/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2015-2020 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "txgbe_logs.h" #include "base/txgbe.h" #include "txgbe_ethdev.h" #include "txgbe_rxtx.h" #ifdef RTE_LIBRTE_IEEE1588 #define TXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST #else #define TXGBE_TX_IEEE1588_TMST 0 #endif /* Bit Mask to indicate what bits required for building TX context */ static const u64 TXGBE_TX_OFFLOAD_MASK = (PKT_TX_IP_CKSUM | PKT_TX_OUTER_IPV6 | PKT_TX_OUTER_IPV4 | PKT_TX_IPV6 | PKT_TX_IPV4 | PKT_TX_VLAN_PKT | PKT_TX_L4_MASK | PKT_TX_TCP_SEG | PKT_TX_TUNNEL_MASK | PKT_TX_OUTER_IP_CKSUM | TXGBE_TX_IEEE1588_TMST); #define TXGBE_TX_OFFLOAD_NOTSUP_MASK \ (PKT_TX_OFFLOAD_MASK ^ TXGBE_TX_OFFLOAD_MASK) /* * Prefetch a cache line into all cache levels. */ #define rte_txgbe_prefetch(p) rte_prefetch0(p) static int txgbe_is_vf(struct rte_eth_dev *dev) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); switch (hw->mac.type) { case txgbe_mac_raptor_vf: return 1; default: return 0; } } /********************************************************************* * * TX functions * **********************************************************************/ /* * Check for descriptors with their DD bit set and free mbufs. * Return the total number of buffers freed. */ static __rte_always_inline int txgbe_tx_free_bufs(struct txgbe_tx_queue *txq) { struct txgbe_tx_entry *txep; uint32_t status; int i, nb_free = 0; struct rte_mbuf *m, *free[RTE_TXGBE_TX_MAX_FREE_BUF_SZ]; /* check DD bit on threshold descriptor */ status = txq->tx_ring[txq->tx_next_dd].dw3; if (!(status & rte_cpu_to_le_32(TXGBE_TXD_DD))) { if (txq->nb_tx_free >> 1 < txq->tx_free_thresh) txgbe_set32_masked(txq->tdc_reg_addr, TXGBE_TXCFG_FLUSH, TXGBE_TXCFG_FLUSH); return 0; } /* * first buffer to free from S/W ring is at index * tx_next_dd - (tx_free_thresh-1) */ txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_free_thresh - 1)]; for (i = 0; i < txq->tx_free_thresh; ++i, ++txep) { /* free buffers one at a time */ m = rte_pktmbuf_prefree_seg(txep->mbuf); txep->mbuf = NULL; if (unlikely(m == NULL)) continue; if (nb_free >= RTE_TXGBE_TX_MAX_FREE_BUF_SZ || (nb_free > 0 && m->pool != free[0]->pool)) { rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free); nb_free = 0; } free[nb_free++] = m; } if (nb_free > 0) rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free); /* buffers were freed, update counters */ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_free_thresh); txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_free_thresh); if (txq->tx_next_dd >= txq->nb_tx_desc) txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1); return txq->tx_free_thresh; } /* Populate 4 descriptors with data from 4 mbufs */ static inline void tx4(volatile struct txgbe_tx_desc *txdp, struct rte_mbuf **pkts) { uint64_t buf_dma_addr; uint32_t pkt_len; int i; for (i = 0; i < 4; ++i, ++txdp, ++pkts) { buf_dma_addr = rte_mbuf_data_iova(*pkts); pkt_len = (*pkts)->data_len; /* write data to descriptor */ txdp->qw0 = rte_cpu_to_le_64(buf_dma_addr); txdp->dw2 = cpu_to_le32(TXGBE_TXD_FLAGS | TXGBE_TXD_DATLEN(pkt_len)); txdp->dw3 = cpu_to_le32(TXGBE_TXD_PAYLEN(pkt_len)); rte_prefetch0(&(*pkts)->pool); } } /* Populate 1 descriptor with data from 1 mbuf */ static inline void tx1(volatile struct txgbe_tx_desc *txdp, struct rte_mbuf **pkts) { uint64_t buf_dma_addr; uint32_t pkt_len; buf_dma_addr = rte_mbuf_data_iova(*pkts); pkt_len = (*pkts)->data_len; /* write data to descriptor */ txdp->qw0 = cpu_to_le64(buf_dma_addr); txdp->dw2 = cpu_to_le32(TXGBE_TXD_FLAGS | TXGBE_TXD_DATLEN(pkt_len)); txdp->dw3 = cpu_to_le32(TXGBE_TXD_PAYLEN(pkt_len)); rte_prefetch0(&(*pkts)->pool); } /* * Fill H/W descriptor ring with mbuf data. * Copy mbuf pointers to the S/W ring. */ static inline void txgbe_tx_fill_hw_ring(struct txgbe_tx_queue *txq, struct rte_mbuf **pkts, uint16_t nb_pkts) { volatile struct txgbe_tx_desc *txdp = &txq->tx_ring[txq->tx_tail]; struct txgbe_tx_entry *txep = &txq->sw_ring[txq->tx_tail]; const int N_PER_LOOP = 4; const int N_PER_LOOP_MASK = N_PER_LOOP - 1; int mainpart, leftover; int i, j; /* * Process most of the packets in chunks of N pkts. Any * leftover packets will get processed one at a time. */ mainpart = (nb_pkts & ((uint32_t)~N_PER_LOOP_MASK)); leftover = (nb_pkts & ((uint32_t)N_PER_LOOP_MASK)); for (i = 0; i < mainpart; i += N_PER_LOOP) { /* Copy N mbuf pointers to the S/W ring */ for (j = 0; j < N_PER_LOOP; ++j) (txep + i + j)->mbuf = *(pkts + i + j); tx4(txdp + i, pkts + i); } if (unlikely(leftover > 0)) { for (i = 0; i < leftover; ++i) { (txep + mainpart + i)->mbuf = *(pkts + mainpart + i); tx1(txdp + mainpart + i, pkts + mainpart + i); } } } static inline uint16_t tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct txgbe_tx_queue *txq = (struct txgbe_tx_queue *)tx_queue; uint16_t n = 0; /* * Begin scanning the H/W ring for done descriptors when the * number of available descriptors drops below tx_free_thresh. For * each done descriptor, free the associated buffer. */ if (txq->nb_tx_free < txq->tx_free_thresh) txgbe_tx_free_bufs(txq); /* Only use descriptors that are available */ nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); if (unlikely(nb_pkts == 0)) return 0; /* Use exactly nb_pkts descriptors */ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); /* * At this point, we know there are enough descriptors in the * ring to transmit all the packets. This assumes that each * mbuf contains a single segment, and that no new offloads * are expected, which would require a new context descriptor. */ /* * See if we're going to wrap-around. If so, handle the top * of the descriptor ring first, then do the bottom. If not, * the processing looks just like the "bottom" part anyway... */ if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) { n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail); txgbe_tx_fill_hw_ring(txq, tx_pkts, n); txq->tx_tail = 0; } /* Fill H/W descriptor ring with mbuf data */ txgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n)); txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n)); /* * Check for wrap-around. This would only happen if we used * up to the last descriptor in the ring, no more, no less. */ if (txq->tx_tail >= txq->nb_tx_desc) txq->tx_tail = 0; PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", (uint16_t)txq->port_id, (uint16_t)txq->queue_id, (uint16_t)txq->tx_tail, (uint16_t)nb_pkts); /* update tail pointer */ rte_wmb(); txgbe_set32_relaxed(txq->tdt_reg_addr, txq->tx_tail); return nb_pkts; } uint16_t txgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { uint16_t nb_tx; /* Try to transmit at least chunks of TX_MAX_BURST pkts */ if (likely(nb_pkts <= RTE_PMD_TXGBE_TX_MAX_BURST)) return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts); /* transmit more than the max burst, in chunks of TX_MAX_BURST */ nb_tx = 0; while (nb_pkts) { uint16_t ret, n; n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_TXGBE_TX_MAX_BURST); ret = tx_xmit_pkts(tx_queue, &tx_pkts[nb_tx], n); nb_tx = (uint16_t)(nb_tx + ret); nb_pkts = (uint16_t)(nb_pkts - ret); if (ret < n) break; } return nb_tx; } static inline void txgbe_set_xmit_ctx(struct txgbe_tx_queue *txq, volatile struct txgbe_tx_ctx_desc *ctx_txd, uint64_t ol_flags, union txgbe_tx_offload tx_offload) { union txgbe_tx_offload tx_offload_mask; uint32_t type_tucmd_mlhl; uint32_t mss_l4len_idx; uint32_t ctx_idx; uint32_t vlan_macip_lens; uint32_t tunnel_seed; ctx_idx = txq->ctx_curr; tx_offload_mask.data[0] = 0; tx_offload_mask.data[1] = 0; /* Specify which HW CTX to upload. */ mss_l4len_idx = TXGBE_TXD_IDX(ctx_idx); type_tucmd_mlhl = TXGBE_TXD_CTXT; tx_offload_mask.ptid |= ~0; type_tucmd_mlhl |= TXGBE_TXD_PTID(tx_offload.ptid); /* check if TCP segmentation required for this packet */ if (ol_flags & PKT_TX_TCP_SEG) { tx_offload_mask.l2_len |= ~0; tx_offload_mask.l3_len |= ~0; tx_offload_mask.l4_len |= ~0; tx_offload_mask.tso_segsz |= ~0; mss_l4len_idx |= TXGBE_TXD_MSS(tx_offload.tso_segsz); mss_l4len_idx |= TXGBE_TXD_L4LEN(tx_offload.l4_len); } else { /* no TSO, check if hardware checksum is needed */ if (ol_flags & PKT_TX_IP_CKSUM) { tx_offload_mask.l2_len |= ~0; tx_offload_mask.l3_len |= ~0; } switch (ol_flags & PKT_TX_L4_MASK) { case PKT_TX_UDP_CKSUM: mss_l4len_idx |= TXGBE_TXD_L4LEN(sizeof(struct rte_udp_hdr)); tx_offload_mask.l2_len |= ~0; tx_offload_mask.l3_len |= ~0; break; case PKT_TX_TCP_CKSUM: mss_l4len_idx |= TXGBE_TXD_L4LEN(sizeof(struct rte_tcp_hdr)); tx_offload_mask.l2_len |= ~0; tx_offload_mask.l3_len |= ~0; break; case PKT_TX_SCTP_CKSUM: mss_l4len_idx |= TXGBE_TXD_L4LEN(sizeof(struct rte_sctp_hdr)); tx_offload_mask.l2_len |= ~0; tx_offload_mask.l3_len |= ~0; break; default: break; } } vlan_macip_lens = TXGBE_TXD_IPLEN(tx_offload.l3_len >> 1); if (ol_flags & PKT_TX_TUNNEL_MASK) { tx_offload_mask.outer_tun_len |= ~0; tx_offload_mask.outer_l2_len |= ~0; tx_offload_mask.outer_l3_len |= ~0; tx_offload_mask.l2_len |= ~0; tunnel_seed = TXGBE_TXD_ETUNLEN(tx_offload.outer_tun_len >> 1); tunnel_seed |= TXGBE_TXD_EIPLEN(tx_offload.outer_l3_len >> 2); switch (ol_flags & PKT_TX_TUNNEL_MASK) { case PKT_TX_TUNNEL_IPIP: /* for non UDP / GRE tunneling, set to 0b */ break; case PKT_TX_TUNNEL_VXLAN: case PKT_TX_TUNNEL_GENEVE: tunnel_seed |= TXGBE_TXD_ETYPE_UDP; break; case PKT_TX_TUNNEL_GRE: tunnel_seed |= TXGBE_TXD_ETYPE_GRE; break; default: PMD_TX_LOG(ERR, "Tunnel type not supported"); return; } vlan_macip_lens |= TXGBE_TXD_MACLEN(tx_offload.outer_l2_len); } else { tunnel_seed = 0; vlan_macip_lens |= TXGBE_TXD_MACLEN(tx_offload.l2_len); } if (ol_flags & PKT_TX_VLAN_PKT) { tx_offload_mask.vlan_tci |= ~0; vlan_macip_lens |= TXGBE_TXD_VLAN(tx_offload.vlan_tci); } txq->ctx_cache[ctx_idx].flags = ol_flags; txq->ctx_cache[ctx_idx].tx_offload.data[0] = tx_offload_mask.data[0] & tx_offload.data[0]; txq->ctx_cache[ctx_idx].tx_offload.data[1] = tx_offload_mask.data[1] & tx_offload.data[1]; txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask; ctx_txd->dw0 = rte_cpu_to_le_32(vlan_macip_lens); ctx_txd->dw1 = rte_cpu_to_le_32(tunnel_seed); ctx_txd->dw2 = rte_cpu_to_le_32(type_tucmd_mlhl); ctx_txd->dw3 = rte_cpu_to_le_32(mss_l4len_idx); } /* * Check which hardware context can be used. Use the existing match * or create a new context descriptor. */ static inline uint32_t what_ctx_update(struct txgbe_tx_queue *txq, uint64_t flags, union txgbe_tx_offload tx_offload) { /* If match with the current used context */ if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags && (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] == (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0] & tx_offload.data[0])) && (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] == (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1] & tx_offload.data[1])))) return txq->ctx_curr; /* What if match with the next context */ txq->ctx_curr ^= 1; if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags && (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] == (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0] & tx_offload.data[0])) && (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] == (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1] & tx_offload.data[1])))) return txq->ctx_curr; /* Mismatch, use the previous context */ return TXGBE_CTX_NUM; } static inline uint32_t tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags) { uint32_t tmp = 0; if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM) { tmp |= TXGBE_TXD_CC; tmp |= TXGBE_TXD_L4CS; } if (ol_flags & PKT_TX_IP_CKSUM) { tmp |= TXGBE_TXD_CC; tmp |= TXGBE_TXD_IPCS; } if (ol_flags & PKT_TX_OUTER_IP_CKSUM) { tmp |= TXGBE_TXD_CC; tmp |= TXGBE_TXD_EIPCS; } if (ol_flags & PKT_TX_TCP_SEG) { tmp |= TXGBE_TXD_CC; /* implies IPv4 cksum */ if (ol_flags & PKT_TX_IPV4) tmp |= TXGBE_TXD_IPCS; tmp |= TXGBE_TXD_L4CS; } if (ol_flags & PKT_TX_VLAN_PKT) tmp |= TXGBE_TXD_CC; return tmp; } static inline uint32_t tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags) { uint32_t cmdtype = 0; if (ol_flags & PKT_TX_VLAN_PKT) cmdtype |= TXGBE_TXD_VLE; if (ol_flags & PKT_TX_TCP_SEG) cmdtype |= TXGBE_TXD_TSE; if (ol_flags & PKT_TX_MACSEC) cmdtype |= TXGBE_TXD_LINKSEC; return cmdtype; } static inline uint8_t tx_desc_ol_flags_to_ptid(uint64_t oflags, uint32_t ptype) { bool tun; if (ptype) return txgbe_encode_ptype(ptype); /* Only support flags in TXGBE_TX_OFFLOAD_MASK */ tun = !!(oflags & PKT_TX_TUNNEL_MASK); /* L2 level */ ptype = RTE_PTYPE_L2_ETHER; if (oflags & PKT_TX_VLAN) ptype |= RTE_PTYPE_L2_ETHER_VLAN; /* L3 level */ if (oflags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IP_CKSUM)) ptype |= RTE_PTYPE_L3_IPV4; else if (oflags & (PKT_TX_OUTER_IPV6)) ptype |= RTE_PTYPE_L3_IPV6; if (oflags & (PKT_TX_IPV4 | PKT_TX_IP_CKSUM)) ptype |= (tun ? RTE_PTYPE_INNER_L3_IPV4 : RTE_PTYPE_L3_IPV4); else if (oflags & (PKT_TX_IPV6)) ptype |= (tun ? RTE_PTYPE_INNER_L3_IPV6 : RTE_PTYPE_L3_IPV6); /* L4 level */ switch (oflags & (PKT_TX_L4_MASK)) { case PKT_TX_TCP_CKSUM: ptype |= (tun ? RTE_PTYPE_INNER_L4_TCP : RTE_PTYPE_L4_TCP); break; case PKT_TX_UDP_CKSUM: ptype |= (tun ? RTE_PTYPE_INNER_L4_UDP : RTE_PTYPE_L4_UDP); break; case PKT_TX_SCTP_CKSUM: ptype |= (tun ? RTE_PTYPE_INNER_L4_SCTP : RTE_PTYPE_L4_SCTP); break; } if (oflags & PKT_TX_TCP_SEG) ptype |= (tun ? RTE_PTYPE_INNER_L4_TCP : RTE_PTYPE_L4_TCP); /* Tunnel */ switch (oflags & PKT_TX_TUNNEL_MASK) { case PKT_TX_TUNNEL_VXLAN: ptype |= RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_VXLAN; ptype |= RTE_PTYPE_INNER_L2_ETHER; break; case PKT_TX_TUNNEL_GRE: ptype |= RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GRE; ptype |= RTE_PTYPE_INNER_L2_ETHER; break; case PKT_TX_TUNNEL_GENEVE: ptype |= RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GENEVE; ptype |= RTE_PTYPE_INNER_L2_ETHER; break; case PKT_TX_TUNNEL_VXLAN_GPE: ptype |= RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_VXLAN_GPE; ptype |= RTE_PTYPE_INNER_L2_ETHER; break; case PKT_TX_TUNNEL_IPIP: case PKT_TX_TUNNEL_IP: ptype |= RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP; break; } return txgbe_encode_ptype(ptype); } #ifndef DEFAULT_TX_FREE_THRESH #define DEFAULT_TX_FREE_THRESH 32 #endif /* Reset transmit descriptors after they have been used */ static inline int txgbe_xmit_cleanup(struct txgbe_tx_queue *txq) { struct txgbe_tx_entry *sw_ring = txq->sw_ring; volatile struct txgbe_tx_desc *txr = txq->tx_ring; uint16_t last_desc_cleaned = txq->last_desc_cleaned; uint16_t nb_tx_desc = txq->nb_tx_desc; uint16_t desc_to_clean_to; uint16_t nb_tx_to_clean; uint32_t status; /* Determine the last descriptor needing to be cleaned */ desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_free_thresh); if (desc_to_clean_to >= nb_tx_desc) desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc); /* Check to make sure the last descriptor to clean is done */ desc_to_clean_to = sw_ring[desc_to_clean_to].last_id; status = txr[desc_to_clean_to].dw3; if (!(status & rte_cpu_to_le_32(TXGBE_TXD_DD))) { PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done" "(port=%d queue=%d)", desc_to_clean_to, txq->port_id, txq->queue_id); if (txq->nb_tx_free >> 1 < txq->tx_free_thresh) txgbe_set32_masked(txq->tdc_reg_addr, TXGBE_TXCFG_FLUSH, TXGBE_TXCFG_FLUSH); /* Failed to clean any descriptors, better luck next time */ return -(1); } /* Figure out how many descriptors will be cleaned */ if (last_desc_cleaned > desc_to_clean_to) nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) + desc_to_clean_to); else nb_tx_to_clean = (uint16_t)(desc_to_clean_to - last_desc_cleaned); PMD_TX_FREE_LOG(DEBUG, "Cleaning %4u TX descriptors: %4u to %4u " "(port=%d queue=%d)", nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to, txq->port_id, txq->queue_id); /* * The last descriptor to clean is done, so that means all the * descriptors from the last descriptor that was cleaned * up to the last descriptor with the RS bit set * are done. Only reset the threshold descriptor. */ txr[desc_to_clean_to].dw3 = 0; /* Update the txq to reflect the last descriptor that was cleaned */ txq->last_desc_cleaned = desc_to_clean_to; txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean); /* No Error */ return 0; } static inline uint8_t txgbe_get_tun_len(struct rte_mbuf *mbuf) { struct txgbe_genevehdr genevehdr; const struct txgbe_genevehdr *gh; uint8_t tun_len; switch (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) { case PKT_TX_TUNNEL_IPIP: tun_len = 0; break; case PKT_TX_TUNNEL_VXLAN: case PKT_TX_TUNNEL_VXLAN_GPE: tun_len = sizeof(struct txgbe_udphdr) + sizeof(struct txgbe_vxlanhdr); break; case PKT_TX_TUNNEL_GRE: tun_len = sizeof(struct txgbe_nvgrehdr); break; case PKT_TX_TUNNEL_GENEVE: gh = rte_pktmbuf_read(mbuf, mbuf->outer_l2_len + mbuf->outer_l3_len, sizeof(genevehdr), &genevehdr); tun_len = sizeof(struct txgbe_udphdr) + sizeof(struct txgbe_genevehdr) + (gh->opt_len << 2); break; default: tun_len = 0; } return tun_len; } uint16_t txgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct txgbe_tx_queue *txq; struct txgbe_tx_entry *sw_ring; struct txgbe_tx_entry *txe, *txn; volatile struct txgbe_tx_desc *txr; volatile struct txgbe_tx_desc *txd; struct rte_mbuf *tx_pkt; struct rte_mbuf *m_seg; uint64_t buf_dma_addr; uint32_t olinfo_status; uint32_t cmd_type_len; uint32_t pkt_len; uint16_t slen; uint64_t ol_flags; uint16_t tx_id; uint16_t tx_last; uint16_t nb_tx; uint16_t nb_used; uint64_t tx_ol_req; uint32_t ctx = 0; uint32_t new_ctx; union txgbe_tx_offload tx_offload; tx_offload.data[0] = 0; tx_offload.data[1] = 0; txq = tx_queue; sw_ring = txq->sw_ring; txr = txq->tx_ring; tx_id = txq->tx_tail; txe = &sw_ring[tx_id]; /* Determine if the descriptor ring needs to be cleaned. */ if (txq->nb_tx_free < txq->tx_free_thresh) txgbe_xmit_cleanup(txq); rte_prefetch0(&txe->mbuf->pool); /* TX loop */ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { new_ctx = 0; tx_pkt = *tx_pkts++; pkt_len = tx_pkt->pkt_len; /* * Determine how many (if any) context descriptors * are needed for offload functionality. */ ol_flags = tx_pkt->ol_flags; /* If hardware offload required */ tx_ol_req = ol_flags & TXGBE_TX_OFFLOAD_MASK; if (tx_ol_req) { tx_offload.ptid = tx_desc_ol_flags_to_ptid(tx_ol_req, tx_pkt->packet_type); tx_offload.l2_len = tx_pkt->l2_len; tx_offload.l3_len = tx_pkt->l3_len; tx_offload.l4_len = tx_pkt->l4_len; tx_offload.vlan_tci = tx_pkt->vlan_tci; tx_offload.tso_segsz = tx_pkt->tso_segsz; tx_offload.outer_l2_len = tx_pkt->outer_l2_len; tx_offload.outer_l3_len = tx_pkt->outer_l3_len; tx_offload.outer_tun_len = txgbe_get_tun_len(tx_pkt); /* If new context need be built or reuse the exist ctx*/ ctx = what_ctx_update(txq, tx_ol_req, tx_offload); /* Only allocate context descriptor if required */ new_ctx = (ctx == TXGBE_CTX_NUM); ctx = txq->ctx_curr; } /* * Keep track of how many descriptors are used this loop * This will always be the number of segments + the number of * Context descriptors required to transmit the packet */ nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx); /* * The number of descriptors that must be allocated for a * packet is the number of segments of that packet, plus 1 * Context Descriptor for the hardware offload, if any. * Determine the last TX descriptor to allocate in the TX ring * for the packet, starting from the current position (tx_id) * in the ring. */ tx_last = (uint16_t)(tx_id + nb_used - 1); /* Circular ring */ if (tx_last >= txq->nb_tx_desc) tx_last = (uint16_t)(tx_last - txq->nb_tx_desc); PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u" " tx_first=%u tx_last=%u", (uint16_t)txq->port_id, (uint16_t)txq->queue_id, (uint32_t)pkt_len, (uint16_t)tx_id, (uint16_t)tx_last); /* * Make sure there are enough TX descriptors available to * transmit the entire packet. * nb_used better be less than or equal to txq->tx_free_thresh */ if (nb_used > txq->nb_tx_free) { PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors " "nb_used=%4u nb_free=%4u " "(port=%d queue=%d)", nb_used, txq->nb_tx_free, txq->port_id, txq->queue_id); if (txgbe_xmit_cleanup(txq) != 0) { /* Could not clean any descriptors */ if (nb_tx == 0) return 0; goto end_of_tx; } /* nb_used better be <= txq->tx_free_thresh */ if (unlikely(nb_used > txq->tx_free_thresh)) { PMD_TX_FREE_LOG(DEBUG, "The number of descriptors needed to " "transmit the packet exceeds the " "RS bit threshold. This will impact " "performance." "nb_used=%4u nb_free=%4u " "tx_free_thresh=%4u. " "(port=%d queue=%d)", nb_used, txq->nb_tx_free, txq->tx_free_thresh, txq->port_id, txq->queue_id); /* * Loop here until there are enough TX * descriptors or until the ring cannot be * cleaned. */ while (nb_used > txq->nb_tx_free) { if (txgbe_xmit_cleanup(txq) != 0) { /* * Could not clean any * descriptors */ if (nb_tx == 0) return 0; goto end_of_tx; } } } } /* * By now there are enough free TX descriptors to transmit * the packet. */ /* * Set common flags of all TX Data Descriptors. * * The following bits must be set in all Data Descriptors: * - TXGBE_TXD_DTYP_DATA * - TXGBE_TXD_DCMD_DEXT * * The following bits must be set in the first Data Descriptor * and are ignored in the other ones: * - TXGBE_TXD_DCMD_IFCS * - TXGBE_TXD_MAC_1588 * - TXGBE_TXD_DCMD_VLE * * The following bits must only be set in the last Data * Descriptor: * - TXGBE_TXD_CMD_EOP * * The following bits can be set in any Data Descriptor, but * are only set in the last Data Descriptor: * - TXGBE_TXD_CMD_RS */ cmd_type_len = TXGBE_TXD_FCS; #ifdef RTE_LIBRTE_IEEE1588 if (ol_flags & PKT_TX_IEEE1588_TMST) cmd_type_len |= TXGBE_TXD_1588; #endif olinfo_status = 0; if (tx_ol_req) { if (ol_flags & PKT_TX_TCP_SEG) { /* when TSO is on, paylen in descriptor is the * not the packet len but the tcp payload len */ pkt_len -= (tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len); pkt_len -= (tx_pkt->ol_flags & PKT_TX_TUNNEL_MASK) ? tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0; } /* * Setup the TX Advanced Context Descriptor if required */ if (new_ctx) { volatile struct txgbe_tx_ctx_desc *ctx_txd; ctx_txd = (volatile struct txgbe_tx_ctx_desc *) &txr[tx_id]; txn = &sw_ring[txe->next_id]; rte_prefetch0(&txn->mbuf->pool); if (txe->mbuf != NULL) { rte_pktmbuf_free_seg(txe->mbuf); txe->mbuf = NULL; } txgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload); txe->last_id = tx_last; tx_id = txe->next_id; txe = txn; } /* * Setup the TX Advanced Data Descriptor, * This path will go through * whatever new/reuse the context descriptor */ cmd_type_len |= tx_desc_ol_flags_to_cmdtype(ol_flags); olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags); olinfo_status |= TXGBE_TXD_IDX(ctx); } olinfo_status |= TXGBE_TXD_PAYLEN(pkt_len); m_seg = tx_pkt; do { txd = &txr[tx_id]; txn = &sw_ring[txe->next_id]; rte_prefetch0(&txn->mbuf->pool); if (txe->mbuf != NULL) rte_pktmbuf_free_seg(txe->mbuf); txe->mbuf = m_seg; /* * Set up Transmit Data Descriptor. */ slen = m_seg->data_len; buf_dma_addr = rte_mbuf_data_iova(m_seg); txd->qw0 = rte_cpu_to_le_64(buf_dma_addr); txd->dw2 = rte_cpu_to_le_32(cmd_type_len | slen); txd->dw3 = rte_cpu_to_le_32(olinfo_status); txe->last_id = tx_last; tx_id = txe->next_id; txe = txn; m_seg = m_seg->next; } while (m_seg != NULL); /* * The last packet data descriptor needs End Of Packet (EOP) */ cmd_type_len |= TXGBE_TXD_EOP; txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used); txd->dw2 |= rte_cpu_to_le_32(cmd_type_len); } end_of_tx: rte_wmb(); /* * Set the Transmit Descriptor Tail (TDT) */ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", (uint16_t)txq->port_id, (uint16_t)txq->queue_id, (uint16_t)tx_id, (uint16_t)nb_tx); txgbe_set32_relaxed(txq->tdt_reg_addr, tx_id); txq->tx_tail = tx_id; return nb_tx; } /********************************************************************* * * TX prep functions * **********************************************************************/ uint16_t txgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int i, ret; uint64_t ol_flags; struct rte_mbuf *m; struct txgbe_tx_queue *txq = (struct txgbe_tx_queue *)tx_queue; for (i = 0; i < nb_pkts; i++) { m = tx_pkts[i]; ol_flags = m->ol_flags; /** * Check if packet meets requirements for number of segments * * NOTE: for txgbe it's always (40 - WTHRESH) for both TSO and * non-TSO */ if (m->nb_segs > TXGBE_TX_MAX_SEG - txq->wthresh) { rte_errno = -EINVAL; return i; } if (ol_flags & TXGBE_TX_OFFLOAD_NOTSUP_MASK) { rte_errno = -ENOTSUP; return i; } #ifdef RTE_LIBRTE_ETHDEV_DEBUG ret = rte_validate_tx_offload(m); if (ret != 0) { rte_errno = ret; return i; } #endif ret = rte_net_intel_cksum_prepare(m); if (ret != 0) { rte_errno = ret; return i; } } return i; } /********************************************************************* * * RX functions * **********************************************************************/ /* @note: fix txgbe_dev_supported_ptypes_get() if any change here. */ static inline uint32_t txgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptid_mask) { uint16_t ptid = TXGBE_RXD_PTID(pkt_info); ptid &= ptid_mask; return txgbe_decode_ptype(ptid); } static inline uint64_t txgbe_rxd_pkt_info_to_pkt_flags(uint32_t pkt_info) { static uint64_t ip_rss_types_map[16] __rte_cache_aligned = { 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0, 0, 0, 0, 0, 0, PKT_RX_FDIR, }; #ifdef RTE_LIBRTE_IEEE1588 static uint64_t ip_pkt_etqf_map[8] = { 0, 0, 0, PKT_RX_IEEE1588_PTP, 0, 0, 0, 0, }; int etfid = txgbe_etflt_id(TXGBE_RXD_PTID(pkt_info)); if (likely(-1 != etfid)) return ip_pkt_etqf_map[etfid] | ip_rss_types_map[TXGBE_RXD_RSSTYPE(pkt_info)]; else return ip_rss_types_map[TXGBE_RXD_RSSTYPE(pkt_info)]; #else return ip_rss_types_map[TXGBE_RXD_RSSTYPE(pkt_info)]; #endif } static inline uint64_t rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags) { uint64_t pkt_flags; /* * Check if VLAN present only. * Do not check whether L3/L4 rx checksum done by NIC or not, * That can be found from rte_eth_rxmode.offloads flag */ pkt_flags = (rx_status & TXGBE_RXD_STAT_VLAN && vlan_flags & PKT_RX_VLAN_STRIPPED) ? vlan_flags : 0; #ifdef RTE_LIBRTE_IEEE1588 if (rx_status & TXGBE_RXD_STAT_1588) pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST; #endif return pkt_flags; } static inline uint64_t rx_desc_error_to_pkt_flags(uint32_t rx_status) { uint64_t pkt_flags = 0; /* checksum offload can't be disabled */ if (rx_status & TXGBE_RXD_STAT_IPCS) { pkt_flags |= (rx_status & TXGBE_RXD_ERR_IPCS ? PKT_RX_IP_CKSUM_BAD : PKT_RX_IP_CKSUM_GOOD); } if (rx_status & TXGBE_RXD_STAT_L4CS) { pkt_flags |= (rx_status & TXGBE_RXD_ERR_L4CS ? PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD); } if (rx_status & TXGBE_RXD_STAT_EIPCS && rx_status & TXGBE_RXD_ERR_EIPCS) { pkt_flags |= PKT_RX_EIP_CKSUM_BAD; } return pkt_flags; } /* * LOOK_AHEAD defines how many desc statuses to check beyond the * current descriptor. * It must be a pound define for optimal performance. * Do not change the value of LOOK_AHEAD, as the txgbe_rx_scan_hw_ring * function only works with LOOK_AHEAD=8. */ #define LOOK_AHEAD 8 #if (LOOK_AHEAD != 8) #error "PMD TXGBE: LOOK_AHEAD must be 8\n" #endif static inline int txgbe_rx_scan_hw_ring(struct txgbe_rx_queue *rxq) { volatile struct txgbe_rx_desc *rxdp; struct txgbe_rx_entry *rxep; struct rte_mbuf *mb; uint16_t pkt_len; uint64_t pkt_flags; int nb_dd; uint32_t s[LOOK_AHEAD]; uint32_t pkt_info[LOOK_AHEAD]; int i, j, nb_rx = 0; uint32_t status; /* get references to current descriptor and S/W ring entry */ rxdp = &rxq->rx_ring[rxq->rx_tail]; rxep = &rxq->sw_ring[rxq->rx_tail]; status = rxdp->qw1.lo.status; /* check to make sure there is at least 1 packet to receive */ if (!(status & rte_cpu_to_le_32(TXGBE_RXD_STAT_DD))) return 0; /* * Scan LOOK_AHEAD descriptors at a time to determine which descriptors * reference packets that are ready to be received. */ for (i = 0; i < RTE_PMD_TXGBE_RX_MAX_BURST; i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) { /* Read desc statuses backwards to avoid race condition */ for (j = 0; j < LOOK_AHEAD; j++) s[j] = rte_le_to_cpu_32(rxdp[j].qw1.lo.status); rte_atomic_thread_fence(__ATOMIC_ACQUIRE); /* Compute how many status bits were set */ for (nb_dd = 0; nb_dd < LOOK_AHEAD && (s[nb_dd] & TXGBE_RXD_STAT_DD); nb_dd++) ; for (j = 0; j < nb_dd; j++) pkt_info[j] = rte_le_to_cpu_32(rxdp[j].qw0.dw0); nb_rx += nb_dd; /* Translate descriptor info to mbuf format */ for (j = 0; j < nb_dd; ++j) { mb = rxep[j].mbuf; pkt_len = rte_le_to_cpu_16(rxdp[j].qw1.hi.len) - rxq->crc_len; mb->data_len = pkt_len; mb->pkt_len = pkt_len; mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].qw1.hi.tag); /* convert descriptor fields to rte mbuf flags */ pkt_flags = rx_desc_status_to_pkt_flags(s[j], rxq->vlan_flags); pkt_flags |= rx_desc_error_to_pkt_flags(s[j]); pkt_flags |= txgbe_rxd_pkt_info_to_pkt_flags(pkt_info[j]); mb->ol_flags = pkt_flags; mb->packet_type = txgbe_rxd_pkt_info_to_pkt_type(pkt_info[j], rxq->pkt_type_mask); if (likely(pkt_flags & PKT_RX_RSS_HASH)) mb->hash.rss = rte_le_to_cpu_32(rxdp[j].qw0.dw1); else if (pkt_flags & PKT_RX_FDIR) { mb->hash.fdir.hash = rte_le_to_cpu_16(rxdp[j].qw0.hi.csum) & TXGBE_ATR_HASH_MASK; mb->hash.fdir.id = rte_le_to_cpu_16(rxdp[j].qw0.hi.ipid); } } /* Move mbuf pointers from the S/W ring to the stage */ for (j = 0; j < LOOK_AHEAD; ++j) rxq->rx_stage[i + j] = rxep[j].mbuf; /* stop if all requested packets could not be received */ if (nb_dd != LOOK_AHEAD) break; } /* clear software ring entries so we can cleanup correctly */ for (i = 0; i < nb_rx; ++i) rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL; return nb_rx; } static inline int txgbe_rx_alloc_bufs(struct txgbe_rx_queue *rxq, bool reset_mbuf) { volatile struct txgbe_rx_desc *rxdp; struct txgbe_rx_entry *rxep; struct rte_mbuf *mb; uint16_t alloc_idx; __le64 dma_addr; int diag, i; /* allocate buffers in bulk directly into the S/W ring */ alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1); rxep = &rxq->sw_ring[alloc_idx]; diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep, rxq->rx_free_thresh); if (unlikely(diag != 0)) return -ENOMEM; rxdp = &rxq->rx_ring[alloc_idx]; for (i = 0; i < rxq->rx_free_thresh; ++i) { /* populate the static rte mbuf fields */ mb = rxep[i].mbuf; if (reset_mbuf) mb->port = rxq->port_id; rte_mbuf_refcnt_set(mb, 1); mb->data_off = RTE_PKTMBUF_HEADROOM; /* populate the descriptors */ dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb)); TXGBE_RXD_HDRADDR(&rxdp[i], 0); TXGBE_RXD_PKTADDR(&rxdp[i], dma_addr); } /* update state of internal queue structure */ rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh; if (rxq->rx_free_trigger >= rxq->nb_rx_desc) rxq->rx_free_trigger = rxq->rx_free_thresh - 1; /* no errors */ return 0; } static inline uint16_t txgbe_rx_fill_from_stage(struct txgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail]; int i; /* how many packets are ready to return? */ nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail); /* copy mbuf pointers to the application's packet list */ for (i = 0; i < nb_pkts; ++i) rx_pkts[i] = stage[i]; /* update internal queue state */ rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts); rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts); return nb_pkts; } static inline uint16_t txgbe_rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct txgbe_rx_queue *rxq = (struct txgbe_rx_queue *)rx_queue; struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id]; uint16_t nb_rx = 0; /* Any previously recv'd pkts will be returned from the Rx stage */ if (rxq->rx_nb_avail) return txgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts); /* Scan the H/W ring for packets to receive */ nb_rx = (uint16_t)txgbe_rx_scan_hw_ring(rxq); /* update internal queue state */ rxq->rx_next_avail = 0; rxq->rx_nb_avail = nb_rx; rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx); /* if required, allocate new buffers to replenish descriptors */ if (rxq->rx_tail > rxq->rx_free_trigger) { uint16_t cur_free_trigger = rxq->rx_free_trigger; if (txgbe_rx_alloc_bufs(rxq, true) != 0) { int i, j; PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " "queue_id=%u", (uint16_t)rxq->port_id, (uint16_t)rxq->queue_id); dev->data->rx_mbuf_alloc_failed += rxq->rx_free_thresh; /* * Need to rewind any previous receives if we cannot * allocate new buffers to replenish the old ones. */ rxq->rx_nb_avail = 0; rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx); for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j) rxq->sw_ring[j].mbuf = rxq->rx_stage[i]; return 0; } /* update tail pointer */ rte_wmb(); txgbe_set32_relaxed(rxq->rdt_reg_addr, cur_free_trigger); } if (rxq->rx_tail >= rxq->nb_rx_desc) rxq->rx_tail = 0; /* received any packets this loop? */ if (rxq->rx_nb_avail) return txgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts); return 0; } /* split requests into chunks of size RTE_PMD_TXGBE_RX_MAX_BURST */ uint16_t txgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { uint16_t nb_rx; if (unlikely(nb_pkts == 0)) return 0; if (likely(nb_pkts <= RTE_PMD_TXGBE_RX_MAX_BURST)) return txgbe_rx_recv_pkts(rx_queue, rx_pkts, nb_pkts); /* request is relatively large, chunk it up */ nb_rx = 0; while (nb_pkts) { uint16_t ret, n; n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_TXGBE_RX_MAX_BURST); ret = txgbe_rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n); nb_rx = (uint16_t)(nb_rx + ret); nb_pkts = (uint16_t)(nb_pkts - ret); if (ret < n) break; } return nb_rx; } uint16_t txgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct txgbe_rx_queue *rxq; volatile struct txgbe_rx_desc *rx_ring; volatile struct txgbe_rx_desc *rxdp; struct txgbe_rx_entry *sw_ring; struct txgbe_rx_entry *rxe; struct rte_mbuf *rxm; struct rte_mbuf *nmb; struct txgbe_rx_desc rxd; uint64_t dma_addr; uint32_t staterr; uint32_t pkt_info; uint16_t pkt_len; uint16_t rx_id; uint16_t nb_rx; uint16_t nb_hold; uint64_t pkt_flags; nb_rx = 0; nb_hold = 0; rxq = rx_queue; rx_id = rxq->rx_tail; rx_ring = rxq->rx_ring; sw_ring = rxq->sw_ring; struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id]; while (nb_rx < nb_pkts) { /* * The order of operations here is important as the DD status * bit must not be read after any other descriptor fields. * rx_ring and rxdp are pointing to volatile data so the order * of accesses cannot be reordered by the compiler. If they were * not volatile, they could be reordered which could lead to * using invalid descriptor fields when read from rxd. */ rxdp = &rx_ring[rx_id]; staterr = rxdp->qw1.lo.status; if (!(staterr & rte_cpu_to_le_32(TXGBE_RXD_STAT_DD))) break; rxd = *rxdp; /* * End of packet. * * If the TXGBE_RXD_STAT_EOP flag is not set, the RX packet * is likely to be invalid and to be dropped by the various * validation checks performed by the network stack. * * Allocate a new mbuf to replenish the RX ring descriptor. * If the allocation fails: * - arrange for that RX descriptor to be the first one * being parsed the next time the receive function is * invoked [on the same queue]. * * - Stop parsing the RX ring and return immediately. * * This policy do not drop the packet received in the RX * descriptor for which the allocation of a new mbuf failed. * Thus, it allows that packet to be later retrieved if * mbuf have been freed in the mean time. * As a side effect, holding RX descriptors instead of * systematically giving them back to the NIC may lead to * RX ring exhaustion situations. * However, the NIC can gracefully prevent such situations * to happen by sending specific "back-pressure" flow control * frames to its peer(s). */ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " "ext_err_stat=0x%08x pkt_len=%u", (uint16_t)rxq->port_id, (uint16_t)rxq->queue_id, (uint16_t)rx_id, (uint32_t)staterr, (uint16_t)rte_le_to_cpu_16(rxd.qw1.hi.len)); nmb = rte_mbuf_raw_alloc(rxq->mb_pool); if (nmb == NULL) { PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " "queue_id=%u", (uint16_t)rxq->port_id, (uint16_t)rxq->queue_id); dev->data->rx_mbuf_alloc_failed++; break; } nb_hold++; rxe = &sw_ring[rx_id]; rx_id++; if (rx_id == rxq->nb_rx_desc) rx_id = 0; /* Prefetch next mbuf while processing current one. */ rte_txgbe_prefetch(sw_ring[rx_id].mbuf); /* * When next RX descriptor is on a cache-line boundary, * prefetch the next 4 RX descriptors and the next 8 pointers * to mbufs. */ if ((rx_id & 0x3) == 0) { rte_txgbe_prefetch(&rx_ring[rx_id]); rte_txgbe_prefetch(&sw_ring[rx_id]); } rxm = rxe->mbuf; rxe->mbuf = nmb; dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); TXGBE_RXD_HDRADDR(rxdp, 0); TXGBE_RXD_PKTADDR(rxdp, dma_addr); /* * Initialize the returned mbuf. * 1) setup generic mbuf fields: * - number of segments, * - next segment, * - packet length, * - RX port identifier. * 2) integrate hardware offload data, if any: * - RSS flag & hash, * - IP checksum flag, * - VLAN TCI, if any, * - error flags. */ pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.qw1.hi.len) - rxq->crc_len); rxm->data_off = RTE_PKTMBUF_HEADROOM; rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off); rxm->nb_segs = 1; rxm->next = NULL; rxm->pkt_len = pkt_len; rxm->data_len = pkt_len; rxm->port = rxq->port_id; pkt_info = rte_le_to_cpu_32(rxd.qw0.dw0); /* Only valid if PKT_RX_VLAN set in pkt_flags */ rxm->vlan_tci = rte_le_to_cpu_16(rxd.qw1.hi.tag); pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags); pkt_flags |= rx_desc_error_to_pkt_flags(staterr); pkt_flags |= txgbe_rxd_pkt_info_to_pkt_flags(pkt_info); rxm->ol_flags = pkt_flags; rxm->packet_type = txgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask); if (likely(pkt_flags & PKT_RX_RSS_HASH)) { rxm->hash.rss = rte_le_to_cpu_32(rxd.qw0.dw1); } else if (pkt_flags & PKT_RX_FDIR) { rxm->hash.fdir.hash = rte_le_to_cpu_16(rxd.qw0.hi.csum) & TXGBE_ATR_HASH_MASK; rxm->hash.fdir.id = rte_le_to_cpu_16(rxd.qw0.hi.ipid); } /* * Store the mbuf address into the next entry of the array * of returned packets. */ rx_pkts[nb_rx++] = rxm; } rxq->rx_tail = rx_id; /* * If the number of free RX descriptors is greater than the RX free * threshold of the queue, advance the Receive Descriptor Tail (RDT) * register. * Update the RDT with the value of the last processed RX descriptor * minus 1, to guarantee that the RDT register is never equal to the * RDH register, which creates a "full" ring situation from the * hardware point of view... */ nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold); if (nb_hold > rxq->rx_free_thresh) { PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " "nb_hold=%u nb_rx=%u", (uint16_t)rxq->port_id, (uint16_t)rxq->queue_id, (uint16_t)rx_id, (uint16_t)nb_hold, (uint16_t)nb_rx); rx_id = (uint16_t)((rx_id == 0) ? (rxq->nb_rx_desc - 1) : (rx_id - 1)); txgbe_set32(rxq->rdt_reg_addr, rx_id); nb_hold = 0; } rxq->nb_rx_hold = nb_hold; return nb_rx; } /** * txgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet * * Fill the following info in the HEAD buffer of the Rx cluster: * - RX port identifier * - hardware offload data, if any: * - RSS flag & hash * - IP checksum flag * - VLAN TCI, if any * - error flags * @head HEAD of the packet cluster * @desc HW descriptor to get data from * @rxq Pointer to the Rx queue */ static inline void txgbe_fill_cluster_head_buf(struct rte_mbuf *head, struct txgbe_rx_desc *desc, struct txgbe_rx_queue *rxq, uint32_t staterr) { uint32_t pkt_info; uint64_t pkt_flags; head->port = rxq->port_id; /* The vlan_tci field is only valid when PKT_RX_VLAN is * set in the pkt_flags field. */ head->vlan_tci = rte_le_to_cpu_16(desc->qw1.hi.tag); pkt_info = rte_le_to_cpu_32(desc->qw0.dw0); pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags); pkt_flags |= rx_desc_error_to_pkt_flags(staterr); pkt_flags |= txgbe_rxd_pkt_info_to_pkt_flags(pkt_info); head->ol_flags = pkt_flags; head->packet_type = txgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask); if (likely(pkt_flags & PKT_RX_RSS_HASH)) { head->hash.rss = rte_le_to_cpu_32(desc->qw0.dw1); } else if (pkt_flags & PKT_RX_FDIR) { head->hash.fdir.hash = rte_le_to_cpu_16(desc->qw0.hi.csum) & TXGBE_ATR_HASH_MASK; head->hash.fdir.id = rte_le_to_cpu_16(desc->qw0.hi.ipid); } } /** * txgbe_recv_pkts_lro - receive handler for and LRO case. * * @rx_queue Rx queue handle * @rx_pkts table of received packets * @nb_pkts size of rx_pkts table * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling * * Handles the Rx HW ring completions when RSC feature is configured. Uses an * additional ring of txgbe_rsc_entry's that will hold the relevant RSC info. * * We use the same logic as in Linux and in FreeBSD txgbe drivers: * 1) When non-EOP RSC completion arrives: * a) Update the HEAD of the current RSC aggregation cluster with the new * segment's data length. * b) Set the "next" pointer of the current segment to point to the segment * at the NEXTP index. * c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry * in the sw_rsc_ring. * 2) When EOP arrives we just update the cluster's total length and offload * flags and deliver the cluster up to the upper layers. In our case - put it * in the rx_pkts table. * * Returns the number of received packets/clusters (according to the "bulk * receive" interface). */ static inline uint16_t txgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, bool bulk_alloc) { struct txgbe_rx_queue *rxq = rx_queue; struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id]; volatile struct txgbe_rx_desc *rx_ring = rxq->rx_ring; struct txgbe_rx_entry *sw_ring = rxq->sw_ring; struct txgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring; uint16_t rx_id = rxq->rx_tail; uint16_t nb_rx = 0; uint16_t nb_hold = rxq->nb_rx_hold; uint16_t prev_id = rxq->rx_tail; while (nb_rx < nb_pkts) { bool eop; struct txgbe_rx_entry *rxe; struct txgbe_scattered_rx_entry *sc_entry; struct txgbe_scattered_rx_entry *next_sc_entry = NULL; struct txgbe_rx_entry *next_rxe = NULL; struct rte_mbuf *first_seg; struct rte_mbuf *rxm; struct rte_mbuf *nmb = NULL; struct txgbe_rx_desc rxd; uint16_t data_len; uint16_t next_id; volatile struct txgbe_rx_desc *rxdp; uint32_t staterr; next_desc: /* * The code in this whole file uses the volatile pointer to * ensure the read ordering of the status and the rest of the * descriptor fields (on the compiler level only!!!). This is so * UGLY - why not to just use the compiler barrier instead? DPDK * even has the rte_compiler_barrier() for that. * * But most importantly this is just wrong because this doesn't * ensure memory ordering in a general case at all. For * instance, DPDK is supposed to work on Power CPUs where * compiler barrier may just not be enough! * * I tried to write only this function properly to have a * starting point (as a part of an LRO/RSC series) but the * compiler cursed at me when I tried to cast away the * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm * keeping it the way it is for now. * * The code in this file is broken in so many other places and * will just not work on a big endian CPU anyway therefore the * lines below will have to be revisited together with the rest * of the txgbe PMD. * * TODO: * - Get rid of "volatile" and let the compiler do its job. * - Use the proper memory barrier (rte_rmb()) to ensure the * memory ordering below. */ rxdp = &rx_ring[rx_id]; staterr = rte_le_to_cpu_32(rxdp->qw1.lo.status); if (!(staterr & TXGBE_RXD_STAT_DD)) break; rxd = *rxdp; PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " "staterr=0x%x data_len=%u", rxq->port_id, rxq->queue_id, rx_id, staterr, rte_le_to_cpu_16(rxd.qw1.hi.len)); if (!bulk_alloc) { nmb = rte_mbuf_raw_alloc(rxq->mb_pool); if (nmb == NULL) { PMD_RX_LOG(DEBUG, "RX mbuf alloc failed " "port_id=%u queue_id=%u", rxq->port_id, rxq->queue_id); dev->data->rx_mbuf_alloc_failed++; break; } } else if (nb_hold > rxq->rx_free_thresh) { uint16_t next_rdt = rxq->rx_free_trigger; if (!txgbe_rx_alloc_bufs(rxq, false)) { rte_wmb(); txgbe_set32_relaxed(rxq->rdt_reg_addr, next_rdt); nb_hold -= rxq->rx_free_thresh; } else { PMD_RX_LOG(DEBUG, "RX bulk alloc failed " "port_id=%u queue_id=%u", rxq->port_id, rxq->queue_id); dev->data->rx_mbuf_alloc_failed++; break; } } nb_hold++; rxe = &sw_ring[rx_id]; eop = staterr & TXGBE_RXD_STAT_EOP; next_id = rx_id + 1; if (next_id == rxq->nb_rx_desc) next_id = 0; /* Prefetch next mbuf while processing current one. */ rte_txgbe_prefetch(sw_ring[next_id].mbuf); /* * When next RX descriptor is on a cache-line boundary, * prefetch the next 4 RX descriptors and the next 4 pointers * to mbufs. */ if ((next_id & 0x3) == 0) { rte_txgbe_prefetch(&rx_ring[next_id]); rte_txgbe_prefetch(&sw_ring[next_id]); } rxm = rxe->mbuf; if (!bulk_alloc) { __le64 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); /* * Update RX descriptor with the physical address of the * new data buffer of the new allocated mbuf. */ rxe->mbuf = nmb; rxm->data_off = RTE_PKTMBUF_HEADROOM; TXGBE_RXD_HDRADDR(rxdp, 0); TXGBE_RXD_PKTADDR(rxdp, dma); } else { rxe->mbuf = NULL; } /* * Set data length & data buffer address of mbuf. */ data_len = rte_le_to_cpu_16(rxd.qw1.hi.len); rxm->data_len = data_len; if (!eop) { uint16_t nextp_id; /* * Get next descriptor index: * - For RSC it's in the NEXTP field. * - For a scattered packet - it's just a following * descriptor. */ if (TXGBE_RXD_RSCCNT(rxd.qw0.dw0)) nextp_id = TXGBE_RXD_NEXTP(staterr); else nextp_id = next_id; next_sc_entry = &sw_sc_ring[nextp_id]; next_rxe = &sw_ring[nextp_id]; rte_txgbe_prefetch(next_rxe); } sc_entry = &sw_sc_ring[rx_id]; first_seg = sc_entry->fbuf; sc_entry->fbuf = NULL; /* * If this is the first buffer of the received packet, * set the pointer to the first mbuf of the packet and * initialize its context. * Otherwise, update the total length and the number of segments * of the current scattered packet, and update the pointer to * the last mbuf of the current packet. */ if (first_seg == NULL) { first_seg = rxm; first_seg->pkt_len = data_len; first_seg->nb_segs = 1; } else { first_seg->pkt_len += data_len; first_seg->nb_segs++; } prev_id = rx_id; rx_id = next_id; /* * If this is not the last buffer of the received packet, update * the pointer to the first mbuf at the NEXTP entry in the * sw_sc_ring and continue to parse the RX ring. */ if (!eop && next_rxe) { rxm->next = next_rxe->mbuf; next_sc_entry->fbuf = first_seg; goto next_desc; } /* Initialize the first mbuf of the returned packet */ txgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr); /* * Deal with the case, when HW CRC srip is disabled. * That can't happen when LRO is enabled, but still could * happen for scattered RX mode. */ first_seg->pkt_len -= rxq->crc_len; if (unlikely(rxm->data_len <= rxq->crc_len)) { struct rte_mbuf *lp; for (lp = first_seg; lp->next != rxm; lp = lp->next) ; first_seg->nb_segs--; lp->data_len -= rxq->crc_len - rxm->data_len; lp->next = NULL; rte_pktmbuf_free_seg(rxm); } else { rxm->data_len -= rxq->crc_len; } /* Prefetch data of first segment, if configured to do so. */ rte_packet_prefetch((char *)first_seg->buf_addr + first_seg->data_off); /* * Store the mbuf address into the next entry of the array * of returned packets. */ rx_pkts[nb_rx++] = first_seg; } /* * Record index of the next RX descriptor to probe. */ rxq->rx_tail = rx_id; /* * If the number of free RX descriptors is greater than the RX free * threshold of the queue, advance the Receive Descriptor Tail (RDT) * register. * Update the RDT with the value of the last processed RX descriptor * minus 1, to guarantee that the RDT register is never equal to the * RDH register, which creates a "full" ring situation from the * hardware point of view... */ if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) { PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " "nb_hold=%u nb_rx=%u", rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx); rte_wmb(); txgbe_set32_relaxed(rxq->rdt_reg_addr, prev_id); nb_hold = 0; } rxq->nb_rx_hold = nb_hold; return nb_rx; } uint16_t txgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return txgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false); } uint16_t txgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return txgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true); } uint64_t txgbe_get_rx_queue_offloads(struct rte_eth_dev *dev __rte_unused) { return DEV_RX_OFFLOAD_VLAN_STRIP; } uint64_t txgbe_get_rx_port_offloads(struct rte_eth_dev *dev) { uint64_t offloads; struct txgbe_hw *hw = TXGBE_DEV_HW(dev); struct rte_eth_dev_sriov *sriov = &RTE_ETH_DEV_SRIOV(dev); offloads = DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_KEEP_CRC | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_VLAN_FILTER | DEV_RX_OFFLOAD_RSS_HASH | DEV_RX_OFFLOAD_SCATTER; if (!txgbe_is_vf(dev)) offloads |= (DEV_RX_OFFLOAD_VLAN_FILTER | DEV_RX_OFFLOAD_QINQ_STRIP | DEV_RX_OFFLOAD_VLAN_EXTEND); /* * RSC is only supported by PF devices in a non-SR-IOV * mode. */ if (hw->mac.type == txgbe_mac_raptor && !sriov->active) offloads |= DEV_RX_OFFLOAD_TCP_LRO; if (hw->mac.type == txgbe_mac_raptor) offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP; offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM; return offloads; } static void __rte_cold txgbe_tx_queue_release_mbufs(struct txgbe_tx_queue *txq) { unsigned int i; if (txq->sw_ring != NULL) { for (i = 0; i < txq->nb_tx_desc; i++) { if (txq->sw_ring[i].mbuf != NULL) { rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); txq->sw_ring[i].mbuf = NULL; } } } } static int txgbe_tx_done_cleanup_full(struct txgbe_tx_queue *txq, uint32_t free_cnt) { struct txgbe_tx_entry *swr_ring = txq->sw_ring; uint16_t i, tx_last, tx_id; uint16_t nb_tx_free_last; uint16_t nb_tx_to_clean; uint32_t pkt_cnt; /* Start free mbuf from the next of tx_tail */ tx_last = txq->tx_tail; tx_id = swr_ring[tx_last].next_id; if (txq->nb_tx_free == 0 && txgbe_xmit_cleanup(txq)) return 0; nb_tx_to_clean = txq->nb_tx_free; nb_tx_free_last = txq->nb_tx_free; if (!free_cnt) free_cnt = txq->nb_tx_desc; /* Loop through swr_ring to count the amount of * freeable mubfs and packets. */ for (pkt_cnt = 0; pkt_cnt < free_cnt; ) { for (i = 0; i < nb_tx_to_clean && pkt_cnt < free_cnt && tx_id != tx_last; i++) { if (swr_ring[tx_id].mbuf != NULL) { rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf); swr_ring[tx_id].mbuf = NULL; /* * last segment in the packet, * increment packet count */ pkt_cnt += (swr_ring[tx_id].last_id == tx_id); } tx_id = swr_ring[tx_id].next_id; } if (pkt_cnt < free_cnt) { if (txgbe_xmit_cleanup(txq)) break; nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last; nb_tx_free_last = txq->nb_tx_free; } } return (int)pkt_cnt; } static int txgbe_tx_done_cleanup_simple(struct txgbe_tx_queue *txq, uint32_t free_cnt) { int i, n, cnt; if (free_cnt == 0 || free_cnt > txq->nb_tx_desc) free_cnt = txq->nb_tx_desc; cnt = free_cnt - free_cnt % txq->tx_free_thresh; for (i = 0; i < cnt; i += n) { if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_free_thresh) break; n = txgbe_tx_free_bufs(txq); if (n == 0) break; } return i; } int txgbe_dev_tx_done_cleanup(void *tx_queue, uint32_t free_cnt) { struct txgbe_tx_queue *txq = (struct txgbe_tx_queue *)tx_queue; if (txq->offloads == 0 && txq->tx_free_thresh >= RTE_PMD_TXGBE_TX_MAX_BURST) return txgbe_tx_done_cleanup_simple(txq, free_cnt); return txgbe_tx_done_cleanup_full(txq, free_cnt); } static void __rte_cold txgbe_tx_free_swring(struct txgbe_tx_queue *txq) { if (txq != NULL && txq->sw_ring != NULL) rte_free(txq->sw_ring); } static void __rte_cold txgbe_tx_queue_release(struct txgbe_tx_queue *txq) { if (txq != NULL && txq->ops != NULL) { txq->ops->release_mbufs(txq); txq->ops->free_swring(txq); rte_free(txq); } } void __rte_cold txgbe_dev_tx_queue_release(void *txq) { txgbe_tx_queue_release(txq); } /* (Re)set dynamic txgbe_tx_queue fields to defaults */ static void __rte_cold txgbe_reset_tx_queue(struct txgbe_tx_queue *txq) { static const struct txgbe_tx_desc zeroed_desc = {0}; struct txgbe_tx_entry *txe = txq->sw_ring; uint16_t prev, i; /* Zero out HW ring memory */ for (i = 0; i < txq->nb_tx_desc; i++) txq->tx_ring[i] = zeroed_desc; /* Initialize SW ring entries */ prev = (uint16_t)(txq->nb_tx_desc - 1); for (i = 0; i < txq->nb_tx_desc; i++) { volatile struct txgbe_tx_desc *txd = &txq->tx_ring[i]; txd->dw3 = rte_cpu_to_le_32(TXGBE_TXD_DD); txe[i].mbuf = NULL; txe[i].last_id = i; txe[prev].next_id = i; prev = i; } txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1); txq->tx_tail = 0; /* * Always allow 1 descriptor to be un-allocated to avoid * a H/W race condition */ txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1); txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1); txq->ctx_curr = 0; memset((void *)&txq->ctx_cache, 0, TXGBE_CTX_NUM * sizeof(struct txgbe_ctx_info)); } static const struct txgbe_txq_ops def_txq_ops = { .release_mbufs = txgbe_tx_queue_release_mbufs, .free_swring = txgbe_tx_free_swring, .reset = txgbe_reset_tx_queue, }; /* Takes an ethdev and a queue and sets up the tx function to be used based on * the queue parameters. Used in tx_queue_setup by primary process and then * in dev_init by secondary process when attaching to an existing ethdev. */ void __rte_cold txgbe_set_tx_function(struct rte_eth_dev *dev, struct txgbe_tx_queue *txq) { /* Use a simple Tx queue (no offloads, no multi segs) if possible */ if (txq->offloads == 0 && txq->tx_free_thresh >= RTE_PMD_TXGBE_TX_MAX_BURST) { PMD_INIT_LOG(DEBUG, "Using simple tx code path"); dev->tx_pkt_burst = txgbe_xmit_pkts_simple; dev->tx_pkt_prepare = NULL; } else { PMD_INIT_LOG(DEBUG, "Using full-featured tx code path"); PMD_INIT_LOG(DEBUG, " - offloads = 0x%" PRIx64, txq->offloads); PMD_INIT_LOG(DEBUG, " - tx_free_thresh = %lu [RTE_PMD_TXGBE_TX_MAX_BURST=%lu]", (unsigned long)txq->tx_free_thresh, (unsigned long)RTE_PMD_TXGBE_TX_MAX_BURST); dev->tx_pkt_burst = txgbe_xmit_pkts; dev->tx_pkt_prepare = txgbe_prep_pkts; } } uint64_t txgbe_get_tx_queue_offloads(struct rte_eth_dev *dev) { RTE_SET_USED(dev); return 0; } uint64_t txgbe_get_tx_port_offloads(struct rte_eth_dev *dev) { uint64_t tx_offload_capa; tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_UDP_TSO | DEV_TX_OFFLOAD_UDP_TNL_TSO | DEV_TX_OFFLOAD_IP_TNL_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_IPIP_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO | DEV_TX_OFFLOAD_MULTI_SEGS; if (!txgbe_is_vf(dev)) tx_offload_capa |= DEV_TX_OFFLOAD_QINQ_INSERT; tx_offload_capa |= DEV_TX_OFFLOAD_MACSEC_INSERT; tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM; return tx_offload_capa; } int __rte_cold txgbe_dev_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { const struct rte_memzone *tz; struct txgbe_tx_queue *txq; struct txgbe_hw *hw; uint16_t tx_free_thresh; uint64_t offloads; PMD_INIT_FUNC_TRACE(); hw = TXGBE_DEV_HW(dev); offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads; /* * Validate number of transmit descriptors. * It must not exceed hardware maximum, and must be multiple * of TXGBE_ALIGN. */ if (nb_desc % TXGBE_TXD_ALIGN != 0 || nb_desc > TXGBE_RING_DESC_MAX || nb_desc < TXGBE_RING_DESC_MIN) { return -EINVAL; } /* * The TX descriptor ring will be cleaned after txq->tx_free_thresh * descriptors are used or if the number of descriptors required * to transmit a packet is greater than the number of free TX * descriptors. * One descriptor in the TX ring is used as a sentinel to avoid a * H/W race condition, hence the maximum threshold constraints. * When set to zero use default values. */ tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH); if (tx_free_thresh >= (nb_desc - 3)) { PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the number of " "TX descriptors minus 3. (tx_free_thresh=%u " "port=%d queue=%d)", (unsigned int)tx_free_thresh, (int)dev->data->port_id, (int)queue_idx); return -(EINVAL); } if ((nb_desc % tx_free_thresh) != 0) { PMD_INIT_LOG(ERR, "tx_free_thresh must be a divisor of the " "number of TX descriptors. (tx_free_thresh=%u " "port=%d queue=%d)", (unsigned int)tx_free_thresh, (int)dev->data->port_id, (int)queue_idx); return -(EINVAL); } /* Free memory prior to re-allocation if needed... */ if (dev->data->tx_queues[queue_idx] != NULL) { txgbe_tx_queue_release(dev->data->tx_queues[queue_idx]); dev->data->tx_queues[queue_idx] = NULL; } /* First allocate the tx queue data structure */ txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct txgbe_tx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (txq == NULL) return -ENOMEM; /* * Allocate TX ring hardware descriptors. A memzone large enough to * handle the maximum ring size is allocated in order to allow for * resizing in later calls to the queue setup function. */ tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, sizeof(struct txgbe_tx_desc) * TXGBE_RING_DESC_MAX, TXGBE_ALIGN, socket_id); if (tz == NULL) { txgbe_tx_queue_release(txq); return -ENOMEM; } txq->nb_tx_desc = nb_desc; txq->tx_free_thresh = tx_free_thresh; txq->pthresh = tx_conf->tx_thresh.pthresh; txq->hthresh = tx_conf->tx_thresh.hthresh; txq->wthresh = tx_conf->tx_thresh.wthresh; txq->queue_id = queue_idx; txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); txq->port_id = dev->data->port_id; txq->offloads = offloads; txq->ops = &def_txq_ops; txq->tx_deferred_start = tx_conf->tx_deferred_start; /* Modification to set tail pointer for virtual function * if vf is detected. */ if (hw->mac.type == txgbe_mac_raptor_vf) { txq->tdt_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_TXWP(queue_idx)); txq->tdc_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_TXCFG(queue_idx)); } else { txq->tdt_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_TXWP(txq->reg_idx)); txq->tdc_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_TXCFG(txq->reg_idx)); } txq->tx_ring_phys_addr = TMZ_PADDR(tz); txq->tx_ring = (struct txgbe_tx_desc *)TMZ_VADDR(tz); /* Allocate software ring */ txq->sw_ring = rte_zmalloc_socket("txq->sw_ring", sizeof(struct txgbe_tx_entry) * nb_desc, RTE_CACHE_LINE_SIZE, socket_id); if (txq->sw_ring == NULL) { txgbe_tx_queue_release(txq); return -ENOMEM; } PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64, txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr); /* set up scalar TX function as appropriate */ txgbe_set_tx_function(dev, txq); txq->ops->reset(txq); dev->data->tx_queues[queue_idx] = txq; return 0; } /** * txgbe_free_sc_cluster - free the not-yet-completed scattered cluster * * The "next" pointer of the last segment of (not-yet-completed) RSC clusters * in the sw_rsc_ring is not set to NULL but rather points to the next * mbuf of this RSC aggregation (that has not been completed yet and still * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we * will just free first "nb_segs" segments of the cluster explicitly by calling * an rte_pktmbuf_free_seg(). * * @m scattered cluster head */ static void __rte_cold txgbe_free_sc_cluster(struct rte_mbuf *m) { uint16_t i, nb_segs = m->nb_segs; struct rte_mbuf *next_seg; for (i = 0; i < nb_segs; i++) { next_seg = m->next; rte_pktmbuf_free_seg(m); m = next_seg; } } static void __rte_cold txgbe_rx_queue_release_mbufs(struct txgbe_rx_queue *rxq) { unsigned int i; if (rxq->sw_ring != NULL) { for (i = 0; i < rxq->nb_rx_desc; i++) { if (rxq->sw_ring[i].mbuf != NULL) { rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); rxq->sw_ring[i].mbuf = NULL; } } if (rxq->rx_nb_avail) { for (i = 0; i < rxq->rx_nb_avail; ++i) { struct rte_mbuf *mb; mb = rxq->rx_stage[rxq->rx_next_avail + i]; rte_pktmbuf_free_seg(mb); } rxq->rx_nb_avail = 0; } } if (rxq->sw_sc_ring) for (i = 0; i < rxq->nb_rx_desc; i++) if (rxq->sw_sc_ring[i].fbuf) { txgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf); rxq->sw_sc_ring[i].fbuf = NULL; } } static void __rte_cold txgbe_rx_queue_release(struct txgbe_rx_queue *rxq) { if (rxq != NULL) { txgbe_rx_queue_release_mbufs(rxq); rte_free(rxq->sw_ring); rte_free(rxq->sw_sc_ring); rte_free(rxq); } } void __rte_cold txgbe_dev_rx_queue_release(void *rxq) { txgbe_rx_queue_release(rxq); } /* * Check if Rx Burst Bulk Alloc function can be used. * Return * 0: the preconditions are satisfied and the bulk allocation function * can be used. * -EINVAL: the preconditions are NOT satisfied and the default Rx burst * function must be used. */ static inline int __rte_cold check_rx_burst_bulk_alloc_preconditions(struct txgbe_rx_queue *rxq) { int ret = 0; /* * Make sure the following pre-conditions are satisfied: * rxq->rx_free_thresh >= RTE_PMD_TXGBE_RX_MAX_BURST * rxq->rx_free_thresh < rxq->nb_rx_desc * (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0 * Scattered packets are not supported. This should be checked * outside of this function. */ if (!(rxq->rx_free_thresh >= RTE_PMD_TXGBE_RX_MAX_BURST)) { PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: " "rxq->rx_free_thresh=%d, " "RTE_PMD_TXGBE_RX_MAX_BURST=%d", rxq->rx_free_thresh, RTE_PMD_TXGBE_RX_MAX_BURST); ret = -EINVAL; } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) { PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: " "rxq->rx_free_thresh=%d, " "rxq->nb_rx_desc=%d", rxq->rx_free_thresh, rxq->nb_rx_desc); ret = -EINVAL; } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) { PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: " "rxq->nb_rx_desc=%d, " "rxq->rx_free_thresh=%d", rxq->nb_rx_desc, rxq->rx_free_thresh); ret = -EINVAL; } return ret; } /* Reset dynamic txgbe_rx_queue fields back to defaults */ static void __rte_cold txgbe_reset_rx_queue(struct txgbe_adapter *adapter, struct txgbe_rx_queue *rxq) { static const struct txgbe_rx_desc zeroed_desc = { {{0}, {0} }, {{0}, {0} } }; unsigned int i; uint16_t len = rxq->nb_rx_desc; /* * By default, the Rx queue setup function allocates enough memory for * TXGBE_RING_DESC_MAX. The Rx Burst bulk allocation function requires * extra memory at the end of the descriptor ring to be zero'd out. */ if (adapter->rx_bulk_alloc_allowed) /* zero out extra memory */ len += RTE_PMD_TXGBE_RX_MAX_BURST; /* * Zero out HW ring memory. Zero out extra memory at the end of * the H/W ring so look-ahead logic in Rx Burst bulk alloc function * reads extra memory as zeros. */ for (i = 0; i < len; i++) rxq->rx_ring[i] = zeroed_desc; /* * initialize extra software ring entries. Space for these extra * entries is always allocated */ memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf)); for (i = rxq->nb_rx_desc; i < len; ++i) rxq->sw_ring[i].mbuf = &rxq->fake_mbuf; rxq->rx_nb_avail = 0; rxq->rx_next_avail = 0; rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1); rxq->rx_tail = 0; rxq->nb_rx_hold = 0; rxq->pkt_first_seg = NULL; rxq->pkt_last_seg = NULL; } int __rte_cold txgbe_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { const struct rte_memzone *rz; struct txgbe_rx_queue *rxq; struct txgbe_hw *hw; uint16_t len; struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev); uint64_t offloads; PMD_INIT_FUNC_TRACE(); hw = TXGBE_DEV_HW(dev); offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads; /* * Validate number of receive descriptors. * It must not exceed hardware maximum, and must be multiple * of TXGBE_ALIGN. */ if (nb_desc % TXGBE_RXD_ALIGN != 0 || nb_desc > TXGBE_RING_DESC_MAX || nb_desc < TXGBE_RING_DESC_MIN) { return -EINVAL; } /* Free memory prior to re-allocation if needed... */ if (dev->data->rx_queues[queue_idx] != NULL) { txgbe_rx_queue_release(dev->data->rx_queues[queue_idx]); dev->data->rx_queues[queue_idx] = NULL; } /* First allocate the rx queue data structure */ rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct txgbe_rx_queue), RTE_CACHE_LINE_SIZE, socket_id); if (rxq == NULL) return -ENOMEM; rxq->mb_pool = mp; rxq->nb_rx_desc = nb_desc; rxq->rx_free_thresh = rx_conf->rx_free_thresh; rxq->queue_id = queue_idx; rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); rxq->port_id = dev->data->port_id; if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) rxq->crc_len = RTE_ETHER_CRC_LEN; else rxq->crc_len = 0; rxq->drop_en = rx_conf->rx_drop_en; rxq->rx_deferred_start = rx_conf->rx_deferred_start; rxq->offloads = offloads; /* * The packet type in RX descriptor is different for different NICs. * So set different masks for different NICs. */ rxq->pkt_type_mask = TXGBE_PTID_MASK; /* * Allocate RX ring hardware descriptors. A memzone large enough to * handle the maximum ring size is allocated in order to allow for * resizing in later calls to the queue setup function. */ rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, RX_RING_SZ, TXGBE_ALIGN, socket_id); if (rz == NULL) { txgbe_rx_queue_release(rxq); return -ENOMEM; } /* * Zero init all the descriptors in the ring. */ memset(rz->addr, 0, RX_RING_SZ); /* * Modified to setup VFRDT for Virtual Function */ if (hw->mac.type == txgbe_mac_raptor_vf) { rxq->rdt_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_RXWP(queue_idx)); rxq->rdh_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_RXRP(queue_idx)); } else { rxq->rdt_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_RXWP(rxq->reg_idx)); rxq->rdh_reg_addr = TXGBE_REG_ADDR(hw, TXGBE_RXRP(rxq->reg_idx)); } rxq->rx_ring_phys_addr = TMZ_PADDR(rz); rxq->rx_ring = (struct txgbe_rx_desc *)TMZ_VADDR(rz); /* * Certain constraints must be met in order to use the bulk buffer * allocation Rx burst function. If any of Rx queues doesn't meet them * the feature should be disabled for the whole port. */ if (check_rx_burst_bulk_alloc_preconditions(rxq)) { PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc " "preconditions - canceling the feature for " "the whole port[%d]", rxq->queue_id, rxq->port_id); adapter->rx_bulk_alloc_allowed = false; } /* * Allocate software ring. Allow for space at the end of the * S/W ring to make sure look-ahead logic in bulk alloc Rx burst * function does not access an invalid memory region. */ len = nb_desc; if (adapter->rx_bulk_alloc_allowed) len += RTE_PMD_TXGBE_RX_MAX_BURST; rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring", sizeof(struct txgbe_rx_entry) * len, RTE_CACHE_LINE_SIZE, socket_id); if (!rxq->sw_ring) { txgbe_rx_queue_release(rxq); return -ENOMEM; } /* * Always allocate even if it's not going to be needed in order to * simplify the code. * * This ring is used in LRO and Scattered Rx cases and Scattered Rx may * be requested in txgbe_dev_rx_init(), which is called later from * dev_start() flow. */ rxq->sw_sc_ring = rte_zmalloc_socket("rxq->sw_sc_ring", sizeof(struct txgbe_scattered_rx_entry) * len, RTE_CACHE_LINE_SIZE, socket_id); if (!rxq->sw_sc_ring) { txgbe_rx_queue_release(rxq); return -ENOMEM; } PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p " "dma_addr=0x%" PRIx64, rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring, rxq->rx_ring_phys_addr); dev->data->rx_queues[queue_idx] = rxq; txgbe_reset_rx_queue(adapter, rxq); return 0; } uint32_t txgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) { #define TXGBE_RXQ_SCAN_INTERVAL 4 volatile struct txgbe_rx_desc *rxdp; struct txgbe_rx_queue *rxq; uint32_t desc = 0; rxq = dev->data->rx_queues[rx_queue_id]; rxdp = &rxq->rx_ring[rxq->rx_tail]; while ((desc < rxq->nb_rx_desc) && (rxdp->qw1.lo.status & rte_cpu_to_le_32(TXGBE_RXD_STAT_DD))) { desc += TXGBE_RXQ_SCAN_INTERVAL; rxdp += TXGBE_RXQ_SCAN_INTERVAL; if (rxq->rx_tail + desc >= rxq->nb_rx_desc) rxdp = &(rxq->rx_ring[rxq->rx_tail + desc - rxq->nb_rx_desc]); } return desc; } int txgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset) { struct txgbe_rx_queue *rxq = rx_queue; volatile uint32_t *status; uint32_t nb_hold, desc; if (unlikely(offset >= rxq->nb_rx_desc)) return -EINVAL; nb_hold = rxq->nb_rx_hold; if (offset >= rxq->nb_rx_desc - nb_hold) return RTE_ETH_RX_DESC_UNAVAIL; desc = rxq->rx_tail + offset; if (desc >= rxq->nb_rx_desc) desc -= rxq->nb_rx_desc; status = &rxq->rx_ring[desc].qw1.lo.status; if (*status & rte_cpu_to_le_32(TXGBE_RXD_STAT_DD)) return RTE_ETH_RX_DESC_DONE; return RTE_ETH_RX_DESC_AVAIL; } int txgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset) { struct txgbe_tx_queue *txq = tx_queue; volatile uint32_t *status; uint32_t desc; if (unlikely(offset >= txq->nb_tx_desc)) return -EINVAL; desc = txq->tx_tail + offset; if (desc >= txq->nb_tx_desc) { desc -= txq->nb_tx_desc; if (desc >= txq->nb_tx_desc) desc -= txq->nb_tx_desc; } status = &txq->tx_ring[desc].dw3; if (*status & rte_cpu_to_le_32(TXGBE_TXD_DD)) return RTE_ETH_TX_DESC_DONE; return RTE_ETH_TX_DESC_FULL; } void __rte_cold txgbe_dev_clear_queues(struct rte_eth_dev *dev) { unsigned int i; struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev); PMD_INIT_FUNC_TRACE(); for (i = 0; i < dev->data->nb_tx_queues; i++) { struct txgbe_tx_queue *txq = dev->data->tx_queues[i]; if (txq != NULL) { txq->ops->release_mbufs(txq); txq->ops->reset(txq); } } for (i = 0; i < dev->data->nb_rx_queues; i++) { struct txgbe_rx_queue *rxq = dev->data->rx_queues[i]; if (rxq != NULL) { txgbe_rx_queue_release_mbufs(rxq); txgbe_reset_rx_queue(adapter, rxq); } } } void txgbe_dev_free_queues(struct rte_eth_dev *dev) { unsigned int i; PMD_INIT_FUNC_TRACE(); for (i = 0; i < dev->data->nb_rx_queues; i++) { txgbe_dev_rx_queue_release(dev->data->rx_queues[i]); dev->data->rx_queues[i] = NULL; } dev->data->nb_rx_queues = 0; for (i = 0; i < dev->data->nb_tx_queues; i++) { txgbe_dev_tx_queue_release(dev->data->tx_queues[i]); dev->data->tx_queues[i] = NULL; } dev->data->nb_tx_queues = 0; } /** * Receive Side Scaling (RSS) * * Principles: * The source and destination IP addresses of the IP header and the source * and destination ports of TCP/UDP headers, if any, of received packets are * hashed against a configurable random key to compute a 32-bit RSS hash result. * The seven (7) LSBs of the 32-bit hash result are used as an index into a * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit * RSS output index which is used as the RX queue index where to store the * received packets. * The following output is supplied in the RX write-back descriptor: * - 32-bit result of the Microsoft RSS hash function, * - 4-bit RSS type field. */ /* * Used as the default key. */ static uint8_t rss_intel_key[40] = { 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA, }; static void txgbe_rss_disable(struct rte_eth_dev *dev) { struct txgbe_hw *hw; hw = TXGBE_DEV_HW(dev); wr32m(hw, TXGBE_RACTL, TXGBE_RACTL_RSSENA, 0); } int txgbe_dev_rss_hash_update(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); uint8_t *hash_key; uint32_t mrqc; uint32_t rss_key; uint64_t rss_hf; uint16_t i; if (!txgbe_rss_update_sp(hw->mac.type)) { PMD_DRV_LOG(ERR, "RSS hash update is not supported on this " "NIC."); return -ENOTSUP; } hash_key = rss_conf->rss_key; if (hash_key) { /* Fill in RSS hash key */ for (i = 0; i < 10; i++) { rss_key = LS32(hash_key[(i * 4) + 0], 0, 0xFF); rss_key |= LS32(hash_key[(i * 4) + 1], 8, 0xFF); rss_key |= LS32(hash_key[(i * 4) + 2], 16, 0xFF); rss_key |= LS32(hash_key[(i * 4) + 3], 24, 0xFF); wr32a(hw, TXGBE_REG_RSSKEY, i, rss_key); } } /* Set configured hashing protocols */ rss_hf = rss_conf->rss_hf & TXGBE_RSS_OFFLOAD_ALL; mrqc = rd32(hw, TXGBE_RACTL); mrqc &= ~TXGBE_RACTL_RSSMASK; if (rss_hf & ETH_RSS_IPV4) mrqc |= TXGBE_RACTL_RSSIPV4; if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) mrqc |= TXGBE_RACTL_RSSIPV4TCP; if (rss_hf & ETH_RSS_IPV6 || rss_hf & ETH_RSS_IPV6_EX) mrqc |= TXGBE_RACTL_RSSIPV6; if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP || rss_hf & ETH_RSS_IPV6_TCP_EX) mrqc |= TXGBE_RACTL_RSSIPV6TCP; if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) mrqc |= TXGBE_RACTL_RSSIPV4UDP; if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP || rss_hf & ETH_RSS_IPV6_UDP_EX) mrqc |= TXGBE_RACTL_RSSIPV6UDP; if (rss_hf) mrqc |= TXGBE_RACTL_RSSENA; else mrqc &= ~TXGBE_RACTL_RSSENA; wr32(hw, TXGBE_RACTL, mrqc); return 0; } int txgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev, struct rte_eth_rss_conf *rss_conf) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); uint8_t *hash_key; uint32_t mrqc; uint32_t rss_key; uint64_t rss_hf; uint16_t i; hash_key = rss_conf->rss_key; if (hash_key) { /* Return RSS hash key */ for (i = 0; i < 10; i++) { rss_key = rd32a(hw, TXGBE_REG_RSSKEY, i); hash_key[(i * 4) + 0] = RS32(rss_key, 0, 0xFF); hash_key[(i * 4) + 1] = RS32(rss_key, 8, 0xFF); hash_key[(i * 4) + 2] = RS32(rss_key, 16, 0xFF); hash_key[(i * 4) + 3] = RS32(rss_key, 24, 0xFF); } } rss_hf = 0; mrqc = rd32(hw, TXGBE_RACTL); if (mrqc & TXGBE_RACTL_RSSIPV4) rss_hf |= ETH_RSS_IPV4; if (mrqc & TXGBE_RACTL_RSSIPV4TCP) rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP; if (mrqc & TXGBE_RACTL_RSSIPV6) rss_hf |= ETH_RSS_IPV6 | ETH_RSS_IPV6_EX; if (mrqc & TXGBE_RACTL_RSSIPV6TCP) rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX; if (mrqc & TXGBE_RACTL_RSSIPV4UDP) rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP; if (mrqc & TXGBE_RACTL_RSSIPV6UDP) rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX; if (!(mrqc & TXGBE_RACTL_RSSENA)) rss_hf = 0; rss_hf &= TXGBE_RSS_OFFLOAD_ALL; rss_conf->rss_hf = rss_hf; return 0; } static void txgbe_rss_configure(struct rte_eth_dev *dev) { struct rte_eth_rss_conf rss_conf; struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev); struct txgbe_hw *hw = TXGBE_DEV_HW(dev); uint32_t reta; uint16_t i; uint16_t j; PMD_INIT_FUNC_TRACE(); /* * Fill in redirection table * The byte-swap is needed because NIC registers are in * little-endian order. */ if (adapter->rss_reta_updated == 0) { reta = 0; for (i = 0, j = 0; i < ETH_RSS_RETA_SIZE_128; i++, j++) { if (j == dev->data->nb_rx_queues) j = 0; reta = (reta >> 8) | LS32(j, 24, 0xFF); if ((i & 3) == 3) wr32a(hw, TXGBE_REG_RSSTBL, i >> 2, reta); } } /* * Configure the RSS key and the RSS protocols used to compute * the RSS hash of input packets. */ rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf; if (rss_conf.rss_key == NULL) rss_conf.rss_key = rss_intel_key; /* Default hash key */ txgbe_dev_rss_hash_update(dev, &rss_conf); } #define NUM_VFTA_REGISTERS 128 #define NIC_RX_BUFFER_SIZE 0x200 static void txgbe_vmdq_dcb_configure(struct rte_eth_dev *dev) { struct rte_eth_vmdq_dcb_conf *cfg; struct txgbe_hw *hw; enum rte_eth_nb_pools num_pools; uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl; uint16_t pbsize; uint8_t nb_tcs; /* number of traffic classes */ int i; PMD_INIT_FUNC_TRACE(); hw = TXGBE_DEV_HW(dev); cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf; num_pools = cfg->nb_queue_pools; /* Check we have a valid number of pools */ if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) { txgbe_rss_disable(dev); return; } /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */ nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools); /* * split rx buffer up into sections, each for 1 traffic class */ pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs); for (i = 0; i < nb_tcs; i++) { uint32_t rxpbsize = rd32(hw, TXGBE_PBRXSIZE(i)); rxpbsize &= (~(0x3FF << 10)); /* clear 10 bits. */ rxpbsize |= (pbsize << 10); /* set value */ wr32(hw, TXGBE_PBRXSIZE(i), rxpbsize); } /* zero alloc all unused TCs */ for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { uint32_t rxpbsize = rd32(hw, TXGBE_PBRXSIZE(i)); rxpbsize &= (~(0x3FF << 10)); /* clear 10 bits. */ wr32(hw, TXGBE_PBRXSIZE(i), rxpbsize); } if (num_pools == ETH_16_POOLS) { mrqc = TXGBE_PORTCTL_NUMTC_8; mrqc |= TXGBE_PORTCTL_NUMVT_16; } else { mrqc = TXGBE_PORTCTL_NUMTC_4; mrqc |= TXGBE_PORTCTL_NUMVT_32; } wr32m(hw, TXGBE_PORTCTL, TXGBE_PORTCTL_NUMTC_MASK | TXGBE_PORTCTL_NUMVT_MASK, mrqc); vt_ctl = TXGBE_POOLCTL_RPLEN; if (cfg->enable_default_pool) vt_ctl |= TXGBE_POOLCTL_DEFPL(cfg->default_pool); else vt_ctl |= TXGBE_POOLCTL_DEFDSA; wr32(hw, TXGBE_POOLCTL, vt_ctl); queue_mapping = 0; for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) /* * mapping is done with 3 bits per priority, * so shift by i*3 each time */ queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3)); wr32(hw, TXGBE_RPUP2TC, queue_mapping); wr32(hw, TXGBE_ARBRXCTL, TXGBE_ARBRXCTL_RRM); /* enable vlan filtering and allow all vlan tags through */ vlanctrl = rd32(hw, TXGBE_VLANCTL); vlanctrl |= TXGBE_VLANCTL_VFE; /* enable vlan filters */ wr32(hw, TXGBE_VLANCTL, vlanctrl); /* enable all vlan filters */ for (i = 0; i < NUM_VFTA_REGISTERS; i++) wr32(hw, TXGBE_VLANTBL(i), 0xFFFFFFFF); wr32(hw, TXGBE_POOLRXENA(0), num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF); wr32(hw, TXGBE_ETHADDRIDX, 0); wr32(hw, TXGBE_ETHADDRASSL, 0xFFFFFFFF); wr32(hw, TXGBE_ETHADDRASSH, 0xFFFFFFFF); /* set up filters for vlan tags as configured */ for (i = 0; i < cfg->nb_pool_maps; i++) { /* set vlan id in VF register and set the valid bit */ wr32(hw, TXGBE_PSRVLANIDX, i); wr32(hw, TXGBE_PSRVLAN, (TXGBE_PSRVLAN_EA | (cfg->pool_map[i].vlan_id & 0xFFF))); wr32(hw, TXGBE_PSRVLANPLM(0), cfg->pool_map[i].pools); } } /** * txgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters * @dev: pointer to eth_dev structure * @dcb_config: pointer to txgbe_dcb_config structure */ static void txgbe_dcb_tx_hw_config(struct rte_eth_dev *dev, struct txgbe_dcb_config *dcb_config) { uint32_t reg; struct txgbe_hw *hw = TXGBE_DEV_HW(dev); PMD_INIT_FUNC_TRACE(); /* Disable the Tx desc arbiter */ reg = rd32(hw, TXGBE_ARBTXCTL); reg |= TXGBE_ARBTXCTL_DIA; wr32(hw, TXGBE_ARBTXCTL, reg); /* Enable DCB for Tx with 8 TCs */ reg = rd32(hw, TXGBE_PORTCTL); reg &= TXGBE_PORTCTL_NUMTC_MASK; reg |= TXGBE_PORTCTL_DCB; if (dcb_config->num_tcs.pg_tcs == 8) reg |= TXGBE_PORTCTL_NUMTC_8; else reg |= TXGBE_PORTCTL_NUMTC_4; wr32(hw, TXGBE_PORTCTL, reg); /* Enable the Tx desc arbiter */ reg = rd32(hw, TXGBE_ARBTXCTL); reg &= ~TXGBE_ARBTXCTL_DIA; wr32(hw, TXGBE_ARBTXCTL, reg); } /** * txgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters * @dev: pointer to rte_eth_dev structure * @dcb_config: pointer to txgbe_dcb_config structure */ static void txgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev, struct txgbe_dcb_config *dcb_config) { struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf = &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf; struct txgbe_hw *hw = TXGBE_DEV_HW(dev); PMD_INIT_FUNC_TRACE(); /*PF VF Transmit Enable*/ wr32(hw, TXGBE_POOLTXENA(0), vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF); /*Configure general DCB TX parameters*/ txgbe_dcb_tx_hw_config(dev, dcb_config); } static void txgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev, struct txgbe_dcb_config *dcb_config) { struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf; struct txgbe_dcb_tc_config *tc; uint8_t i, j; /* convert rte_eth_conf.rx_adv_conf to struct txgbe_dcb_config */ if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) { dcb_config->num_tcs.pg_tcs = ETH_8_TCS; dcb_config->num_tcs.pfc_tcs = ETH_8_TCS; } else { dcb_config->num_tcs.pg_tcs = ETH_4_TCS; dcb_config->num_tcs.pfc_tcs = ETH_4_TCS; } /* Initialize User Priority to Traffic Class mapping */ for (j = 0; j < TXGBE_DCB_TC_MAX; j++) { tc = &dcb_config->tc_config[j]; tc->path[TXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0; } /* User Priority to Traffic Class mapping */ for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { j = vmdq_rx_conf->dcb_tc[i]; tc = &dcb_config->tc_config[j]; tc->path[TXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |= (uint8_t)(1 << i); } } static void txgbe_dcb_vt_tx_config(struct rte_eth_dev *dev, struct txgbe_dcb_config *dcb_config) { struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf = &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf; struct txgbe_dcb_tc_config *tc; uint8_t i, j; /* convert rte_eth_conf.rx_adv_conf to struct txgbe_dcb_config */ if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) { dcb_config->num_tcs.pg_tcs = ETH_8_TCS; dcb_config->num_tcs.pfc_tcs = ETH_8_TCS; } else { dcb_config->num_tcs.pg_tcs = ETH_4_TCS; dcb_config->num_tcs.pfc_tcs = ETH_4_TCS; } /* Initialize User Priority to Traffic Class mapping */ for (j = 0; j < TXGBE_DCB_TC_MAX; j++) { tc = &dcb_config->tc_config[j]; tc->path[TXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0; } /* User Priority to Traffic Class mapping */ for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { j = vmdq_tx_conf->dcb_tc[i]; tc = &dcb_config->tc_config[j]; tc->path[TXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |= (uint8_t)(1 << i); } } static void txgbe_dcb_rx_config(struct rte_eth_dev *dev, struct txgbe_dcb_config *dcb_config) { struct rte_eth_dcb_rx_conf *rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf; struct txgbe_dcb_tc_config *tc; uint8_t i, j; dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs; dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs; /* Initialize User Priority to Traffic Class mapping */ for (j = 0; j < TXGBE_DCB_TC_MAX; j++) { tc = &dcb_config->tc_config[j]; tc->path[TXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0; } /* User Priority to Traffic Class mapping */ for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { j = rx_conf->dcb_tc[i]; tc = &dcb_config->tc_config[j]; tc->path[TXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |= (uint8_t)(1 << i); } } static void txgbe_dcb_tx_config(struct rte_eth_dev *dev, struct txgbe_dcb_config *dcb_config) { struct rte_eth_dcb_tx_conf *tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf; struct txgbe_dcb_tc_config *tc; uint8_t i, j; dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs; dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs; /* Initialize User Priority to Traffic Class mapping */ for (j = 0; j < TXGBE_DCB_TC_MAX; j++) { tc = &dcb_config->tc_config[j]; tc->path[TXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0; } /* User Priority to Traffic Class mapping */ for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { j = tx_conf->dcb_tc[i]; tc = &dcb_config->tc_config[j]; tc->path[TXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |= (uint8_t)(1 << i); } } /** * txgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters * @dev: pointer to eth_dev structure * @dcb_config: pointer to txgbe_dcb_config structure */ static void txgbe_dcb_rx_hw_config(struct rte_eth_dev *dev, struct txgbe_dcb_config *dcb_config) { uint32_t reg; uint32_t vlanctrl; uint8_t i; uint32_t q; struct txgbe_hw *hw = TXGBE_DEV_HW(dev); PMD_INIT_FUNC_TRACE(); /* * Disable the arbiter before changing parameters * (always enable recycle mode; WSP) */ reg = TXGBE_ARBRXCTL_RRM | TXGBE_ARBRXCTL_WSP | TXGBE_ARBRXCTL_DIA; wr32(hw, TXGBE_ARBRXCTL, reg); reg = rd32(hw, TXGBE_PORTCTL); reg &= ~(TXGBE_PORTCTL_NUMTC_MASK | TXGBE_PORTCTL_NUMVT_MASK); if (dcb_config->num_tcs.pg_tcs == 4) { reg |= TXGBE_PORTCTL_NUMTC_4; if (dcb_config->vt_mode) reg |= TXGBE_PORTCTL_NUMVT_32; else wr32(hw, TXGBE_POOLCTL, 0); } if (dcb_config->num_tcs.pg_tcs == 8) { reg |= TXGBE_PORTCTL_NUMTC_8; if (dcb_config->vt_mode) reg |= TXGBE_PORTCTL_NUMVT_16; else wr32(hw, TXGBE_POOLCTL, 0); } wr32(hw, TXGBE_PORTCTL, reg); if (RTE_ETH_DEV_SRIOV(dev).active == 0) { /* Disable drop for all queues in VMDQ mode*/ for (q = 0; q < TXGBE_MAX_RX_QUEUE_NUM; q++) { u32 val = 1 << (q % 32); wr32m(hw, TXGBE_QPRXDROP(q / 32), val, val); } } else { /* Enable drop for all queues in SRIOV mode */ for (q = 0; q < TXGBE_MAX_RX_QUEUE_NUM; q++) { u32 val = 1 << (q % 32); wr32m(hw, TXGBE_QPRXDROP(q / 32), val, val); } } /* VLNCTL: enable vlan filtering and allow all vlan tags through */ vlanctrl = rd32(hw, TXGBE_VLANCTL); vlanctrl |= TXGBE_VLANCTL_VFE; /* enable vlan filters */ wr32(hw, TXGBE_VLANCTL, vlanctrl); /* VLANTBL - enable all vlan filters */ for (i = 0; i < NUM_VFTA_REGISTERS; i++) wr32(hw, TXGBE_VLANTBL(i), 0xFFFFFFFF); /* * Configure Rx packet plane (recycle mode; WSP) and * enable arbiter */ reg = TXGBE_ARBRXCTL_RRM | TXGBE_ARBRXCTL_WSP; wr32(hw, TXGBE_ARBRXCTL, reg); } static void txgbe_dcb_hw_arbite_rx_config(struct txgbe_hw *hw, uint16_t *refill, uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map) { txgbe_dcb_config_rx_arbiter_raptor(hw, refill, max, bwg_id, tsa, map); } static void txgbe_dcb_hw_arbite_tx_config(struct txgbe_hw *hw, uint16_t *refill, uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map) { switch (hw->mac.type) { case txgbe_mac_raptor: txgbe_dcb_config_tx_desc_arbiter_raptor(hw, refill, max, bwg_id, tsa); txgbe_dcb_config_tx_data_arbiter_raptor(hw, refill, max, bwg_id, tsa, map); break; default: break; } } #define DCB_RX_CONFIG 1 #define DCB_TX_CONFIG 1 #define DCB_TX_PB 1024 /** * txgbe_dcb_hw_configure - Enable DCB and configure * general DCB in VT mode and non-VT mode parameters * @dev: pointer to rte_eth_dev structure * @dcb_config: pointer to txgbe_dcb_config structure */ static int txgbe_dcb_hw_configure(struct rte_eth_dev *dev, struct txgbe_dcb_config *dcb_config) { int ret = 0; uint8_t i, pfc_en, nb_tcs; uint16_t pbsize, rx_buffer_size; uint8_t config_dcb_rx = 0; uint8_t config_dcb_tx = 0; uint8_t tsa[TXGBE_DCB_TC_MAX] = {0}; uint8_t bwgid[TXGBE_DCB_TC_MAX] = {0}; uint16_t refill[TXGBE_DCB_TC_MAX] = {0}; uint16_t max[TXGBE_DCB_TC_MAX] = {0}; uint8_t map[TXGBE_DCB_TC_MAX] = {0}; struct txgbe_dcb_tc_config *tc; uint32_t max_frame = dev->data->mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN; struct txgbe_hw *hw = TXGBE_DEV_HW(dev); struct txgbe_bw_conf *bw_conf = TXGBE_DEV_BW_CONF(dev); switch (dev->data->dev_conf.rxmode.mq_mode) { case ETH_MQ_RX_VMDQ_DCB: dcb_config->vt_mode = true; config_dcb_rx = DCB_RX_CONFIG; /* * get dcb and VT rx configuration parameters * from rte_eth_conf */ txgbe_vmdq_dcb_rx_config(dev, dcb_config); /*Configure general VMDQ and DCB RX parameters*/ txgbe_vmdq_dcb_configure(dev); break; case ETH_MQ_RX_DCB: case ETH_MQ_RX_DCB_RSS: dcb_config->vt_mode = false; config_dcb_rx = DCB_RX_CONFIG; /* Get dcb TX configuration parameters from rte_eth_conf */ txgbe_dcb_rx_config(dev, dcb_config); /*Configure general DCB RX parameters*/ txgbe_dcb_rx_hw_config(dev, dcb_config); break; default: PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration"); break; } switch (dev->data->dev_conf.txmode.mq_mode) { case ETH_MQ_TX_VMDQ_DCB: dcb_config->vt_mode = true; config_dcb_tx = DCB_TX_CONFIG; /* get DCB and VT TX configuration parameters * from rte_eth_conf */ txgbe_dcb_vt_tx_config(dev, dcb_config); /* Configure general VMDQ and DCB TX parameters */ txgbe_vmdq_dcb_hw_tx_config(dev, dcb_config); break; case ETH_MQ_TX_DCB: dcb_config->vt_mode = false; config_dcb_tx = DCB_TX_CONFIG; /* get DCB TX configuration parameters from rte_eth_conf */ txgbe_dcb_tx_config(dev, dcb_config); /* Configure general DCB TX parameters */ txgbe_dcb_tx_hw_config(dev, dcb_config); break; default: PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration"); break; } nb_tcs = dcb_config->num_tcs.pfc_tcs; /* Unpack map */ txgbe_dcb_unpack_map_cee(dcb_config, TXGBE_DCB_RX_CONFIG, map); if (nb_tcs == ETH_4_TCS) { /* Avoid un-configured priority mapping to TC0 */ uint8_t j = 4; uint8_t mask = 0xFF; for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++) mask = (uint8_t)(mask & (~(1 << map[i]))); for (i = 0; mask && (i < TXGBE_DCB_TC_MAX); i++) { if ((mask & 0x1) && j < ETH_DCB_NUM_USER_PRIORITIES) map[j++] = i; mask >>= 1; } /* Re-configure 4 TCs BW */ for (i = 0; i < nb_tcs; i++) { tc = &dcb_config->tc_config[i]; if (bw_conf->tc_num != nb_tcs) tc->path[TXGBE_DCB_TX_CONFIG].bwg_percent = (uint8_t)(100 / nb_tcs); tc->path[TXGBE_DCB_RX_CONFIG].bwg_percent = (uint8_t)(100 / nb_tcs); } for (; i < TXGBE_DCB_TC_MAX; i++) { tc = &dcb_config->tc_config[i]; tc->path[TXGBE_DCB_TX_CONFIG].bwg_percent = 0; tc->path[TXGBE_DCB_RX_CONFIG].bwg_percent = 0; } } else { /* Re-configure 8 TCs BW */ for (i = 0; i < nb_tcs; i++) { tc = &dcb_config->tc_config[i]; if (bw_conf->tc_num != nb_tcs) tc->path[TXGBE_DCB_TX_CONFIG].bwg_percent = (uint8_t)(100 / nb_tcs + (i & 1)); tc->path[TXGBE_DCB_RX_CONFIG].bwg_percent = (uint8_t)(100 / nb_tcs + (i & 1)); } } rx_buffer_size = NIC_RX_BUFFER_SIZE; if (config_dcb_rx) { /* Set RX buffer size */ pbsize = (uint16_t)(rx_buffer_size / nb_tcs); uint32_t rxpbsize = pbsize << 10; for (i = 0; i < nb_tcs; i++) wr32(hw, TXGBE_PBRXSIZE(i), rxpbsize); /* zero alloc all unused TCs */ for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) wr32(hw, TXGBE_PBRXSIZE(i), 0); } if (config_dcb_tx) { /* Only support an equally distributed * Tx packet buffer strategy. */ uint32_t txpktsize = TXGBE_PBTXSIZE_MAX / nb_tcs; uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - TXGBE_TXPKT_SIZE_MAX; for (i = 0; i < nb_tcs; i++) { wr32(hw, TXGBE_PBTXSIZE(i), txpktsize); wr32(hw, TXGBE_PBTXDMATH(i), txpbthresh); } /* Clear unused TCs, if any, to zero buffer size*/ for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { wr32(hw, TXGBE_PBTXSIZE(i), 0); wr32(hw, TXGBE_PBTXDMATH(i), 0); } } /*Calculates traffic class credits*/ txgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame, TXGBE_DCB_TX_CONFIG); txgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame, TXGBE_DCB_RX_CONFIG); if (config_dcb_rx) { /* Unpack CEE standard containers */ txgbe_dcb_unpack_refill_cee(dcb_config, TXGBE_DCB_RX_CONFIG, refill); txgbe_dcb_unpack_max_cee(dcb_config, max); txgbe_dcb_unpack_bwgid_cee(dcb_config, TXGBE_DCB_RX_CONFIG, bwgid); txgbe_dcb_unpack_tsa_cee(dcb_config, TXGBE_DCB_RX_CONFIG, tsa); /* Configure PG(ETS) RX */ txgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map); } if (config_dcb_tx) { /* Unpack CEE standard containers */ txgbe_dcb_unpack_refill_cee(dcb_config, TXGBE_DCB_TX_CONFIG, refill); txgbe_dcb_unpack_max_cee(dcb_config, max); txgbe_dcb_unpack_bwgid_cee(dcb_config, TXGBE_DCB_TX_CONFIG, bwgid); txgbe_dcb_unpack_tsa_cee(dcb_config, TXGBE_DCB_TX_CONFIG, tsa); /* Configure PG(ETS) TX */ txgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map); } /* Configure queue statistics registers */ txgbe_dcb_config_tc_stats_raptor(hw, dcb_config); /* Check if the PFC is supported */ if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) { pbsize = (uint16_t)(rx_buffer_size / nb_tcs); for (i = 0; i < nb_tcs; i++) { /* If the TC count is 8, * and the default high_water is 48, * the low_water is 16 as default. */ hw->fc.high_water[i] = (pbsize * 3) / 4; hw->fc.low_water[i] = pbsize / 4; /* Enable pfc for this TC */ tc = &dcb_config->tc_config[i]; tc->pfc = txgbe_dcb_pfc_enabled; } txgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en); if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS) pfc_en &= 0x0F; ret = txgbe_dcb_config_pfc(hw, pfc_en, map); } return ret; } void txgbe_configure_pb(struct rte_eth_dev *dev) { struct rte_eth_conf *dev_conf = &dev->data->dev_conf; struct txgbe_hw *hw = TXGBE_DEV_HW(dev); int hdrm; int tc = dev_conf->rx_adv_conf.dcb_rx_conf.nb_tcs; /* Reserve 256KB(/512KB) rx buffer for fdir */ hdrm = 256; /*KB*/ hw->mac.setup_pba(hw, tc, hdrm, PBA_STRATEGY_EQUAL); } void txgbe_configure_port(struct rte_eth_dev *dev) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); int i = 0; uint16_t tpids[8] = {RTE_ETHER_TYPE_VLAN, RTE_ETHER_TYPE_QINQ, 0x9100, 0x9200, 0x0000, 0x0000, 0x0000, 0x0000}; PMD_INIT_FUNC_TRACE(); /* default outer vlan tpid */ wr32(hw, TXGBE_EXTAG, TXGBE_EXTAG_ETAG(RTE_ETHER_TYPE_ETAG) | TXGBE_EXTAG_VLAN(RTE_ETHER_TYPE_QINQ)); /* default inner vlan tpid */ wr32m(hw, TXGBE_VLANCTL, TXGBE_VLANCTL_TPID_MASK, TXGBE_VLANCTL_TPID(RTE_ETHER_TYPE_VLAN)); wr32m(hw, TXGBE_DMATXCTRL, TXGBE_DMATXCTRL_TPID_MASK, TXGBE_DMATXCTRL_TPID(RTE_ETHER_TYPE_VLAN)); /* default vlan tpid filters */ for (i = 0; i < 8; i++) { wr32m(hw, TXGBE_TAGTPID(i / 2), (i % 2 ? TXGBE_TAGTPID_MSB_MASK : TXGBE_TAGTPID_LSB_MASK), (i % 2 ? TXGBE_TAGTPID_MSB(tpids[i]) : TXGBE_TAGTPID_LSB(tpids[i]))); } /* default vxlan port */ wr32(hw, TXGBE_VXLANPORT, 4789); } /** * txgbe_configure_dcb - Configure DCB Hardware * @dev: pointer to rte_eth_dev */ void txgbe_configure_dcb(struct rte_eth_dev *dev) { struct txgbe_dcb_config *dcb_cfg = TXGBE_DEV_DCB_CONFIG(dev); struct rte_eth_conf *dev_conf = &dev->data->dev_conf; PMD_INIT_FUNC_TRACE(); /* check support mq_mode for DCB */ if (dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB && dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB && dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS) return; if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES) return; /** Configure DCB hardware **/ txgbe_dcb_hw_configure(dev, dcb_cfg); } /* * VMDq only support for 10 GbE NIC. */ static void txgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev) { struct rte_eth_vmdq_rx_conf *cfg; struct txgbe_hw *hw; enum rte_eth_nb_pools num_pools; uint32_t mrqc, vt_ctl, vlanctrl; uint32_t vmolr = 0; int i; PMD_INIT_FUNC_TRACE(); hw = TXGBE_DEV_HW(dev); cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf; num_pools = cfg->nb_queue_pools; txgbe_rss_disable(dev); /* enable vmdq */ mrqc = TXGBE_PORTCTL_NUMVT_64; wr32m(hw, TXGBE_PORTCTL, TXGBE_PORTCTL_NUMVT_MASK, mrqc); /* turn on virtualisation and set the default pool */ vt_ctl = TXGBE_POOLCTL_RPLEN; if (cfg->enable_default_pool) vt_ctl |= TXGBE_POOLCTL_DEFPL(cfg->default_pool); else vt_ctl |= TXGBE_POOLCTL_DEFDSA; wr32(hw, TXGBE_POOLCTL, vt_ctl); for (i = 0; i < (int)num_pools; i++) { vmolr = txgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr); wr32(hw, TXGBE_POOLETHCTL(i), vmolr); } /* enable vlan filtering and allow all vlan tags through */ vlanctrl = rd32(hw, TXGBE_VLANCTL); vlanctrl |= TXGBE_VLANCTL_VFE; /* enable vlan filters */ wr32(hw, TXGBE_VLANCTL, vlanctrl); /* enable all vlan filters */ for (i = 0; i < NUM_VFTA_REGISTERS; i++) wr32(hw, TXGBE_VLANTBL(i), UINT32_MAX); /* pool enabling for receive - 64 */ wr32(hw, TXGBE_POOLRXENA(0), UINT32_MAX); if (num_pools == ETH_64_POOLS) wr32(hw, TXGBE_POOLRXENA(1), UINT32_MAX); /* * allow pools to read specific mac addresses * In this case, all pools should be able to read from mac addr 0 */ wr32(hw, TXGBE_ETHADDRIDX, 0); wr32(hw, TXGBE_ETHADDRASSL, 0xFFFFFFFF); wr32(hw, TXGBE_ETHADDRASSH, 0xFFFFFFFF); /* set up filters for vlan tags as configured */ for (i = 0; i < cfg->nb_pool_maps; i++) { /* set vlan id in VF register and set the valid bit */ wr32(hw, TXGBE_PSRVLANIDX, i); wr32(hw, TXGBE_PSRVLAN, (TXGBE_PSRVLAN_EA | TXGBE_PSRVLAN_VID(cfg->pool_map[i].vlan_id))); /* * Put the allowed pools in VFB reg. As we only have 16 or 64 * pools, we only need to use the first half of the register * i.e. bits 0-31 */ if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0) wr32(hw, TXGBE_PSRVLANPLM(0), (cfg->pool_map[i].pools & UINT32_MAX)); else wr32(hw, TXGBE_PSRVLANPLM(1), ((cfg->pool_map[i].pools >> 32) & UINT32_MAX)); } /* Tx General Switch Control Enables VMDQ loopback */ if (cfg->enable_loop_back) { wr32(hw, TXGBE_PSRCTL, TXGBE_PSRCTL_LBENA); for (i = 0; i < 64; i++) wr32m(hw, TXGBE_POOLETHCTL(i), TXGBE_POOLETHCTL_LLB, TXGBE_POOLETHCTL_LLB); } txgbe_flush(hw); } /* * txgbe_vmdq_tx_hw_configure - Configure general VMDq TX parameters * @hw: pointer to hardware structure */ static void txgbe_vmdq_tx_hw_configure(struct txgbe_hw *hw) { uint32_t reg; uint32_t q; PMD_INIT_FUNC_TRACE(); /*PF VF Transmit Enable*/ wr32(hw, TXGBE_POOLTXENA(0), UINT32_MAX); wr32(hw, TXGBE_POOLTXENA(1), UINT32_MAX); /* Disable the Tx desc arbiter */ reg = rd32(hw, TXGBE_ARBTXCTL); reg |= TXGBE_ARBTXCTL_DIA; wr32(hw, TXGBE_ARBTXCTL, reg); wr32m(hw, TXGBE_PORTCTL, TXGBE_PORTCTL_NUMVT_MASK, TXGBE_PORTCTL_NUMVT_64); /* Disable drop for all queues */ for (q = 0; q < 128; q++) { u32 val = 1 << (q % 32); wr32m(hw, TXGBE_QPRXDROP(q / 32), val, val); } /* Enable the Tx desc arbiter */ reg = rd32(hw, TXGBE_ARBTXCTL); reg &= ~TXGBE_ARBTXCTL_DIA; wr32(hw, TXGBE_ARBTXCTL, reg); txgbe_flush(hw); } static int __rte_cold txgbe_alloc_rx_queue_mbufs(struct txgbe_rx_queue *rxq) { struct txgbe_rx_entry *rxe = rxq->sw_ring; uint64_t dma_addr; unsigned int i; /* Initialize software ring entries */ for (i = 0; i < rxq->nb_rx_desc; i++) { volatile struct txgbe_rx_desc *rxd; struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool); if (mbuf == NULL) { PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u", (unsigned int)rxq->queue_id); return -ENOMEM; } mbuf->data_off = RTE_PKTMBUF_HEADROOM; mbuf->port = rxq->port_id; dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); rxd = &rxq->rx_ring[i]; TXGBE_RXD_HDRADDR(rxd, 0); TXGBE_RXD_PKTADDR(rxd, dma_addr); rxe[i].mbuf = mbuf; } return 0; } static int txgbe_config_vf_rss(struct rte_eth_dev *dev) { struct txgbe_hw *hw; uint32_t mrqc; txgbe_rss_configure(dev); hw = TXGBE_DEV_HW(dev); /* enable VF RSS */ mrqc = rd32(hw, TXGBE_PORTCTL); mrqc &= ~(TXGBE_PORTCTL_NUMTC_MASK | TXGBE_PORTCTL_NUMVT_MASK); switch (RTE_ETH_DEV_SRIOV(dev).active) { case ETH_64_POOLS: mrqc |= TXGBE_PORTCTL_NUMVT_64; break; case ETH_32_POOLS: mrqc |= TXGBE_PORTCTL_NUMVT_32; break; default: PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS"); return -EINVAL; } wr32(hw, TXGBE_PORTCTL, mrqc); return 0; } static int txgbe_config_vf_default(struct rte_eth_dev *dev) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); uint32_t mrqc; mrqc = rd32(hw, TXGBE_PORTCTL); mrqc &= ~(TXGBE_PORTCTL_NUMTC_MASK | TXGBE_PORTCTL_NUMVT_MASK); switch (RTE_ETH_DEV_SRIOV(dev).active) { case ETH_64_POOLS: mrqc |= TXGBE_PORTCTL_NUMVT_64; break; case ETH_32_POOLS: mrqc |= TXGBE_PORTCTL_NUMVT_32; break; case ETH_16_POOLS: mrqc |= TXGBE_PORTCTL_NUMVT_16; break; default: PMD_INIT_LOG(ERR, "invalid pool number in IOV mode"); return 0; } wr32(hw, TXGBE_PORTCTL, mrqc); return 0; } static int txgbe_dev_mq_rx_configure(struct rte_eth_dev *dev) { if (RTE_ETH_DEV_SRIOV(dev).active == 0) { /* * SRIOV inactive scheme * any DCB/RSS w/o VMDq multi-queue setting */ switch (dev->data->dev_conf.rxmode.mq_mode) { case ETH_MQ_RX_RSS: case ETH_MQ_RX_DCB_RSS: case ETH_MQ_RX_VMDQ_RSS: txgbe_rss_configure(dev); break; case ETH_MQ_RX_VMDQ_DCB: txgbe_vmdq_dcb_configure(dev); break; case ETH_MQ_RX_VMDQ_ONLY: txgbe_vmdq_rx_hw_configure(dev); break; case ETH_MQ_RX_NONE: default: /* if mq_mode is none, disable rss mode.*/ txgbe_rss_disable(dev); break; } } else { /* SRIOV active scheme * Support RSS together with SRIOV. */ switch (dev->data->dev_conf.rxmode.mq_mode) { case ETH_MQ_RX_RSS: case ETH_MQ_RX_VMDQ_RSS: txgbe_config_vf_rss(dev); break; case ETH_MQ_RX_VMDQ_DCB: case ETH_MQ_RX_DCB: /* In SRIOV, the configuration is the same as VMDq case */ txgbe_vmdq_dcb_configure(dev); break; /* DCB/RSS together with SRIOV is not supported */ case ETH_MQ_RX_VMDQ_DCB_RSS: case ETH_MQ_RX_DCB_RSS: PMD_INIT_LOG(ERR, "Could not support DCB/RSS with VMDq & SRIOV"); return -1; default: txgbe_config_vf_default(dev); break; } } return 0; } static int txgbe_dev_mq_tx_configure(struct rte_eth_dev *dev) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); uint32_t mtqc; uint32_t rttdcs; /* disable arbiter */ rttdcs = rd32(hw, TXGBE_ARBTXCTL); rttdcs |= TXGBE_ARBTXCTL_DIA; wr32(hw, TXGBE_ARBTXCTL, rttdcs); if (RTE_ETH_DEV_SRIOV(dev).active == 0) { /* * SRIOV inactive scheme * any DCB w/o VMDq multi-queue setting */ if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY) txgbe_vmdq_tx_hw_configure(hw); else wr32m(hw, TXGBE_PORTCTL, TXGBE_PORTCTL_NUMVT_MASK, 0); } else { switch (RTE_ETH_DEV_SRIOV(dev).active) { /* * SRIOV active scheme * FIXME if support DCB together with VMDq & SRIOV */ case ETH_64_POOLS: mtqc = TXGBE_PORTCTL_NUMVT_64; break; case ETH_32_POOLS: mtqc = TXGBE_PORTCTL_NUMVT_32; break; case ETH_16_POOLS: mtqc = TXGBE_PORTCTL_NUMVT_16; break; default: mtqc = 0; PMD_INIT_LOG(ERR, "invalid pool number in IOV mode"); } wr32m(hw, TXGBE_PORTCTL, TXGBE_PORTCTL_NUMVT_MASK, mtqc); } /* re-enable arbiter */ rttdcs &= ~TXGBE_ARBTXCTL_DIA; wr32(hw, TXGBE_ARBTXCTL, rttdcs); return 0; } /** * txgbe_get_rscctl_maxdesc * * @pool Memory pool of the Rx queue */ static inline uint32_t txgbe_get_rscctl_maxdesc(struct rte_mempool *pool) { struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool); uint16_t maxdesc = RTE_IPV4_MAX_PKT_LEN / (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM); if (maxdesc >= 16) return TXGBE_RXCFG_RSCMAX_16; else if (maxdesc >= 8) return TXGBE_RXCFG_RSCMAX_8; else if (maxdesc >= 4) return TXGBE_RXCFG_RSCMAX_4; else return TXGBE_RXCFG_RSCMAX_1; } /** * txgbe_set_rsc - configure RSC related port HW registers * * Configures the port's RSC related registers. * * @dev port handle * * Returns 0 in case of success or a non-zero error code */ static int txgbe_set_rsc(struct rte_eth_dev *dev) { struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode; struct txgbe_hw *hw = TXGBE_DEV_HW(dev); struct rte_eth_dev_info dev_info = { 0 }; bool rsc_capable = false; uint16_t i; uint32_t rdrxctl; uint32_t rfctl; /* Sanity check */ dev->dev_ops->dev_infos_get(dev, &dev_info); if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) rsc_capable = true; if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) { PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't " "support it"); return -EINVAL; } /* RSC global configuration */ if ((rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) { PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC " "is disabled"); return -EINVAL; } rfctl = rd32(hw, TXGBE_PSRCTL); if (rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) rfctl &= ~TXGBE_PSRCTL_RSCDIA; else rfctl |= TXGBE_PSRCTL_RSCDIA; wr32(hw, TXGBE_PSRCTL, rfctl); /* If LRO hasn't been requested - we are done here. */ if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) return 0; /* Set PSRCTL.RSCACK bit */ rdrxctl = rd32(hw, TXGBE_PSRCTL); rdrxctl |= TXGBE_PSRCTL_RSCACK; wr32(hw, TXGBE_PSRCTL, rdrxctl); /* Per-queue RSC configuration */ for (i = 0; i < dev->data->nb_rx_queues; i++) { struct txgbe_rx_queue *rxq = dev->data->rx_queues[i]; uint32_t srrctl = rd32(hw, TXGBE_RXCFG(rxq->reg_idx)); uint32_t psrtype = rd32(hw, TXGBE_POOLRSS(rxq->reg_idx)); uint32_t eitr = rd32(hw, TXGBE_ITR(rxq->reg_idx)); /* * txgbe PMD doesn't support header-split at the moment. */ srrctl &= ~TXGBE_RXCFG_HDRLEN_MASK; srrctl |= TXGBE_RXCFG_HDRLEN(128); /* * TODO: Consider setting the Receive Descriptor Minimum * Threshold Size for an RSC case. This is not an obviously * beneficiary option but the one worth considering... */ srrctl |= TXGBE_RXCFG_RSCENA; srrctl &= ~TXGBE_RXCFG_RSCMAX_MASK; srrctl |= txgbe_get_rscctl_maxdesc(rxq->mb_pool); psrtype |= TXGBE_POOLRSS_L4HDR; /* * RSC: Set ITR interval corresponding to 2K ints/s. * * Full-sized RSC aggregations for a 10Gb/s link will * arrive at about 20K aggregation/s rate. * * 2K inst/s rate will make only 10% of the * aggregations to be closed due to the interrupt timer * expiration for a streaming at wire-speed case. * * For a sparse streaming case this setting will yield * at most 500us latency for a single RSC aggregation. */ eitr &= ~TXGBE_ITR_IVAL_MASK; eitr |= TXGBE_ITR_IVAL_10G(TXGBE_QUEUE_ITR_INTERVAL_DEFAULT); eitr |= TXGBE_ITR_WRDSA; wr32(hw, TXGBE_RXCFG(rxq->reg_idx), srrctl); wr32(hw, TXGBE_POOLRSS(rxq->reg_idx), psrtype); wr32(hw, TXGBE_ITR(rxq->reg_idx), eitr); /* * RSC requires the mapping of the queue to the * interrupt vector. */ txgbe_set_ivar_map(hw, 0, rxq->reg_idx, i); } dev->data->lro = 1; PMD_INIT_LOG(DEBUG, "enabling LRO mode"); return 0; } void __rte_cold txgbe_set_rx_function(struct rte_eth_dev *dev) { struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev); /* * Initialize the appropriate LRO callback. * * If all queues satisfy the bulk allocation preconditions * (adapter->rx_bulk_alloc_allowed is TRUE) then we may use * bulk allocation. Otherwise use a single allocation version. */ if (dev->data->lro) { if (adapter->rx_bulk_alloc_allowed) { PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk " "allocation version"); dev->rx_pkt_burst = txgbe_recv_pkts_lro_bulk_alloc; } else { PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single " "allocation version"); dev->rx_pkt_burst = txgbe_recv_pkts_lro_single_alloc; } } else if (dev->data->scattered_rx) { /* * Set the non-LRO scattered callback: there are bulk and * single allocation versions. */ if (adapter->rx_bulk_alloc_allowed) { PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk " "allocation callback (port=%d).", dev->data->port_id); dev->rx_pkt_burst = txgbe_recv_pkts_lro_bulk_alloc; } else { PMD_INIT_LOG(DEBUG, "Using Regular (non-vector, " "single allocation) " "Scattered Rx callback " "(port=%d).", dev->data->port_id); dev->rx_pkt_burst = txgbe_recv_pkts_lro_single_alloc; } /* * Below we set "simple" callbacks according to port/queues parameters. * If parameters allow we are going to choose between the following * callbacks: * - Bulk Allocation * - Single buffer allocation (the simplest one) */ } else if (adapter->rx_bulk_alloc_allowed) { PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are " "satisfied. Rx Burst Bulk Alloc function " "will be used on port=%d.", dev->data->port_id); dev->rx_pkt_burst = txgbe_recv_pkts_bulk_alloc; } else { PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not " "satisfied, or Scattered Rx is requested " "(port=%d).", dev->data->port_id); dev->rx_pkt_burst = txgbe_recv_pkts; } } /* * Initializes Receive Unit. */ int __rte_cold txgbe_dev_rx_init(struct rte_eth_dev *dev) { struct txgbe_hw *hw; struct txgbe_rx_queue *rxq; uint64_t bus_addr; uint32_t fctrl; uint32_t hlreg0; uint32_t srrctl; uint32_t rdrxctl; uint32_t rxcsum; uint16_t buf_size; uint16_t i; struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode; int rc; PMD_INIT_FUNC_TRACE(); hw = TXGBE_DEV_HW(dev); /* * Make sure receives are disabled while setting * up the RX context (registers, descriptor rings, etc.). */ wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_ENA, 0); wr32m(hw, TXGBE_PBRXCTL, TXGBE_PBRXCTL_ENA, 0); /* Enable receipt of broadcasted frames */ fctrl = rd32(hw, TXGBE_PSRCTL); fctrl |= TXGBE_PSRCTL_BCA; wr32(hw, TXGBE_PSRCTL, fctrl); /* * Configure CRC stripping, if any. */ hlreg0 = rd32(hw, TXGBE_SECRXCTL); if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) hlreg0 &= ~TXGBE_SECRXCTL_CRCSTRIP; else hlreg0 |= TXGBE_SECRXCTL_CRCSTRIP; wr32(hw, TXGBE_SECRXCTL, hlreg0); /* * Configure jumbo frame support, if any. */ if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) { wr32m(hw, TXGBE_FRMSZ, TXGBE_FRMSZ_MAX_MASK, TXGBE_FRMSZ_MAX(rx_conf->max_rx_pkt_len)); } else { wr32m(hw, TXGBE_FRMSZ, TXGBE_FRMSZ_MAX_MASK, TXGBE_FRMSZ_MAX(TXGBE_FRAME_SIZE_DFT)); } /* * If loopback mode is configured, set LPBK bit. */ hlreg0 = rd32(hw, TXGBE_PSRCTL); if (hw->mac.type == txgbe_mac_raptor && dev->data->dev_conf.lpbk_mode) hlreg0 |= TXGBE_PSRCTL_LBENA; else hlreg0 &= ~TXGBE_PSRCTL_LBENA; wr32(hw, TXGBE_PSRCTL, hlreg0); /* * Assume no header split and no VLAN strip support * on any Rx queue first . */ rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP; /* Setup RX queues */ for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; /* * Reset crc_len in case it was changed after queue setup by a * call to configure. */ if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) rxq->crc_len = RTE_ETHER_CRC_LEN; else rxq->crc_len = 0; /* Setup the Base and Length of the Rx Descriptor Rings */ bus_addr = rxq->rx_ring_phys_addr; wr32(hw, TXGBE_RXBAL(rxq->reg_idx), (uint32_t)(bus_addr & BIT_MASK32)); wr32(hw, TXGBE_RXBAH(rxq->reg_idx), (uint32_t)(bus_addr >> 32)); wr32(hw, TXGBE_RXRP(rxq->reg_idx), 0); wr32(hw, TXGBE_RXWP(rxq->reg_idx), 0); srrctl = TXGBE_RXCFG_RNGLEN(rxq->nb_rx_desc); /* Set if packets are dropped when no descriptors available */ if (rxq->drop_en) srrctl |= TXGBE_RXCFG_DROP; /* * Configure the RX buffer size in the PKTLEN field of * the RXCFG register of the queue. * The value is in 1 KB resolution. Valid values can be from * 1 KB to 16 KB. */ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM); buf_size = ROUND_UP(buf_size, 0x1 << 10); srrctl |= TXGBE_RXCFG_PKTLEN(buf_size); wr32(hw, TXGBE_RXCFG(rxq->reg_idx), srrctl); /* It adds dual VLAN length for supporting dual VLAN */ if (dev->data->dev_conf.rxmode.max_rx_pkt_len + 2 * TXGBE_VLAN_TAG_SIZE > buf_size) dev->data->scattered_rx = 1; if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP; } if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER) dev->data->scattered_rx = 1; /* * Device configured with multiple RX queues. */ txgbe_dev_mq_rx_configure(dev); /* * Setup the Checksum Register. * Disable Full-Packet Checksum which is mutually exclusive with RSS. * Enable IP/L4 checksum computation by hardware if requested to do so. */ rxcsum = rd32(hw, TXGBE_PSRCTL); rxcsum |= TXGBE_PSRCTL_PCSD; if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM) rxcsum |= TXGBE_PSRCTL_L4CSUM; else rxcsum &= ~TXGBE_PSRCTL_L4CSUM; wr32(hw, TXGBE_PSRCTL, rxcsum); if (hw->mac.type == txgbe_mac_raptor) { rdrxctl = rd32(hw, TXGBE_SECRXCTL); if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) rdrxctl &= ~TXGBE_SECRXCTL_CRCSTRIP; else rdrxctl |= TXGBE_SECRXCTL_CRCSTRIP; wr32(hw, TXGBE_SECRXCTL, rdrxctl); } rc = txgbe_set_rsc(dev); if (rc) return rc; txgbe_set_rx_function(dev); return 0; } /* * Initializes Transmit Unit. */ void __rte_cold txgbe_dev_tx_init(struct rte_eth_dev *dev) { struct txgbe_hw *hw; struct txgbe_tx_queue *txq; uint64_t bus_addr; uint16_t i; PMD_INIT_FUNC_TRACE(); hw = TXGBE_DEV_HW(dev); /* Setup the Base and Length of the Tx Descriptor Rings */ for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; bus_addr = txq->tx_ring_phys_addr; wr32(hw, TXGBE_TXBAL(txq->reg_idx), (uint32_t)(bus_addr & BIT_MASK32)); wr32(hw, TXGBE_TXBAH(txq->reg_idx), (uint32_t)(bus_addr >> 32)); wr32m(hw, TXGBE_TXCFG(txq->reg_idx), TXGBE_TXCFG_BUFLEN_MASK, TXGBE_TXCFG_BUFLEN(txq->nb_tx_desc)); /* Setup the HW Tx Head and TX Tail descriptor pointers */ wr32(hw, TXGBE_TXRP(txq->reg_idx), 0); wr32(hw, TXGBE_TXWP(txq->reg_idx), 0); } /* Device configured with multiple TX queues. */ txgbe_dev_mq_tx_configure(dev); } /* * Set up link loopback mode Tx->Rx. */ static inline void __rte_cold txgbe_setup_loopback_link_raptor(struct txgbe_hw *hw) { PMD_INIT_FUNC_TRACE(); wr32m(hw, TXGBE_MACRXCFG, TXGBE_MACRXCFG_LB, TXGBE_MACRXCFG_LB); msec_delay(50); } /* * Start Transmit and Receive Units. */ int __rte_cold txgbe_dev_rxtx_start(struct rte_eth_dev *dev) { struct txgbe_hw *hw; struct txgbe_tx_queue *txq; struct txgbe_rx_queue *rxq; uint32_t dmatxctl; uint32_t rxctrl; uint16_t i; int ret = 0; PMD_INIT_FUNC_TRACE(); hw = TXGBE_DEV_HW(dev); for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; /* Setup Transmit Threshold Registers */ wr32m(hw, TXGBE_TXCFG(txq->reg_idx), TXGBE_TXCFG_HTHRESH_MASK | TXGBE_TXCFG_WTHRESH_MASK, TXGBE_TXCFG_HTHRESH(txq->hthresh) | TXGBE_TXCFG_WTHRESH(txq->wthresh)); } dmatxctl = rd32(hw, TXGBE_DMATXCTRL); dmatxctl |= TXGBE_DMATXCTRL_ENA; wr32(hw, TXGBE_DMATXCTRL, dmatxctl); for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (!txq->tx_deferred_start) { ret = txgbe_dev_tx_queue_start(dev, i); if (ret < 0) return ret; } } for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; if (!rxq->rx_deferred_start) { ret = txgbe_dev_rx_queue_start(dev, i); if (ret < 0) return ret; } } /* Enable Receive engine */ rxctrl = rd32(hw, TXGBE_PBRXCTL); rxctrl |= TXGBE_PBRXCTL_ENA; hw->mac.enable_rx_dma(hw, rxctrl); /* If loopback mode is enabled, set up the link accordingly */ if (hw->mac.type == txgbe_mac_raptor && dev->data->dev_conf.lpbk_mode) txgbe_setup_loopback_link_raptor(hw); return 0; } void txgbe_dev_save_rx_queue(struct txgbe_hw *hw, uint16_t rx_queue_id) { u32 *reg = &hw->q_rx_regs[rx_queue_id * 8]; *(reg++) = rd32(hw, TXGBE_RXBAL(rx_queue_id)); *(reg++) = rd32(hw, TXGBE_RXBAH(rx_queue_id)); *(reg++) = rd32(hw, TXGBE_RXCFG(rx_queue_id)); } void txgbe_dev_store_rx_queue(struct txgbe_hw *hw, uint16_t rx_queue_id) { u32 *reg = &hw->q_rx_regs[rx_queue_id * 8]; wr32(hw, TXGBE_RXBAL(rx_queue_id), *(reg++)); wr32(hw, TXGBE_RXBAH(rx_queue_id), *(reg++)); wr32(hw, TXGBE_RXCFG(rx_queue_id), *(reg++) & ~TXGBE_RXCFG_ENA); } void txgbe_dev_save_tx_queue(struct txgbe_hw *hw, uint16_t tx_queue_id) { u32 *reg = &hw->q_tx_regs[tx_queue_id * 8]; *(reg++) = rd32(hw, TXGBE_TXBAL(tx_queue_id)); *(reg++) = rd32(hw, TXGBE_TXBAH(tx_queue_id)); *(reg++) = rd32(hw, TXGBE_TXCFG(tx_queue_id)); } void txgbe_dev_store_tx_queue(struct txgbe_hw *hw, uint16_t tx_queue_id) { u32 *reg = &hw->q_tx_regs[tx_queue_id * 8]; wr32(hw, TXGBE_TXBAL(tx_queue_id), *(reg++)); wr32(hw, TXGBE_TXBAH(tx_queue_id), *(reg++)); wr32(hw, TXGBE_TXCFG(tx_queue_id), *(reg++) & ~TXGBE_TXCFG_ENA); } /* * Start Receive Units for specified queue. */ int __rte_cold txgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); struct txgbe_rx_queue *rxq; uint32_t rxdctl; int poll_ms; PMD_INIT_FUNC_TRACE(); rxq = dev->data->rx_queues[rx_queue_id]; /* Allocate buffers for descriptor rings */ if (txgbe_alloc_rx_queue_mbufs(rxq) != 0) { PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d", rx_queue_id); return -1; } rxdctl = rd32(hw, TXGBE_RXCFG(rxq->reg_idx)); rxdctl |= TXGBE_RXCFG_ENA; wr32(hw, TXGBE_RXCFG(rxq->reg_idx), rxdctl); /* Wait until RX Enable ready */ poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS; do { rte_delay_ms(1); rxdctl = rd32(hw, TXGBE_RXCFG(rxq->reg_idx)); } while (--poll_ms && !(rxdctl & TXGBE_RXCFG_ENA)); if (!poll_ms) PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id); rte_wmb(); wr32(hw, TXGBE_RXRP(rxq->reg_idx), 0); wr32(hw, TXGBE_RXWP(rxq->reg_idx), rxq->nb_rx_desc - 1); dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } /* * Stop Receive Units for specified queue. */ int __rte_cold txgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); struct txgbe_adapter *adapter = TXGBE_DEV_ADAPTER(dev); struct txgbe_rx_queue *rxq; uint32_t rxdctl; int poll_ms; PMD_INIT_FUNC_TRACE(); rxq = dev->data->rx_queues[rx_queue_id]; txgbe_dev_save_rx_queue(hw, rxq->reg_idx); wr32m(hw, TXGBE_RXCFG(rxq->reg_idx), TXGBE_RXCFG_ENA, 0); /* Wait until RX Enable bit clear */ poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS; do { rte_delay_ms(1); rxdctl = rd32(hw, TXGBE_RXCFG(rxq->reg_idx)); } while (--poll_ms && (rxdctl & TXGBE_RXCFG_ENA)); if (!poll_ms) PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id); rte_delay_us(RTE_TXGBE_WAIT_100_US); txgbe_dev_store_rx_queue(hw, rxq->reg_idx); txgbe_rx_queue_release_mbufs(rxq); txgbe_reset_rx_queue(adapter, rxq); dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } /* * Start Transmit Units for specified queue. */ int __rte_cold txgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); struct txgbe_tx_queue *txq; uint32_t txdctl; int poll_ms; PMD_INIT_FUNC_TRACE(); txq = dev->data->tx_queues[tx_queue_id]; wr32m(hw, TXGBE_TXCFG(txq->reg_idx), TXGBE_TXCFG_ENA, TXGBE_TXCFG_ENA); /* Wait until TX Enable ready */ poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS; do { rte_delay_ms(1); txdctl = rd32(hw, TXGBE_TXCFG(txq->reg_idx)); } while (--poll_ms && !(txdctl & TXGBE_TXCFG_ENA)); if (!poll_ms) PMD_INIT_LOG(ERR, "Could not enable " "Tx Queue %d", tx_queue_id); rte_wmb(); wr32(hw, TXGBE_TXWP(txq->reg_idx), txq->tx_tail); dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; return 0; } /* * Stop Transmit Units for specified queue. */ int __rte_cold txgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) { struct txgbe_hw *hw = TXGBE_DEV_HW(dev); struct txgbe_tx_queue *txq; uint32_t txdctl; uint32_t txtdh, txtdt; int poll_ms; PMD_INIT_FUNC_TRACE(); txq = dev->data->tx_queues[tx_queue_id]; /* Wait until TX queue is empty */ poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS; do { rte_delay_us(RTE_TXGBE_WAIT_100_US); txtdh = rd32(hw, TXGBE_TXRP(txq->reg_idx)); txtdt = rd32(hw, TXGBE_TXWP(txq->reg_idx)); } while (--poll_ms && (txtdh != txtdt)); if (!poll_ms) PMD_INIT_LOG(ERR, "Tx Queue %d is not empty when stopping.", tx_queue_id); txgbe_dev_save_tx_queue(hw, txq->reg_idx); wr32m(hw, TXGBE_TXCFG(txq->reg_idx), TXGBE_TXCFG_ENA, 0); /* Wait until TX Enable bit clear */ poll_ms = RTE_TXGBE_REGISTER_POLL_WAIT_10_MS; do { rte_delay_ms(1); txdctl = rd32(hw, TXGBE_TXCFG(txq->reg_idx)); } while (--poll_ms && (txdctl & TXGBE_TXCFG_ENA)); if (!poll_ms) PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d", tx_queue_id); rte_delay_us(RTE_TXGBE_WAIT_100_US); txgbe_dev_store_tx_queue(hw, txq->reg_idx); if (txq->ops != NULL) { txq->ops->release_mbufs(txq); txq->ops->reset(txq); } dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; return 0; } void txgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_rxq_info *qinfo) { struct txgbe_rx_queue *rxq; rxq = dev->data->rx_queues[queue_id]; qinfo->mp = rxq->mb_pool; qinfo->scattered_rx = dev->data->scattered_rx; qinfo->nb_desc = rxq->nb_rx_desc; qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; qinfo->conf.rx_drop_en = rxq->drop_en; qinfo->conf.rx_deferred_start = rxq->rx_deferred_start; qinfo->conf.offloads = rxq->offloads; } void txgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, struct rte_eth_txq_info *qinfo) { struct txgbe_tx_queue *txq; txq = dev->data->tx_queues[queue_id]; qinfo->nb_desc = txq->nb_tx_desc; qinfo->conf.tx_thresh.pthresh = txq->pthresh; qinfo->conf.tx_thresh.hthresh = txq->hthresh; qinfo->conf.tx_thresh.wthresh = txq->wthresh; qinfo->conf.tx_free_thresh = txq->tx_free_thresh; qinfo->conf.offloads = txq->offloads; qinfo->conf.tx_deferred_start = txq->tx_deferred_start; }