/* SPDX-License-Identifier: BSD-3-Clause * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates. * All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include "ena_ethdev.h" #include "ena_logs.h" #include "ena_platform.h" #include "ena_com.h" #include "ena_eth_com.h" #include #include #include #include #define DRV_MODULE_VER_MAJOR 2 #define DRV_MODULE_VER_MINOR 2 #define DRV_MODULE_VER_SUBMINOR 1 #define ENA_IO_TXQ_IDX(q) (2 * (q)) #define ENA_IO_RXQ_IDX(q) (2 * (q) + 1) /*reverse version of ENA_IO_RXQ_IDX*/ #define ENA_IO_RXQ_IDX_REV(q) ((q - 1) / 2) #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l) #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift)) #define GET_L4_HDR_LEN(mbuf) \ ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *, \ mbuf->l3_len + mbuf->l2_len)->data_off) >> 4) #define ENA_RX_RSS_TABLE_LOG_SIZE 7 #define ENA_RX_RSS_TABLE_SIZE (1 << ENA_RX_RSS_TABLE_LOG_SIZE) #define ENA_HASH_KEY_SIZE 40 #define ETH_GSTRING_LEN 32 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #define ENA_MIN_RING_DESC 128 #define ENA_PTYPE_HAS_HASH (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP) struct ena_stats { char name[ETH_GSTRING_LEN]; int stat_offset; }; #define ENA_STAT_ENTRY(stat, stat_type) { \ .name = #stat, \ .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \ } #define ENA_STAT_RX_ENTRY(stat) \ ENA_STAT_ENTRY(stat, rx) #define ENA_STAT_TX_ENTRY(stat) \ ENA_STAT_ENTRY(stat, tx) #define ENA_STAT_ENI_ENTRY(stat) \ ENA_STAT_ENTRY(stat, eni) #define ENA_STAT_GLOBAL_ENTRY(stat) \ ENA_STAT_ENTRY(stat, dev) /* Device arguments */ #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr" /* * Each rte_memzone should have unique name. * To satisfy it, count number of allocation and add it to name. */ rte_atomic32_t ena_alloc_cnt; static const struct ena_stats ena_stats_global_strings[] = { ENA_STAT_GLOBAL_ENTRY(wd_expired), ENA_STAT_GLOBAL_ENTRY(dev_start), ENA_STAT_GLOBAL_ENTRY(dev_stop), ENA_STAT_GLOBAL_ENTRY(tx_drops), }; static const struct ena_stats ena_stats_eni_strings[] = { ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded), ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded), ENA_STAT_ENI_ENTRY(pps_allowance_exceeded), ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded), ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded), }; static const struct ena_stats ena_stats_tx_strings[] = { ENA_STAT_TX_ENTRY(cnt), ENA_STAT_TX_ENTRY(bytes), ENA_STAT_TX_ENTRY(prepare_ctx_err), ENA_STAT_TX_ENTRY(linearize), ENA_STAT_TX_ENTRY(linearize_failed), ENA_STAT_TX_ENTRY(tx_poll), ENA_STAT_TX_ENTRY(doorbells), ENA_STAT_TX_ENTRY(bad_req_id), ENA_STAT_TX_ENTRY(available_desc), }; static const struct ena_stats ena_stats_rx_strings[] = { ENA_STAT_RX_ENTRY(cnt), ENA_STAT_RX_ENTRY(bytes), ENA_STAT_RX_ENTRY(refill_partial), ENA_STAT_RX_ENTRY(bad_csum), ENA_STAT_RX_ENTRY(mbuf_alloc_fail), ENA_STAT_RX_ENTRY(bad_desc_num), ENA_STAT_RX_ENTRY(bad_req_id), }; #define ENA_STATS_ARRAY_GLOBAL ARRAY_SIZE(ena_stats_global_strings) #define ENA_STATS_ARRAY_ENI ARRAY_SIZE(ena_stats_eni_strings) #define ENA_STATS_ARRAY_TX ARRAY_SIZE(ena_stats_tx_strings) #define ENA_STATS_ARRAY_RX ARRAY_SIZE(ena_stats_rx_strings) #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\ DEV_TX_OFFLOAD_UDP_CKSUM |\ DEV_TX_OFFLOAD_IPV4_CKSUM |\ DEV_TX_OFFLOAD_TCP_TSO) #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\ PKT_TX_IP_CKSUM |\ PKT_TX_TCP_SEG) /** Vendor ID used by Amazon devices */ #define PCI_VENDOR_ID_AMAZON 0x1D0F /** Amazon devices */ #define PCI_DEVICE_ID_ENA_VF 0xEC20 #define PCI_DEVICE_ID_ENA_VF_RSERV0 0xEC21 #define ENA_TX_OFFLOAD_MASK (\ PKT_TX_L4_MASK | \ PKT_TX_IPV6 | \ PKT_TX_IPV4 | \ PKT_TX_IP_CKSUM | \ PKT_TX_TCP_SEG) #define ENA_TX_OFFLOAD_NOTSUP_MASK \ (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK) /** HW specific offloads capabilities. */ /* IPv4 checksum offload. */ #define ENA_L3_IPV4_CSUM 0x0001 /* TCP/UDP checksum offload for IPv4 packets. */ #define ENA_L4_IPV4_CSUM 0x0002 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */ #define ENA_L4_IPV4_CSUM_PARTIAL 0x0004 /* TCP/UDP checksum offload for IPv6 packets. */ #define ENA_L4_IPV6_CSUM 0x0008 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */ #define ENA_L4_IPV6_CSUM_PARTIAL 0x0010 /* TSO support for IPv4 packets. */ #define ENA_IPV4_TSO 0x0020 /* Device supports setting RSS hash. */ #define ENA_RX_RSS_HASH 0x0040 static const struct rte_pci_id pci_id_ena_map[] = { { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) }, { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) }, { .device_id = 0 }, }; static struct ena_aenq_handlers aenq_handlers; static int ena_device_init(struct ena_com_dev *ena_dev, struct ena_com_dev_get_features_ctx *get_feat_ctx, bool *wd_state); static int ena_dev_configure(struct rte_eth_dev *dev); static void ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info, struct rte_mbuf *mbuf, void **push_header, uint16_t *header_len); static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf); static void ena_tx_cleanup(struct ena_ring *tx_ring); static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf); static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp); static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len); static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs, uint32_t descs, uint16_t *next_to_clean, uint8_t offset); static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq, struct rte_mbuf *mbuf, uint16_t id); static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count); static void ena_init_rings(struct ena_adapter *adapter, bool disable_meta_caching); static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int ena_start(struct rte_eth_dev *dev); static int ena_stop(struct rte_eth_dev *dev); static int ena_close(struct rte_eth_dev *dev); static int ena_dev_reset(struct rte_eth_dev *dev); static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); static void ena_rx_queue_release_all(struct rte_eth_dev *dev); static void ena_tx_queue_release_all(struct rte_eth_dev *dev); static void ena_rx_queue_release(void *queue); static void ena_tx_queue_release(void *queue); static void ena_rx_queue_release_bufs(struct ena_ring *ring); static void ena_tx_queue_release_bufs(struct ena_ring *ring); static int ena_link_update(struct rte_eth_dev *dev, int wait_to_complete); static int ena_create_io_queue(struct ena_ring *ring); static void ena_queue_stop(struct ena_ring *ring); static void ena_queue_stop_all(struct rte_eth_dev *dev, enum ena_ring_type ring_type); static int ena_queue_start(struct ena_ring *ring); static int ena_queue_start_all(struct rte_eth_dev *dev, enum ena_ring_type ring_type); static void ena_stats_restart(struct rte_eth_dev *dev); static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter); static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter); static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter); static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter); static int ena_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static int ena_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int ena_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static void ena_interrupt_handler_rte(void *cb_arg); static void ena_timer_wd_callback(struct rte_timer *timer, void *arg); static void ena_destroy_device(struct rte_eth_dev *eth_dev); static int eth_ena_dev_init(struct rte_eth_dev *eth_dev); static int ena_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned int n); static int ena_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *stats, unsigned int n); static int ena_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, uint64_t *values, unsigned int n); static int ena_process_bool_devarg(const char *key, const char *value, void *opaque); static int ena_parse_devargs(struct ena_adapter *adapter, struct rte_devargs *devargs); static int ena_copy_eni_stats(struct ena_adapter *adapter); static const struct eth_dev_ops ena_dev_ops = { .dev_configure = ena_dev_configure, .dev_infos_get = ena_infos_get, .rx_queue_setup = ena_rx_queue_setup, .tx_queue_setup = ena_tx_queue_setup, .dev_start = ena_start, .dev_stop = ena_stop, .link_update = ena_link_update, .stats_get = ena_stats_get, .xstats_get_names = ena_xstats_get_names, .xstats_get = ena_xstats_get, .xstats_get_by_id = ena_xstats_get_by_id, .mtu_set = ena_mtu_set, .rx_queue_release = ena_rx_queue_release, .tx_queue_release = ena_tx_queue_release, .dev_close = ena_close, .dev_reset = ena_dev_reset, .reta_update = ena_rss_reta_update, .reta_query = ena_rss_reta_query, }; void ena_rss_key_fill(void *key, size_t size) { static bool key_generated; static uint8_t default_key[ENA_HASH_KEY_SIZE]; size_t i; RTE_ASSERT(size <= ENA_HASH_KEY_SIZE); if (!key_generated) { for (i = 0; i < ENA_HASH_KEY_SIZE; ++i) default_key[i] = rte_rand() & 0xff; key_generated = true; } rte_memcpy(key, default_key, size); } static inline void ena_trigger_reset(struct ena_adapter *adapter, enum ena_regs_reset_reason_types reason) { if (likely(!adapter->trigger_reset)) { adapter->reset_reason = reason; adapter->trigger_reset = true; } } static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf, struct ena_com_rx_ctx *ena_rx_ctx) { uint64_t ol_flags = 0; uint32_t packet_type = 0; if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) packet_type |= RTE_PTYPE_L4_TCP; else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP) packet_type |= RTE_PTYPE_L4_UDP; if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) { packet_type |= RTE_PTYPE_L3_IPV4; if (unlikely(ena_rx_ctx->l3_csum_err)) ol_flags |= PKT_RX_IP_CKSUM_BAD; else ol_flags |= PKT_RX_IP_CKSUM_GOOD; } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) { packet_type |= RTE_PTYPE_L3_IPV6; } if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN; else if (unlikely(ena_rx_ctx->l4_csum_err)) /* * For the L4 Rx checksum offload the HW may indicate * bad checksum although it's valid. Because of that, * we're setting the UNKNOWN flag to let the app * re-verify the checksum. */ ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN; else ol_flags |= PKT_RX_L4_CKSUM_GOOD; if (likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) { ol_flags |= PKT_RX_RSS_HASH; mbuf->hash.rss = ena_rx_ctx->hash; } mbuf->ol_flags = ol_flags; mbuf->packet_type = packet_type; } static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf, struct ena_com_tx_ctx *ena_tx_ctx, uint64_t queue_offloads, bool disable_meta_caching) { struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; if ((mbuf->ol_flags & MBUF_OFFLOADS) && (queue_offloads & QUEUE_OFFLOADS)) { /* check if TSO is required */ if ((mbuf->ol_flags & PKT_TX_TCP_SEG) && (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) { ena_tx_ctx->tso_enable = true; ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf); } /* check if L3 checksum is needed */ if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) && (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)) ena_tx_ctx->l3_csum_enable = true; if (mbuf->ol_flags & PKT_TX_IPV6) { ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; /* For the IPv6 packets, DF always needs to be true. */ ena_tx_ctx->df = 1; } else { ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; /* set don't fragment (DF) flag */ if (mbuf->packet_type & (RTE_PTYPE_L4_NONFRAG | RTE_PTYPE_INNER_L4_NONFRAG)) ena_tx_ctx->df = 1; } /* check if L4 checksum is needed */ if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) && (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) { ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; ena_tx_ctx->l4_csum_enable = true; } else if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM) && (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) { ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; ena_tx_ctx->l4_csum_enable = true; } else { ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN; ena_tx_ctx->l4_csum_enable = false; } ena_meta->mss = mbuf->tso_segsz; ena_meta->l3_hdr_len = mbuf->l3_len; ena_meta->l3_hdr_offset = mbuf->l2_len; ena_tx_ctx->meta_valid = true; } else if (disable_meta_caching) { memset(ena_meta, 0, sizeof(*ena_meta)); ena_tx_ctx->meta_valid = true; } else { ena_tx_ctx->meta_valid = false; } } static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) { struct ena_tx_buffer *tx_info = NULL; if (likely(req_id < tx_ring->ring_size)) { tx_info = &tx_ring->tx_buffer_info[req_id]; if (likely(tx_info->mbuf)) return 0; } if (tx_info) PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n"); else PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id); /* Trigger device reset */ ++tx_ring->tx_stats.bad_req_id; ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID); return -EFAULT; } static void ena_config_host_info(struct ena_com_dev *ena_dev) { struct ena_admin_host_info *host_info; int rc; /* Allocate only the host info */ rc = ena_com_allocate_host_info(ena_dev); if (rc) { PMD_DRV_LOG(ERR, "Cannot allocate host info\n"); return; } host_info = ena_dev->host_attr.host_info; host_info->os_type = ENA_ADMIN_OS_DPDK; host_info->kernel_ver = RTE_VERSION; strlcpy((char *)host_info->kernel_ver_str, rte_version(), sizeof(host_info->kernel_ver_str)); host_info->os_dist = RTE_VERSION; strlcpy((char *)host_info->os_dist_str, rte_version(), sizeof(host_info->os_dist_str)); host_info->driver_version = (DRV_MODULE_VER_MAJOR) | (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT); host_info->num_cpus = rte_lcore_count(); host_info->driver_supported_features = ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK; rc = ena_com_set_host_attributes(ena_dev); if (rc) { if (rc == -ENA_COM_UNSUPPORTED) PMD_DRV_LOG(WARNING, "Cannot set host attributes\n"); else PMD_DRV_LOG(ERR, "Cannot set host attributes\n"); goto err; } return; err: ena_com_delete_host_info(ena_dev); } /* This function calculates the number of xstats based on the current config */ static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev) { return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI + (dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) + (dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX); } static void ena_config_debug_area(struct ena_adapter *adapter) { u32 debug_area_size; int rc, ss_count; ss_count = ena_xstats_calc_num(adapter->rte_dev); /* allocate 32 bytes for each string and 64bit for the value */ debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size); if (rc) { PMD_DRV_LOG(ERR, "Cannot allocate debug area\n"); return; } rc = ena_com_set_host_attributes(&adapter->ena_dev); if (rc) { if (rc == -ENA_COM_UNSUPPORTED) PMD_DRV_LOG(WARNING, "Cannot set host attributes\n"); else PMD_DRV_LOG(ERR, "Cannot set host attributes\n"); goto err; } return; err: ena_com_delete_debug_area(&adapter->ena_dev); } static int ena_close(struct rte_eth_dev *dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; struct ena_adapter *adapter = dev->data->dev_private; int ret = 0; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; if (adapter->state == ENA_ADAPTER_STATE_RUNNING) ret = ena_stop(dev); adapter->state = ENA_ADAPTER_STATE_CLOSED; ena_rx_queue_release_all(dev); ena_tx_queue_release_all(dev); rte_free(adapter->drv_stats); adapter->drv_stats = NULL; rte_intr_disable(intr_handle); rte_intr_callback_unregister(intr_handle, ena_interrupt_handler_rte, adapter); /* * MAC is not allocated dynamically. Setting NULL should prevent from * release of the resource in the rte_eth_dev_release_port(). */ dev->data->mac_addrs = NULL; return ret; } static int ena_dev_reset(struct rte_eth_dev *dev) { int rc = 0; ena_destroy_device(dev); rc = eth_ena_dev_init(dev); if (rc) PMD_INIT_LOG(CRIT, "Cannot initialize device"); return rc; } static int ena_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct ena_adapter *adapter = dev->data->dev_private; struct ena_com_dev *ena_dev = &adapter->ena_dev; int rc, i; u16 entry_value; int conf_idx; int idx; if ((reta_size == 0) || (reta_conf == NULL)) return -EINVAL; if (reta_size > ENA_RX_RSS_TABLE_SIZE) { PMD_DRV_LOG(WARNING, "indirection table %d is bigger than supported (%d)\n", reta_size, ENA_RX_RSS_TABLE_SIZE); return -EINVAL; } for (i = 0 ; i < reta_size ; i++) { /* each reta_conf is for 64 entries. * to support 128 we use 2 conf of 64 */ conf_idx = i / RTE_RETA_GROUP_SIZE; idx = i % RTE_RETA_GROUP_SIZE; if (TEST_BIT(reta_conf[conf_idx].mask, idx)) { entry_value = ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]); rc = ena_com_indirect_table_fill_entry(ena_dev, i, entry_value); if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) { PMD_DRV_LOG(ERR, "Cannot fill indirect table\n"); return rc; } } } rte_spinlock_lock(&adapter->admin_lock); rc = ena_com_indirect_table_set(ena_dev); rte_spinlock_unlock(&adapter->admin_lock); if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) { PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n"); return rc; } PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries for port %d\n", __func__, reta_size, adapter->rte_dev->data->port_id); return 0; } /* Query redirection table. */ static int ena_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct ena_adapter *adapter = dev->data->dev_private; struct ena_com_dev *ena_dev = &adapter->ena_dev; int rc; int i; u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0}; int reta_conf_idx; int reta_idx; if (reta_size == 0 || reta_conf == NULL || (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL))) return -EINVAL; rte_spinlock_lock(&adapter->admin_lock); rc = ena_com_indirect_table_get(ena_dev, indirect_table); rte_spinlock_unlock(&adapter->admin_lock); if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) { PMD_DRV_LOG(ERR, "cannot get indirect table\n"); return -ENOTSUP; } for (i = 0 ; i < reta_size ; i++) { reta_conf_idx = i / RTE_RETA_GROUP_SIZE; reta_idx = i % RTE_RETA_GROUP_SIZE; if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx)) reta_conf[reta_conf_idx].reta[reta_idx] = ENA_IO_RXQ_IDX_REV(indirect_table[i]); } return 0; } static int ena_rss_init_default(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = &adapter->ena_dev; uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues; int rc, i; u32 val; rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); if (unlikely(rc)) { PMD_DRV_LOG(ERR, "Cannot init indirect table\n"); goto err_rss_init; } for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { val = i % nb_rx_queues; rc = ena_com_indirect_table_fill_entry(ena_dev, i, ENA_IO_RXQ_IDX(val)); if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { PMD_DRV_LOG(ERR, "Cannot fill indirect table\n"); goto err_fill_indir; } } rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, ENA_HASH_KEY_SIZE, 0xFFFFFFFF); if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { PMD_DRV_LOG(INFO, "Cannot fill hash function\n"); goto err_fill_indir; } rc = ena_com_set_default_hash_ctrl(ena_dev); if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { PMD_DRV_LOG(INFO, "Cannot fill hash control\n"); goto err_fill_indir; } rc = ena_com_indirect_table_set(ena_dev); if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n"); goto err_fill_indir; } PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n", adapter->rte_dev->data->port_id); return 0; err_fill_indir: ena_com_rss_destroy(ena_dev); err_rss_init: return rc; } static void ena_rx_queue_release_all(struct rte_eth_dev *dev) { struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues; int nb_queues = dev->data->nb_rx_queues; int i; for (i = 0; i < nb_queues; i++) ena_rx_queue_release(queues[i]); } static void ena_tx_queue_release_all(struct rte_eth_dev *dev) { struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues; int nb_queues = dev->data->nb_tx_queues; int i; for (i = 0; i < nb_queues; i++) ena_tx_queue_release(queues[i]); } static void ena_rx_queue_release(void *queue) { struct ena_ring *ring = (struct ena_ring *)queue; /* Free ring resources */ if (ring->rx_buffer_info) rte_free(ring->rx_buffer_info); ring->rx_buffer_info = NULL; if (ring->rx_refill_buffer) rte_free(ring->rx_refill_buffer); ring->rx_refill_buffer = NULL; if (ring->empty_rx_reqs) rte_free(ring->empty_rx_reqs); ring->empty_rx_reqs = NULL; ring->configured = 0; PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n", ring->port_id, ring->id); } static void ena_tx_queue_release(void *queue) { struct ena_ring *ring = (struct ena_ring *)queue; /* Free ring resources */ if (ring->push_buf_intermediate_buf) rte_free(ring->push_buf_intermediate_buf); if (ring->tx_buffer_info) rte_free(ring->tx_buffer_info); if (ring->empty_tx_reqs) rte_free(ring->empty_tx_reqs); ring->empty_tx_reqs = NULL; ring->tx_buffer_info = NULL; ring->push_buf_intermediate_buf = NULL; ring->configured = 0; PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n", ring->port_id, ring->id); } static void ena_rx_queue_release_bufs(struct ena_ring *ring) { unsigned int i; for (i = 0; i < ring->ring_size; ++i) { struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i]; if (rx_info->mbuf) { rte_mbuf_raw_free(rx_info->mbuf); rx_info->mbuf = NULL; } } } static void ena_tx_queue_release_bufs(struct ena_ring *ring) { unsigned int i; for (i = 0; i < ring->ring_size; ++i) { struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i]; if (tx_buf->mbuf) { rte_pktmbuf_free(tx_buf->mbuf); tx_buf->mbuf = NULL; } } } static int ena_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete) { struct rte_eth_link *link = &dev->data->dev_link; struct ena_adapter *adapter = dev->data->dev_private; link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN; link->link_speed = ETH_SPEED_NUM_NONE; link->link_duplex = ETH_LINK_FULL_DUPLEX; return 0; } static int ena_queue_start_all(struct rte_eth_dev *dev, enum ena_ring_type ring_type) { struct ena_adapter *adapter = dev->data->dev_private; struct ena_ring *queues = NULL; int nb_queues; int i = 0; int rc = 0; if (ring_type == ENA_RING_TYPE_RX) { queues = adapter->rx_ring; nb_queues = dev->data->nb_rx_queues; } else { queues = adapter->tx_ring; nb_queues = dev->data->nb_tx_queues; } for (i = 0; i < nb_queues; i++) { if (queues[i].configured) { if (ring_type == ENA_RING_TYPE_RX) { ena_assert_msg( dev->data->rx_queues[i] == &queues[i], "Inconsistent state of rx queues\n"); } else { ena_assert_msg( dev->data->tx_queues[i] == &queues[i], "Inconsistent state of tx queues\n"); } rc = ena_queue_start(&queues[i]); if (rc) { PMD_INIT_LOG(ERR, "failed to start queue %d type(%d)", i, ring_type); goto err; } } } return 0; err: while (i--) if (queues[i].configured) ena_queue_stop(&queues[i]); return rc; } static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter) { uint32_t max_frame_len = adapter->max_mtu; if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) max_frame_len = adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len; return max_frame_len; } static int ena_check_valid_conf(struct ena_adapter *adapter) { uint32_t max_frame_len = ena_get_mtu_conf(adapter); if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) { PMD_INIT_LOG(ERR, "Unsupported MTU of %d. " "max mtu: %d, min mtu: %d", max_frame_len, adapter->max_mtu, ENA_MIN_MTU); return ENA_COM_UNSUPPORTED; } return 0; } static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx, bool use_large_llq_hdr) { struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq; struct ena_com_dev *ena_dev = ctx->ena_dev; uint32_t max_tx_queue_size; uint32_t max_rx_queue_size; if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { struct ena_admin_queue_ext_feature_fields *max_queue_ext = &ctx->get_feat_ctx->max_queue_ext.max_queue_ext; max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth, max_queue_ext->max_rx_sq_depth); max_tx_queue_size = max_queue_ext->max_tx_cq_depth; if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { max_tx_queue_size = RTE_MIN(max_tx_queue_size, llq->max_llq_depth); } else { max_tx_queue_size = RTE_MIN(max_tx_queue_size, max_queue_ext->max_tx_sq_depth); } ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS, max_queue_ext->max_per_packet_rx_descs); ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS, max_queue_ext->max_per_packet_tx_descs); } else { struct ena_admin_queue_feature_desc *max_queues = &ctx->get_feat_ctx->max_queues; max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth, max_queues->max_sq_depth); max_tx_queue_size = max_queues->max_cq_depth; if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { max_tx_queue_size = RTE_MIN(max_tx_queue_size, llq->max_llq_depth); } else { max_tx_queue_size = RTE_MIN(max_tx_queue_size, max_queues->max_sq_depth); } ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS, max_queues->max_packet_rx_descs); ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS, max_queues->max_packet_tx_descs); } /* Round down to the nearest power of 2 */ max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size); max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size); if (use_large_llq_hdr) { if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)) { max_tx_queue_size /= 2; PMD_INIT_LOG(INFO, "Forcing large headers and decreasing maximum TX queue size to %d\n", max_tx_queue_size); } else { PMD_INIT_LOG(ERR, "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); } } if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) { PMD_INIT_LOG(ERR, "Invalid queue size"); return -EFAULT; } ctx->max_tx_queue_size = max_tx_queue_size; ctx->max_rx_queue_size = max_rx_queue_size; return 0; } static void ena_stats_restart(struct rte_eth_dev *dev) { struct ena_adapter *adapter = dev->data->dev_private; rte_atomic64_init(&adapter->drv_stats->ierrors); rte_atomic64_init(&adapter->drv_stats->oerrors); rte_atomic64_init(&adapter->drv_stats->rx_nombuf); adapter->drv_stats->rx_drops = 0; } static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) { struct ena_admin_basic_stats ena_stats; struct ena_adapter *adapter = dev->data->dev_private; struct ena_com_dev *ena_dev = &adapter->ena_dev; int rc; int i; int max_rings_stats; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return -ENOTSUP; memset(&ena_stats, 0, sizeof(ena_stats)); rte_spinlock_lock(&adapter->admin_lock); rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats); rte_spinlock_unlock(&adapter->admin_lock); if (unlikely(rc)) { PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n"); return rc; } /* Set of basic statistics from ENA */ stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high, ena_stats.rx_pkts_low); stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high, ena_stats.tx_pkts_low); stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high, ena_stats.rx_bytes_low); stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high, ena_stats.tx_bytes_low); /* Driver related stats */ stats->imissed = adapter->drv_stats->rx_drops; stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors); stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors); stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf); max_rings_stats = RTE_MIN(dev->data->nb_rx_queues, RTE_ETHDEV_QUEUE_STAT_CNTRS); for (i = 0; i < max_rings_stats; ++i) { struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats; stats->q_ibytes[i] = rx_stats->bytes; stats->q_ipackets[i] = rx_stats->cnt; stats->q_errors[i] = rx_stats->bad_desc_num + rx_stats->bad_req_id; } max_rings_stats = RTE_MIN(dev->data->nb_tx_queues, RTE_ETHDEV_QUEUE_STAT_CNTRS); for (i = 0; i < max_rings_stats; ++i) { struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats; stats->q_obytes[i] = tx_stats->bytes; stats->q_opackets[i] = tx_stats->cnt; } return 0; } static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { struct ena_adapter *adapter; struct ena_com_dev *ena_dev; int rc = 0; ena_assert_msg(dev->data != NULL, "Uninitialized device\n"); ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n"); adapter = dev->data->dev_private; ena_dev = &adapter->ena_dev; ena_assert_msg(ena_dev != NULL, "Uninitialized device\n"); if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) { PMD_DRV_LOG(ERR, "Invalid MTU setting. new_mtu: %d " "max mtu: %d min mtu: %d\n", mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU); return -EINVAL; } rc = ena_com_set_dev_mtu(ena_dev, mtu); if (rc) PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu); else PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu); return rc; } static int ena_start(struct rte_eth_dev *dev) { struct ena_adapter *adapter = dev->data->dev_private; uint64_t ticks; int rc = 0; rc = ena_check_valid_conf(adapter); if (rc) return rc; rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX); if (rc) return rc; rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX); if (rc) goto err_start_tx; if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) { rc = ena_rss_init_default(adapter); if (rc) goto err_rss_init; } ena_stats_restart(dev); adapter->timestamp_wd = rte_get_timer_cycles(); adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; ticks = rte_get_timer_hz(); rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(), ena_timer_wd_callback, adapter); ++adapter->dev_stats.dev_start; adapter->state = ENA_ADAPTER_STATE_RUNNING; return 0; err_rss_init: ena_queue_stop_all(dev, ENA_RING_TYPE_TX); err_start_tx: ena_queue_stop_all(dev, ENA_RING_TYPE_RX); return rc; } static int ena_stop(struct rte_eth_dev *dev) { struct ena_adapter *adapter = dev->data->dev_private; struct ena_com_dev *ena_dev = &adapter->ena_dev; int rc; rte_timer_stop_sync(&adapter->timer_wd); ena_queue_stop_all(dev, ENA_RING_TYPE_TX); ena_queue_stop_all(dev, ENA_RING_TYPE_RX); if (adapter->trigger_reset) { rc = ena_com_dev_reset(ena_dev, adapter->reset_reason); if (rc) PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc); } ++adapter->dev_stats.dev_stop; adapter->state = ENA_ADAPTER_STATE_STOPPED; dev->data->dev_started = 0; return 0; } static int ena_create_io_queue(struct ena_ring *ring) { struct ena_adapter *adapter; struct ena_com_dev *ena_dev; struct ena_com_create_io_ctx ctx = /* policy set to _HOST just to satisfy icc compiler */ { ENA_ADMIN_PLACEMENT_POLICY_HOST, 0, 0, 0, 0, 0 }; uint16_t ena_qid; unsigned int i; int rc; adapter = ring->adapter; ena_dev = &adapter->ena_dev; if (ring->type == ENA_RING_TYPE_TX) { ena_qid = ENA_IO_TXQ_IDX(ring->id); ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; ctx.mem_queue_type = ena_dev->tx_mem_queue_type; for (i = 0; i < ring->ring_size; i++) ring->empty_tx_reqs[i] = i; } else { ena_qid = ENA_IO_RXQ_IDX(ring->id); ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; for (i = 0; i < ring->ring_size; i++) ring->empty_rx_reqs[i] = i; } ctx.queue_size = ring->ring_size; ctx.qid = ena_qid; ctx.msix_vector = -1; /* interrupts not used */ ctx.numa_node = ring->numa_socket_id; rc = ena_com_create_io_queue(ena_dev, &ctx); if (rc) { PMD_DRV_LOG(ERR, "failed to create io queue #%d (qid:%d) rc: %d\n", ring->id, ena_qid, rc); return rc; } rc = ena_com_get_io_handlers(ena_dev, ena_qid, &ring->ena_com_io_sq, &ring->ena_com_io_cq); if (rc) { PMD_DRV_LOG(ERR, "Failed to get io queue handlers. queue num %d rc: %d\n", ring->id, rc); ena_com_destroy_io_queue(ena_dev, ena_qid); return rc; } if (ring->type == ENA_RING_TYPE_TX) ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node); return 0; } static void ena_queue_stop(struct ena_ring *ring) { struct ena_com_dev *ena_dev = &ring->adapter->ena_dev; if (ring->type == ENA_RING_TYPE_RX) { ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id)); ena_rx_queue_release_bufs(ring); } else { ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id)); ena_tx_queue_release_bufs(ring); } } static void ena_queue_stop_all(struct rte_eth_dev *dev, enum ena_ring_type ring_type) { struct ena_adapter *adapter = dev->data->dev_private; struct ena_ring *queues = NULL; uint16_t nb_queues, i; if (ring_type == ENA_RING_TYPE_RX) { queues = adapter->rx_ring; nb_queues = dev->data->nb_rx_queues; } else { queues = adapter->tx_ring; nb_queues = dev->data->nb_tx_queues; } for (i = 0; i < nb_queues; ++i) if (queues[i].configured) ena_queue_stop(&queues[i]); } static int ena_queue_start(struct ena_ring *ring) { int rc, bufs_num; ena_assert_msg(ring->configured == 1, "Trying to start unconfigured queue\n"); rc = ena_create_io_queue(ring); if (rc) { PMD_INIT_LOG(ERR, "Failed to create IO queue!"); return rc; } ring->next_to_clean = 0; ring->next_to_use = 0; if (ring->type == ENA_RING_TYPE_TX) { ring->tx_stats.available_desc = ena_com_free_q_entries(ring->ena_com_io_sq); return 0; } bufs_num = ring->ring_size - 1; rc = ena_populate_rx_queue(ring, bufs_num); if (rc != bufs_num) { ena_com_destroy_io_queue(&ring->adapter->ena_dev, ENA_IO_RXQ_IDX(ring->id)); PMD_INIT_LOG(ERR, "Failed to populate rx ring !"); return ENA_COM_FAULT; } /* Flush per-core RX buffers pools cache as they can be used on other * cores as well. */ rte_mempool_cache_flush(NULL, ring->mb_pool); return 0; } static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, const struct rte_eth_txconf *tx_conf) { struct ena_ring *txq = NULL; struct ena_adapter *adapter = dev->data->dev_private; unsigned int i; txq = &adapter->tx_ring[queue_idx]; if (txq->configured) { PMD_DRV_LOG(CRIT, "API violation. Queue %d is already configured\n", queue_idx); return ENA_COM_FAULT; } if (!rte_is_power_of_2(nb_desc)) { PMD_DRV_LOG(ERR, "Unsupported size of TX queue: %d is not a power of 2.\n", nb_desc); return -EINVAL; } if (nb_desc > adapter->max_tx_ring_size) { PMD_DRV_LOG(ERR, "Unsupported size of TX queue (max size: %d)\n", adapter->max_tx_ring_size); return -EINVAL; } txq->port_id = dev->data->port_id; txq->next_to_clean = 0; txq->next_to_use = 0; txq->ring_size = nb_desc; txq->size_mask = nb_desc - 1; txq->numa_socket_id = socket_id; txq->pkts_without_db = false; txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info", sizeof(struct ena_tx_buffer) * txq->ring_size, RTE_CACHE_LINE_SIZE); if (!txq->tx_buffer_info) { PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n"); return -ENOMEM; } txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs", sizeof(u16) * txq->ring_size, RTE_CACHE_LINE_SIZE); if (!txq->empty_tx_reqs) { PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n"); rte_free(txq->tx_buffer_info); return -ENOMEM; } txq->push_buf_intermediate_buf = rte_zmalloc("txq->push_buf_intermediate_buf", txq->tx_max_header_size, RTE_CACHE_LINE_SIZE); if (!txq->push_buf_intermediate_buf) { PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n"); rte_free(txq->tx_buffer_info); rte_free(txq->empty_tx_reqs); return -ENOMEM; } for (i = 0; i < txq->ring_size; i++) txq->empty_tx_reqs[i] = i; if (tx_conf != NULL) { txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads; } /* Store pointer to this queue in upper layer */ txq->configured = 1; dev->data->tx_queues[queue_idx] = txq; return 0; } static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, uint16_t nb_desc, unsigned int socket_id, __rte_unused const struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) { struct ena_adapter *adapter = dev->data->dev_private; struct ena_ring *rxq = NULL; size_t buffer_size; int i; rxq = &adapter->rx_ring[queue_idx]; if (rxq->configured) { PMD_DRV_LOG(CRIT, "API violation. Queue %d is already configured\n", queue_idx); return ENA_COM_FAULT; } if (!rte_is_power_of_2(nb_desc)) { PMD_DRV_LOG(ERR, "Unsupported size of RX queue: %d is not a power of 2.\n", nb_desc); return -EINVAL; } if (nb_desc > adapter->max_rx_ring_size) { PMD_DRV_LOG(ERR, "Unsupported size of RX queue (max size: %d)\n", adapter->max_rx_ring_size); return -EINVAL; } /* ENA isn't supporting buffers smaller than 1400 bytes */ buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM; if (buffer_size < ENA_RX_BUF_MIN_SIZE) { PMD_DRV_LOG(ERR, "Unsupported size of RX buffer: %zu (min size: %d)\n", buffer_size, ENA_RX_BUF_MIN_SIZE); return -EINVAL; } rxq->port_id = dev->data->port_id; rxq->next_to_clean = 0; rxq->next_to_use = 0; rxq->ring_size = nb_desc; rxq->size_mask = nb_desc - 1; rxq->numa_socket_id = socket_id; rxq->mb_pool = mp; rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info", sizeof(struct ena_rx_buffer) * nb_desc, RTE_CACHE_LINE_SIZE); if (!rxq->rx_buffer_info) { PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n"); return -ENOMEM; } rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer", sizeof(struct rte_mbuf *) * nb_desc, RTE_CACHE_LINE_SIZE); if (!rxq->rx_refill_buffer) { PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n"); rte_free(rxq->rx_buffer_info); rxq->rx_buffer_info = NULL; return -ENOMEM; } rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs", sizeof(uint16_t) * nb_desc, RTE_CACHE_LINE_SIZE); if (!rxq->empty_rx_reqs) { PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n"); rte_free(rxq->rx_buffer_info); rxq->rx_buffer_info = NULL; rte_free(rxq->rx_refill_buffer); rxq->rx_refill_buffer = NULL; return -ENOMEM; } for (i = 0; i < nb_desc; i++) rxq->empty_rx_reqs[i] = i; /* Store pointer to this queue in upper layer */ rxq->configured = 1; dev->data->rx_queues[queue_idx] = rxq; return 0; } static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq, struct rte_mbuf *mbuf, uint16_t id) { struct ena_com_buf ebuf; int rc; /* prepare physical address for DMA transaction */ ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM; ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM; /* pass resource to device */ rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id); if (unlikely(rc != 0)) PMD_DRV_LOG(WARNING, "failed adding rx desc\n"); return rc; } static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count) { unsigned int i; int rc; uint16_t next_to_use = rxq->next_to_use; uint16_t in_use, req_id; struct rte_mbuf **mbufs = rxq->rx_refill_buffer; if (unlikely(!count)) return 0; in_use = rxq->ring_size - 1 - ena_com_free_q_entries(rxq->ena_com_io_sq); ena_assert_msg(((in_use + count) < rxq->ring_size), "bad ring state\n"); /* get resources for incoming packets */ rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count); if (unlikely(rc < 0)) { rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf); ++rxq->rx_stats.mbuf_alloc_fail; PMD_RX_LOG(DEBUG, "there are no enough free buffers"); return 0; } for (i = 0; i < count; i++) { struct rte_mbuf *mbuf = mbufs[i]; struct ena_rx_buffer *rx_info; if (likely((i + 4) < count)) rte_prefetch0(mbufs[i + 4]); req_id = rxq->empty_rx_reqs[next_to_use]; rx_info = &rxq->rx_buffer_info[req_id]; rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id); if (unlikely(rc != 0)) break; rx_info->mbuf = mbuf; next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask); } if (unlikely(i < count)) { PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d " "buffers (from %d)\n", rxq->id, i, count); rte_pktmbuf_free_bulk(&mbufs[i], count - i); ++rxq->rx_stats.refill_partial; } /* When we submitted free resources to device... */ if (likely(i > 0)) { /* ...let HW know that it can fill buffers with data. */ ena_com_write_sq_doorbell(rxq->ena_com_io_sq); rxq->next_to_use = next_to_use; } return i; } static int ena_device_init(struct ena_com_dev *ena_dev, struct ena_com_dev_get_features_ctx *get_feat_ctx, bool *wd_state) { uint32_t aenq_groups; int rc; bool readless_supported; /* Initialize mmio registers */ rc = ena_com_mmio_reg_read_request_init(ena_dev); if (rc) { PMD_DRV_LOG(ERR, "failed to init mmio read less\n"); return rc; } /* The PCIe configuration space revision id indicate if mmio reg * read is disabled. */ readless_supported = !(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id & ENA_MMIO_DISABLE_REG_READ); ena_com_set_mmio_read_mode(ena_dev, readless_supported); /* reset device */ rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); if (rc) { PMD_DRV_LOG(ERR, "cannot reset device\n"); goto err_mmio_read_less; } /* check FW version */ rc = ena_com_validate_version(ena_dev); if (rc) { PMD_DRV_LOG(ERR, "device version is too low\n"); goto err_mmio_read_less; } ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev); /* ENA device administration layer init */ rc = ena_com_admin_init(ena_dev, &aenq_handlers); if (rc) { PMD_DRV_LOG(ERR, "cannot initialize ena admin queue with device\n"); goto err_mmio_read_less; } /* To enable the msix interrupts the driver needs to know the number * of queues. So the driver uses polling mode to retrieve this * information. */ ena_com_set_admin_polling_mode(ena_dev, true); ena_config_host_info(ena_dev); /* Get Device Attributes and features */ rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); if (rc) { PMD_DRV_LOG(ERR, "cannot get attribute for ena device rc= %d\n", rc); goto err_admin_init; } aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_NOTIFICATION) | BIT(ENA_ADMIN_KEEP_ALIVE) | BIT(ENA_ADMIN_FATAL_ERROR) | BIT(ENA_ADMIN_WARNING); aenq_groups &= get_feat_ctx->aenq.supported_groups; rc = ena_com_set_aenq_config(ena_dev, aenq_groups); if (rc) { PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc); goto err_admin_init; } *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); return 0; err_admin_init: ena_com_admin_destroy(ena_dev); err_mmio_read_less: ena_com_mmio_reg_read_request_destroy(ena_dev); return rc; } static void ena_interrupt_handler_rte(void *cb_arg) { struct ena_adapter *adapter = cb_arg; struct ena_com_dev *ena_dev = &adapter->ena_dev; ena_com_admin_q_comp_intr_handler(ena_dev); if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) ena_com_aenq_intr_handler(ena_dev, adapter); } static void check_for_missing_keep_alive(struct ena_adapter *adapter) { if (!adapter->wd_state) return; if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) return; if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >= adapter->keep_alive_timeout)) { PMD_DRV_LOG(ERR, "Keep alive timeout\n"); ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO); ++adapter->dev_stats.wd_expired; } } /* Check if admin queue is enabled */ static void check_for_admin_com_state(struct ena_adapter *adapter) { if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) { PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n"); ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO); } } static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer, void *arg) { struct ena_adapter *adapter = arg; struct rte_eth_dev *dev = adapter->rte_dev; if (unlikely(adapter->trigger_reset)) return; check_for_missing_keep_alive(adapter); check_for_admin_com_state(adapter); if (unlikely(adapter->trigger_reset)) { PMD_DRV_LOG(ERR, "Trigger reset is on\n"); rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET, NULL); } } static inline void set_default_llq_configurations(struct ena_llq_configurations *llq_config, struct ena_admin_feature_llq_desc *llq, bool use_large_llq_hdr) { llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; if (use_large_llq_hdr && (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) { llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B; llq_config->llq_ring_entry_size_value = 256; } else { llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; llq_config->llq_ring_entry_size_value = 128; } } static int ena_set_queues_placement_policy(struct ena_adapter *adapter, struct ena_com_dev *ena_dev, struct ena_admin_feature_llq_desc *llq, struct ena_llq_configurations *llq_default_configurations) { int rc; u32 llq_feature_mask; llq_feature_mask = 1 << ENA_ADMIN_LLQ; if (!(ena_dev->supported_features & llq_feature_mask)) { PMD_DRV_LOG(INFO, "LLQ is not supported. Fallback to host mode policy.\n"); ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; return 0; } if (adapter->dev_mem_base == NULL) { PMD_DRV_LOG(ERR, "LLQ is advertised as supported, but device doesn't expose mem bar\n"); ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; return 0; } rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); if (unlikely(rc)) { PMD_INIT_LOG(WARNING, "Failed to config dev mode. " "Fallback to host mode policy."); ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; return 0; } /* Nothing to config, exit */ if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) return 0; ena_dev->mem_bar = adapter->dev_mem_base; return 0; } static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev, struct ena_com_dev_get_features_ctx *get_feat_ctx) { uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; /* Regular queues capabilities */ if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { struct ena_admin_queue_ext_feature_fields *max_queue_ext = &get_feat_ctx->max_queue_ext.max_queue_ext; io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num, max_queue_ext->max_rx_cq_num); io_tx_sq_num = max_queue_ext->max_tx_sq_num; io_tx_cq_num = max_queue_ext->max_tx_cq_num; } else { struct ena_admin_queue_feature_desc *max_queues = &get_feat_ctx->max_queues; io_tx_sq_num = max_queues->max_sq_num; io_tx_cq_num = max_queues->max_cq_num; io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num); } /* In case of LLQ use the llq number in the get feature cmd */ if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) io_tx_sq_num = get_feat_ctx->llq.max_llq_num; max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num); max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num); max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num); if (unlikely(max_num_io_queues == 0)) { PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n"); return -EFAULT; } return max_num_io_queues; } static void ena_set_offloads(struct ena_offloads *offloads, struct ena_admin_feature_offload_desc *offload_desc) { if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) offloads->tx_offloads |= ENA_IPV4_TSO; /* Tx IPv4 checksum offloads */ if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) offloads->tx_offloads |= ENA_L3_IPV4_CSUM; if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK) offloads->tx_offloads |= ENA_L4_IPV4_CSUM; if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL; /* Tx IPv6 checksum offloads */ if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK) offloads->tx_offloads |= ENA_L4_IPV6_CSUM; if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL; /* Rx IPv4 checksum offloads */ if (offload_desc->rx_supported & ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK) offloads->rx_offloads |= ENA_L3_IPV4_CSUM; if (offload_desc->rx_supported & ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) offloads->rx_offloads |= ENA_L4_IPV4_CSUM; /* Rx IPv6 checksum offloads */ if (offload_desc->rx_supported & ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) offloads->rx_offloads |= ENA_L4_IPV6_CSUM; if (offload_desc->rx_supported & ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK) offloads->rx_offloads |= ENA_RX_RSS_HASH; } static int eth_ena_dev_init(struct rte_eth_dev *eth_dev) { struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 }; struct rte_pci_device *pci_dev; struct rte_intr_handle *intr_handle; struct ena_adapter *adapter = eth_dev->data->dev_private; struct ena_com_dev *ena_dev = &adapter->ena_dev; struct ena_com_dev_get_features_ctx get_feat_ctx; struct ena_llq_configurations llq_config; const char *queue_type_str; uint32_t max_num_io_queues; int rc; static int adapters_found; bool disable_meta_caching; bool wd_state = false; eth_dev->dev_ops = &ena_dev_ops; eth_dev->rx_pkt_burst = ð_ena_recv_pkts; eth_dev->tx_pkt_burst = ð_ena_xmit_pkts; eth_dev->tx_pkt_prepare = ð_ena_prep_pkts; if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; memset(adapter, 0, sizeof(struct ena_adapter)); ena_dev = &adapter->ena_dev; adapter->rte_eth_dev_data = eth_dev->data; adapter->rte_dev = eth_dev; pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); adapter->pdev = pci_dev; PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d", pci_dev->addr.domain, pci_dev->addr.bus, pci_dev->addr.devid, pci_dev->addr.function); intr_handle = &pci_dev->intr_handle; adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr; adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr; if (!adapter->regs) { PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)", ENA_REGS_BAR); return -ENXIO; } ena_dev->reg_bar = adapter->regs; ena_dev->dmadev = adapter->pdev; adapter->id_number = adapters_found; snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapter->id_number); rc = ena_parse_devargs(adapter, pci_dev->device.devargs); if (rc != 0) { PMD_INIT_LOG(CRIT, "Failed to parse devargs\n"); goto err; } /* device specific initialization routine */ rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state); if (rc) { PMD_INIT_LOG(CRIT, "Failed to init ENA device"); goto err; } adapter->wd_state = wd_state; set_default_llq_configurations(&llq_config, &get_feat_ctx.llq, adapter->use_large_llq_hdr); rc = ena_set_queues_placement_policy(adapter, ena_dev, &get_feat_ctx.llq, &llq_config); if (unlikely(rc)) { PMD_INIT_LOG(CRIT, "Failed to set placement policy"); return rc; } if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) queue_type_str = "Regular"; else queue_type_str = "Low latency"; PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str); calc_queue_ctx.ena_dev = ena_dev; calc_queue_ctx.get_feat_ctx = &get_feat_ctx; max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx); rc = ena_calc_io_queue_size(&calc_queue_ctx, adapter->use_large_llq_hdr); if (unlikely((rc != 0) || (max_num_io_queues == 0))) { rc = -EFAULT; goto err_device_destroy; } adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size; adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size; adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size; adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size; adapter->max_num_io_queues = max_num_io_queues; if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { disable_meta_caching = !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & BIT(ENA_ADMIN_DISABLE_META_CACHING)); } else { disable_meta_caching = false; } /* prepare ring structures */ ena_init_rings(adapter, disable_meta_caching); ena_config_debug_area(adapter); /* Set max MTU for this device */ adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu; ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload); /* Copy MAC address and point DPDK to it */ eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr; rte_ether_addr_copy((struct rte_ether_addr *) get_feat_ctx.dev_attr.mac_addr, (struct rte_ether_addr *)adapter->mac_addr); adapter->drv_stats = rte_zmalloc("adapter stats", sizeof(*adapter->drv_stats), RTE_CACHE_LINE_SIZE); if (!adapter->drv_stats) { PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n"); rc = -ENOMEM; goto err_delete_debug_area; } rte_spinlock_init(&adapter->admin_lock); rte_intr_callback_register(intr_handle, ena_interrupt_handler_rte, adapter); rte_intr_enable(intr_handle); ena_com_set_admin_polling_mode(ena_dev, false); ena_com_admin_aenq_enable(ena_dev); if (adapters_found == 0) rte_timer_subsystem_init(); rte_timer_init(&adapter->timer_wd); adapters_found++; adapter->state = ENA_ADAPTER_STATE_INIT; return 0; err_delete_debug_area: ena_com_delete_debug_area(ena_dev); err_device_destroy: ena_com_delete_host_info(ena_dev); ena_com_admin_destroy(ena_dev); err: return rc; } static void ena_destroy_device(struct rte_eth_dev *eth_dev) { struct ena_adapter *adapter = eth_dev->data->dev_private; struct ena_com_dev *ena_dev = &adapter->ena_dev; if (adapter->state == ENA_ADAPTER_STATE_FREE) return; ena_com_set_admin_running_state(ena_dev, false); if (adapter->state != ENA_ADAPTER_STATE_CLOSED) ena_close(eth_dev); ena_com_delete_debug_area(ena_dev); ena_com_delete_host_info(ena_dev); ena_com_abort_admin_commands(ena_dev); ena_com_wait_for_abort_completion(ena_dev); ena_com_admin_destroy(ena_dev); ena_com_mmio_reg_read_request_destroy(ena_dev); adapter->state = ENA_ADAPTER_STATE_FREE; } static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev) { if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; ena_destroy_device(eth_dev); return 0; } static int ena_dev_configure(struct rte_eth_dev *dev) { struct ena_adapter *adapter = dev->data->dev_private; adapter->state = ENA_ADAPTER_STATE_CONFIG; if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH; dev->data->dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS; /* Scattered Rx cannot be turned off in the HW, so this capability must * be forced. */ dev->data->scattered_rx = 1; return 0; } static void ena_init_rings(struct ena_adapter *adapter, bool disable_meta_caching) { size_t i; for (i = 0; i < adapter->max_num_io_queues; i++) { struct ena_ring *ring = &adapter->tx_ring[i]; ring->configured = 0; ring->type = ENA_RING_TYPE_TX; ring->adapter = adapter; ring->id = i; ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type; ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size; ring->sgl_size = adapter->max_tx_sgl_size; ring->disable_meta_caching = disable_meta_caching; } for (i = 0; i < adapter->max_num_io_queues; i++) { struct ena_ring *ring = &adapter->rx_ring[i]; ring->configured = 0; ring->type = ENA_RING_TYPE_RX; ring->adapter = adapter; ring->id = i; ring->sgl_size = adapter->max_rx_sgl_size; } } static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter) { uint64_t port_offloads = 0; if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM) port_offloads |= DEV_RX_OFFLOAD_IPV4_CKSUM; if (adapter->offloads.rx_offloads & (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM)) port_offloads |= DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM; if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH) port_offloads |= DEV_RX_OFFLOAD_RSS_HASH; port_offloads |= DEV_RX_OFFLOAD_SCATTER; return port_offloads; } static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter) { uint64_t port_offloads = 0; if (adapter->offloads.tx_offloads & ENA_IPV4_TSO) port_offloads |= DEV_TX_OFFLOAD_TCP_TSO; if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM) port_offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM; if (adapter->offloads.tx_offloads & (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL)) port_offloads |= DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM; port_offloads |= DEV_TX_OFFLOAD_MULTI_SEGS; return port_offloads; } static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter) { RTE_SET_USED(adapter); return 0; } static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter) { RTE_SET_USED(adapter); return 0; } static int ena_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct ena_adapter *adapter; struct ena_com_dev *ena_dev; ena_assert_msg(dev->data != NULL, "Uninitialized device\n"); ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n"); adapter = dev->data->dev_private; ena_dev = &adapter->ena_dev; ena_assert_msg(ena_dev != NULL, "Uninitialized device\n"); dev_info->speed_capa = ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G | ETH_LINK_SPEED_5G | ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G | ETH_LINK_SPEED_40G | ETH_LINK_SPEED_50G | ETH_LINK_SPEED_100G; /* Inform framework about available features */ dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter); dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter); dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter); dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter); dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP | ETH_RSS_UDP; dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN; dev_info->max_rx_pktlen = adapter->max_mtu; dev_info->max_mac_addrs = 1; dev_info->max_rx_queues = adapter->max_num_io_queues; dev_info->max_tx_queues = adapter->max_num_io_queues; dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE; dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size; dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC; dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, adapter->max_rx_sgl_size); dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, adapter->max_rx_sgl_size); dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size; dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC; dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, adapter->max_tx_sgl_size); dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, adapter->max_tx_sgl_size); dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE; dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE; return 0; } static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len) { mbuf->data_len = len; mbuf->data_off = RTE_PKTMBUF_HEADROOM; mbuf->refcnt = 1; mbuf->next = NULL; } static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs, uint32_t descs, uint16_t *next_to_clean, uint8_t offset) { struct rte_mbuf *mbuf; struct rte_mbuf *mbuf_head; struct ena_rx_buffer *rx_info; int rc; uint16_t ntc, len, req_id, buf = 0; if (unlikely(descs == 0)) return NULL; ntc = *next_to_clean; len = ena_bufs[buf].len; req_id = ena_bufs[buf].req_id; rx_info = &rx_ring->rx_buffer_info[req_id]; mbuf = rx_info->mbuf; RTE_ASSERT(mbuf != NULL); ena_init_rx_mbuf(mbuf, len); /* Fill the mbuf head with the data specific for 1st segment. */ mbuf_head = mbuf; mbuf_head->nb_segs = descs; mbuf_head->port = rx_ring->port_id; mbuf_head->pkt_len = len; mbuf_head->data_off += offset; rx_info->mbuf = NULL; rx_ring->empty_rx_reqs[ntc] = req_id; ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask); while (--descs) { ++buf; len = ena_bufs[buf].len; req_id = ena_bufs[buf].req_id; rx_info = &rx_ring->rx_buffer_info[req_id]; RTE_ASSERT(rx_info->mbuf != NULL); if (unlikely(len == 0)) { /* * Some devices can pass descriptor with the length 0. * To avoid confusion, the PMD is simply putting the * descriptor back, as it was never used. We'll avoid * mbuf allocation that way. */ rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq, rx_info->mbuf, req_id); if (unlikely(rc != 0)) { /* Free the mbuf in case of an error. */ rte_mbuf_raw_free(rx_info->mbuf); } else { /* * If there was no error, just exit the loop as * 0 length descriptor is always the last one. */ break; } } else { /* Create an mbuf chain. */ mbuf->next = rx_info->mbuf; mbuf = mbuf->next; ena_init_rx_mbuf(mbuf, len); mbuf_head->pkt_len += len; } /* * Mark the descriptor as depleted and perform necessary * cleanup. * This code will execute in two cases: * 1. Descriptor len was greater than 0 - normal situation. * 2. Descriptor len was 0 and we failed to add the descriptor * to the device. In that situation, we should try to add * the mbuf again in the populate routine and mark the * descriptor as used up by the device. */ rx_info->mbuf = NULL; rx_ring->empty_rx_reqs[ntc] = req_id; ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask); } *next_to_clean = ntc; return mbuf_head; } static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue); unsigned int free_queue_entries; unsigned int refill_threshold; uint16_t next_to_clean = rx_ring->next_to_clean; uint16_t descs_in_use; struct rte_mbuf *mbuf; uint16_t completed; struct ena_com_rx_ctx ena_rx_ctx; int i, rc = 0; /* Check adapter state */ if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) { PMD_DRV_LOG(ALERT, "Trying to receive pkts while device is NOT running\n"); return 0; } descs_in_use = rx_ring->ring_size - ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1; nb_pkts = RTE_MIN(descs_in_use, nb_pkts); for (completed = 0; completed < nb_pkts; completed++) { ena_rx_ctx.max_bufs = rx_ring->sgl_size; ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; ena_rx_ctx.descs = 0; ena_rx_ctx.pkt_offset = 0; /* receive packet context */ rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, rx_ring->ena_com_io_sq, &ena_rx_ctx); if (unlikely(rc)) { PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc); if (rc == ENA_COM_NO_SPACE) { ++rx_ring->rx_stats.bad_desc_num; ena_trigger_reset(rx_ring->adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS); } else { ++rx_ring->rx_stats.bad_req_id; ena_trigger_reset(rx_ring->adapter, ENA_REGS_RESET_INV_RX_REQ_ID); } return 0; } mbuf = ena_rx_mbuf(rx_ring, ena_rx_ctx.ena_bufs, ena_rx_ctx.descs, &next_to_clean, ena_rx_ctx.pkt_offset); if (unlikely(mbuf == NULL)) { for (i = 0; i < ena_rx_ctx.descs; ++i) { rx_ring->empty_rx_reqs[next_to_clean] = rx_ring->ena_bufs[i].req_id; next_to_clean = ENA_IDX_NEXT_MASKED( next_to_clean, rx_ring->size_mask); } break; } /* fill mbuf attributes if any */ ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx); if (unlikely(mbuf->ol_flags & (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) { rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors); ++rx_ring->rx_stats.bad_csum; } rx_pkts[completed] = mbuf; rx_ring->rx_stats.bytes += mbuf->pkt_len; } rx_ring->rx_stats.cnt += completed; rx_ring->next_to_clean = next_to_clean; free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq); refill_threshold = RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER, (unsigned int)ENA_REFILL_THRESH_PACKET); /* Burst refill to save doorbells, memory barriers, const interval */ if (free_queue_entries > refill_threshold) { ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); ena_populate_rx_queue(rx_ring, free_queue_entries); } return completed; } static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { int32_t ret; uint32_t i; struct rte_mbuf *m; struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue); struct ena_adapter *adapter = tx_ring->adapter; struct rte_ipv4_hdr *ip_hdr; uint64_t ol_flags; uint64_t l4_csum_flag; uint64_t dev_offload_capa; uint16_t frag_field; bool need_pseudo_csum; dev_offload_capa = adapter->offloads.tx_offloads; for (i = 0; i != nb_pkts; i++) { m = tx_pkts[i]; ol_flags = m->ol_flags; /* Check if any offload flag was set */ if (ol_flags == 0) continue; l4_csum_flag = ol_flags & PKT_TX_L4_MASK; /* SCTP checksum offload is not supported by the ENA. */ if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) || l4_csum_flag == PKT_TX_SCTP_CKSUM) { PMD_TX_LOG(DEBUG, "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n", i, ol_flags); rte_errno = ENOTSUP; return i; } #ifdef RTE_LIBRTE_ETHDEV_DEBUG /* Check if requested offload is also enabled for the queue */ if ((ol_flags & PKT_TX_IP_CKSUM && !(tx_ring->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)) || (l4_csum_flag == PKT_TX_TCP_CKSUM && !(tx_ring->offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) || (l4_csum_flag == PKT_TX_UDP_CKSUM && !(tx_ring->offloads & DEV_TX_OFFLOAD_UDP_CKSUM))) { PMD_TX_LOG(DEBUG, "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n", i, m->nb_segs, tx_ring->id); rte_errno = EINVAL; return i; } /* The caller is obligated to set l2 and l3 len if any cksum * offload is enabled. */ if (unlikely(ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK) && (m->l2_len == 0 || m->l3_len == 0))) { PMD_TX_LOG(DEBUG, "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n", i); rte_errno = EINVAL; return i; } ret = rte_validate_tx_offload(m); if (ret != 0) { rte_errno = -ret; return i; } #endif /* Verify HW support for requested offloads and determine if * pseudo header checksum is needed. */ need_pseudo_csum = false; if (ol_flags & PKT_TX_IPV4) { if (ol_flags & PKT_TX_IP_CKSUM && !(dev_offload_capa & ENA_L3_IPV4_CSUM)) { rte_errno = ENOTSUP; return i; } if (ol_flags & PKT_TX_TCP_SEG && !(dev_offload_capa & ENA_IPV4_TSO)) { rte_errno = ENOTSUP; return i; } /* Check HW capabilities and if pseudo csum is needed * for L4 offloads. */ if (l4_csum_flag != PKT_TX_L4_NO_CKSUM && !(dev_offload_capa & ENA_L4_IPV4_CSUM)) { if (dev_offload_capa & ENA_L4_IPV4_CSUM_PARTIAL) { need_pseudo_csum = true; } else { rte_errno = ENOTSUP; return i; } } /* Parse the DF flag */ ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, m->l2_len); frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset); if (frag_field & RTE_IPV4_HDR_DF_FLAG) { m->packet_type |= RTE_PTYPE_L4_NONFRAG; } else if (ol_flags & PKT_TX_TCP_SEG) { /* In case we are supposed to TSO and have DF * not set (DF=0) hardware must be provided with * partial checksum. */ need_pseudo_csum = true; } } else if (ol_flags & PKT_TX_IPV6) { /* There is no support for IPv6 TSO as for now. */ if (ol_flags & PKT_TX_TCP_SEG) { rte_errno = ENOTSUP; return i; } /* Check HW capabilities and if pseudo csum is needed */ if (l4_csum_flag != PKT_TX_L4_NO_CKSUM && !(dev_offload_capa & ENA_L4_IPV6_CSUM)) { if (dev_offload_capa & ENA_L4_IPV6_CSUM_PARTIAL) { need_pseudo_csum = true; } else { rte_errno = ENOTSUP; return i; } } } if (need_pseudo_csum) { ret = rte_net_intel_cksum_flags_prepare(m, ol_flags); if (ret != 0) { rte_errno = -ret; return i; } } } return i; } static void ena_update_hints(struct ena_adapter *adapter, struct ena_admin_ena_hw_hints *hints) { if (hints->admin_completion_tx_timeout) adapter->ena_dev.admin_queue.completion_timeout = hints->admin_completion_tx_timeout * 1000; if (hints->mmio_read_timeout) /* convert to usec */ adapter->ena_dev.mmio_read.reg_read_to = hints->mmio_read_timeout * 1000; if (hints->driver_watchdog_timeout) { if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; else // Convert msecs to ticks adapter->keep_alive_timeout = (hints->driver_watchdog_timeout * rte_get_timer_hz()) / 1000; } } static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf) { struct ena_com_dev *ena_dev; int num_segments, header_len, rc; ena_dev = &tx_ring->adapter->ena_dev; num_segments = mbuf->nb_segs; header_len = mbuf->data_len; if (likely(num_segments < tx_ring->sgl_size)) goto checkspace; if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV && (num_segments == tx_ring->sgl_size) && (header_len < tx_ring->tx_max_header_size)) goto checkspace; /* Checking for space for 2 additional metadata descriptors due to * possible header split and metadata descriptor. Linearization will * be needed so we reduce the segments number from num_segments to 1 */ if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) { PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n"); return ENA_COM_NO_MEM; } ++tx_ring->tx_stats.linearize; rc = rte_pktmbuf_linearize(mbuf); if (unlikely(rc)) { PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n"); rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors); ++tx_ring->tx_stats.linearize_failed; return rc; } return 0; checkspace: /* Checking for space for 2 additional metadata descriptors due to * possible header split and metadata descriptor */ if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, num_segments + 2)) { PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n"); return ENA_COM_NO_MEM; } return 0; } static void ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info, struct rte_mbuf *mbuf, void **push_header, uint16_t *header_len) { struct ena_com_buf *ena_buf; uint16_t delta, seg_len, push_len; delta = 0; seg_len = mbuf->data_len; tx_info->mbuf = mbuf; ena_buf = tx_info->bufs; if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { /* * Tx header might be (and will be in most cases) smaller than * tx_max_header_size. But it's not an issue to send more data * to the device, than actually needed if the mbuf size is * greater than tx_max_header_size. */ push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size); *header_len = push_len; if (likely(push_len <= seg_len)) { /* If the push header is in the single segment, then * just point it to the 1st mbuf data. */ *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *); } else { /* If the push header lays in the several segments, copy * it to the intermediate buffer. */ rte_pktmbuf_read(mbuf, 0, push_len, tx_ring->push_buf_intermediate_buf); *push_header = tx_ring->push_buf_intermediate_buf; delta = push_len - seg_len; } } else { *push_header = NULL; *header_len = 0; push_len = 0; } /* Process first segment taking into consideration pushed header */ if (seg_len > push_len) { ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + push_len; ena_buf->len = seg_len - push_len; ena_buf++; tx_info->num_of_bufs++; } while ((mbuf = mbuf->next) != NULL) { seg_len = mbuf->data_len; /* Skip mbufs if whole data is pushed as a header */ if (unlikely(delta > seg_len)) { delta -= seg_len; continue; } ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta; ena_buf->len = seg_len - delta; ena_buf++; tx_info->num_of_bufs++; delta = 0; } } static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf) { struct ena_tx_buffer *tx_info; struct ena_com_tx_ctx ena_tx_ctx = { { 0 } }; uint16_t next_to_use; uint16_t header_len; uint16_t req_id; void *push_header; int nb_hw_desc; int rc; rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf); if (unlikely(rc)) return rc; next_to_use = tx_ring->next_to_use; req_id = tx_ring->empty_tx_reqs[next_to_use]; tx_info = &tx_ring->tx_buffer_info[req_id]; tx_info->num_of_bufs = 0; ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len); ena_tx_ctx.ena_bufs = tx_info->bufs; ena_tx_ctx.push_header = push_header; ena_tx_ctx.num_bufs = tx_info->num_of_bufs; ena_tx_ctx.req_id = req_id; ena_tx_ctx.header_len = header_len; /* Set Tx offloads flags, if applicable */ ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads, tx_ring->disable_meta_caching); if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx))) { PMD_DRV_LOG(DEBUG, "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", tx_ring->id); ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); tx_ring->tx_stats.doorbells++; tx_ring->pkts_without_db = false; } /* prepare the packet's descriptors to dma engine */ rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx, &nb_hw_desc); if (unlikely(rc)) { PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc); ++tx_ring->tx_stats.prepare_ctx_err; ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_DRIVER_INVALID_STATE); return rc; } tx_info->tx_descs = nb_hw_desc; tx_ring->tx_stats.cnt++; tx_ring->tx_stats.bytes += mbuf->pkt_len; tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, tx_ring->size_mask); return 0; } static void ena_tx_cleanup(struct ena_ring *tx_ring) { unsigned int cleanup_budget; unsigned int total_tx_descs = 0; uint16_t next_to_clean = tx_ring->next_to_clean; cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER, (unsigned int)ENA_REFILL_THRESH_PACKET); while (likely(total_tx_descs < cleanup_budget)) { struct rte_mbuf *mbuf; struct ena_tx_buffer *tx_info; uint16_t req_id; if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0) break; if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0)) break; /* Get Tx info & store how many descs were processed */ tx_info = &tx_ring->tx_buffer_info[req_id]; mbuf = tx_info->mbuf; rte_pktmbuf_free(mbuf); tx_info->mbuf = NULL; tx_ring->empty_tx_reqs[next_to_clean] = req_id; total_tx_descs += tx_info->tx_descs; /* Put back descriptor to the ring for reuse */ next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean, tx_ring->size_mask); } if (likely(total_tx_descs > 0)) { /* acknowledge completion of sent packets */ tx_ring->next_to_clean = next_to_clean; ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs); ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); } } static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue); uint16_t sent_idx = 0; /* Check adapter state */ if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) { PMD_DRV_LOG(ALERT, "Trying to xmit pkts while device is NOT running\n"); return 0; } for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) { if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx])) break; tx_ring->pkts_without_db = true; rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4, tx_ring->size_mask)]); } tx_ring->tx_stats.available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq); /* If there are ready packets to be xmitted... */ if (likely(tx_ring->pkts_without_db)) { /* ...let HW do its best :-) */ ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); tx_ring->tx_stats.doorbells++; tx_ring->pkts_without_db = false; } ena_tx_cleanup(tx_ring); tx_ring->tx_stats.available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq); tx_ring->tx_stats.tx_poll++; return sent_idx; } int ena_copy_eni_stats(struct ena_adapter *adapter) { struct ena_admin_eni_stats admin_eni_stats; int rc; rte_spinlock_lock(&adapter->admin_lock); rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats); rte_spinlock_unlock(&adapter->admin_lock); if (rc != 0) { if (rc == ENA_COM_UNSUPPORTED) { PMD_DRV_LOG(DEBUG, "Retrieving ENI metrics is not supported.\n"); } else { PMD_DRV_LOG(WARNING, "Failed to get ENI metrics: %d\n", rc); } return rc; } rte_memcpy(&adapter->eni_stats, &admin_eni_stats, sizeof(struct ena_stats_eni)); return 0; } /** * DPDK callback to retrieve names of extended device statistics * * @param dev * Pointer to Ethernet device structure. * @param[out] xstats_names * Buffer to insert names into. * @param n * Number of names. * * @return * Number of xstats names. */ static int ena_xstats_get_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, unsigned int n) { unsigned int xstats_count = ena_xstats_calc_num(dev); unsigned int stat, i, count = 0; if (n < xstats_count || !xstats_names) return xstats_count; for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) strcpy(xstats_names[count].name, ena_stats_global_strings[stat].name); for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) strcpy(xstats_names[count].name, ena_stats_eni_strings[stat].name); for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) for (i = 0; i < dev->data->nb_rx_queues; i++, count++) snprintf(xstats_names[count].name, sizeof(xstats_names[count].name), "rx_q%d_%s", i, ena_stats_rx_strings[stat].name); for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) for (i = 0; i < dev->data->nb_tx_queues; i++, count++) snprintf(xstats_names[count].name, sizeof(xstats_names[count].name), "tx_q%d_%s", i, ena_stats_tx_strings[stat].name); return xstats_count; } /** * DPDK callback to get extended device statistics. * * @param dev * Pointer to Ethernet device structure. * @param[out] stats * Stats table output buffer. * @param n * The size of the stats table. * * @return * Number of xstats on success, negative on failure. */ static int ena_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int n) { struct ena_adapter *adapter = dev->data->dev_private; unsigned int xstats_count = ena_xstats_calc_num(dev); unsigned int stat, i, count = 0; int stat_offset; void *stats_begin; if (n < xstats_count) return xstats_count; if (!xstats) return 0; for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) { stat_offset = ena_stats_global_strings[stat].stat_offset; stats_begin = &adapter->dev_stats; xstats[count].id = count; xstats[count].value = *((uint64_t *) ((char *)stats_begin + stat_offset)); } /* Even if the function below fails, we should copy previous (or initial * values) to keep structure of rte_eth_xstat consistent. */ ena_copy_eni_stats(adapter); for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) { stat_offset = ena_stats_eni_strings[stat].stat_offset; stats_begin = &adapter->eni_stats; xstats[count].id = count; xstats[count].value = *((uint64_t *) ((char *)stats_begin + stat_offset)); } for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) { for (i = 0; i < dev->data->nb_rx_queues; i++, count++) { stat_offset = ena_stats_rx_strings[stat].stat_offset; stats_begin = &adapter->rx_ring[i].rx_stats; xstats[count].id = count; xstats[count].value = *((uint64_t *) ((char *)stats_begin + stat_offset)); } } for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) { for (i = 0; i < dev->data->nb_tx_queues; i++, count++) { stat_offset = ena_stats_tx_strings[stat].stat_offset; stats_begin = &adapter->tx_ring[i].rx_stats; xstats[count].id = count; xstats[count].value = *((uint64_t *) ((char *)stats_begin + stat_offset)); } } return count; } static int ena_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, uint64_t *values, unsigned int n) { struct ena_adapter *adapter = dev->data->dev_private; uint64_t id; uint64_t rx_entries, tx_entries; unsigned int i; int qid; int valid = 0; bool was_eni_copied = false; for (i = 0; i < n; ++i) { id = ids[i]; /* Check if id belongs to global statistics */ if (id < ENA_STATS_ARRAY_GLOBAL) { values[i] = *((uint64_t *)&adapter->dev_stats + id); ++valid; continue; } /* Check if id belongs to ENI statistics */ id -= ENA_STATS_ARRAY_GLOBAL; if (id < ENA_STATS_ARRAY_ENI) { /* Avoid reading ENI stats multiple times in a single * function call, as it requires communication with the * admin queue. */ if (!was_eni_copied) { was_eni_copied = true; ena_copy_eni_stats(adapter); } values[i] = *((uint64_t *)&adapter->eni_stats + id); ++valid; continue; } /* Check if id belongs to rx queue statistics */ id -= ENA_STATS_ARRAY_ENI; rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues; if (id < rx_entries) { qid = id % dev->data->nb_rx_queues; id /= dev->data->nb_rx_queues; values[i] = *((uint64_t *) &adapter->rx_ring[qid].rx_stats + id); ++valid; continue; } /* Check if id belongs to rx queue statistics */ id -= rx_entries; tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues; if (id < tx_entries) { qid = id % dev->data->nb_tx_queues; id /= dev->data->nb_tx_queues; values[i] = *((uint64_t *) &adapter->tx_ring[qid].tx_stats + id); ++valid; continue; } } return valid; } static int ena_process_bool_devarg(const char *key, const char *value, void *opaque) { struct ena_adapter *adapter = opaque; bool bool_value; /* Parse the value. */ if (strcmp(value, "1") == 0) { bool_value = true; } else if (strcmp(value, "0") == 0) { bool_value = false; } else { PMD_INIT_LOG(ERR, "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n", value, key); return -EINVAL; } /* Now, assign it to the proper adapter field. */ if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0) adapter->use_large_llq_hdr = bool_value; return 0; } static int ena_parse_devargs(struct ena_adapter *adapter, struct rte_devargs *devargs) { static const char * const allowed_args[] = { ENA_DEVARG_LARGE_LLQ_HDR, NULL, }; struct rte_kvargs *kvlist; int rc; if (devargs == NULL) return 0; kvlist = rte_kvargs_parse(devargs->args, allowed_args); if (kvlist == NULL) { PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n", devargs->args); return -EINVAL; } rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR, ena_process_bool_devarg, adapter); rte_kvargs_free(kvlist); return rc; } /********************************************************************* * PMD configuration *********************************************************************/ static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct ena_adapter), eth_ena_dev_init); } static int eth_ena_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit); } static struct rte_pci_driver rte_ena_pmd = { .id_table = pci_id_ena_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_WC_ACTIVATE, .probe = eth_ena_pci_probe, .remove = eth_ena_pci_remove, }; RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map); RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci"); RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>"); RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE); RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE); #ifdef RTE_LIBRTE_ENA_DEBUG_RX RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE); #endif #ifdef RTE_LIBRTE_ENA_DEBUG_TX RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE); #endif #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE); #endif #ifdef RTE_LIBRTE_ENA_COM_DEBUG RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE); #endif /****************************************************************************** ******************************** AENQ Handlers ******************************* *****************************************************************************/ static void ena_update_on_link_change(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct rte_eth_dev *eth_dev; struct ena_adapter *adapter; struct ena_admin_aenq_link_change_desc *aenq_link_desc; uint32_t status; adapter = adapter_data; aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e; eth_dev = adapter->rte_dev; status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc); adapter->link_status = status; ena_link_update(eth_dev, 0); rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL); } static void ena_notification(void *data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = data; struct ena_admin_ena_hw_hints *hints; if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION) PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n", aenq_e->aenq_common_desc.group, ENA_ADMIN_NOTIFICATION); switch (aenq_e->aenq_common_desc.syndrome) { case ENA_ADMIN_UPDATE_HINTS: hints = (struct ena_admin_ena_hw_hints *) (&aenq_e->inline_data_w4); ena_update_hints(adapter, hints); break; default: PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n", aenq_e->aenq_common_desc.syndrome); } } static void ena_keep_alive(void *adapter_data, __rte_unused struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = adapter_data; struct ena_admin_aenq_keep_alive_desc *desc; uint64_t rx_drops; uint64_t tx_drops; adapter->timestamp_wd = rte_get_timer_cycles(); desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low; tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low; adapter->drv_stats->rx_drops = rx_drops; adapter->dev_stats.tx_drops = tx_drops; } /** * This handler will called for unknown event group or unimplemented handlers **/ static void unimplemented_aenq_handler(__rte_unused void *data, __rte_unused struct ena_admin_aenq_entry *aenq_e) { PMD_DRV_LOG(ERR, "Unknown event was received or event with " "unimplemented handler\n"); } static struct ena_aenq_handlers aenq_handlers = { .handlers = { [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, [ENA_ADMIN_NOTIFICATION] = ena_notification, [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive }, .unimplemented_handler = unimplemented_aenq_handler };