/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _VIRTIO_RING_H_ #define _VIRTIO_RING_H_ #include <stdint.h> #include <rte_common.h> /* This marks a buffer as continuing via the next field. */ #define VRING_DESC_F_NEXT 1 /* This marks a buffer as write-only (otherwise read-only). */ #define VRING_DESC_F_WRITE 2 /* This means the buffer contains a list of buffer descriptors. */ #define VRING_DESC_F_INDIRECT 4 /* The Host uses this in used->flags to advise the Guest: don't kick me * when you add a buffer. It's unreliable, so it's simply an * optimization. Guest will still kick if it's out of buffers. */ #define VRING_USED_F_NO_NOTIFY 1 /* The Guest uses this in avail->flags to advise the Host: don't * interrupt me when you consume a buffer. It's unreliable, so it's * simply an optimization. */ #define VRING_AVAIL_F_NO_INTERRUPT 1 /* VirtIO ring descriptors: 16 bytes. * These can chain together via "next". */ struct vring_desc { uint64_t addr; /* Address (guest-physical). */ uint32_t len; /* Length. */ uint16_t flags; /* The flags as indicated above. */ uint16_t next; /* We chain unused descriptors via this. */ }; struct vring_avail { uint16_t flags; uint16_t idx; uint16_t ring[0]; }; /* id is a 16bit index. uint32_t is used here for ids for padding reasons. */ struct vring_used_elem { /* Index of start of used descriptor chain. */ uint32_t id; /* Total length of the descriptor chain which was written to. */ uint32_t len; }; struct vring_used { uint16_t flags; volatile uint16_t idx; struct vring_used_elem ring[0]; }; struct vring { unsigned int num; struct vring_desc *desc; struct vring_avail *avail; struct vring_used *used; }; /* The standard layout for the ring is a continuous chunk of memory which * looks like this. We assume num is a power of 2. * * struct vring { * // The actual descriptors (16 bytes each) * struct vring_desc desc[num]; * * // A ring of available descriptor heads with free-running index. * __u16 avail_flags; * __u16 avail_idx; * __u16 available[num]; * __u16 used_event_idx; * * // Padding to the next align boundary. * char pad[]; * * // A ring of used descriptor heads with free-running index. * __u16 used_flags; * __u16 used_idx; * struct vring_used_elem used[num]; * __u16 avail_event_idx; * }; * * NOTE: for VirtIO PCI, align is 4096. */ /* * We publish the used event index at the end of the available ring, and vice * versa. They are at the end for backwards compatibility. */ #define vring_used_event(vr) ((vr)->avail->ring[(vr)->num]) #define vring_avail_event(vr) (*(uint16_t *)&(vr)->used->ring[(vr)->num]) static inline size_t vring_size(unsigned int num, unsigned long align) { size_t size; size = num * sizeof(struct vring_desc); size += sizeof(struct vring_avail) + (num * sizeof(uint16_t)); size = RTE_ALIGN_CEIL(size, align); size += sizeof(struct vring_used) + (num * sizeof(struct vring_used_elem)); return size; } static inline void vring_init(struct vring *vr, unsigned int num, uint8_t *p, unsigned long align) { vr->num = num; vr->desc = (struct vring_desc *) p; vr->avail = (struct vring_avail *) (p + num * sizeof(struct vring_desc)); vr->used = (void *) RTE_ALIGN_CEIL((uintptr_t)(&vr->avail->ring[num]), align); } /* * The following is used with VIRTIO_RING_F_EVENT_IDX. * Assuming a given event_idx value from the other size, if we have * just incremented index from old to new_idx, should we trigger an * event? */ static inline int vring_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old) { return (uint16_t)(new_idx - event_idx - 1) < (uint16_t)(new_idx - old); } #endif /* _VIRTIO_RING_H_ */