/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Cedric Berger * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $OpenBSD: pf_table.c,v 1.79 2008/10/08 06:24:50 mcbride Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x #define ACCEPT_FLAGS(flags, oklist) \ do { \ if ((flags & ~(oklist)) & \ PFR_FLAG_ALLMASK) \ return (EINVAL); \ } while (0) #define FILLIN_SIN(sin, addr) \ do { \ (sin).sin_len = sizeof(sin); \ (sin).sin_family = AF_INET; \ (sin).sin_addr = (addr); \ } while (0) #define FILLIN_SIN6(sin6, addr) \ do { \ (sin6).sin6_len = sizeof(sin6); \ (sin6).sin6_family = AF_INET6; \ (sin6).sin6_addr = (addr); \ } while (0) #define SWAP(type, a1, a2) \ do { \ type tmp = a1; \ a1 = a2; \ a2 = tmp; \ } while (0) #define SUNION2PF(su, af) (((af)==AF_INET) ? \ (struct pf_addr *)&(su)->sin.sin_addr : \ (struct pf_addr *)&(su)->sin6.sin6_addr) #define AF_BITS(af) (((af)==AF_INET)?32:128) #define ADDR_NETWORK(ad) ((ad)->pfra_net < AF_BITS((ad)->pfra_af)) #define KENTRY_NETWORK(ke) ((ke)->pfrke_net < AF_BITS((ke)->pfrke_af)) #define KENTRY_RNF_ROOT(ke) \ ((((struct radix_node *)(ke))->rn_flags & RNF_ROOT) != 0) #define NO_ADDRESSES (-1) #define ENQUEUE_UNMARKED_ONLY (1) #define INVERT_NEG_FLAG (1) struct pfr_walktree { enum pfrw_op { PFRW_MARK, PFRW_SWEEP, PFRW_ENQUEUE, PFRW_GET_ADDRS, PFRW_GET_ASTATS, PFRW_POOL_GET, PFRW_DYNADDR_UPDATE } pfrw_op; union { struct pfr_addr *pfrw1_addr; struct pfr_astats *pfrw1_astats; struct pfr_kentryworkq *pfrw1_workq; struct pfr_kentry *pfrw1_kentry; struct pfi_dynaddr *pfrw1_dyn; } pfrw_1; int pfrw_free; int pfrw_flags; }; #define pfrw_addr pfrw_1.pfrw1_addr #define pfrw_astats pfrw_1.pfrw1_astats #define pfrw_workq pfrw_1.pfrw1_workq #define pfrw_kentry pfrw_1.pfrw1_kentry #define pfrw_dyn pfrw_1.pfrw1_dyn #define pfrw_cnt pfrw_free #define senderr(e) do { rv = (e); goto _bad; } while (0) static MALLOC_DEFINE(M_PFTABLE, "pf_table", "pf(4) tables structures"); VNET_DEFINE_STATIC(uma_zone_t, pfr_kentry_z); #define V_pfr_kentry_z VNET(pfr_kentry_z) VNET_DEFINE_STATIC(uma_zone_t, pfr_kentry_counter_z); #define V_pfr_kentry_counter_z VNET(pfr_kentry_counter_z) static struct pf_addr pfr_ffaddr = { .addr32 = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff } }; static void pfr_copyout_astats(struct pfr_astats *, const struct pfr_kentry *, const struct pfr_walktree *); static void pfr_copyout_addr(struct pfr_addr *, const struct pfr_kentry *ke); static int pfr_validate_addr(struct pfr_addr *); static void pfr_enqueue_addrs(struct pfr_ktable *, struct pfr_kentryworkq *, int *, int); static void pfr_mark_addrs(struct pfr_ktable *); static struct pfr_kentry *pfr_lookup_addr(struct pfr_ktable *, struct pfr_addr *, int); static struct pfr_kentry *pfr_create_kentry(struct pfr_addr *, bool); static void pfr_destroy_kentries(struct pfr_kentryworkq *); static void pfr_destroy_kentry(struct pfr_kentry *); static void pfr_insert_kentries(struct pfr_ktable *, struct pfr_kentryworkq *, long); static void pfr_remove_kentries(struct pfr_ktable *, struct pfr_kentryworkq *); static void pfr_clstats_kentries(struct pfr_ktable *, struct pfr_kentryworkq *, long, int); static void pfr_reset_feedback(struct pfr_addr *, int); static void pfr_prepare_network(union sockaddr_union *, int, int); static int pfr_route_kentry(struct pfr_ktable *, struct pfr_kentry *); static int pfr_unroute_kentry(struct pfr_ktable *, struct pfr_kentry *); static int pfr_walktree(struct radix_node *, void *); static int pfr_validate_table(struct pfr_table *, int, int); static int pfr_fix_anchor(char *); static void pfr_commit_ktable(struct pfr_ktable *, long); static void pfr_insert_ktables(struct pfr_ktableworkq *); static void pfr_insert_ktable(struct pfr_ktable *); static void pfr_setflags_ktables(struct pfr_ktableworkq *); static void pfr_setflags_ktable(struct pfr_ktable *, int); static void pfr_clstats_ktables(struct pfr_ktableworkq *, long, int); static void pfr_clstats_ktable(struct pfr_ktable *, long, int); static struct pfr_ktable *pfr_create_ktable(struct pfr_table *, long, int); static void pfr_destroy_ktables(struct pfr_ktableworkq *, int); static void pfr_destroy_ktable(struct pfr_ktable *, int); static int pfr_ktable_compare(struct pfr_ktable *, struct pfr_ktable *); static struct pfr_ktable *pfr_lookup_table(struct pfr_table *); static void pfr_clean_node_mask(struct pfr_ktable *, struct pfr_kentryworkq *); static int pfr_skip_table(struct pfr_table *, struct pfr_ktable *, int); static struct pfr_kentry *pfr_kentry_byidx(struct pfr_ktable *, int, int); static RB_PROTOTYPE(pfr_ktablehead, pfr_ktable, pfrkt_tree, pfr_ktable_compare); static RB_GENERATE(pfr_ktablehead, pfr_ktable, pfrkt_tree, pfr_ktable_compare); VNET_DEFINE_STATIC(struct pfr_ktablehead, pfr_ktables); #define V_pfr_ktables VNET(pfr_ktables) VNET_DEFINE_STATIC(struct pfr_table, pfr_nulltable); #define V_pfr_nulltable VNET(pfr_nulltable) VNET_DEFINE_STATIC(int, pfr_ktable_cnt); #define V_pfr_ktable_cnt VNET(pfr_ktable_cnt) void pfr_initialize(void) { V_pfr_kentry_counter_z = uma_zcreate("pf table entry counters", PFR_NUM_COUNTERS * sizeof(uint64_t), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); V_pfr_kentry_z = uma_zcreate("pf table entries", sizeof(struct pfr_kentry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); V_pf_limits[PF_LIMIT_TABLE_ENTRIES].zone = V_pfr_kentry_z; V_pf_limits[PF_LIMIT_TABLE_ENTRIES].limit = PFR_KENTRY_HIWAT; } void pfr_cleanup(void) { uma_zdestroy(V_pfr_kentry_z); uma_zdestroy(V_pfr_kentry_counter_z); } int pfr_clr_addrs(struct pfr_table *tbl, int *ndel, int flags) { struct pfr_ktable *kt; struct pfr_kentryworkq workq; PF_RULES_WASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY); if (pfr_validate_table(tbl, 0, flags & PFR_FLAG_USERIOCTL)) return (EINVAL); kt = pfr_lookup_table(tbl); if (kt == NULL || !(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (ESRCH); if (kt->pfrkt_flags & PFR_TFLAG_CONST) return (EPERM); pfr_enqueue_addrs(kt, &workq, ndel, 0); if (!(flags & PFR_FLAG_DUMMY)) { pfr_remove_kentries(kt, &workq); KASSERT(kt->pfrkt_cnt == 0, ("%s: non-null pfrkt_cnt", __func__)); } return (0); } int pfr_add_addrs(struct pfr_table *tbl, struct pfr_addr *addr, int size, int *nadd, int flags) { struct pfr_ktable *kt, *tmpkt; struct pfr_kentryworkq workq; struct pfr_kentry *p, *q; struct pfr_addr *ad; int i, rv, xadd = 0; long tzero = time_second; PF_RULES_WASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY | PFR_FLAG_FEEDBACK); if (pfr_validate_table(tbl, 0, flags & PFR_FLAG_USERIOCTL)) return (EINVAL); kt = pfr_lookup_table(tbl); if (kt == NULL || !(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (ESRCH); if (kt->pfrkt_flags & PFR_TFLAG_CONST) return (EPERM); tmpkt = pfr_create_ktable(&V_pfr_nulltable, 0, 0); if (tmpkt == NULL) return (ENOMEM); SLIST_INIT(&workq); for (i = 0, ad = addr; i < size; i++, ad++) { if (pfr_validate_addr(ad)) senderr(EINVAL); p = pfr_lookup_addr(kt, ad, 1); q = pfr_lookup_addr(tmpkt, ad, 1); if (flags & PFR_FLAG_FEEDBACK) { if (q != NULL) ad->pfra_fback = PFR_FB_DUPLICATE; else if (p == NULL) ad->pfra_fback = PFR_FB_ADDED; else if (p->pfrke_not != ad->pfra_not) ad->pfra_fback = PFR_FB_CONFLICT; else ad->pfra_fback = PFR_FB_NONE; } if (p == NULL && q == NULL) { p = pfr_create_kentry(ad, (kt->pfrkt_flags & PFR_TFLAG_COUNTERS) != 0); if (p == NULL) senderr(ENOMEM); if (pfr_route_kentry(tmpkt, p)) { pfr_destroy_kentry(p); ad->pfra_fback = PFR_FB_NONE; } else { SLIST_INSERT_HEAD(&workq, p, pfrke_workq); xadd++; } } } pfr_clean_node_mask(tmpkt, &workq); if (!(flags & PFR_FLAG_DUMMY)) pfr_insert_kentries(kt, &workq, tzero); else pfr_destroy_kentries(&workq); if (nadd != NULL) *nadd = xadd; pfr_destroy_ktable(tmpkt, 0); return (0); _bad: pfr_clean_node_mask(tmpkt, &workq); pfr_destroy_kentries(&workq); if (flags & PFR_FLAG_FEEDBACK) pfr_reset_feedback(addr, size); pfr_destroy_ktable(tmpkt, 0); return (rv); } int pfr_del_addrs(struct pfr_table *tbl, struct pfr_addr *addr, int size, int *ndel, int flags) { struct pfr_ktable *kt; struct pfr_kentryworkq workq; struct pfr_kentry *p; struct pfr_addr *ad; int i, rv, xdel = 0, log = 1; PF_RULES_WASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY | PFR_FLAG_FEEDBACK); if (pfr_validate_table(tbl, 0, flags & PFR_FLAG_USERIOCTL)) return (EINVAL); kt = pfr_lookup_table(tbl); if (kt == NULL || !(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (ESRCH); if (kt->pfrkt_flags & PFR_TFLAG_CONST) return (EPERM); /* * there are two algorithms to choose from here. * with: * n: number of addresses to delete * N: number of addresses in the table * * one is O(N) and is better for large 'n' * one is O(n*LOG(N)) and is better for small 'n' * * following code try to decide which one is best. */ for (i = kt->pfrkt_cnt; i > 0; i >>= 1) log++; if (size > kt->pfrkt_cnt/log) { /* full table scan */ pfr_mark_addrs(kt); } else { /* iterate over addresses to delete */ for (i = 0, ad = addr; i < size; i++, ad++) { if (pfr_validate_addr(ad)) return (EINVAL); p = pfr_lookup_addr(kt, ad, 1); if (p != NULL) p->pfrke_mark = 0; } } SLIST_INIT(&workq); for (i = 0, ad = addr; i < size; i++, ad++) { if (pfr_validate_addr(ad)) senderr(EINVAL); p = pfr_lookup_addr(kt, ad, 1); if (flags & PFR_FLAG_FEEDBACK) { if (p == NULL) ad->pfra_fback = PFR_FB_NONE; else if (p->pfrke_not != ad->pfra_not) ad->pfra_fback = PFR_FB_CONFLICT; else if (p->pfrke_mark) ad->pfra_fback = PFR_FB_DUPLICATE; else ad->pfra_fback = PFR_FB_DELETED; } if (p != NULL && p->pfrke_not == ad->pfra_not && !p->pfrke_mark) { p->pfrke_mark = 1; SLIST_INSERT_HEAD(&workq, p, pfrke_workq); xdel++; } } if (!(flags & PFR_FLAG_DUMMY)) pfr_remove_kentries(kt, &workq); if (ndel != NULL) *ndel = xdel; return (0); _bad: if (flags & PFR_FLAG_FEEDBACK) pfr_reset_feedback(addr, size); return (rv); } int pfr_set_addrs(struct pfr_table *tbl, struct pfr_addr *addr, int size, int *size2, int *nadd, int *ndel, int *nchange, int flags, u_int32_t ignore_pfrt_flags) { struct pfr_ktable *kt, *tmpkt; struct pfr_kentryworkq addq, delq, changeq; struct pfr_kentry *p, *q; struct pfr_addr ad; int i, rv, xadd = 0, xdel = 0, xchange = 0; long tzero = time_second; PF_RULES_WASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY | PFR_FLAG_FEEDBACK); if (pfr_validate_table(tbl, ignore_pfrt_flags, flags & PFR_FLAG_USERIOCTL)) return (EINVAL); kt = pfr_lookup_table(tbl); if (kt == NULL || !(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (ESRCH); if (kt->pfrkt_flags & PFR_TFLAG_CONST) return (EPERM); tmpkt = pfr_create_ktable(&V_pfr_nulltable, 0, 0); if (tmpkt == NULL) return (ENOMEM); pfr_mark_addrs(kt); SLIST_INIT(&addq); SLIST_INIT(&delq); SLIST_INIT(&changeq); for (i = 0; i < size; i++) { /* * XXXGL: undertand pf_if usage of this function * and make ad a moving pointer */ bcopy(addr + i, &ad, sizeof(ad)); if (pfr_validate_addr(&ad)) senderr(EINVAL); ad.pfra_fback = PFR_FB_NONE; p = pfr_lookup_addr(kt, &ad, 1); if (p != NULL) { if (p->pfrke_mark) { ad.pfra_fback = PFR_FB_DUPLICATE; goto _skip; } p->pfrke_mark = 1; if (p->pfrke_not != ad.pfra_not) { SLIST_INSERT_HEAD(&changeq, p, pfrke_workq); ad.pfra_fback = PFR_FB_CHANGED; xchange++; } } else { q = pfr_lookup_addr(tmpkt, &ad, 1); if (q != NULL) { ad.pfra_fback = PFR_FB_DUPLICATE; goto _skip; } p = pfr_create_kentry(&ad, (kt->pfrkt_flags & PFR_TFLAG_COUNTERS) != 0); if (p == NULL) senderr(ENOMEM); if (pfr_route_kentry(tmpkt, p)) { pfr_destroy_kentry(p); ad.pfra_fback = PFR_FB_NONE; } else { SLIST_INSERT_HEAD(&addq, p, pfrke_workq); ad.pfra_fback = PFR_FB_ADDED; xadd++; } } _skip: if (flags & PFR_FLAG_FEEDBACK) bcopy(&ad, addr + i, sizeof(ad)); } pfr_enqueue_addrs(kt, &delq, &xdel, ENQUEUE_UNMARKED_ONLY); if ((flags & PFR_FLAG_FEEDBACK) && *size2) { if (*size2 < size+xdel) { *size2 = size+xdel; senderr(0); } i = 0; SLIST_FOREACH(p, &delq, pfrke_workq) { pfr_copyout_addr(&ad, p); ad.pfra_fback = PFR_FB_DELETED; bcopy(&ad, addr + size + i, sizeof(ad)); i++; } } pfr_clean_node_mask(tmpkt, &addq); if (!(flags & PFR_FLAG_DUMMY)) { pfr_insert_kentries(kt, &addq, tzero); pfr_remove_kentries(kt, &delq); pfr_clstats_kentries(kt, &changeq, tzero, INVERT_NEG_FLAG); } else pfr_destroy_kentries(&addq); if (nadd != NULL) *nadd = xadd; if (ndel != NULL) *ndel = xdel; if (nchange != NULL) *nchange = xchange; if ((flags & PFR_FLAG_FEEDBACK) && size2) *size2 = size+xdel; pfr_destroy_ktable(tmpkt, 0); return (0); _bad: pfr_clean_node_mask(tmpkt, &addq); pfr_destroy_kentries(&addq); if (flags & PFR_FLAG_FEEDBACK) pfr_reset_feedback(addr, size); pfr_destroy_ktable(tmpkt, 0); return (rv); } int pfr_tst_addrs(struct pfr_table *tbl, struct pfr_addr *addr, int size, int *nmatch, int flags) { struct pfr_ktable *kt; struct pfr_kentry *p; struct pfr_addr *ad; int i, xmatch = 0; PF_RULES_RASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_REPLACE); if (pfr_validate_table(tbl, 0, 0)) return (EINVAL); kt = pfr_lookup_table(tbl); if (kt == NULL || !(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (ESRCH); for (i = 0, ad = addr; i < size; i++, ad++) { if (pfr_validate_addr(ad)) return (EINVAL); if (ADDR_NETWORK(ad)) return (EINVAL); p = pfr_lookup_addr(kt, ad, 0); if (flags & PFR_FLAG_REPLACE) pfr_copyout_addr(ad, p); ad->pfra_fback = (p == NULL) ? PFR_FB_NONE : (p->pfrke_not ? PFR_FB_NOTMATCH : PFR_FB_MATCH); if (p != NULL && !p->pfrke_not) xmatch++; } if (nmatch != NULL) *nmatch = xmatch; return (0); } int pfr_get_addrs(struct pfr_table *tbl, struct pfr_addr *addr, int *size, int flags) { struct pfr_ktable *kt; struct pfr_walktree w; int rv; PF_RULES_RASSERT(); ACCEPT_FLAGS(flags, 0); if (pfr_validate_table(tbl, 0, 0)) return (EINVAL); kt = pfr_lookup_table(tbl); if (kt == NULL || !(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (ESRCH); if (kt->pfrkt_cnt > *size) { *size = kt->pfrkt_cnt; return (0); } bzero(&w, sizeof(w)); w.pfrw_op = PFRW_GET_ADDRS; w.pfrw_addr = addr; w.pfrw_free = kt->pfrkt_cnt; rv = kt->pfrkt_ip4->rnh_walktree(&kt->pfrkt_ip4->rh, pfr_walktree, &w); if (!rv) rv = kt->pfrkt_ip6->rnh_walktree(&kt->pfrkt_ip6->rh, pfr_walktree, &w); if (rv) return (rv); KASSERT(w.pfrw_free == 0, ("%s: corruption detected (%d)", __func__, w.pfrw_free)); *size = kt->pfrkt_cnt; return (0); } int pfr_get_astats(struct pfr_table *tbl, struct pfr_astats *addr, int *size, int flags) { struct pfr_ktable *kt; struct pfr_walktree w; struct pfr_kentryworkq workq; int rv; long tzero = time_second; PF_RULES_RASSERT(); /* XXX PFR_FLAG_CLSTATS disabled */ ACCEPT_FLAGS(flags, 0); if (pfr_validate_table(tbl, 0, 0)) return (EINVAL); kt = pfr_lookup_table(tbl); if (kt == NULL || !(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (ESRCH); if (kt->pfrkt_cnt > *size) { *size = kt->pfrkt_cnt; return (0); } bzero(&w, sizeof(w)); w.pfrw_op = PFRW_GET_ASTATS; w.pfrw_astats = addr; w.pfrw_free = kt->pfrkt_cnt; /* * Flags below are for backward compatibility. It was possible to have * a table without per-entry counters. Now they are always allocated, * we just discard data when reading it if table is not configured to * have counters. */ w.pfrw_flags = kt->pfrkt_flags; rv = kt->pfrkt_ip4->rnh_walktree(&kt->pfrkt_ip4->rh, pfr_walktree, &w); if (!rv) rv = kt->pfrkt_ip6->rnh_walktree(&kt->pfrkt_ip6->rh, pfr_walktree, &w); if (!rv && (flags & PFR_FLAG_CLSTATS)) { pfr_enqueue_addrs(kt, &workq, NULL, 0); pfr_clstats_kentries(kt, &workq, tzero, 0); } if (rv) return (rv); if (w.pfrw_free) { printf("pfr_get_astats: corruption detected (%d).\n", w.pfrw_free); return (ENOTTY); } *size = kt->pfrkt_cnt; return (0); } int pfr_clr_astats(struct pfr_table *tbl, struct pfr_addr *addr, int size, int *nzero, int flags) { struct pfr_ktable *kt; struct pfr_kentryworkq workq; struct pfr_kentry *p; struct pfr_addr *ad; int i, rv, xzero = 0; PF_RULES_WASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY | PFR_FLAG_FEEDBACK); if (pfr_validate_table(tbl, 0, 0)) return (EINVAL); kt = pfr_lookup_table(tbl); if (kt == NULL || !(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (ESRCH); SLIST_INIT(&workq); for (i = 0, ad = addr; i < size; i++, ad++) { if (pfr_validate_addr(ad)) senderr(EINVAL); p = pfr_lookup_addr(kt, ad, 1); if (flags & PFR_FLAG_FEEDBACK) { ad->pfra_fback = (p != NULL) ? PFR_FB_CLEARED : PFR_FB_NONE; } if (p != NULL) { SLIST_INSERT_HEAD(&workq, p, pfrke_workq); xzero++; } } if (!(flags & PFR_FLAG_DUMMY)) pfr_clstats_kentries(kt, &workq, 0, 0); if (nzero != NULL) *nzero = xzero; return (0); _bad: if (flags & PFR_FLAG_FEEDBACK) pfr_reset_feedback(addr, size); return (rv); } static int pfr_validate_addr(struct pfr_addr *ad) { int i; switch (ad->pfra_af) { #ifdef INET case AF_INET: if (ad->pfra_net > 32) return (-1); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (ad->pfra_net > 128) return (-1); break; #endif /* INET6 */ default: return (-1); } if (ad->pfra_net < 128 && (((caddr_t)ad)[ad->pfra_net/8] & (0xFF >> (ad->pfra_net%8)))) return (-1); for (i = (ad->pfra_net+7)/8; i < sizeof(ad->pfra_u); i++) if (((caddr_t)ad)[i]) return (-1); if (ad->pfra_not && ad->pfra_not != 1) return (-1); if (ad->pfra_fback) return (-1); return (0); } static void pfr_enqueue_addrs(struct pfr_ktable *kt, struct pfr_kentryworkq *workq, int *naddr, int sweep) { struct pfr_walktree w; SLIST_INIT(workq); bzero(&w, sizeof(w)); w.pfrw_op = sweep ? PFRW_SWEEP : PFRW_ENQUEUE; w.pfrw_workq = workq; if (kt->pfrkt_ip4 != NULL) if (kt->pfrkt_ip4->rnh_walktree(&kt->pfrkt_ip4->rh, pfr_walktree, &w)) printf("pfr_enqueue_addrs: IPv4 walktree failed.\n"); if (kt->pfrkt_ip6 != NULL) if (kt->pfrkt_ip6->rnh_walktree(&kt->pfrkt_ip6->rh, pfr_walktree, &w)) printf("pfr_enqueue_addrs: IPv6 walktree failed.\n"); if (naddr != NULL) *naddr = w.pfrw_cnt; } static void pfr_mark_addrs(struct pfr_ktable *kt) { struct pfr_walktree w; bzero(&w, sizeof(w)); w.pfrw_op = PFRW_MARK; if (kt->pfrkt_ip4->rnh_walktree(&kt->pfrkt_ip4->rh, pfr_walktree, &w)) printf("pfr_mark_addrs: IPv4 walktree failed.\n"); if (kt->pfrkt_ip6->rnh_walktree(&kt->pfrkt_ip6->rh, pfr_walktree, &w)) printf("pfr_mark_addrs: IPv6 walktree failed.\n"); } static struct pfr_kentry * pfr_lookup_addr(struct pfr_ktable *kt, struct pfr_addr *ad, int exact) { union sockaddr_union sa, mask; struct radix_head *head = NULL; struct pfr_kentry *ke; PF_RULES_ASSERT(); bzero(&sa, sizeof(sa)); if (ad->pfra_af == AF_INET) { FILLIN_SIN(sa.sin, ad->pfra_ip4addr); head = &kt->pfrkt_ip4->rh; } else if ( ad->pfra_af == AF_INET6 ) { FILLIN_SIN6(sa.sin6, ad->pfra_ip6addr); head = &kt->pfrkt_ip6->rh; } if (ADDR_NETWORK(ad)) { pfr_prepare_network(&mask, ad->pfra_af, ad->pfra_net); ke = (struct pfr_kentry *)rn_lookup(&sa, &mask, head); if (ke && KENTRY_RNF_ROOT(ke)) ke = NULL; } else { ke = (struct pfr_kentry *)rn_match(&sa, head); if (ke && KENTRY_RNF_ROOT(ke)) ke = NULL; if (exact && ke && KENTRY_NETWORK(ke)) ke = NULL; } return (ke); } static struct pfr_kentry * pfr_create_kentry(struct pfr_addr *ad, bool counters) { struct pfr_kentry *ke; counter_u64_t c; ke = uma_zalloc(V_pfr_kentry_z, M_NOWAIT | M_ZERO); if (ke == NULL) return (NULL); if (ad->pfra_af == AF_INET) FILLIN_SIN(ke->pfrke_sa.sin, ad->pfra_ip4addr); else if (ad->pfra_af == AF_INET6) FILLIN_SIN6(ke->pfrke_sa.sin6, ad->pfra_ip6addr); ke->pfrke_af = ad->pfra_af; ke->pfrke_net = ad->pfra_net; ke->pfrke_not = ad->pfra_not; ke->pfrke_counters.pfrkc_tzero = 0; if (counters) { c = uma_zalloc_pcpu(V_pfr_kentry_counter_z, M_NOWAIT | M_ZERO); if (c == NULL) { pfr_destroy_kentry(ke); return (NULL); } ke->pfrke_counters.pfrkc_counters = c; } return (ke); } static void pfr_destroy_kentries(struct pfr_kentryworkq *workq) { struct pfr_kentry *p, *q; for (p = SLIST_FIRST(workq); p != NULL; p = q) { q = SLIST_NEXT(p, pfrke_workq); pfr_destroy_kentry(p); } } static void pfr_destroy_kentry(struct pfr_kentry *ke) { counter_u64_t c; if ((c = ke->pfrke_counters.pfrkc_counters) != NULL) uma_zfree_pcpu(V_pfr_kentry_counter_z, c); uma_zfree(V_pfr_kentry_z, ke); } static void pfr_insert_kentries(struct pfr_ktable *kt, struct pfr_kentryworkq *workq, long tzero) { struct pfr_kentry *p; int rv, n = 0; SLIST_FOREACH(p, workq, pfrke_workq) { rv = pfr_route_kentry(kt, p); if (rv) { printf("pfr_insert_kentries: cannot route entry " "(code=%d).\n", rv); break; } p->pfrke_counters.pfrkc_tzero = tzero; n++; } kt->pfrkt_cnt += n; } int pfr_insert_kentry(struct pfr_ktable *kt, struct pfr_addr *ad, long tzero) { struct pfr_kentry *p; int rv; p = pfr_lookup_addr(kt, ad, 1); if (p != NULL) return (0); p = pfr_create_kentry(ad, (kt->pfrkt_flags & PFR_TFLAG_COUNTERS) != 0); if (p == NULL) return (ENOMEM); rv = pfr_route_kentry(kt, p); if (rv) return (rv); p->pfrke_counters.pfrkc_tzero = tzero; kt->pfrkt_cnt++; return (0); } static void pfr_remove_kentries(struct pfr_ktable *kt, struct pfr_kentryworkq *workq) { struct pfr_kentry *p; int n = 0; SLIST_FOREACH(p, workq, pfrke_workq) { pfr_unroute_kentry(kt, p); n++; } kt->pfrkt_cnt -= n; pfr_destroy_kentries(workq); } static void pfr_clean_node_mask(struct pfr_ktable *kt, struct pfr_kentryworkq *workq) { struct pfr_kentry *p; SLIST_FOREACH(p, workq, pfrke_workq) pfr_unroute_kentry(kt, p); } static void pfr_clstats_kentries(struct pfr_ktable *kt, struct pfr_kentryworkq *workq, long tzero, int negchange) { struct pfr_kentry *p; int i; SLIST_FOREACH(p, workq, pfrke_workq) { if (negchange) p->pfrke_not = !p->pfrke_not; if ((kt->pfrkt_flags & PFR_TFLAG_COUNTERS) != 0) for (i = 0; i < PFR_NUM_COUNTERS; i++) counter_u64_zero( p->pfrke_counters.pfrkc_counters + i); p->pfrke_counters.pfrkc_tzero = tzero; } } static void pfr_reset_feedback(struct pfr_addr *addr, int size) { struct pfr_addr *ad; int i; for (i = 0, ad = addr; i < size; i++, ad++) ad->pfra_fback = PFR_FB_NONE; } static void pfr_prepare_network(union sockaddr_union *sa, int af, int net) { int i; bzero(sa, sizeof(*sa)); if (af == AF_INET) { sa->sin.sin_len = sizeof(sa->sin); sa->sin.sin_family = AF_INET; sa->sin.sin_addr.s_addr = net ? htonl(-1 << (32-net)) : 0; } else if (af == AF_INET6) { sa->sin6.sin6_len = sizeof(sa->sin6); sa->sin6.sin6_family = AF_INET6; for (i = 0; i < 4; i++) { if (net <= 32) { sa->sin6.sin6_addr.s6_addr32[i] = net ? htonl(-1 << (32-net)) : 0; break; } sa->sin6.sin6_addr.s6_addr32[i] = 0xFFFFFFFF; net -= 32; } } } static int pfr_route_kentry(struct pfr_ktable *kt, struct pfr_kentry *ke) { union sockaddr_union mask; struct radix_node *rn; struct radix_head *head = NULL; PF_RULES_WASSERT(); bzero(ke->pfrke_node, sizeof(ke->pfrke_node)); if (ke->pfrke_af == AF_INET) head = &kt->pfrkt_ip4->rh; else if (ke->pfrke_af == AF_INET6) head = &kt->pfrkt_ip6->rh; if (KENTRY_NETWORK(ke)) { pfr_prepare_network(&mask, ke->pfrke_af, ke->pfrke_net); rn = rn_addroute(&ke->pfrke_sa, &mask, head, ke->pfrke_node); } else rn = rn_addroute(&ke->pfrke_sa, NULL, head, ke->pfrke_node); return (rn == NULL ? -1 : 0); } static int pfr_unroute_kentry(struct pfr_ktable *kt, struct pfr_kentry *ke) { union sockaddr_union mask; struct radix_node *rn; struct radix_head *head = NULL; if (ke->pfrke_af == AF_INET) head = &kt->pfrkt_ip4->rh; else if (ke->pfrke_af == AF_INET6) head = &kt->pfrkt_ip6->rh; if (KENTRY_NETWORK(ke)) { pfr_prepare_network(&mask, ke->pfrke_af, ke->pfrke_net); rn = rn_delete(&ke->pfrke_sa, &mask, head); } else rn = rn_delete(&ke->pfrke_sa, NULL, head); if (rn == NULL) { printf("pfr_unroute_kentry: delete failed.\n"); return (-1); } return (0); } static void pfr_copyout_addr(struct pfr_addr *ad, const struct pfr_kentry *ke) { bzero(ad, sizeof(*ad)); if (ke == NULL) return; ad->pfra_af = ke->pfrke_af; ad->pfra_net = ke->pfrke_net; ad->pfra_not = ke->pfrke_not; if (ad->pfra_af == AF_INET) ad->pfra_ip4addr = ke->pfrke_sa.sin.sin_addr; else if (ad->pfra_af == AF_INET6) ad->pfra_ip6addr = ke->pfrke_sa.sin6.sin6_addr; } static void pfr_copyout_astats(struct pfr_astats *as, const struct pfr_kentry *ke, const struct pfr_walktree *w) { int dir, op; const struct pfr_kcounters *kc = &ke->pfrke_counters; pfr_copyout_addr(&as->pfras_a, ke); as->pfras_tzero = kc->pfrkc_tzero; if (! (w->pfrw_flags & PFR_TFLAG_COUNTERS)) { bzero(as->pfras_packets, sizeof(as->pfras_packets)); bzero(as->pfras_bytes, sizeof(as->pfras_bytes)); as->pfras_a.pfra_fback = PFR_FB_NOCOUNT; return; } for (dir = 0; dir < PFR_DIR_MAX; dir++) { for (op = 0; op < PFR_OP_ADDR_MAX; op ++) { as->pfras_packets[dir][op] = counter_u64_fetch( pfr_kentry_counter(kc, dir, op, PFR_TYPE_PACKETS)); as->pfras_bytes[dir][op] = counter_u64_fetch( pfr_kentry_counter(kc, dir, op, PFR_TYPE_BYTES)); } } } static int pfr_walktree(struct radix_node *rn, void *arg) { struct pfr_kentry *ke = (struct pfr_kentry *)rn; struct pfr_walktree *w = arg; switch (w->pfrw_op) { case PFRW_MARK: ke->pfrke_mark = 0; break; case PFRW_SWEEP: if (ke->pfrke_mark) break; /* FALLTHROUGH */ case PFRW_ENQUEUE: SLIST_INSERT_HEAD(w->pfrw_workq, ke, pfrke_workq); w->pfrw_cnt++; break; case PFRW_GET_ADDRS: if (w->pfrw_free-- > 0) { pfr_copyout_addr(w->pfrw_addr, ke); w->pfrw_addr++; } break; case PFRW_GET_ASTATS: if (w->pfrw_free-- > 0) { struct pfr_astats as; pfr_copyout_astats(&as, ke, w); bcopy(&as, w->pfrw_astats, sizeof(as)); w->pfrw_astats++; } break; case PFRW_POOL_GET: if (ke->pfrke_not) break; /* negative entries are ignored */ if (!w->pfrw_cnt--) { w->pfrw_kentry = ke; return (1); /* finish search */ } break; case PFRW_DYNADDR_UPDATE: { union sockaddr_union pfr_mask; if (ke->pfrke_af == AF_INET) { if (w->pfrw_dyn->pfid_acnt4++ > 0) break; pfr_prepare_network(&pfr_mask, AF_INET, ke->pfrke_net); w->pfrw_dyn->pfid_addr4 = *SUNION2PF(&ke->pfrke_sa, AF_INET); w->pfrw_dyn->pfid_mask4 = *SUNION2PF(&pfr_mask, AF_INET); } else if (ke->pfrke_af == AF_INET6){ if (w->pfrw_dyn->pfid_acnt6++ > 0) break; pfr_prepare_network(&pfr_mask, AF_INET6, ke->pfrke_net); w->pfrw_dyn->pfid_addr6 = *SUNION2PF(&ke->pfrke_sa, AF_INET6); w->pfrw_dyn->pfid_mask6 = *SUNION2PF(&pfr_mask, AF_INET6); } break; } } return (0); } int pfr_clr_tables(struct pfr_table *filter, int *ndel, int flags) { struct pfr_ktableworkq workq; struct pfr_ktable *p; int xdel = 0; ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY | PFR_FLAG_ALLRSETS); if (pfr_fix_anchor(filter->pfrt_anchor)) return (EINVAL); if (pfr_table_count(filter, flags) < 0) return (ENOENT); SLIST_INIT(&workq); RB_FOREACH(p, pfr_ktablehead, &V_pfr_ktables) { if (pfr_skip_table(filter, p, flags)) continue; if (!strcmp(p->pfrkt_anchor, PF_RESERVED_ANCHOR)) continue; if (!(p->pfrkt_flags & PFR_TFLAG_ACTIVE)) continue; p->pfrkt_nflags = p->pfrkt_flags & ~PFR_TFLAG_ACTIVE; SLIST_INSERT_HEAD(&workq, p, pfrkt_workq); xdel++; } if (!(flags & PFR_FLAG_DUMMY)) pfr_setflags_ktables(&workq); if (ndel != NULL) *ndel = xdel; return (0); } int pfr_add_tables(struct pfr_table *tbl, int size, int *nadd, int flags) { struct pfr_ktableworkq addq, changeq; struct pfr_ktable *p, *q, *r, key; int i, rv, xadd = 0; long tzero = time_second; ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY); SLIST_INIT(&addq); SLIST_INIT(&changeq); for (i = 0; i < size; i++) { bcopy(tbl+i, &key.pfrkt_t, sizeof(key.pfrkt_t)); if (pfr_validate_table(&key.pfrkt_t, PFR_TFLAG_USRMASK, flags & PFR_FLAG_USERIOCTL)) senderr(EINVAL); key.pfrkt_flags |= PFR_TFLAG_ACTIVE; p = RB_FIND(pfr_ktablehead, &V_pfr_ktables, &key); if (p == NULL) { p = pfr_create_ktable(&key.pfrkt_t, tzero, 1); if (p == NULL) senderr(ENOMEM); SLIST_FOREACH(q, &addq, pfrkt_workq) { if (!pfr_ktable_compare(p, q)) { pfr_destroy_ktable(p, 0); goto _skip; } } SLIST_INSERT_HEAD(&addq, p, pfrkt_workq); xadd++; if (!key.pfrkt_anchor[0]) goto _skip; /* find or create root table */ bzero(key.pfrkt_anchor, sizeof(key.pfrkt_anchor)); r = RB_FIND(pfr_ktablehead, &V_pfr_ktables, &key); if (r != NULL) { p->pfrkt_root = r; goto _skip; } SLIST_FOREACH(q, &addq, pfrkt_workq) { if (!pfr_ktable_compare(&key, q)) { p->pfrkt_root = q; goto _skip; } } key.pfrkt_flags = 0; r = pfr_create_ktable(&key.pfrkt_t, 0, 1); if (r == NULL) senderr(ENOMEM); SLIST_INSERT_HEAD(&addq, r, pfrkt_workq); p->pfrkt_root = r; } else if (!(p->pfrkt_flags & PFR_TFLAG_ACTIVE)) { SLIST_FOREACH(q, &changeq, pfrkt_workq) if (!pfr_ktable_compare(&key, q)) goto _skip; p->pfrkt_nflags = (p->pfrkt_flags & ~PFR_TFLAG_USRMASK) | key.pfrkt_flags; SLIST_INSERT_HEAD(&changeq, p, pfrkt_workq); xadd++; } _skip: ; } if (!(flags & PFR_FLAG_DUMMY)) { pfr_insert_ktables(&addq); pfr_setflags_ktables(&changeq); } else pfr_destroy_ktables(&addq, 0); if (nadd != NULL) *nadd = xadd; return (0); _bad: pfr_destroy_ktables(&addq, 0); return (rv); } int pfr_del_tables(struct pfr_table *tbl, int size, int *ndel, int flags) { struct pfr_ktableworkq workq; struct pfr_ktable *p, *q, key; int i, xdel = 0; ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY); SLIST_INIT(&workq); for (i = 0; i < size; i++) { bcopy(tbl+i, &key.pfrkt_t, sizeof(key.pfrkt_t)); if (pfr_validate_table(&key.pfrkt_t, 0, flags & PFR_FLAG_USERIOCTL)) return (EINVAL); p = RB_FIND(pfr_ktablehead, &V_pfr_ktables, &key); if (p != NULL && (p->pfrkt_flags & PFR_TFLAG_ACTIVE)) { SLIST_FOREACH(q, &workq, pfrkt_workq) if (!pfr_ktable_compare(p, q)) goto _skip; p->pfrkt_nflags = p->pfrkt_flags & ~PFR_TFLAG_ACTIVE; SLIST_INSERT_HEAD(&workq, p, pfrkt_workq); xdel++; } _skip: ; } if (!(flags & PFR_FLAG_DUMMY)) pfr_setflags_ktables(&workq); if (ndel != NULL) *ndel = xdel; return (0); } int pfr_get_tables(struct pfr_table *filter, struct pfr_table *tbl, int *size, int flags) { struct pfr_ktable *p; int n, nn; PF_RULES_RASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_ALLRSETS); if (pfr_fix_anchor(filter->pfrt_anchor)) return (EINVAL); n = nn = pfr_table_count(filter, flags); if (n < 0) return (ENOENT); if (n > *size) { *size = n; return (0); } RB_FOREACH(p, pfr_ktablehead, &V_pfr_ktables) { if (pfr_skip_table(filter, p, flags)) continue; if (n-- <= 0) continue; bcopy(&p->pfrkt_t, tbl++, sizeof(*tbl)); } KASSERT(n == 0, ("%s: corruption detected (%d)", __func__, n)); *size = nn; return (0); } int pfr_get_tstats(struct pfr_table *filter, struct pfr_tstats *tbl, int *size, int flags) { struct pfr_ktable *p; struct pfr_ktableworkq workq; int n, nn; long tzero = time_second; int pfr_dir, pfr_op; /* XXX PFR_FLAG_CLSTATS disabled */ ACCEPT_FLAGS(flags, PFR_FLAG_ALLRSETS); if (pfr_fix_anchor(filter->pfrt_anchor)) return (EINVAL); n = nn = pfr_table_count(filter, flags); if (n < 0) return (ENOENT); if (n > *size) { *size = n; return (0); } SLIST_INIT(&workq); RB_FOREACH(p, pfr_ktablehead, &V_pfr_ktables) { if (pfr_skip_table(filter, p, flags)) continue; if (n-- <= 0) continue; bcopy(&p->pfrkt_kts.pfrts_t, &tbl->pfrts_t, sizeof(struct pfr_table)); for (pfr_dir = 0; pfr_dir < PFR_DIR_MAX; pfr_dir ++) { for (pfr_op = 0; pfr_op < PFR_OP_TABLE_MAX; pfr_op ++) { tbl->pfrts_packets[pfr_dir][pfr_op] = counter_u64_fetch( p->pfrkt_packets[pfr_dir][pfr_op]); tbl->pfrts_bytes[pfr_dir][pfr_op] = counter_u64_fetch( p->pfrkt_bytes[pfr_dir][pfr_op]); } } tbl->pfrts_match = counter_u64_fetch(p->pfrkt_match); tbl->pfrts_nomatch = counter_u64_fetch(p->pfrkt_nomatch); tbl->pfrts_tzero = p->pfrkt_tzero; tbl->pfrts_cnt = p->pfrkt_cnt; for (pfr_op = 0; pfr_op < PFR_REFCNT_MAX; pfr_op++) tbl->pfrts_refcnt[pfr_op] = p->pfrkt_refcnt[pfr_op]; tbl++; SLIST_INSERT_HEAD(&workq, p, pfrkt_workq); } if (flags & PFR_FLAG_CLSTATS) pfr_clstats_ktables(&workq, tzero, flags & PFR_FLAG_ADDRSTOO); KASSERT(n == 0, ("%s: corruption detected (%d)", __func__, n)); *size = nn; return (0); } int pfr_clr_tstats(struct pfr_table *tbl, int size, int *nzero, int flags) { struct pfr_ktableworkq workq; struct pfr_ktable *p, key; int i, xzero = 0; long tzero = time_second; ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY | PFR_FLAG_ADDRSTOO); SLIST_INIT(&workq); for (i = 0; i < size; i++) { bcopy(tbl + i, &key.pfrkt_t, sizeof(key.pfrkt_t)); if (pfr_validate_table(&key.pfrkt_t, 0, 0)) return (EINVAL); p = RB_FIND(pfr_ktablehead, &V_pfr_ktables, &key); if (p != NULL) { SLIST_INSERT_HEAD(&workq, p, pfrkt_workq); xzero++; } } if (!(flags & PFR_FLAG_DUMMY)) pfr_clstats_ktables(&workq, tzero, flags & PFR_FLAG_ADDRSTOO); if (nzero != NULL) *nzero = xzero; return (0); } int pfr_set_tflags(struct pfr_table *tbl, int size, int setflag, int clrflag, int *nchange, int *ndel, int flags) { struct pfr_ktableworkq workq; struct pfr_ktable *p, *q, key; int i, xchange = 0, xdel = 0; ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY); if ((setflag & ~PFR_TFLAG_USRMASK) || (clrflag & ~PFR_TFLAG_USRMASK) || (setflag & clrflag)) return (EINVAL); SLIST_INIT(&workq); for (i = 0; i < size; i++) { bcopy(tbl + i, &key.pfrkt_t, sizeof(key.pfrkt_t)); if (pfr_validate_table(&key.pfrkt_t, 0, flags & PFR_FLAG_USERIOCTL)) return (EINVAL); p = RB_FIND(pfr_ktablehead, &V_pfr_ktables, &key); if (p != NULL && (p->pfrkt_flags & PFR_TFLAG_ACTIVE)) { p->pfrkt_nflags = (p->pfrkt_flags | setflag) & ~clrflag; if (p->pfrkt_nflags == p->pfrkt_flags) goto _skip; SLIST_FOREACH(q, &workq, pfrkt_workq) if (!pfr_ktable_compare(p, q)) goto _skip; SLIST_INSERT_HEAD(&workq, p, pfrkt_workq); if ((p->pfrkt_flags & PFR_TFLAG_PERSIST) && (clrflag & PFR_TFLAG_PERSIST) && !(p->pfrkt_flags & PFR_TFLAG_REFERENCED)) xdel++; else xchange++; } _skip: ; } if (!(flags & PFR_FLAG_DUMMY)) pfr_setflags_ktables(&workq); if (nchange != NULL) *nchange = xchange; if (ndel != NULL) *ndel = xdel; return (0); } int pfr_ina_begin(struct pfr_table *trs, u_int32_t *ticket, int *ndel, int flags) { struct pfr_ktableworkq workq; struct pfr_ktable *p; struct pf_kruleset *rs; int xdel = 0; ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY); rs = pf_find_or_create_kruleset(trs->pfrt_anchor); if (rs == NULL) return (ENOMEM); SLIST_INIT(&workq); RB_FOREACH(p, pfr_ktablehead, &V_pfr_ktables) { if (!(p->pfrkt_flags & PFR_TFLAG_INACTIVE) || pfr_skip_table(trs, p, 0)) continue; p->pfrkt_nflags = p->pfrkt_flags & ~PFR_TFLAG_INACTIVE; SLIST_INSERT_HEAD(&workq, p, pfrkt_workq); xdel++; } if (!(flags & PFR_FLAG_DUMMY)) { pfr_setflags_ktables(&workq); if (ticket != NULL) *ticket = ++rs->tticket; rs->topen = 1; } else pf_remove_if_empty_kruleset(rs); if (ndel != NULL) *ndel = xdel; return (0); } int pfr_ina_define(struct pfr_table *tbl, struct pfr_addr *addr, int size, int *nadd, int *naddr, u_int32_t ticket, int flags) { struct pfr_ktableworkq tableq; struct pfr_kentryworkq addrq; struct pfr_ktable *kt, *rt, *shadow, key; struct pfr_kentry *p; struct pfr_addr *ad; struct pf_kruleset *rs; int i, rv, xadd = 0, xaddr = 0; PF_RULES_WASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY | PFR_FLAG_ADDRSTOO); if (size && !(flags & PFR_FLAG_ADDRSTOO)) return (EINVAL); if (pfr_validate_table(tbl, PFR_TFLAG_USRMASK, flags & PFR_FLAG_USERIOCTL)) return (EINVAL); rs = pf_find_kruleset(tbl->pfrt_anchor); if (rs == NULL || !rs->topen || ticket != rs->tticket) return (EBUSY); tbl->pfrt_flags |= PFR_TFLAG_INACTIVE; SLIST_INIT(&tableq); kt = RB_FIND(pfr_ktablehead, &V_pfr_ktables, (struct pfr_ktable *)tbl); if (kt == NULL) { kt = pfr_create_ktable(tbl, 0, 1); if (kt == NULL) return (ENOMEM); SLIST_INSERT_HEAD(&tableq, kt, pfrkt_workq); xadd++; if (!tbl->pfrt_anchor[0]) goto _skip; /* find or create root table */ bzero(&key, sizeof(key)); strlcpy(key.pfrkt_name, tbl->pfrt_name, sizeof(key.pfrkt_name)); rt = RB_FIND(pfr_ktablehead, &V_pfr_ktables, &key); if (rt != NULL) { kt->pfrkt_root = rt; goto _skip; } rt = pfr_create_ktable(&key.pfrkt_t, 0, 1); if (rt == NULL) { pfr_destroy_ktables(&tableq, 0); return (ENOMEM); } SLIST_INSERT_HEAD(&tableq, rt, pfrkt_workq); kt->pfrkt_root = rt; } else if (!(kt->pfrkt_flags & PFR_TFLAG_INACTIVE)) xadd++; _skip: shadow = pfr_create_ktable(tbl, 0, 0); if (shadow == NULL) { pfr_destroy_ktables(&tableq, 0); return (ENOMEM); } SLIST_INIT(&addrq); for (i = 0, ad = addr; i < size; i++, ad++) { if (pfr_validate_addr(ad)) senderr(EINVAL); if (pfr_lookup_addr(shadow, ad, 1) != NULL) continue; p = pfr_create_kentry(ad, (shadow->pfrkt_flags & PFR_TFLAG_COUNTERS) != 0); if (p == NULL) senderr(ENOMEM); if (pfr_route_kentry(shadow, p)) { pfr_destroy_kentry(p); continue; } SLIST_INSERT_HEAD(&addrq, p, pfrke_workq); xaddr++; } if (!(flags & PFR_FLAG_DUMMY)) { if (kt->pfrkt_shadow != NULL) pfr_destroy_ktable(kt->pfrkt_shadow, 1); kt->pfrkt_flags |= PFR_TFLAG_INACTIVE; pfr_insert_ktables(&tableq); shadow->pfrkt_cnt = (flags & PFR_FLAG_ADDRSTOO) ? xaddr : NO_ADDRESSES; kt->pfrkt_shadow = shadow; } else { pfr_clean_node_mask(shadow, &addrq); pfr_destroy_ktable(shadow, 0); pfr_destroy_ktables(&tableq, 0); pfr_destroy_kentries(&addrq); } if (nadd != NULL) *nadd = xadd; if (naddr != NULL) *naddr = xaddr; return (0); _bad: pfr_destroy_ktable(shadow, 0); pfr_destroy_ktables(&tableq, 0); pfr_destroy_kentries(&addrq); return (rv); } int pfr_ina_rollback(struct pfr_table *trs, u_int32_t ticket, int *ndel, int flags) { struct pfr_ktableworkq workq; struct pfr_ktable *p; struct pf_kruleset *rs; int xdel = 0; PF_RULES_WASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY); rs = pf_find_kruleset(trs->pfrt_anchor); if (rs == NULL || !rs->topen || ticket != rs->tticket) return (0); SLIST_INIT(&workq); RB_FOREACH(p, pfr_ktablehead, &V_pfr_ktables) { if (!(p->pfrkt_flags & PFR_TFLAG_INACTIVE) || pfr_skip_table(trs, p, 0)) continue; p->pfrkt_nflags = p->pfrkt_flags & ~PFR_TFLAG_INACTIVE; SLIST_INSERT_HEAD(&workq, p, pfrkt_workq); xdel++; } if (!(flags & PFR_FLAG_DUMMY)) { pfr_setflags_ktables(&workq); rs->topen = 0; pf_remove_if_empty_kruleset(rs); } if (ndel != NULL) *ndel = xdel; return (0); } int pfr_ina_commit(struct pfr_table *trs, u_int32_t ticket, int *nadd, int *nchange, int flags) { struct pfr_ktable *p, *q; struct pfr_ktableworkq workq; struct pf_kruleset *rs; int xadd = 0, xchange = 0; long tzero = time_second; PF_RULES_WASSERT(); ACCEPT_FLAGS(flags, PFR_FLAG_DUMMY); rs = pf_find_kruleset(trs->pfrt_anchor); if (rs == NULL || !rs->topen || ticket != rs->tticket) return (EBUSY); SLIST_INIT(&workq); RB_FOREACH(p, pfr_ktablehead, &V_pfr_ktables) { if (!(p->pfrkt_flags & PFR_TFLAG_INACTIVE) || pfr_skip_table(trs, p, 0)) continue; SLIST_INSERT_HEAD(&workq, p, pfrkt_workq); if (p->pfrkt_flags & PFR_TFLAG_ACTIVE) xchange++; else xadd++; } if (!(flags & PFR_FLAG_DUMMY)) { for (p = SLIST_FIRST(&workq); p != NULL; p = q) { q = SLIST_NEXT(p, pfrkt_workq); pfr_commit_ktable(p, tzero); } rs->topen = 0; pf_remove_if_empty_kruleset(rs); } if (nadd != NULL) *nadd = xadd; if (nchange != NULL) *nchange = xchange; return (0); } static void pfr_commit_ktable(struct pfr_ktable *kt, long tzero) { counter_u64_t *pkc, *qkc; struct pfr_ktable *shadow = kt->pfrkt_shadow; int nflags; PF_RULES_WASSERT(); if (shadow->pfrkt_cnt == NO_ADDRESSES) { if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) pfr_clstats_ktable(kt, tzero, 1); } else if (kt->pfrkt_flags & PFR_TFLAG_ACTIVE) { /* kt might contain addresses */ struct pfr_kentryworkq addrq, addq, changeq, delq, garbageq; struct pfr_kentry *p, *q, *next; struct pfr_addr ad; pfr_enqueue_addrs(shadow, &addrq, NULL, 0); pfr_mark_addrs(kt); SLIST_INIT(&addq); SLIST_INIT(&changeq); SLIST_INIT(&delq); SLIST_INIT(&garbageq); pfr_clean_node_mask(shadow, &addrq); SLIST_FOREACH_SAFE(p, &addrq, pfrke_workq, next) { pfr_copyout_addr(&ad, p); q = pfr_lookup_addr(kt, &ad, 1); if (q != NULL) { if (q->pfrke_not != p->pfrke_not) SLIST_INSERT_HEAD(&changeq, q, pfrke_workq); pkc = &p->pfrke_counters.pfrkc_counters; qkc = &q->pfrke_counters.pfrkc_counters; if ((*pkc == NULL) != (*qkc == NULL)) SWAP(counter_u64_t, *pkc, *qkc); q->pfrke_mark = 1; SLIST_INSERT_HEAD(&garbageq, p, pfrke_workq); } else { p->pfrke_counters.pfrkc_tzero = tzero; SLIST_INSERT_HEAD(&addq, p, pfrke_workq); } } pfr_enqueue_addrs(kt, &delq, NULL, ENQUEUE_UNMARKED_ONLY); pfr_insert_kentries(kt, &addq, tzero); pfr_remove_kentries(kt, &delq); pfr_clstats_kentries(kt, &changeq, tzero, INVERT_NEG_FLAG); pfr_destroy_kentries(&garbageq); } else { /* kt cannot contain addresses */ SWAP(struct radix_node_head *, kt->pfrkt_ip4, shadow->pfrkt_ip4); SWAP(struct radix_node_head *, kt->pfrkt_ip6, shadow->pfrkt_ip6); SWAP(int, kt->pfrkt_cnt, shadow->pfrkt_cnt); pfr_clstats_ktable(kt, tzero, 1); } nflags = ((shadow->pfrkt_flags & PFR_TFLAG_USRMASK) | (kt->pfrkt_flags & PFR_TFLAG_SETMASK) | PFR_TFLAG_ACTIVE) & ~PFR_TFLAG_INACTIVE; pfr_destroy_ktable(shadow, 0); kt->pfrkt_shadow = NULL; pfr_setflags_ktable(kt, nflags); } static int pfr_validate_table(struct pfr_table *tbl, int allowedflags, int no_reserved) { int i; if (!tbl->pfrt_name[0]) return (-1); if (no_reserved && !strcmp(tbl->pfrt_anchor, PF_RESERVED_ANCHOR)) return (-1); if (tbl->pfrt_name[PF_TABLE_NAME_SIZE-1]) return (-1); for (i = strlen(tbl->pfrt_name); i < PF_TABLE_NAME_SIZE; i++) if (tbl->pfrt_name[i]) return (-1); if (pfr_fix_anchor(tbl->pfrt_anchor)) return (-1); if (tbl->pfrt_flags & ~allowedflags) return (-1); return (0); } /* * Rewrite anchors referenced by tables to remove slashes * and check for validity. */ static int pfr_fix_anchor(char *anchor) { size_t siz = MAXPATHLEN; int i; if (anchor[0] == '/') { char *path; int off; path = anchor; off = 1; while (*++path == '/') off++; bcopy(path, anchor, siz - off); memset(anchor + siz - off, 0, off); } if (anchor[siz - 1]) return (-1); for (i = strlen(anchor); i < siz; i++) if (anchor[i]) return (-1); return (0); } int pfr_table_count(struct pfr_table *filter, int flags) { struct pf_kruleset *rs; PF_RULES_ASSERT(); if (flags & PFR_FLAG_ALLRSETS) return (V_pfr_ktable_cnt); if (filter->pfrt_anchor[0]) { rs = pf_find_kruleset(filter->pfrt_anchor); return ((rs != NULL) ? rs->tables : -1); } return (pf_main_ruleset.tables); } static int pfr_skip_table(struct pfr_table *filter, struct pfr_ktable *kt, int flags) { if (flags & PFR_FLAG_ALLRSETS) return (0); if (strcmp(filter->pfrt_anchor, kt->pfrkt_anchor)) return (1); return (0); } static void pfr_insert_ktables(struct pfr_ktableworkq *workq) { struct pfr_ktable *p; SLIST_FOREACH(p, workq, pfrkt_workq) pfr_insert_ktable(p); } static void pfr_insert_ktable(struct pfr_ktable *kt) { PF_RULES_WASSERT(); RB_INSERT(pfr_ktablehead, &V_pfr_ktables, kt); V_pfr_ktable_cnt++; if (kt->pfrkt_root != NULL) if (!kt->pfrkt_root->pfrkt_refcnt[PFR_REFCNT_ANCHOR]++) pfr_setflags_ktable(kt->pfrkt_root, kt->pfrkt_root->pfrkt_flags|PFR_TFLAG_REFDANCHOR); } static void pfr_setflags_ktables(struct pfr_ktableworkq *workq) { struct pfr_ktable *p, *q; for (p = SLIST_FIRST(workq); p; p = q) { q = SLIST_NEXT(p, pfrkt_workq); pfr_setflags_ktable(p, p->pfrkt_nflags); } } static void pfr_setflags_ktable(struct pfr_ktable *kt, int newf) { struct pfr_kentryworkq addrq; PF_RULES_WASSERT(); if (!(newf & PFR_TFLAG_REFERENCED) && !(newf & PFR_TFLAG_REFDANCHOR) && !(newf & PFR_TFLAG_PERSIST)) newf &= ~PFR_TFLAG_ACTIVE; if (!(newf & PFR_TFLAG_ACTIVE)) newf &= ~PFR_TFLAG_USRMASK; if (!(newf & PFR_TFLAG_SETMASK)) { RB_REMOVE(pfr_ktablehead, &V_pfr_ktables, kt); if (kt->pfrkt_root != NULL) if (!--kt->pfrkt_root->pfrkt_refcnt[PFR_REFCNT_ANCHOR]) pfr_setflags_ktable(kt->pfrkt_root, kt->pfrkt_root->pfrkt_flags & ~PFR_TFLAG_REFDANCHOR); pfr_destroy_ktable(kt, 1); V_pfr_ktable_cnt--; return; } if (!(newf & PFR_TFLAG_ACTIVE) && kt->pfrkt_cnt) { pfr_enqueue_addrs(kt, &addrq, NULL, 0); pfr_remove_kentries(kt, &addrq); } if (!(newf & PFR_TFLAG_INACTIVE) && kt->pfrkt_shadow != NULL) { pfr_destroy_ktable(kt->pfrkt_shadow, 1); kt->pfrkt_shadow = NULL; } kt->pfrkt_flags = newf; } static void pfr_clstats_ktables(struct pfr_ktableworkq *workq, long tzero, int recurse) { struct pfr_ktable *p; SLIST_FOREACH(p, workq, pfrkt_workq) pfr_clstats_ktable(p, tzero, recurse); } static void pfr_clstats_ktable(struct pfr_ktable *kt, long tzero, int recurse) { struct pfr_kentryworkq addrq; int pfr_dir, pfr_op; if (recurse) { pfr_enqueue_addrs(kt, &addrq, NULL, 0); pfr_clstats_kentries(kt, &addrq, tzero, 0); } for (pfr_dir = 0; pfr_dir < PFR_DIR_MAX; pfr_dir ++) { for (pfr_op = 0; pfr_op < PFR_OP_TABLE_MAX; pfr_op ++) { counter_u64_zero(kt->pfrkt_packets[pfr_dir][pfr_op]); counter_u64_zero(kt->pfrkt_bytes[pfr_dir][pfr_op]); } } counter_u64_zero(kt->pfrkt_match); counter_u64_zero(kt->pfrkt_nomatch); kt->pfrkt_tzero = tzero; } static struct pfr_ktable * pfr_create_ktable(struct pfr_table *tbl, long tzero, int attachruleset) { struct pfr_ktable *kt; struct pf_kruleset *rs; int pfr_dir, pfr_op; PF_RULES_WASSERT(); kt = malloc(sizeof(*kt), M_PFTABLE, M_NOWAIT|M_ZERO); if (kt == NULL) return (NULL); kt->pfrkt_t = *tbl; if (attachruleset) { rs = pf_find_or_create_kruleset(tbl->pfrt_anchor); if (!rs) { pfr_destroy_ktable(kt, 0); return (NULL); } kt->pfrkt_rs = rs; rs->tables++; } for (pfr_dir = 0; pfr_dir < PFR_DIR_MAX; pfr_dir ++) { for (pfr_op = 0; pfr_op < PFR_OP_TABLE_MAX; pfr_op ++) { kt->pfrkt_packets[pfr_dir][pfr_op] = counter_u64_alloc(M_NOWAIT); if (! kt->pfrkt_packets[pfr_dir][pfr_op]) { pfr_destroy_ktable(kt, 0); return (NULL); } kt->pfrkt_bytes[pfr_dir][pfr_op] = counter_u64_alloc(M_NOWAIT); if (! kt->pfrkt_bytes[pfr_dir][pfr_op]) { pfr_destroy_ktable(kt, 0); return (NULL); } } } kt->pfrkt_match = counter_u64_alloc(M_NOWAIT); if (! kt->pfrkt_match) { pfr_destroy_ktable(kt, 0); return (NULL); } kt->pfrkt_nomatch = counter_u64_alloc(M_NOWAIT); if (! kt->pfrkt_nomatch) { pfr_destroy_ktable(kt, 0); return (NULL); } if (!rn_inithead((void **)&kt->pfrkt_ip4, offsetof(struct sockaddr_in, sin_addr) * 8) || !rn_inithead((void **)&kt->pfrkt_ip6, offsetof(struct sockaddr_in6, sin6_addr) * 8)) { pfr_destroy_ktable(kt, 0); return (NULL); } kt->pfrkt_tzero = tzero; return (kt); } static void pfr_destroy_ktables(struct pfr_ktableworkq *workq, int flushaddr) { struct pfr_ktable *p, *q; for (p = SLIST_FIRST(workq); p; p = q) { q = SLIST_NEXT(p, pfrkt_workq); pfr_destroy_ktable(p, flushaddr); } } static void pfr_destroy_ktable(struct pfr_ktable *kt, int flushaddr) { struct pfr_kentryworkq addrq; int pfr_dir, pfr_op; if (flushaddr) { pfr_enqueue_addrs(kt, &addrq, NULL, 0); pfr_clean_node_mask(kt, &addrq); pfr_destroy_kentries(&addrq); } if (kt->pfrkt_ip4 != NULL) rn_detachhead((void **)&kt->pfrkt_ip4); if (kt->pfrkt_ip6 != NULL) rn_detachhead((void **)&kt->pfrkt_ip6); if (kt->pfrkt_shadow != NULL) pfr_destroy_ktable(kt->pfrkt_shadow, flushaddr); if (kt->pfrkt_rs != NULL) { kt->pfrkt_rs->tables--; pf_remove_if_empty_kruleset(kt->pfrkt_rs); } for (pfr_dir = 0; pfr_dir < PFR_DIR_MAX; pfr_dir ++) { for (pfr_op = 0; pfr_op < PFR_OP_TABLE_MAX; pfr_op ++) { counter_u64_free(kt->pfrkt_packets[pfr_dir][pfr_op]); counter_u64_free(kt->pfrkt_bytes[pfr_dir][pfr_op]); } } counter_u64_free(kt->pfrkt_match); counter_u64_free(kt->pfrkt_nomatch); free(kt, M_PFTABLE); } static int pfr_ktable_compare(struct pfr_ktable *p, struct pfr_ktable *q) { int d; if ((d = strncmp(p->pfrkt_name, q->pfrkt_name, PF_TABLE_NAME_SIZE))) return (d); return (strcmp(p->pfrkt_anchor, q->pfrkt_anchor)); } static struct pfr_ktable * pfr_lookup_table(struct pfr_table *tbl) { /* struct pfr_ktable start like a struct pfr_table */ return (RB_FIND(pfr_ktablehead, &V_pfr_ktables, (struct pfr_ktable *)tbl)); } int pfr_match_addr(struct pfr_ktable *kt, struct pf_addr *a, sa_family_t af) { struct pfr_kentry *ke = NULL; int match; PF_RULES_RASSERT(); if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) kt = kt->pfrkt_root; if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (0); switch (af) { #ifdef INET case AF_INET: { struct sockaddr_in sin; bzero(&sin, sizeof(sin)); sin.sin_len = sizeof(sin); sin.sin_family = AF_INET; sin.sin_addr.s_addr = a->addr32[0]; ke = (struct pfr_kentry *)rn_match(&sin, &kt->pfrkt_ip4->rh); if (ke && KENTRY_RNF_ROOT(ke)) ke = NULL; break; } #endif /* INET */ #ifdef INET6 case AF_INET6: { struct sockaddr_in6 sin6; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(sin6); sin6.sin6_family = AF_INET6; bcopy(a, &sin6.sin6_addr, sizeof(sin6.sin6_addr)); ke = (struct pfr_kentry *)rn_match(&sin6, &kt->pfrkt_ip6->rh); if (ke && KENTRY_RNF_ROOT(ke)) ke = NULL; break; } #endif /* INET6 */ } match = (ke && !ke->pfrke_not); if (match) counter_u64_add(kt->pfrkt_match, 1); else counter_u64_add(kt->pfrkt_nomatch, 1); return (match); } void pfr_update_stats(struct pfr_ktable *kt, struct pf_addr *a, sa_family_t af, u_int64_t len, int dir_out, int op_pass, int notrule) { struct pfr_kentry *ke = NULL; if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) kt = kt->pfrkt_root; if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return; switch (af) { #ifdef INET case AF_INET: { struct sockaddr_in sin; bzero(&sin, sizeof(sin)); sin.sin_len = sizeof(sin); sin.sin_family = AF_INET; sin.sin_addr.s_addr = a->addr32[0]; ke = (struct pfr_kentry *)rn_match(&sin, &kt->pfrkt_ip4->rh); if (ke && KENTRY_RNF_ROOT(ke)) ke = NULL; break; } #endif /* INET */ #ifdef INET6 case AF_INET6: { struct sockaddr_in6 sin6; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(sin6); sin6.sin6_family = AF_INET6; bcopy(a, &sin6.sin6_addr, sizeof(sin6.sin6_addr)); ke = (struct pfr_kentry *)rn_match(&sin6, &kt->pfrkt_ip6->rh); if (ke && KENTRY_RNF_ROOT(ke)) ke = NULL; break; } #endif /* INET6 */ default: panic("%s: unknown address family %u", __func__, af); } if ((ke == NULL || ke->pfrke_not) != notrule) { if (op_pass != PFR_OP_PASS) DPFPRINTF(PF_DEBUG_URGENT, ("pfr_update_stats: assertion failed.\n")); op_pass = PFR_OP_XPASS; } counter_u64_add(kt->pfrkt_packets[dir_out][op_pass], 1); counter_u64_add(kt->pfrkt_bytes[dir_out][op_pass], len); if (ke != NULL && op_pass != PFR_OP_XPASS && (kt->pfrkt_flags & PFR_TFLAG_COUNTERS)) { counter_u64_add(pfr_kentry_counter(&ke->pfrke_counters, dir_out, op_pass, PFR_TYPE_PACKETS), 1); counter_u64_add(pfr_kentry_counter(&ke->pfrke_counters, dir_out, op_pass, PFR_TYPE_BYTES), len); } } struct pfr_ktable * pfr_attach_table(struct pf_kruleset *rs, char *name) { struct pfr_ktable *kt, *rt; struct pfr_table tbl; struct pf_kanchor *ac = rs->anchor; PF_RULES_WASSERT(); bzero(&tbl, sizeof(tbl)); strlcpy(tbl.pfrt_name, name, sizeof(tbl.pfrt_name)); if (ac != NULL) strlcpy(tbl.pfrt_anchor, ac->path, sizeof(tbl.pfrt_anchor)); kt = pfr_lookup_table(&tbl); if (kt == NULL) { kt = pfr_create_ktable(&tbl, time_second, 1); if (kt == NULL) return (NULL); if (ac != NULL) { bzero(tbl.pfrt_anchor, sizeof(tbl.pfrt_anchor)); rt = pfr_lookup_table(&tbl); if (rt == NULL) { rt = pfr_create_ktable(&tbl, 0, 1); if (rt == NULL) { pfr_destroy_ktable(kt, 0); return (NULL); } pfr_insert_ktable(rt); } kt->pfrkt_root = rt; } pfr_insert_ktable(kt); } if (!kt->pfrkt_refcnt[PFR_REFCNT_RULE]++) pfr_setflags_ktable(kt, kt->pfrkt_flags|PFR_TFLAG_REFERENCED); return (kt); } void pfr_detach_table(struct pfr_ktable *kt) { PF_RULES_WASSERT(); KASSERT(kt->pfrkt_refcnt[PFR_REFCNT_RULE] > 0, ("%s: refcount %d\n", __func__, kt->pfrkt_refcnt[PFR_REFCNT_RULE])); if (!--kt->pfrkt_refcnt[PFR_REFCNT_RULE]) pfr_setflags_ktable(kt, kt->pfrkt_flags&~PFR_TFLAG_REFERENCED); } int pfr_pool_get(struct pfr_ktable *kt, int *pidx, struct pf_addr *counter, sa_family_t af) { struct pf_addr *addr, *cur, *mask; union sockaddr_union uaddr, umask; struct pfr_kentry *ke, *ke2 = NULL; int idx = -1, use_counter = 0; switch (af) { case AF_INET: uaddr.sin.sin_len = sizeof(struct sockaddr_in); uaddr.sin.sin_family = AF_INET; break; case AF_INET6: uaddr.sin6.sin6_len = sizeof(struct sockaddr_in6); uaddr.sin6.sin6_family = AF_INET6; break; } addr = SUNION2PF(&uaddr, af); if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) kt = kt->pfrkt_root; if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE)) return (-1); if (pidx != NULL) idx = *pidx; if (counter != NULL && idx >= 0) use_counter = 1; if (idx < 0) idx = 0; _next_block: ke = pfr_kentry_byidx(kt, idx, af); if (ke == NULL) { counter_u64_add(kt->pfrkt_nomatch, 1); return (1); } pfr_prepare_network(&umask, af, ke->pfrke_net); cur = SUNION2PF(&ke->pfrke_sa, af); mask = SUNION2PF(&umask, af); if (use_counter) { /* is supplied address within block? */ if (!PF_MATCHA(0, cur, mask, counter, af)) { /* no, go to next block in table */ idx++; use_counter = 0; goto _next_block; } PF_ACPY(addr, counter, af); } else { /* use first address of block */ PF_ACPY(addr, cur, af); } if (!KENTRY_NETWORK(ke)) { /* this is a single IP address - no possible nested block */ PF_ACPY(counter, addr, af); *pidx = idx; counter_u64_add(kt->pfrkt_match, 1); return (0); } for (;;) { /* we don't want to use a nested block */ switch (af) { case AF_INET: ke2 = (struct pfr_kentry *)rn_match(&uaddr, &kt->pfrkt_ip4->rh); break; case AF_INET6: ke2 = (struct pfr_kentry *)rn_match(&uaddr, &kt->pfrkt_ip6->rh); break; } /* no need to check KENTRY_RNF_ROOT() here */ if (ke2 == ke) { /* lookup return the same block - perfect */ PF_ACPY(counter, addr, af); *pidx = idx; counter_u64_add(kt->pfrkt_match, 1); return (0); } /* we need to increase the counter past the nested block */ pfr_prepare_network(&umask, AF_INET, ke2->pfrke_net); PF_POOLMASK(addr, addr, SUNION2PF(&umask, af), &pfr_ffaddr, af); PF_AINC(addr, af); if (!PF_MATCHA(0, cur, mask, addr, af)) { /* ok, we reached the end of our main block */ /* go to next block in table */ idx++; use_counter = 0; goto _next_block; } } } static struct pfr_kentry * pfr_kentry_byidx(struct pfr_ktable *kt, int idx, int af) { struct pfr_walktree w; bzero(&w, sizeof(w)); w.pfrw_op = PFRW_POOL_GET; w.pfrw_cnt = idx; switch (af) { #ifdef INET case AF_INET: kt->pfrkt_ip4->rnh_walktree(&kt->pfrkt_ip4->rh, pfr_walktree, &w); return (w.pfrw_kentry); #endif /* INET */ #ifdef INET6 case AF_INET6: kt->pfrkt_ip6->rnh_walktree(&kt->pfrkt_ip6->rh, pfr_walktree, &w); return (w.pfrw_kentry); #endif /* INET6 */ default: return (NULL); } } void pfr_dynaddr_update(struct pfr_ktable *kt, struct pfi_dynaddr *dyn) { struct pfr_walktree w; bzero(&w, sizeof(w)); w.pfrw_op = PFRW_DYNADDR_UPDATE; w.pfrw_dyn = dyn; dyn->pfid_acnt4 = 0; dyn->pfid_acnt6 = 0; if (!dyn->pfid_af || dyn->pfid_af == AF_INET) kt->pfrkt_ip4->rnh_walktree(&kt->pfrkt_ip4->rh, pfr_walktree, &w); if (!dyn->pfid_af || dyn->pfid_af == AF_INET6) kt->pfrkt_ip6->rnh_walktree(&kt->pfrkt_ip6->rh, pfr_walktree, &w); }