5_CRYPTO_KEY_SIZE_128b;
break;
case 64:
dek->size = 72;
dek_attr->key_size = MLX5_CRYPTO_KEY_SIZE_256b;
break;
default:
DRV_LOG(ERR, "Key size not supported.");
return -EINVAL;
}
memcpy(&dek_attr->key[cipher_ctx->key.length],
&ctx->priv->keytag, 8);
}
memcpy(&dek_attr->key, cipher_ctx->key.data, cipher_ctx->key.length);
memcpy(&dek->data, cipher_ctx->key.data, cipher_ctx->key.length);
return 0;
}
static int
mlx5_crypto_xts_sym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *session)
{
struct mlx5_crypto_priv *priv = dev->data->dev_private;
struct mlx5_crypto_session *sess_private_data =
CRYPTODEV_GET_SYM_SESS_PRIV(session);
struct rte_crypto_cipher_xform *cipher;
uint8_t encryption_order;
if (unlikely(xform->next != NULL)) {
DRV_LOG(ERR, "Xform next is not supported.");
return -ENOTSUP;
}
if (unlikely((xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) ||
(xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_XTS))) {
DRV_LOG(ERR, "Only AES-XTS algorithm is supported.");
return -ENOTSUP;
}
cipher = &xform->cipher;
sess_private_data->dek = mlx5_crypto_dek_prepare(priv, xform);
if (sess_private_data->dek == NULL) {
DRV_LOG(ERR, "Failed to prepare dek.");
return -ENOMEM;
}
if (cipher->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_MEMORY;
else
encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_WIRE;
sess_private_data->bs_bpt_eo_es = rte_cpu_to_be_32
(MLX5_BSF_SIZE_64B << MLX5_BSF_SIZE_OFFSET |
MLX5_BSF_P_TYPE_CRYPTO << MLX5_BSF_P_TYPE_OFFSET |
encryption_order << MLX5_ENCRYPTION_ORDER_OFFSET |
MLX5_ENCRYPTION_STANDARD_AES_XTS);
switch (xform->cipher.dataunit_len) {
case 0:
sess_private_data->bsp_res = 0;
break;
case 512:
sess_private_data->bsp_res = rte_cpu_to_be_32
((uint32_t)MLX5_BLOCK_SIZE_512B <<
MLX5_BLOCK_SIZE_OFFSET);
break;
case 4096:
sess_private_data->bsp_res = rte_cpu_to_be_32
((uint32_t)MLX5_BLOCK_SIZE_4096B <<
MLX5_BLOCK_SIZE_OFFSET);
break;
case 1048576:
sess_private_data->bsp_res = rte_cpu_to_be_32
((uint32_t)MLX5_BLOCK_SIZE_1MB <<
MLX5_BLOCK_SIZE_OFFSET);
break;
default:
DRV_LOG(ERR, "Cipher data unit length is not supported.");
return -ENOTSUP;
}
sess_private_data->iv_offset = cipher->iv.offset;
sess_private_data->dek_id =
rte_cpu_to_be_32(sess_private_data->dek->obj->id &
0xffffff);
DRV_LOG(DEBUG, "Session %p was configured.", sess_private_data);
return 0;
}
static void
mlx5_crypto_xts_qp_release(struct mlx5_crypto_qp *qp)
{
if (qp == NULL)
return;
mlx5_devx_qp_destroy(&qp->qp_obj);
mlx5_mr_btree_free(&qp->mr_ctrl.cache_bh);
mlx5_devx_cq_destroy(&qp->cq_obj);
rte_free(qp);
}
static int
mlx5_crypto_xts_queue_pair_release(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
mlx5_crypto_indirect_mkeys_release(qp, qp->entries_n);
mlx5_crypto_xts_qp_release(qp);
dev->data->queue_pairs[qp_id] = NULL;
return 0;
}
static __rte_noinline uint32_t
mlx5_crypto_xts_get_block_size(struct rte_crypto_op *op)
{
uint32_t bl = op->sym->cipher.data.length;
switch (bl) {
case (1 << 20):
return RTE_BE32(MLX5_BLOCK_SIZE_1MB << MLX5_BLOCK_SIZE_OFFSET);
case (1 << 12):
return RTE_BE32(MLX5_BLOCK_SIZE_4096B <<
MLX5_BLOCK_SIZE_OFFSET);
case (1 << 9):
return RTE_BE32(MLX5_BLOCK_SIZE_512B << MLX5_BLOCK_SIZE_OFFSET);
default:
DRV_LOG(ERR, "Unknown block size: %u.", bl);
return UINT32_MAX;
}
}
static __rte_always_inline uint32_t
mlx5_crypto_xts_klm_set(struct mlx5_crypto_qp *qp, struct rte_mbuf *mbuf,
struct mlx5_wqe_dseg *klm, uint32_t offset,
uint32_t *remain)
{
uint32_t data_len = (rte_pktmbuf_data_len(mbuf) - offset);
uintptr_t addr = rte_pktmbuf_mtod_offset(mbuf, uintptr_t, offset);
if (data_len > *remain)
data_len = *remain;
*remain -= data_len;
klm->bcount = rte_cpu_to_be_32(data_len);
klm->pbuf = rte_cpu_to_be_64(addr);
klm->lkey = mlx5_mr_mb2mr(&qp->mr_ctrl, mbuf);
return klm->lkey;
}
static __rte_always_inline uint32_t
mlx5_crypto_xts_klms_set(struct mlx5_crypto_qp *qp, struct rte_crypto_op *op,
struct rte_mbuf *mbuf, struct mlx5_wqe_dseg *klm)
{
uint32_t remain_len = op->sym->cipher.data.length;
uint32_t nb_segs = mbuf->nb_segs;
uint32_t klm_n = 1u;
/* First mbuf needs to take the cipher offset. */
if (unlikely(mlx5_crypto_xts_klm_set(qp, mbuf, klm,
op->sym->cipher.data.offset, &remain_len) == UINT32_MAX)) {
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
return 0;
}
while (remain_len) {
nb_segs--;
mbuf = mbuf->next;
if (unlikely(mbuf == NULL || nb_segs == 0)) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return 0;
}
if (unlikely(mlx5_crypto_xts_klm_set(qp, mbuf, ++klm, 0,
&remain_len) == UINT32_MAX)) {
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
return 0;
}
klm_n++;
}
return klm_n;
}
static __rte_always_inline int
mlx5_crypto_xts_wqe_set(struct mlx5_crypto_priv *priv,
struct mlx5_crypto_qp *qp,
struct rte_crypto_op *op,
struct mlx5_umr_wqe *umr)
{
struct mlx5_crypto_session *sess = CRYPTODEV_GET_SYM_SESS_PRIV(op->sym->session);
struct mlx5_wqe_cseg *cseg = &umr->ctr;
struct mlx5_wqe_mkey_cseg *mkc = &umr->mkc;
struct mlx5_wqe_dseg *klms = &umr->kseg[0];
struct mlx5_wqe_umr_bsf_seg *bsf = ((struct mlx5_wqe_umr_bsf_seg *)
RTE_PTR_ADD(umr, priv->umr_wqe_size)) - 1;
uint32_t ds;
bool ipl = op->sym->m_dst == NULL || op->sym->m_dst == op->sym->m_src;
/* Set UMR WQE. */
uint32_t klm_n = mlx5_crypto_xts_klms_set(qp, op,
ipl ? op->sym->m_src : op->sym->m_dst, klms);
if (unlikely(klm_n == 0))
return 0;
bsf->bs_bpt_eo_es = sess->bs_bpt_eo_es;
if (unlikely(!sess->bsp_res)) {
bsf->bsp_res = mlx5_crypto_xts_get_block_size(op);
if (unlikely(bsf->bsp_res == UINT32_MAX)) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return 0;
}
} else {
bsf->bsp_res = sess->bsp_res;
}
bsf->raw_data_size = rte_cpu_to_be_32(op->sym->cipher.data.length);
memcpy(bsf->xts_initial_tweak,
rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv_offset), 16);
bsf->res_dp = sess->dek_id;
mkc->len = rte_cpu_to_be_64(op->sym->cipher.data.length);
cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) | MLX5_OPCODE_UMR);
qp->db_pi += priv->umr_wqe_stride;
/* Set RDMA_WRITE WQE. */
cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
klms = RTE_PTR_ADD(cseg, sizeof(struct mlx5_rdma_write_wqe));
if (!ipl) {
klm_n = mlx5_crypto_xts_klms_set(qp, op, op->sym->m_src, klms);
if (unlikely(klm_n == 0))
return 0;
} else {
memcpy(klms, &umr->kseg[0], sizeof(*klms) * klm_n);
}
ds = 2 + klm_n;
cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj.qp->id << 8) | ds);
cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
MLX5_OPCODE_RDMA_WRITE);
ds = RTE_ALIGN(ds, 4);
qp->db_pi += ds >> 2;
/* Set NOP WQE if needed. */
if (priv->max_rdmar_ds > ds) {
cseg += ds;
ds = priv->max_rdmar_ds - ds;
cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj.qp->id << 8) | ds);
cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
MLX5_OPCODE_NOP);
qp->db_pi += ds >> 2; /* Here, DS is 4 aligned for sure. */
}
qp->wqe = (uint8_t *)cseg;
return 1;
}
static uint16_t
mlx5_crypto_xts_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct mlx5_crypto_qp *qp = queue_pair;
struct mlx5_crypto_priv *priv = qp->priv;
struct mlx5_umr_wqe *umr;
struct rte_crypto_op *op;
uint16_t mask = qp->entries_n - 1;
uint16_t remain = qp->entries_n - (qp->pi - qp->ci);
uint32_t idx;
if (remain < nb_ops)
nb_ops = remain;
else
remain = nb_ops;
if (unlikely(remain == 0))
return 0;
do {
idx = qp->pi & mask;
op = *ops++;
umr = RTE_PTR_ADD(qp->qp_obj.umem_buf,
priv->wqe_set_size * idx);
if (unlikely(mlx5_crypto_xts_wqe_set(priv, qp, op, umr) == 0)) {
qp->stats.enqueue_err_count++;
if (remain != nb_ops) {
qp->stats.enqueued_count -= remain;
break;
}
return 0;
}
qp->ops[idx] = op;
qp->pi++;
} while (--remain);
qp->stats.enqueued_count += nb_ops;
mlx5_doorbell_ring(&priv->uar.bf_db, *(volatile uint64_t *)qp->wqe,
qp->db_pi, &qp->qp_obj.db_rec[MLX5_SND_DBR],
!priv->uar.dbnc);
return nb_ops;
}
static __rte_noinline void
mlx5_crypto_xts_cqe_err_handle(struct mlx5_crypto_qp *qp, struct rte_crypto_op *op)
{
const uint32_t idx = qp->ci & (qp->entries_n - 1);
volatile struct mlx5_error_cqe *cqe = (volatile struct mlx5_error_cqe *)
&qp->cq_obj.cqes[idx];
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
qp->stats.dequeue_err_count++;
DRV_LOG(ERR, "CQE ERR:%x.\n", rte_be_to_cpu_32(cqe->syndrome));
}
static uint16_t
mlx5_crypto_xts_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct mlx5_crypto_qp *qp = queue_pair;
volatile struct mlx5_cqe *restrict cqe;
struct rte_crypto_op *restrict op;
const unsigned int cq_size = qp->entries_n;
const unsigned int mask = cq_size - 1;
uint32_t idx;
uint32_t next_idx = qp->ci & mask;
const uint16_t max = RTE_MIN((uint16_t)(qp->pi - qp->ci), nb_ops);
uint16_t i = 0;
int ret;
if (unlikely(max == 0))
return 0;
do {
idx = next_idx;
next_idx = (qp->ci + 1) & mask;
op = qp->ops[idx];
cqe = &qp->cq_obj.cqes[idx];
ret = check_cqe(cqe, cq_size, qp->ci);
rte_io_rmb();
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
if (unlikely(ret != MLX5_CQE_STATUS_HW_OWN))
mlx5_crypto_xts_cqe_err_handle(qp, op);
break;
}
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
ops[i++] = op;
qp->ci++;
} while (i < max);
if (likely(i != 0)) {
rte_io_wmb();
qp->cq_obj.db_rec[0] = rte_cpu_to_be_32(qp->ci);
qp->stats.dequeued_count += i;
}
return i;
}
static void
mlx5_crypto_xts_qp_init(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp)
{
uint32_t i;
for (i = 0 ; i < qp->entries_n; i++) {
struct mlx5_wqe_cseg *cseg = RTE_PTR_ADD(qp->qp_obj.umem_buf,
i * priv->wqe_set_size);
struct mlx5_wqe_umr_cseg *ucseg = (struct mlx5_wqe_umr_cseg *)
(cseg + 1);
struct mlx5_wqe_umr_bsf_seg *bsf =
(struct mlx5_wqe_umr_bsf_seg *)(RTE_PTR_ADD(cseg,
priv->umr_wqe_size)) - 1;
struct mlx5_wqe_rseg *rseg;
/* Init UMR WQE. */
cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj.qp->id << 8) |
(priv->umr_wqe_size / MLX5_WSEG_SIZE));
cseg->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
MLX5_COMP_MODE_OFFSET);
cseg->misc = rte_cpu_to_be_32(qp->mkey[i]->id);
ucseg->if_cf_toe_cq_res = RTE_BE32(1u << MLX5_UMRC_IF_OFFSET);
ucseg->mkey_mask = RTE_BE64(1u << 0); /* Mkey length bit. */
ucseg->ko_to_bs = rte_cpu_to_be_32
((MLX5_CRYPTO_KLM_SEGS_NUM(priv->umr_wqe_size) <<
MLX5_UMRC_KO_OFFSET) | (4 << MLX5_UMRC_TO_BS_OFFSET));
bsf->keytag = priv->keytag;
/* Init RDMA WRITE WQE. */
cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
cseg->flags = RTE_BE32((MLX5_COMP_ALWAYS <<
MLX5_COMP_MODE_OFFSET) |
MLX5_WQE_CTRL_INITIATOR_SMALL_FENCE);
rseg = (struct mlx5_wqe_rseg *)(cseg + 1);
rseg->rkey = rte_cpu_to_be_32(qp->mkey[i]->id);
}
}
static void *
mlx5_crypto_gcm_mkey_klm_update(struct mlx5_crypto_priv *priv,
struct mlx5_crypto_qp *qp,
uint32_t idx)
{
return RTE_PTR_ADD(qp->qp_obj.umem_buf, priv->wqe_set_size * idx);
}
static int
mlx5_crypto_xts_queue_pair_setup(struct rte_cryptodev *dev, uint16_t qp_id,
const struct rte_cryptodev_qp_conf *qp_conf,
int socket_id)
{
struct mlx5_crypto_priv *priv = dev->data->dev_private;
struct mlx5_devx_qp_attr attr = {0};
struct mlx5_crypto_qp *qp;
uint16_t log_nb_desc = rte_log2_u32(qp_conf->nb_descriptors);
uint32_t ret;
uint32_t alloc_size = sizeof(*qp);
uint32_t log_wqbb_n;
struct mlx5_devx_cq_attr cq_attr = {
.uar_page_id = mlx5_os_get_devx_uar_page_id(priv->uar.obj),
};
struct mlx5_devx_mkey_attr mkey_attr = {
.pd = priv->cdev->pdn,
.umr_en = 1,
.crypto_en = 1,
.set_remote_rw = 1,
.klm_num = MLX5_CRYPTO_KLM_SEGS_NUM(priv->umr_wqe_size),
};
if (dev->data->queue_pairs[qp_id] != NULL)
mlx5_crypto_xts_queue_pair_release(dev, qp_id);
alloc_size = RTE_ALIGN(alloc_size, RTE_CACHE_LINE_SIZE);
alloc_size += (sizeof(struct rte_crypto_op *) +
sizeof(struct mlx5_devx_obj *)) *
RTE_BIT32(log_nb_desc);
qp = rte_zmalloc_socket(__func__, alloc_size, RTE_CACHE_LINE_SIZE,
socket_id);
if (qp == NULL) {
DRV_LOG(ERR, "Failed to allocate QP memory.");
rte_errno = ENOMEM;
return -rte_errno;
}
if (mlx5_devx_cq_create(priv->cdev->ctx, &qp->cq_obj, log_nb_desc,
&cq_attr, socket_id) != 0) {
DRV_LOG(ERR, "Failed to create CQ.");
goto error;
}
log_wqbb_n = rte_log2_u32(RTE_BIT32(log_nb_desc) *
(priv->wqe_set_size / MLX5_SEND_WQE_BB));
attr.pd = priv->cdev->pdn;
attr.uar_index = mlx5_os_get_devx_uar_page_id(priv->uar.obj);
attr.cqn = qp->cq_obj.cq->id;
attr.num_of_receive_wqes = 0;
attr.num_of_send_wqbbs = RTE_BIT32(log_wqbb_n);
attr.ts_format =
mlx5_ts_format_conv(priv->cdev->config.hca_attr.qp_ts_format);
ret = mlx5_devx_qp_create(priv->cdev->ctx, &qp->qp_obj,
attr.num_of_send_wqbbs * MLX5_WQE_SIZE,
&attr, socket_id);
if (ret) {
DRV_LOG(ERR, "Failed to create QP.");
goto error;
}
if (mlx5_mr_ctrl_init(&qp->mr_ctrl, &priv->cdev->mr_scache.dev_gen,
priv->dev_config.socket_id) != 0) {
DRV_LOG(ERR, "Cannot allocate MR Btree for qp %u.",
(uint32_t)qp_id);
rte_errno = ENOMEM;
goto error;
}
/*
* In Order to configure self loopback, when calling devx qp2rts the
* remote QP id that is used is the id of the same QP.
*/
if (mlx5_devx_qp2rts(&qp->qp_obj, qp->qp_obj.qp->id))
goto error;
qp->mkey = (struct mlx5_devx_obj **)RTE_ALIGN((uintptr_t)(qp + 1),
RTE_CACHE_LINE_SIZE);
qp->ops = (struct rte_crypto_op **)(qp->mkey + RTE_BIT32(log_nb_desc));
qp->entries_n = 1 << log_nb_desc;
if (mlx5_crypto_indirect_mkeys_prepare(priv, qp, &mkey_attr,
mlx5_crypto_gcm_mkey_klm_update)) {
DRV_LOG(ERR, "Cannot allocate indirect memory regions.");
rte_errno = ENOMEM;
goto error;
}
mlx5_crypto_xts_qp_init(priv, qp);
qp->priv = priv;
dev->data->queue_pairs[qp_id] = qp;
return 0;
error:
mlx5_crypto_xts_qp_release(qp);
return -1;
}
/*
* Calculate UMR WQE size and RDMA Write WQE size with the
* following limitations:
* - Each WQE size is multiple of 64.
* - The summarize of both UMR WQE and RDMA_W WQE is a power of 2.
* - The number of entries in the UMR WQE's KLM list is multiple of 4.
*/
static void
mlx5_crypto_xts_get_wqe_sizes(uint32_t segs_num, uint32_t *umr_size,
uint32_t *rdmaw_size)
{
uint32_t diff, wqe_set_size;
*umr_size = MLX5_CRYPTO_UMR_WQE_STATIC_SIZE +
RTE_ALIGN(segs_num, 4) *
sizeof(struct mlx5_wqe_dseg);
/* Make sure UMR WQE size is multiple of WQBB. */
*umr_size = RTE_ALIGN(*umr_size, MLX5_SEND_WQE_BB);
*rdmaw_size = sizeof(struct mlx5_rdma_write_wqe) +
sizeof(struct mlx5_wqe_dseg) *
(segs_num <= 2 ? 2 : 2 +
RTE_ALIGN(segs_num - 2, 4));
/* Make sure RDMA_WRITE WQE size is multiple of WQBB. */
*rdmaw_size = RTE_ALIGN(*rdmaw_size, MLX5_SEND_WQE_BB);
wqe_set_size = *rdmaw_size + *umr_size;
diff = rte_align32pow2(wqe_set_size) - wqe_set_size;
/* Make sure wqe_set size is power of 2. */
if (diff)
*umr_size += diff;
}
static uint8_t
mlx5_crypto_xts_max_segs_num(uint16_t max_wqe_size)
{
int klms_sizes = max_wqe_size - MLX5_CRYPTO_UMR_WQE_STATIC_SIZE;
uint32_t max_segs_cap = RTE_ALIGN_FLOOR(klms_sizes, MLX5_SEND_WQE_BB) /
sizeof(struct mlx5_wqe_dseg);
MLX5_ASSERT(klms_sizes >= MLX5_SEND_WQE_BB);
while (max_segs_cap) {
uint32_t umr_wqe_size, rdmw_wqe_size;
mlx5_crypto_xts_get_wqe_sizes(max_segs_cap, &umr_wqe_size,
&rdmw_wqe_size);
if (umr_wqe_size <= max_wqe_size &&
rdmw_wqe_size <= max_wqe_size)
break;
max_segs_cap -= 4;
}
return max_segs_cap;
}
static int
mlx5_crypto_xts_configure_wqe_size(struct mlx5_crypto_priv *priv,
uint16_t max_wqe_size, uint32_t max_segs_num)
{
uint32_t rdmw_wqe_size, umr_wqe_size;
mlx5_crypto_xts_get_wqe_sizes(max_segs_num, &umr_wqe_size,
&rdmw_wqe_size);
priv->wqe_set_size = rdmw_wqe_size + umr_wqe_size;
if (umr_wqe_size > max_wqe_size ||
rdmw_wqe_size > max_wqe_size) {
DRV_LOG(ERR, "Invalid max_segs_num: %u. should be %u or lower.",
max_segs_num,
mlx5_crypto_xts_max_segs_num(max_wqe_size));
rte_errno = EINVAL;
return -EINVAL;
}
priv->umr_wqe_size = (uint16_t)umr_wqe_size;
priv->umr_wqe_stride = priv->umr_wqe_size / MLX5_SEND_WQE_BB;
priv->max_rdmar_ds = rdmw_wqe_size / sizeof(struct mlx5_wqe_dseg);
return 0;
}
int
mlx5_crypto_xts_init(struct mlx5_crypto_priv *priv)
{
struct mlx5_common_device *cdev = priv->cdev;
struct rte_cryptodev *crypto_dev = priv->crypto_dev;
struct rte_cryptodev_ops *dev_ops = crypto_dev->dev_ops;
int ret;
ret = mlx5_crypto_xts_configure_wqe_size(priv,
cdev->config.hca_attr.max_wqe_sz_sq, priv->max_segs_num);
if (ret)
return -EINVAL;
/* Override AES-XST specified ops. */
dev_ops->sym_session_configure = mlx5_crypto_xts_sym_session_configure;
dev_ops->queue_pair_setup = mlx5_crypto_xts_queue_pair_setup;
dev_ops->queue_pair_release = mlx5_crypto_xts_queue_pair_release;
crypto_dev->dequeue_burst = mlx5_crypto_xts_dequeue_burst;
crypto_dev->enqueue_burst = mlx5_crypto_xts_enqueue_burst;
priv->caps = mlx5_crypto_caps;
return 0;
}